added Generalized Hough implementation
[profile/ivi/opencv.git] / modules / gpu / src / cuda / hough.cu
index 9ee7621..712b91a 100644 (file)
@@ -43,6 +43,9 @@
 #include <thrust/sort.h>
 #include "opencv2/gpu/device/common.hpp"
 #include "opencv2/gpu/device/emulation.hpp"
+#include "opencv2/gpu/device/vec_math.hpp"
+#include "opencv2/gpu/device/limits.hpp"
+#include "opencv2/gpu/device/dynamic_smem.hpp"
 
 namespace cv { namespace gpu { namespace device
 {
@@ -53,8 +56,7 @@ namespace cv { namespace gpu { namespace device
         ////////////////////////////////////////////////////////////////////////
         // buildPointList
 
-        const int PIXELS_PER_THREAD = 16;
-
+        template <int PIXELS_PER_THREAD>
         __global__ void buildPointList(const PtrStepSzb src, unsigned int* list)
         {
             __shared__ unsigned int s_queues[4][32 * PIXELS_PER_THREAD];
@@ -113,6 +115,8 @@ namespace cv { namespace gpu { namespace device
 
         int buildPointList_gpu(PtrStepSzb src, unsigned int* list)
         {
+            const int PIXELS_PER_THREAD = 16;
+
             void* counterPtr;
             cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
 
@@ -121,9 +125,9 @@ namespace cv { namespace gpu { namespace device
             const dim3 block(32, 4);
             const dim3 grid(divUp(src.cols, block.x * PIXELS_PER_THREAD), divUp(src.rows, block.y));
 
-            cudaSafeCall( cudaFuncSetCacheConfig(buildPointList, cudaFuncCachePreferShared) );
+            cudaSafeCall( cudaFuncSetCacheConfig(buildPointList<PIXELS_PER_THREAD>, cudaFuncCachePreferShared) );
 
-            buildPointList<<<grid, block>>>(src, list);
+            buildPointList<PIXELS_PER_THREAD><<<grid, block>>>(src, list);
             cudaSafeCall( cudaGetLastError() );
 
             cudaSafeCall( cudaDeviceSynchronize() );
@@ -167,7 +171,7 @@ namespace cv { namespace gpu { namespace device
 
         __global__ void linesAccumShared(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho)
         {
-            extern __shared__ int smem[];
+            int* smem = DynamicSharedMem<int>();
 
             for (int i = threadIdx.x; i < numrho + 1; i += blockDim.x)
                 smem[i] = 0;
@@ -410,7 +414,7 @@ namespace cv { namespace gpu { namespace device
                                            float3* circles, const int maxCircles, const float dp,
                                            const int minRadius, const int maxRadius, const int histSize, const int threshold)
         {
-            extern __shared__ int smem[];
+            int* smem = DynamicSharedMem<int>();
 
             for (int i = threadIdx.x; i < histSize + 2; i += blockDim.x)
                 smem[i] = 0;
@@ -481,5 +485,1023 @@ namespace cv { namespace gpu { namespace device
 
             return totalCount;
         }
+
+        ////////////////////////////////////////////////////////////////////////
+        // Generalized Hough
+
+        template <typename T, int PIXELS_PER_THREAD>
+        __global__ void buildEdgePointList(const PtrStepSzb edges, const PtrStep<T> dx, const PtrStep<T> dy, unsigned int* coordList, float* thetaList)
+        {
+            __shared__ unsigned int s_coordLists[4][32 * PIXELS_PER_THREAD];
+            __shared__ float s_thetaLists[4][32 * PIXELS_PER_THREAD];
+            __shared__ int s_sizes[4];
+            __shared__ int s_globStart[4];
+
+            const int x = blockIdx.x * blockDim.x * PIXELS_PER_THREAD + threadIdx.x;
+            const int y = blockIdx.y * blockDim.y + threadIdx.y;
+
+            if (threadIdx.x == 0)
+                s_sizes[threadIdx.y] = 0;
+            __syncthreads();
+
+            if (y < edges.rows)
+            {
+                // fill the queue
+                const uchar* edgesRow = edges.ptr(y);
+                const T* dxRow = dx.ptr(y);
+                const T* dyRow = dy.ptr(y);
+
+                for (int i = 0, xx = x; i < PIXELS_PER_THREAD && xx < edges.cols; ++i, xx += blockDim.x)
+                {
+                    const T dxVal = dxRow[xx];
+                    const T dyVal = dyRow[xx];
+
+                    if (edgesRow[xx] && (dxVal != 0 || dyVal != 0))
+                    {
+                        const unsigned int coord = (y << 16) | xx;
+
+                        float theta = ::atan2f(dyVal, dxVal);
+                        if (theta < 0)
+                            theta += 2.0f * CV_PI_F;
+
+                        const int qidx = Emulation::smem::atomicAdd(&s_sizes[threadIdx.y], 1);
+
+                        s_coordLists[threadIdx.y][qidx] = coord;
+                        s_thetaLists[threadIdx.y][qidx] = theta;
+                    }
+                }
+            }
+
+            __syncthreads();
+
+            // let one thread reserve the space required in the global list
+            if (threadIdx.x == 0 && threadIdx.y == 0)
+            {
+                // find how many items are stored in each list
+                int totalSize = 0;
+                for (int i = 0; i < blockDim.y; ++i)
+                {
+                    s_globStart[i] = totalSize;
+                    totalSize += s_sizes[i];
+                }
+
+                // calculate the offset in the global list
+                const int globalOffset = atomicAdd(&g_counter, totalSize);
+                for (int i = 0; i < blockDim.y; ++i)
+                    s_globStart[i] += globalOffset;
+            }
+
+            __syncthreads();
+
+            // copy local queues to global queue
+            const int qsize = s_sizes[threadIdx.y];
+            int gidx = s_globStart[threadIdx.y] + threadIdx.x;
+            for(int i = threadIdx.x; i < qsize; i += blockDim.x, gidx += blockDim.x)
+            {
+                coordList[gidx] = s_coordLists[threadIdx.y][i];
+                thetaList[gidx] = s_thetaLists[threadIdx.y][i];
+            }
+        }
+
+        template <typename T>
+        int buildEdgePointList_gpu(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList)
+        {
+            const int PIXELS_PER_THREAD = 8;
+
+            void* counterPtr;
+            cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
+
+            cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
+
+            const dim3 block(32, 4);
+            const dim3 grid(divUp(edges.cols, block.x * PIXELS_PER_THREAD), divUp(edges.rows, block.y));
+
+            cudaSafeCall( cudaFuncSetCacheConfig(buildEdgePointList<T, PIXELS_PER_THREAD>, cudaFuncCachePreferShared) );
+
+            buildEdgePointList<T, PIXELS_PER_THREAD><<<grid, block>>>(edges, (PtrStepSz<T>) dx, (PtrStepSz<T>) dy, coordList, thetaList);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+
+            int totalCount;
+            cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
+
+            return totalCount;
+        }
+
+        template int buildEdgePointList_gpu<short>(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
+        template int buildEdgePointList_gpu<int>(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
+        template int buildEdgePointList_gpu<float>(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
+
+        __global__ void buildRTable(const unsigned int* coordList, const float* thetaList, const int pointsCount,
+                                    PtrStep<short2> r_table, int* r_sizes, int maxSize,
+                                    const short2 templCenter, const float thetaScale)
+        {
+            const int tid = blockIdx.x * blockDim.x + threadIdx.x;
+
+            if (tid >= pointsCount)
+                return;
+
+            const unsigned int coord = coordList[tid];
+            short2 p;
+            p.x = (coord & 0xFFFF);
+            p.y = (coord >> 16) & 0xFFFF;
+
+            const float theta = thetaList[tid];
+            const int n = __float2int_rn(theta * thetaScale);
+
+            const int ind = ::atomicAdd(r_sizes + n, 1);
+            if (ind < maxSize)
+                r_table(n, ind) = p - templCenter;
+        }
+
+        void buildRTable_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
+                             PtrStepSz<short2> r_table, int* r_sizes,
+                             short2 templCenter, int levels)
+        {
+            const dim3 block(256);
+            const dim3 grid(divUp(pointsCount, block.x));
+
+            const float thetaScale = levels / (2.0f * CV_PI_F);
+
+            buildRTable<<<grid, block>>>(coordList, thetaList, pointsCount, r_table, r_sizes, r_table.cols, templCenter, thetaScale);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+        }
+
+        ////////////////////////////////////////////////////////////////////////
+        // GHT_Ballard_Pos
+
+        __global__ void GHT_Ballard_Pos_calcHist(const unsigned int* coordList, const float* thetaList, const int pointsCount,
+                                                 const PtrStep<short2> r_table, const int* r_sizes,
+                                                 PtrStepSzi hist,
+                                                 const float idp, const float thetaScale)
+        {
+            const int tid = blockIdx.x * blockDim.x + threadIdx.x;
+
+            if (tid >= pointsCount)
+                return;
+
+            const unsigned int coord = coordList[tid];
+            short2 p;
+            p.x = (coord & 0xFFFF);
+            p.y = (coord >> 16) & 0xFFFF;
+
+            const float theta = thetaList[tid];
+            const int n = __float2int_rn(theta * thetaScale);
+
+            const short2* r_row = r_table.ptr(n);
+            const int r_row_size = r_sizes[n];
+
+            for (int j = 0; j < r_row_size; ++j)
+            {
+                short2 c = p - r_row[j];
+
+                c.x = __float2int_rn(c.x * idp);
+                c.y = __float2int_rn(c.y * idp);
+
+                if (c.x >= 0 && c.x < hist.cols - 2 && c.y >= 0 && c.y < hist.rows - 2)
+                    ::atomicAdd(hist.ptr(c.y + 1) + c.x + 1, 1);
+            }
+        }
+
+        void GHT_Ballard_Pos_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
+                                          PtrStepSz<short2> r_table, const int* r_sizes,
+                                          PtrStepSzi hist,
+                                          float dp, int levels)
+        {
+            const dim3 block(256);
+            const dim3 grid(divUp(pointsCount, block.x));
+
+            const float idp = 1.0f / dp;
+            const float thetaScale = levels / (2.0f * CV_PI_F);
+
+            GHT_Ballard_Pos_calcHist<<<grid, block>>>(coordList, thetaList, pointsCount, r_table, r_sizes, hist, idp, thetaScale);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+        }
+
+        __global__ void GHT_Ballard_Pos_findPosInHist(const PtrStepSzi hist, float4* out, int3* votes, const int maxSize, const float dp, const int threshold)
+        {
+            const int x = blockIdx.x * blockDim.x + threadIdx.x;
+            const int y = blockIdx.y * blockDim.y + threadIdx.y;
+
+            if (x >= hist.cols - 2 || y >= hist.rows - 2)
+                return;
+
+            const int curVotes = hist(y + 1, x + 1);
+
+            if (curVotes > threshold &&
+                curVotes >  hist(y + 1, x) &&
+                curVotes >= hist(y + 1, x + 2) &&
+                curVotes >  hist(y, x + 1) &&
+                curVotes >= hist(y + 2, x + 1))
+            {
+                const int ind = ::atomicAdd(&g_counter, 1);
+
+                if (ind < maxSize)
+                {
+                    out[ind] = make_float4(x * dp, y * dp, 1.0f, 0.0f);
+                    votes[ind] = make_int3(curVotes, 0, 0);
+                }
+            }
+        }
+
+        int GHT_Ballard_Pos_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int maxSize, float dp, int threshold)
+        {
+            void* counterPtr;
+            cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
+
+            cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
+
+            const dim3 block(32, 8);
+            const dim3 grid(divUp(hist.cols - 2, block.x), divUp(hist.rows - 2, block.y));
+
+            cudaSafeCall( cudaFuncSetCacheConfig(GHT_Ballard_Pos_findPosInHist, cudaFuncCachePreferL1) );
+
+            GHT_Ballard_Pos_findPosInHist<<<grid, block>>>(hist, out, votes, maxSize, dp, threshold);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+
+            int totalCount;
+            cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
+
+            totalCount = ::min(totalCount, maxSize);
+
+            return totalCount;
+        }
+
+        ////////////////////////////////////////////////////////////////////////
+        // GHT_Ballard_PosScale
+
+        __global__ void GHT_Ballard_PosScale_calcHist(const unsigned int* coordList, const float* thetaList,
+                                                      PtrStep<short2> r_table, const int* r_sizes,
+                                                      PtrStepi hist, const int rows, const int cols,
+                                                      const float minScale, const float scaleStep, const int scaleRange,
+                                                      const float idp, const float thetaScale)
+        {
+            const unsigned int coord = coordList[blockIdx.x];
+            float2 p;
+            p.x = (coord & 0xFFFF);
+            p.y = (coord >> 16) & 0xFFFF;
+
+            const float theta = thetaList[blockIdx.x];
+            const int n = __float2int_rn(theta * thetaScale);
+
+            const short2* r_row = r_table.ptr(n);
+            const int r_row_size = r_sizes[n];
+
+            for (int j = 0; j < r_row_size; ++j)
+            {
+                const float2 d = saturate_cast<float2>(r_row[j]);
+
+                for (int s = threadIdx.x; s < scaleRange; s += blockDim.x)
+                {
+                    const float scale = minScale + s * scaleStep;
+
+                    float2 c = p - scale * d;
+
+                    c.x *= idp;
+                    c.y *= idp;
+
+                    if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows)
+                        ::atomicAdd(hist.ptr((s + 1) * (rows + 2) + __float2int_rn(c.y + 1)) + __float2int_rn(c.x + 1), 1);
+                }
+            }
+        }
+
+        void GHT_Ballard_PosScale_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
+                                               PtrStepSz<short2> r_table, const int* r_sizes,
+                                               PtrStepi hist, int rows, int cols,
+                                               float minScale, float scaleStep, int scaleRange,
+                                               float dp, int levels)
+        {
+            const dim3 block(256);
+            const dim3 grid(pointsCount);
+
+            const float idp = 1.0f / dp;
+            const float thetaScale = levels / (2.0f * CV_PI_F);
+
+            GHT_Ballard_PosScale_calcHist<<<grid, block>>>(coordList, thetaList,
+                                                           r_table, r_sizes,
+                                                           hist, rows, cols,
+                                                           minScale, scaleStep, scaleRange,
+                                                           idp, thetaScale);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+        }
+
+        __global__ void GHT_Ballard_PosScale_findPosInHist(const PtrStepi hist, const int rows, const int cols, const int scaleRange,
+                                                           float4* out, int3* votes, const int maxSize,
+                                                           const float minScale, const float scaleStep, const float dp, const int threshold)
+        {
+            const int x = blockIdx.x * blockDim.x + threadIdx.x;
+            const int y = blockIdx.y * blockDim.y + threadIdx.y;
+
+            if (x >= cols || y >= rows)
+                return;
+
+            for (int s = 0; s < scaleRange; ++s)
+            {
+                const float scale = minScale + s * scaleStep;
+
+                const int prevScaleIdx = (s) * (rows + 2);
+                const int curScaleIdx = (s + 1) * (rows + 2);
+                const int nextScaleIdx = (s + 2) * (rows + 2);
+
+                const int curVotes = hist(curScaleIdx + y + 1, x + 1);
+
+                if (curVotes > threshold &&
+                    curVotes >  hist(curScaleIdx + y + 1, x) &&
+                    curVotes >= hist(curScaleIdx + y + 1, x + 2) &&
+                    curVotes >  hist(curScaleIdx + y, x + 1) &&
+                    curVotes >= hist(curScaleIdx + y + 2, x + 1) &&
+                    curVotes >  hist(prevScaleIdx + y + 1, x + 1) &&
+                    curVotes >= hist(nextScaleIdx + y + 1, x + 1))
+                {
+                    const int ind = ::atomicAdd(&g_counter, 1);
+
+                    if (ind < maxSize)
+                    {
+                        out[ind] = make_float4(x * dp, y * dp, scale, 0.0f);
+                        votes[ind] = make_int3(curVotes, curVotes, 0);
+                    }
+                }
+            }
+        }
+
+        int GHT_Ballard_PosScale_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int scaleRange, float4* out, int3* votes, int maxSize,
+                                                   float minScale, float scaleStep, float dp, int threshold)
+        {
+            void* counterPtr;
+            cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
+
+            cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
+
+            const dim3 block(32, 8);
+            const dim3 grid(divUp(cols, block.x), divUp(rows, block.y));
+
+            cudaSafeCall( cudaFuncSetCacheConfig(GHT_Ballard_PosScale_findPosInHist, cudaFuncCachePreferL1) );
+
+            GHT_Ballard_PosScale_findPosInHist<<<grid, block>>>(hist, rows, cols, scaleRange, out, votes, maxSize, minScale, scaleStep, dp, threshold);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+
+            int totalCount;
+            cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
+
+            totalCount = ::min(totalCount, maxSize);
+
+            return totalCount;
+        }
+
+        ////////////////////////////////////////////////////////////////////////
+        // GHT_Ballard_PosRotation
+
+        __global__ void GHT_Ballard_PosRotation_calcHist(const unsigned int* coordList, const float* thetaList,
+                                                         PtrStep<short2> r_table, const int* r_sizes,
+                                                         PtrStepi hist, const int rows, const int cols,
+                                                         const float minAngle, const float angleStep, const int angleRange,
+                                                         const float idp, const float thetaScale)
+        {
+            const unsigned int coord = coordList[blockIdx.x];
+            float2 p;
+            p.x = (coord & 0xFFFF);
+            p.y = (coord >> 16) & 0xFFFF;
+
+            const float thetaVal = thetaList[blockIdx.x];
+
+            for (int a = threadIdx.x; a < angleRange; a += blockDim.x)
+            {
+                const float angle = (minAngle + a * angleStep) * (CV_PI_F / 180.0f);
+                float sinA, cosA;
+                sincosf(angle, &sinA, &cosA);
+
+                float theta = thetaVal - angle;
+                if (theta < 0)
+                    theta += 2.0f * CV_PI_F;
+
+                const int n = __float2int_rn(theta * thetaScale);
+
+                const short2* r_row = r_table.ptr(n);
+                const int r_row_size = r_sizes[n];
+
+                for (int j = 0; j < r_row_size; ++j)
+                {
+                    const float2 d = saturate_cast<float2>(r_row[j]);
+
+                    const float2 dr = make_float2(d.x * cosA - d.y * sinA, d.x * sinA + d.y * cosA);
+
+                    float2 c = make_float2(p.x - dr.x, p.y - dr.y);
+                    c.x *= idp;
+                    c.y *= idp;
+
+                    if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows)
+                        ::atomicAdd(hist.ptr((a + 1) * (rows + 2) + __float2int_rn(c.y + 1)) + __float2int_rn(c.x + 1), 1);
+                }
+            }
+        }
+
+        void GHT_Ballard_PosRotation_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
+                                                  PtrStepSz<short2> r_table, const int* r_sizes,
+                                                  PtrStepi hist, int rows, int cols,
+                                                  float minAngle, float angleStep, int angleRange,
+                                                  float dp, int levels)
+        {
+            const dim3 block(256);
+            const dim3 grid(pointsCount);
+
+            const float idp = 1.0f / dp;
+            const float thetaScale = levels / (2.0f * CV_PI_F);
+
+            GHT_Ballard_PosRotation_calcHist<<<grid, block>>>(coordList, thetaList,
+                                                              r_table, r_sizes,
+                                                              hist, rows, cols,
+                                                              minAngle, angleStep, angleRange,
+                                                              idp, thetaScale);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+        }
+
+        __global__ void GHT_Ballard_PosRotation_findPosInHist(const PtrStepi hist, const int rows, const int cols, const int angleRange,
+                                                              float4* out, int3* votes, const int maxSize,
+                                                              const float minAngle, const float angleStep, const float dp, const int threshold)
+        {
+            const int x = blockIdx.x * blockDim.x + threadIdx.x;
+            const int y = blockIdx.y * blockDim.y + threadIdx.y;
+
+            if (x >= cols || y >= rows)
+                return;
+
+            for (int a = 0; a < angleRange; ++a)
+            {
+                const float angle = minAngle + a * angleStep;
+
+                const int prevAngleIdx = (a) * (rows + 2);
+                const int curAngleIdx = (a + 1) * (rows + 2);
+                const int nextAngleIdx = (a + 2) * (rows + 2);
+
+                const int curVotes = hist(curAngleIdx + y + 1, x + 1);
+
+                if (curVotes > threshold &&
+                    curVotes >  hist(curAngleIdx + y + 1, x) &&
+                    curVotes >= hist(curAngleIdx + y + 1, x + 2) &&
+                    curVotes >  hist(curAngleIdx + y, x + 1) &&
+                    curVotes >= hist(curAngleIdx + y + 2, x + 1) &&
+                    curVotes >  hist(prevAngleIdx + y + 1, x + 1) &&
+                    curVotes >= hist(nextAngleIdx + y + 1, x + 1))
+                {
+                    const int ind = ::atomicAdd(&g_counter, 1);
+
+                    if (ind < maxSize)
+                    {
+                        out[ind] = make_float4(x * dp, y * dp, 1.0f, angle);
+                        votes[ind] = make_int3(curVotes, 0, curVotes);
+                    }
+                }
+            }
+        }
+
+        int GHT_Ballard_PosRotation_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int angleRange, float4* out, int3* votes, int maxSize,
+                                                      float minAngle, float angleStep, float dp, int threshold)
+        {
+            void* counterPtr;
+            cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
+
+            cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
+
+            const dim3 block(32, 8);
+            const dim3 grid(divUp(cols, block.x), divUp(rows, block.y));
+
+            cudaSafeCall( cudaFuncSetCacheConfig(GHT_Ballard_PosRotation_findPosInHist, cudaFuncCachePreferL1) );
+
+            GHT_Ballard_PosRotation_findPosInHist<<<grid, block>>>(hist, rows, cols, angleRange, out, votes, maxSize, minAngle, angleStep, dp, threshold);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+
+            int totalCount;
+            cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
+
+            totalCount = ::min(totalCount, maxSize);
+
+            return totalCount;
+        }
+
+        ////////////////////////////////////////////////////////////////////////
+        // GHT_Guil_Full
+
+        struct FeatureTable
+        {
+            uchar* p1_pos_data;
+            size_t p1_pos_step;
+
+            uchar* p1_theta_data;
+            size_t p1_theta_step;
+
+            uchar* p2_pos_data;
+            size_t p2_pos_step;
+
+            uchar* d12_data;
+            size_t d12_step;
+
+            uchar* r1_data;
+            size_t r1_step;
+
+            uchar* r2_data;
+            size_t r2_step;
+        };
+
+        __constant__ FeatureTable c_templFeatures;
+        __constant__ FeatureTable c_imageFeatures;
+
+        void GHT_Guil_Full_setTemplFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2)
+        {
+            FeatureTable tbl;
+
+            tbl.p1_pos_data = p1_pos.data;
+            tbl.p1_pos_step = p1_pos.step;
+
+            tbl.p1_theta_data = p1_theta.data;
+            tbl.p1_theta_step = p1_theta.step;
+
+            tbl.p2_pos_data = p2_pos.data;
+            tbl.p2_pos_step = p2_pos.step;
+
+            tbl.d12_data = d12.data;
+            tbl.d12_step = d12.step;
+
+            tbl.r1_data = r1.data;
+            tbl.r1_step = r1.step;
+
+            tbl.r2_data = r2.data;
+            tbl.r2_step = r2.step;
+
+            cudaSafeCall( cudaMemcpyToSymbol(c_templFeatures, &tbl, sizeof(FeatureTable)) );
+        }
+        void GHT_Guil_Full_setImageFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2)
+        {
+            FeatureTable tbl;
+
+            tbl.p1_pos_data = p1_pos.data;
+            tbl.p1_pos_step = p1_pos.step;
+
+            tbl.p1_theta_data = p1_theta.data;
+            tbl.p1_theta_step = p1_theta.step;
+
+            tbl.p2_pos_data = p2_pos.data;
+            tbl.p2_pos_step = p2_pos.step;
+
+            tbl.d12_data = d12.data;
+            tbl.d12_step = d12.step;
+
+            tbl.r1_data = r1.data;
+            tbl.r1_step = r1.step;
+
+            tbl.r2_data = r2.data;
+            tbl.r2_step = r2.step;
+
+            cudaSafeCall( cudaMemcpyToSymbol(c_imageFeatures, &tbl, sizeof(FeatureTable)) );
+        }
+
+        struct TemplFeatureTable
+        {
+            static __device__ float2* p1_pos(int n)
+            {
+                return (float2*)(c_templFeatures.p1_pos_data + n * c_templFeatures.p1_pos_step);
+            }
+            static __device__ float* p1_theta(int n)
+            {
+                return (float*)(c_templFeatures.p1_theta_data + n * c_templFeatures.p1_theta_step);
+            }
+            static __device__ float2* p2_pos(int n)
+            {
+                return (float2*)(c_templFeatures.p2_pos_data + n * c_templFeatures.p2_pos_step);
+            }
+
+            static __device__ float* d12(int n)
+            {
+                return (float*)(c_templFeatures.d12_data + n * c_templFeatures.d12_step);
+            }
+
+            static __device__ float2* r1(int n)
+            {
+                return (float2*)(c_templFeatures.r1_data + n * c_templFeatures.r1_step);
+            }
+            static __device__ float2* r2(int n)
+            {
+                return (float2*)(c_templFeatures.r2_data + n * c_templFeatures.r2_step);
+            }
+        };
+        struct ImageFeatureTable
+        {
+            static __device__ float2* p1_pos(int n)
+            {
+                return (float2*)(c_imageFeatures.p1_pos_data + n * c_imageFeatures.p1_pos_step);
+            }
+            static __device__ float* p1_theta(int n)
+            {
+                return (float*)(c_imageFeatures.p1_theta_data + n * c_imageFeatures.p1_theta_step);
+            }
+            static __device__ float2* p2_pos(int n)
+            {
+                return (float2*)(c_imageFeatures.p2_pos_data + n * c_imageFeatures.p2_pos_step);
+            }
+
+            static __device__ float* d12(int n)
+            {
+                return (float*)(c_imageFeatures.d12_data + n * c_imageFeatures.d12_step);
+            }
+
+            static __device__ float2* r1(int n)
+            {
+                return (float2*)(c_imageFeatures.r1_data + n * c_imageFeatures.r1_step);
+            }
+            static __device__ float2* r2(int n)
+            {
+                return (float2*)(c_imageFeatures.r2_data + n * c_imageFeatures.r2_step);
+            }
+        };
+
+        __device__ float clampAngle(float a)
+        {
+            float res = a;
+
+            while (res > 2.0f * CV_PI_F)
+                res -= 2.0f * CV_PI_F;
+            while (res < 0.0f)
+                res += 2.0f * CV_PI_F;
+
+            return res;
+        }
+
+        __device__ bool angleEq(float a, float b, float eps)
+        {
+            return (::fabs(clampAngle(a - b)) <= eps);
+        }
+
+        template <class FT, bool isTempl>
+        __global__ void GHT_Guil_Full_buildFeatureList(const unsigned int* coordList, const float* thetaList, const int pointsCount,
+                                                       int* sizes, const int maxSize,
+                                                       const float xi, const float angleEpsilon, const float alphaScale,
+                                                       const float2 center, const float maxDist)
+        {
+            const float p1_theta = thetaList[blockIdx.x];
+            const unsigned int coord1 = coordList[blockIdx.x];
+            float2 p1_pos;
+            p1_pos.x = (coord1 & 0xFFFF);
+            p1_pos.y = (coord1 >> 16) & 0xFFFF;
+
+            for (int i = threadIdx.x; i < pointsCount; i += blockDim.x)
+            {
+                const float p2_theta = thetaList[i];
+                const unsigned int coord2 = coordList[i];
+                float2 p2_pos;
+                p2_pos.x = (coord2 & 0xFFFF);
+                p2_pos.y = (coord2 >> 16) & 0xFFFF;
+
+                if (angleEq(p1_theta - p2_theta, xi, angleEpsilon))
+                {
+                    const float2 d = p1_pos - p2_pos;
+
+                    float alpha12 = clampAngle(::atan2(d.y, d.x) - p1_theta);
+                    float d12 = ::sqrtf(d.x * d.x + d.y * d.y);
+
+                    if (d12 > maxDist)
+                        continue;
+
+                    float2 r1 = p1_pos - center;
+                    float2 r2 = p2_pos - center;
+
+                    const int n = __float2int_rn(alpha12 * alphaScale);
+
+                    const int ind = ::atomicAdd(sizes + n, 1);
+
+                    if (ind < maxSize)
+                    {
+                        if (!isTempl)
+                        {
+                            FT::p1_pos(n)[ind] = p1_pos;
+                            FT::p2_pos(n)[ind] = p2_pos;
+                        }
+
+                        FT::p1_theta(n)[ind] = p1_theta;
+
+                        FT::d12(n)[ind] = d12;
+
+                        if (isTempl)
+                        {
+                            FT::r1(n)[ind] = r1;
+                            FT::r2(n)[ind] = r2;
+                        }
+                    }
+                }
+            }
+        }
+
+        template <class FT, bool isTempl>
+        void GHT_Guil_Full_buildFeatureList_caller(const unsigned int* coordList, const float* thetaList, int pointsCount,
+                                                   int* sizes, int maxSize,
+                                                   float xi, float angleEpsilon, int levels,
+                                                   float2 center, float maxDist)
+        {
+            const dim3 block(256);
+            const dim3 grid(pointsCount);
+
+            const float alphaScale = levels / (2.0f * CV_PI_F);
+
+            GHT_Guil_Full_buildFeatureList<FT, isTempl><<<grid, block>>>(coordList, thetaList, pointsCount,
+                                                                         sizes, maxSize,
+                                                                         xi * (CV_PI_F / 180.0f), angleEpsilon * (CV_PI_F / 180.0f), alphaScale,
+                                                                         center, maxDist);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+
+            thrust::device_ptr<int> sizesPtr(sizes);
+            thrust::transform(sizesPtr, sizesPtr + levels + 1, sizesPtr, device::bind2nd(device::minimum<int>(), maxSize));
+        }
+
+        void GHT_Guil_Full_buildTemplFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
+                                                     int* sizes, int maxSize,
+                                                     float xi, float angleEpsilon, int levels,
+                                                     float2 center, float maxDist)
+        {
+            GHT_Guil_Full_buildFeatureList_caller<TemplFeatureTable, true>(coordList, thetaList, pointsCount,
+                                                                           sizes, maxSize,
+                                                                           xi, angleEpsilon, levels,
+                                                                           center, maxDist);
+        }
+        void GHT_Guil_Full_buildImageFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
+                                                     int* sizes, int maxSize,
+                                                     float xi, float angleEpsilon, int levels,
+                                                     float2 center, float maxDist)
+        {
+            GHT_Guil_Full_buildFeatureList_caller<ImageFeatureTable, false>(coordList, thetaList, pointsCount,
+                                                                            sizes, maxSize,
+                                                                            xi, angleEpsilon, levels,
+                                                                            center, maxDist);
+        }
+
+        __global__ void GHT_Guil_Full_calcOHist(const int* templSizes, const int* imageSizes, int* OHist,
+                                                const float minAngle, const float maxAngle, const float iAngleStep, const int angleRange)
+        {
+            extern __shared__ int s_OHist[];
+            for (int i = threadIdx.x; i <= angleRange; i += blockDim.x)
+                s_OHist[i] = 0;
+            __syncthreads();
+
+            const int tIdx = blockIdx.x;
+            const int level = blockIdx.y;
+
+            const int tSize = templSizes[level];
+
+            if (tIdx < tSize)
+            {
+                const int imSize = imageSizes[level];
+
+                const float t_p1_theta = TemplFeatureTable::p1_theta(level)[tIdx];
+
+                for (int i = threadIdx.x; i < imSize; i += blockDim.x)
+                {
+                    const float im_p1_theta = ImageFeatureTable::p1_theta(level)[i];
+
+                    const float angle = clampAngle(im_p1_theta - t_p1_theta);
+
+                    if (angle >= minAngle && angle <= maxAngle)
+                    {
+                        const int n = __float2int_rn((angle - minAngle) * iAngleStep);
+                        Emulation::smem::atomicAdd(&s_OHist[n], 1);
+                    }
+                }
+            }
+            __syncthreads();
+
+            for (int i = threadIdx.x; i <= angleRange; i += blockDim.x)
+                ::atomicAdd(OHist + i, s_OHist[i]);
+        }
+
+        void GHT_Guil_Full_calcOHist_gpu(const int* templSizes, const int* imageSizes, int* OHist,
+                                         float minAngle, float maxAngle, float angleStep, int angleRange,
+                                         int levels, int tMaxSize)
+        {
+            const dim3 block(256);
+            const dim3 grid(tMaxSize, levels + 1);
+
+            minAngle *= (CV_PI_F / 180.0f);
+            maxAngle *= (CV_PI_F / 180.0f);
+            angleStep *= (CV_PI_F / 180.0f);
+
+            const size_t smemSize = (angleRange + 1) * sizeof(float);
+
+            GHT_Guil_Full_calcOHist<<<grid, block, smemSize>>>(templSizes, imageSizes, OHist,
+                                                               minAngle, maxAngle, 1.0f / angleStep, angleRange);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+        }
+
+        __global__ void GHT_Guil_Full_calcSHist(const int* templSizes, const int* imageSizes, int* SHist,
+                                                const float angle, const float angleEpsilon,
+                                                const float minScale, const float maxScale, const float iScaleStep, const int scaleRange)
+        {
+            extern __shared__ int s_SHist[];
+            for (int i = threadIdx.x; i <= scaleRange; i += blockDim.x)
+                s_SHist[i] = 0;
+            __syncthreads();
+
+            const int tIdx = blockIdx.x;
+            const int level = blockIdx.y;
+
+            const int tSize = templSizes[level];
+
+            if (tIdx < tSize)
+            {
+                const int imSize = imageSizes[level];
+
+                const float t_p1_theta = TemplFeatureTable::p1_theta(level)[tIdx] + angle;
+                const float t_d12 = TemplFeatureTable::d12(level)[tIdx] + angle;
+
+                for (int i = threadIdx.x; i < imSize; i += blockDim.x)
+                {
+                    const float im_p1_theta = ImageFeatureTable::p1_theta(level)[i];
+                    const float im_d12 = ImageFeatureTable::d12(level)[i];
+
+                    if (angleEq(im_p1_theta, t_p1_theta, angleEpsilon))
+                    {
+                        const float scale = im_d12 / t_d12;
+
+                        if (scale >= minScale && scale <= maxScale)
+                        {
+                            const int s = __float2int_rn((scale - minScale) * iScaleStep);
+                            Emulation::smem::atomicAdd(&s_SHist[s], 1);
+                        }
+                    }
+                }
+            }
+            __syncthreads();
+
+            for (int i = threadIdx.x; i <= scaleRange; i += blockDim.x)
+                ::atomicAdd(SHist + i, s_SHist[i]);
+        }
+
+        void GHT_Guil_Full_calcSHist_gpu(const int* templSizes, const int* imageSizes, int* SHist,
+                                         float angle, float angleEpsilon,
+                                         float minScale, float maxScale, float iScaleStep, int scaleRange,
+                                         int levels, int tMaxSize)
+        {
+            const dim3 block(256);
+            const dim3 grid(tMaxSize, levels + 1);
+
+            angle *= (CV_PI_F / 180.0f);
+            angleEpsilon *= (CV_PI_F / 180.0f);
+
+            const size_t smemSize = (scaleRange + 1) * sizeof(float);
+
+            GHT_Guil_Full_calcSHist<<<grid, block, smemSize>>>(templSizes, imageSizes, SHist,
+                                                               angle, angleEpsilon,
+                                                               minScale, maxScale, iScaleStep, scaleRange);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+        }
+
+        __global__ void GHT_Guil_Full_calcPHist(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
+                                                const float angle, const float sinVal, const float cosVal, const float angleEpsilon, const float scale,
+                                                const float idp)
+        {
+            const int tIdx = blockIdx.x;
+            const int level = blockIdx.y;
+
+            const int tSize = templSizes[level];
+
+            if (tIdx < tSize)
+            {
+                const int imSize = imageSizes[level];
+
+                const float t_p1_theta = TemplFeatureTable::p1_theta(level)[tIdx] + angle;
+
+                float2 r1 = TemplFeatureTable::r1(level)[tIdx];
+                float2 r2 = TemplFeatureTable::r2(level)[tIdx];
+
+                r1 = r1 * scale;
+                r2 = r2 * scale;
+
+                r1 = make_float2(cosVal * r1.x - sinVal * r1.y, sinVal * r1.x + cosVal * r1.y);
+                r2 = make_float2(cosVal * r2.x - sinVal * r2.y, sinVal * r2.x + cosVal * r2.y);
+
+                for (int i = threadIdx.x; i < imSize; i += blockDim.x)
+                {
+                    const float im_p1_theta = ImageFeatureTable::p1_theta(level)[i];
+
+                    const float2 im_p1_pos = ImageFeatureTable::p1_pos(level)[i];
+                    const float2 im_p2_pos = ImageFeatureTable::p2_pos(level)[i];
+
+                    if (angleEq(im_p1_theta, t_p1_theta, angleEpsilon))
+                    {
+                        float2 c1, c2;
+
+                        c1 = im_p1_pos - r1;
+                        c1 = c1 * idp;
+
+                        c2 = im_p2_pos - r2;
+                        c2 = c2 * idp;
+
+                        if (::fabs(c1.x - c2.x) > 1 || ::fabs(c1.y - c2.y) > 1)
+                            continue;
+
+                        if (c1.y >= 0 && c1.y < PHist.rows - 2 && c1.x >= 0 && c1.x < PHist.cols - 2)
+                            ::atomicAdd(PHist.ptr(__float2int_rn(c1.y) + 1) + __float2int_rn(c1.x) + 1, 1);
+                    }
+                }
+            }
+        }
+
+        void GHT_Guil_Full_calcPHist_gpu(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
+                                         float angle, float angleEpsilon, float scale,
+                                         float dp,
+                                         int levels, int tMaxSize)
+        {
+            const dim3 block(256);
+            const dim3 grid(tMaxSize, levels + 1);
+
+            angle *= (CV_PI_F / 180.0f);
+            angleEpsilon *= (CV_PI_F / 180.0f);
+
+            const float sinVal = ::sinf(angle);
+            const float cosVal = ::cosf(angle);
+
+            cudaSafeCall( cudaFuncSetCacheConfig(GHT_Guil_Full_calcPHist, cudaFuncCachePreferL1) );
+
+            GHT_Guil_Full_calcPHist<<<grid, block>>>(templSizes, imageSizes, PHist,
+                                                     angle, sinVal, cosVal, angleEpsilon, scale,
+                                                     1.0f / dp);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+        }
+
+        __global__ void GHT_Guil_Full_findPosInHist(const PtrStepSzi hist, float4* out, int3* votes, const int maxSize,
+                                                    const float angle, const int angleVotes, const float scale, const int scaleVotes,
+                                                    const float dp, const int threshold)
+        {
+            const int x = blockIdx.x * blockDim.x + threadIdx.x;
+            const int y = blockIdx.y * blockDim.y + threadIdx.y;
+
+            if (x >= hist.cols - 2 || y >= hist.rows - 2)
+                return;
+
+            const int curVotes = hist(y + 1, x + 1);
+
+            if (curVotes > threshold &&
+                curVotes >  hist(y + 1, x) &&
+                curVotes >= hist(y + 1, x + 2) &&
+                curVotes >  hist(y, x + 1) &&
+                curVotes >= hist(y + 2, x + 1))
+            {
+                const int ind = ::atomicAdd(&g_counter, 1);
+
+                if (ind < maxSize)
+                {
+                    out[ind] = make_float4(x * dp, y * dp, scale, angle);
+                    votes[ind] = make_int3(curVotes, scaleVotes, angleVotes);
+                }
+            }
+        }
+
+        int GHT_Guil_Full_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int curSize, int maxSize,
+                                             float angle, int angleVotes, float scale, int scaleVotes,
+                                             float dp, int threshold)
+        {
+            void* counterPtr;
+            cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
+
+            cudaSafeCall( cudaMemcpy(counterPtr, &curSize, sizeof(int), cudaMemcpyHostToDevice) );
+
+            const dim3 block(32, 8);
+            const dim3 grid(divUp(hist.cols - 2, block.x), divUp(hist.rows - 2, block.y));
+
+            cudaSafeCall( cudaFuncSetCacheConfig(GHT_Guil_Full_findPosInHist, cudaFuncCachePreferL1) );
+
+            GHT_Guil_Full_findPosInHist<<<grid, block>>>(hist, out, votes, maxSize,
+                                                         angle, angleVotes, scale, scaleVotes,
+                                                         dp, threshold);
+            cudaSafeCall( cudaGetLastError() );
+
+            cudaSafeCall( cudaDeviceSynchronize() );
+
+            int totalCount;
+            cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
+
+            totalCount = ::min(totalCount, maxSize);
+
+            return totalCount;
+        }
     }
 }}}