genirq/affinity: Move group_cpus_evenly() into lib/
[platform/kernel/linux-starfive.git] / kernel / irq / affinity.c
index 5408333..44a4eba 100644 (file)
@@ -7,403 +7,7 @@
 #include <linux/kernel.h>
 #include <linux/slab.h>
 #include <linux/cpu.h>
-#include <linux/sort.h>
-
-static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
-                               unsigned int cpus_per_grp)
-{
-       const struct cpumask *siblmsk;
-       int cpu, sibl;
-
-       for ( ; cpus_per_grp > 0; ) {
-               cpu = cpumask_first(nmsk);
-
-               /* Should not happen, but I'm too lazy to think about it */
-               if (cpu >= nr_cpu_ids)
-                       return;
-
-               cpumask_clear_cpu(cpu, nmsk);
-               cpumask_set_cpu(cpu, irqmsk);
-               cpus_per_grp--;
-
-               /* If the cpu has siblings, use them first */
-               siblmsk = topology_sibling_cpumask(cpu);
-               for (sibl = -1; cpus_per_grp > 0; ) {
-                       sibl = cpumask_next(sibl, siblmsk);
-                       if (sibl >= nr_cpu_ids)
-                               break;
-                       if (!cpumask_test_and_clear_cpu(sibl, nmsk))
-                               continue;
-                       cpumask_set_cpu(sibl, irqmsk);
-                       cpus_per_grp--;
-               }
-       }
-}
-
-static cpumask_var_t *alloc_node_to_cpumask(void)
-{
-       cpumask_var_t *masks;
-       int node;
-
-       masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
-       if (!masks)
-               return NULL;
-
-       for (node = 0; node < nr_node_ids; node++) {
-               if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
-                       goto out_unwind;
-       }
-
-       return masks;
-
-out_unwind:
-       while (--node >= 0)
-               free_cpumask_var(masks[node]);
-       kfree(masks);
-       return NULL;
-}
-
-static void free_node_to_cpumask(cpumask_var_t *masks)
-{
-       int node;
-
-       for (node = 0; node < nr_node_ids; node++)
-               free_cpumask_var(masks[node]);
-       kfree(masks);
-}
-
-static void build_node_to_cpumask(cpumask_var_t *masks)
-{
-       int cpu;
-
-       for_each_possible_cpu(cpu)
-               cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
-}
-
-static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
-                               const struct cpumask *mask, nodemask_t *nodemsk)
-{
-       int n, nodes = 0;
-
-       /* Calculate the number of nodes in the supplied affinity mask */
-       for_each_node(n) {
-               if (cpumask_intersects(mask, node_to_cpumask[n])) {
-                       node_set(n, *nodemsk);
-                       nodes++;
-               }
-       }
-       return nodes;
-}
-
-struct node_groups {
-       unsigned id;
-
-       union {
-               unsigned ngroups;
-               unsigned ncpus;
-       };
-};
-
-static int ncpus_cmp_func(const void *l, const void *r)
-{
-       const struct node_groups *ln = l;
-       const struct node_groups *rn = r;
-
-       return ln->ncpus - rn->ncpus;
-}
-
-/*
- * Allocate group number for each node, so that for each node:
- *
- * 1) the allocated number is >= 1
- *
- * 2) the allocated number is <= active CPU number of this node
- *
- * The actual allocated total groups may be less than @numgrps when
- * active total CPU number is less than @numgrps.
- *
- * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
- * for each node.
- */
-static void alloc_nodes_groups(unsigned int numgrps,
-                              cpumask_var_t *node_to_cpumask,
-                              const struct cpumask *cpu_mask,
-                              const nodemask_t nodemsk,
-                              struct cpumask *nmsk,
-                              struct node_groups *node_groups)
-{
-       unsigned n, remaining_ncpus = 0;
-
-       for (n = 0; n < nr_node_ids; n++) {
-               node_groups[n].id = n;
-               node_groups[n].ncpus = UINT_MAX;
-       }
-
-       for_each_node_mask(n, nodemsk) {
-               unsigned ncpus;
-
-               cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
-               ncpus = cpumask_weight(nmsk);
-
-               if (!ncpus)
-                       continue;
-               remaining_ncpus += ncpus;
-               node_groups[n].ncpus = ncpus;
-       }
-
-       numgrps = min_t(unsigned, remaining_ncpus, numgrps);
-
-       sort(node_groups, nr_node_ids, sizeof(node_groups[0]),
-            ncpus_cmp_func, NULL);
-
-       /*
-        * Allocate groups for each node according to the ratio of this
-        * node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is
-        * bigger than number of active numa nodes. Always start the
-        * allocation from the node with minimized nr_cpus.
-        *
-        * This way guarantees that each active node gets allocated at
-        * least one group, and the theory is simple: over-allocation
-        * is only done when this node is assigned by one group, so
-        * other nodes will be allocated >= 1 groups, since 'numgrps' is
-        * bigger than number of numa nodes.
-        *
-        * One perfect invariant is that number of allocated groups for
-        * each node is <= CPU count of this node:
-        *
-        * 1) suppose there are two nodes: A and B
-        *      ncpu(X) is CPU count of node X
-        *      grps(X) is the group count allocated to node X via this
-        *      algorithm
-        *
-        *      ncpu(A) <= ncpu(B)
-        *      ncpu(A) + ncpu(B) = N
-        *      grps(A) + grps(B) = G
-        *
-        *      grps(A) = max(1, round_down(G * ncpu(A) / N))
-        *      grps(B) = G - grps(A)
-        *
-        *      both N and G are integer, and 2 <= G <= N, suppose
-        *      G = N - delta, and 0 <= delta <= N - 2
-        *
-        * 2) obviously grps(A) <= ncpu(A) because:
-        *
-        *      if grps(A) is 1, then grps(A) <= ncpu(A) given
-        *      ncpu(A) >= 1
-        *
-        *      otherwise,
-        *              grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N
-        *
-        * 3) prove how grps(B) <= ncpu(B):
-        *
-        *      if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be
-        *      over-allocated, so grps(B) <= ncpu(B),
-        *
-        *      otherwise:
-        *
-        *      grps(A) =
-        *              round_down(G * ncpu(A) / N) =
-        *              round_down((N - delta) * ncpu(A) / N) =
-        *              round_down((N * ncpu(A) - delta * ncpu(A)) / N)  >=
-        *              round_down((N * ncpu(A) - delta * N) / N)        =
-        *              cpu(A) - delta
-        *
-        *      then:
-        *
-        *      grps(A) - G >= ncpu(A) - delta - G
-        *      =>
-        *      G - grps(A) <= G + delta - ncpu(A)
-        *      =>
-        *      grps(B) <= N - ncpu(A)
-        *      =>
-        *      grps(B) <= cpu(B)
-        *
-        * For nodes >= 3, it can be thought as one node and another big
-        * node given that is exactly what this algorithm is implemented,
-        * and we always re-calculate 'remaining_ncpus' & 'numgrps', and
-        * finally for each node X: grps(X) <= ncpu(X).
-        *
-        */
-       for (n = 0; n < nr_node_ids; n++) {
-               unsigned ngroups, ncpus;
-
-               if (node_groups[n].ncpus == UINT_MAX)
-                       continue;
-
-               WARN_ON_ONCE(numgrps == 0);
-
-               ncpus = node_groups[n].ncpus;
-               ngroups = max_t(unsigned, 1,
-                                numgrps * ncpus / remaining_ncpus);
-               WARN_ON_ONCE(ngroups > ncpus);
-
-               node_groups[n].ngroups = ngroups;
-
-               remaining_ncpus -= ncpus;
-               numgrps -= ngroups;
-       }
-}
-
-static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps,
-                              cpumask_var_t *node_to_cpumask,
-                              const struct cpumask *cpu_mask,
-                              struct cpumask *nmsk, struct cpumask *masks)
-{
-       unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0;
-       unsigned int last_grp = numgrps;
-       unsigned int curgrp = startgrp;
-       nodemask_t nodemsk = NODE_MASK_NONE;
-       struct node_groups *node_groups;
-
-       if (cpumask_empty(cpu_mask))
-               return 0;
-
-       nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
-
-       /*
-        * If the number of nodes in the mask is greater than or equal the
-        * number of groups we just spread the groups across the nodes.
-        */
-       if (numgrps <= nodes) {
-               for_each_node_mask(n, nodemsk) {
-                       /* Ensure that only CPUs which are in both masks are set */
-                       cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
-                       cpumask_or(&masks[curgrp], &masks[curgrp], nmsk);
-                       if (++curgrp == last_grp)
-                               curgrp = 0;
-               }
-               return numgrps;
-       }
-
-       node_groups = kcalloc(nr_node_ids,
-                              sizeof(struct node_groups),
-                              GFP_KERNEL);
-       if (!node_groups)
-               return -ENOMEM;
-
-       /* allocate group number for each node */
-       alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask,
-                          nodemsk, nmsk, node_groups);
-       for (i = 0; i < nr_node_ids; i++) {
-               unsigned int ncpus, v;
-               struct node_groups *nv = &node_groups[i];
-
-               if (nv->ngroups == UINT_MAX)
-                       continue;
-
-               /* Get the cpus on this node which are in the mask */
-               cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
-               ncpus = cpumask_weight(nmsk);
-               if (!ncpus)
-                       continue;
-
-               WARN_ON_ONCE(nv->ngroups > ncpus);
-
-               /* Account for rounding errors */
-               extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups);
-
-               /* Spread allocated groups on CPUs of the current node */
-               for (v = 0; v < nv->ngroups; v++, curgrp++) {
-                       cpus_per_grp = ncpus / nv->ngroups;
-
-                       /* Account for extra groups to compensate rounding errors */
-                       if (extra_grps) {
-                               cpus_per_grp++;
-                               --extra_grps;
-                       }
-
-                       /*
-                        * wrapping has to be considered given 'startgrp'
-                        * may start anywhere
-                        */
-                       if (curgrp >= last_grp)
-                               curgrp = 0;
-                       grp_spread_init_one(&masks[curgrp], nmsk,
-                                               cpus_per_grp);
-               }
-               done += nv->ngroups;
-       }
-       kfree(node_groups);
-       return done;
-}
-
-/*
- * build affinity in two stages for each group, and try to put close CPUs
- * in viewpoint of CPU and NUMA locality into same group, and we run
- * two-stage grouping:
- *
- *     1) allocate present CPUs on these groups evenly first
- *     2) allocate other possible CPUs on these groups evenly
- */
-static struct cpumask *group_cpus_evenly(unsigned int numgrps)
-{
-       unsigned int curgrp = 0, nr_present = 0, nr_others = 0;
-       cpumask_var_t *node_to_cpumask;
-       cpumask_var_t nmsk, npresmsk;
-       int ret = -ENOMEM;
-       struct cpumask *masks = NULL;
-
-       if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
-               return NULL;
-
-       if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
-               goto fail_nmsk;
-
-       node_to_cpumask = alloc_node_to_cpumask();
-       if (!node_to_cpumask)
-               goto fail_npresmsk;
-
-       masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
-       if (!masks)
-               goto fail_node_to_cpumask;
-
-       /* Stabilize the cpumasks */
-       cpus_read_lock();
-       build_node_to_cpumask(node_to_cpumask);
-
-       /* grouping present CPUs first */
-       ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
-                                 cpu_present_mask, nmsk, masks);
-       if (ret < 0)
-               goto fail_build_affinity;
-       nr_present = ret;
-
-       /*
-        * Allocate non present CPUs starting from the next group to be
-        * handled. If the grouping of present CPUs already exhausted the
-        * group space, assign the non present CPUs to the already
-        * allocated out groups.
-        */
-       if (nr_present >= numgrps)
-               curgrp = 0;
-       else
-               curgrp = nr_present;
-       cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
-       ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
-                                 npresmsk, nmsk, masks);
-       if (ret >= 0)
-               nr_others = ret;
-
- fail_build_affinity:
-       cpus_read_unlock();
-
-       if (ret >= 0)
-               WARN_ON(nr_present + nr_others < numgrps);
-
- fail_node_to_cpumask:
-       free_node_to_cpumask(node_to_cpumask);
-
- fail_npresmsk:
-       free_cpumask_var(npresmsk);
-
- fail_nmsk:
-       free_cpumask_var(nmsk);
-       if (ret < 0) {
-               kfree(masks);
-               return NULL;
-       }
-       return masks;
-}
+#include <linux/group_cpus.h>
 
 static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
 {