import gdb-2000-02-02 snapshot
[external/binutils.git] / gas / config / atof-ieee.c
index 323d4e1..dcda1bc 100644 (file)
@@ -1,47 +1,47 @@
 /* atof_ieee.c - turn a Flonum into an IEEE floating point number
-   Copyright (C) 1987 Free Software Foundation, Inc.
+   Copyright (C) 1987, 92, 93, 94, 95, 96, 97, 98, 1999
+   Free Software Foundation, Inc.
 
-This file is part of GAS, the GNU Assembler.
+   This file is part of GAS, the GNU Assembler.
 
-GAS is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 1, or (at your option)
-any later version.
+   GAS is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2, or (at your option)
+   any later version.
 
-GAS is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-GNU General Public License for more details.
+   GAS is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
 
-You should have received a copy of the GNU General Public License
-along with GAS; see the file COPYING.  If not, write to
-the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */
+   You should have received a copy of the GNU General Public License
+   along with GAS; see the file COPYING.  If not, write to the Free
+   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+   02111-1307, USA.  */
 
 #include "as.h"
 
-#ifdef USG
-#define bzero(s,n) memset(s,0,n)
-#define bcopy(from,to,n) memcpy((to),(from),(n))
-#endif
-
-extern FLONUM_TYPE generic_floating_point_number; /* Flonums returned here. */
+/* Flonums returned here.  */
+extern FLONUM_TYPE generic_floating_point_number;
 
-#ifndef NULL
-#define NULL (0)
-#endif
+static int next_bits PARAMS ((int));
+static void unget_bits PARAMS ((int));
+static void make_invalid_floating_point_number PARAMS ((LITTLENUM_TYPE *));
 
-extern char EXP_CHARS[];
-                               /* Precision in LittleNums. */
-#define MAX_PRECISION (6)
+extern const char EXP_CHARS[];
+/* Precision in LittleNums. */
+/* Don't count the gap in the m68k extended precision format.  */
+#define MAX_PRECISION (5)
 #define F_PRECISION (2)
 #define D_PRECISION (4)
-#define X_PRECISION (6)
-#define P_PRECISION (6)
+#define X_PRECISION (5)
+#define P_PRECISION (5)
 
-                               /* Length in LittleNums of guard bits. */
+/* Length in LittleNums of guard bits. */
 #define GUARD (2)
 
-static unsigned long mask [] = {
+static const unsigned long mask[] =
+{
   0x00000000,
   0x00000001,
   0x00000003,
@@ -74,8 +74,8 @@ static unsigned long mask [] = {
   0x1fffffff,
   0x3fffffff,
   0x7fffffff,
-  0xffffffff
-  };
+  0xffffffff,
+};
 \f
 
 static int bits_left_in_littlenum;
@@ -84,428 +84,632 @@ static LITTLENUM_TYPE *littlenum_pointer;
 
 static int
 next_bits (number_of_bits)
-     int               number_of_bits;
+     int number_of_bits;
 {
-  int                  return_value;
+  int return_value;
 
-  if(!littlenums_left)
-       return 0;
+  if (!littlenums_left)
+    return (0);
   if (number_of_bits >= bits_left_in_littlenum)
     {
-      return_value  = mask [bits_left_in_littlenum] & *littlenum_pointer;
+      return_value = mask[bits_left_in_littlenum] & *littlenum_pointer;
       number_of_bits -= bits_left_in_littlenum;
       return_value <<= number_of_bits;
-      if(--littlenums_left) {
-             bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
-             littlenum_pointer --;
-             return_value |= (*littlenum_pointer>>bits_left_in_littlenum) & mask[number_of_bits];
-      }
+
+      if (--littlenums_left)
+       {
+         bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
+         --littlenum_pointer;
+         return_value |= (*littlenum_pointer >> bits_left_in_littlenum) & mask[number_of_bits];
+       }
     }
   else
     {
       bits_left_in_littlenum -= number_of_bits;
-      return_value = mask [number_of_bits] & (*littlenum_pointer>>bits_left_in_littlenum);
+      return_value = mask[number_of_bits] & (*littlenum_pointer >> bits_left_in_littlenum);
     }
   return (return_value);
 }
 
 /* Num had better be less than LITTLENUM_NUMBER_OF_BITS */
 static void
-unget_bits(num)
-int num;
+unget_bits (num)
+     int num;
 {
-       if(!littlenums_left) {
-               ++littlenum_pointer;
-               ++littlenums_left;
-               bits_left_in_littlenum=num;
-       } else if(bits_left_in_littlenum+num>LITTLENUM_NUMBER_OF_BITS) {
-               bits_left_in_littlenum= num-(LITTLENUM_NUMBER_OF_BITS-bits_left_in_littlenum);
-               ++littlenum_pointer;
-               ++littlenums_left;
-       } else
-               bits_left_in_littlenum+=num;
+  if (!littlenums_left)
+    {
+      ++littlenum_pointer;
+      ++littlenums_left;
+      bits_left_in_littlenum = num;
+    }
+  else if (bits_left_in_littlenum + num > LITTLENUM_NUMBER_OF_BITS)
+    {
+      bits_left_in_littlenum = num - (LITTLENUM_NUMBER_OF_BITS - bits_left_in_littlenum);
+      ++littlenum_pointer;
+      ++littlenums_left;
+    }
+  else
+    bits_left_in_littlenum += num;
 }
 
 static void
 make_invalid_floating_point_number (words)
-     LITTLENUM_TYPE *  words;
+     LITTLENUM_TYPE *words;
 {
-       as_bad("cannot create floating-point number");
-       words[0]= ((unsigned)-1)>>1;    /* Zero the leftmost bit */
-       words[1]= -1;
-       words[2]= -1;
-       words[3]= -1;
-       words[4]= -1;
-       words[5]= -1;
+  as_bad (_("cannot create floating-point number"));
+  words[0] = (LITTLENUM_TYPE) ((unsigned) -1) >> 1; /* Zero the leftmost bit */
+  words[1] = (LITTLENUM_TYPE) -1;
+  words[2] = (LITTLENUM_TYPE) -1;
+  words[3] = (LITTLENUM_TYPE) -1;
+  words[4] = (LITTLENUM_TYPE) -1;
+  words[5] = (LITTLENUM_TYPE) -1;
 }
 \f
-/***********************************************************************\
-     Warning: this returns 16-bit LITTLENUMs. It is up to the caller *
-     to figure out any alignment problems and to conspire for the    *
-     bytes/word to be emitted in the right order. Bigendians beware! *
-                                                                     *
-\***********************************************************************/
+/************************************************************************\
+ *     Warning: this returns 16-bit LITTLENUMs. It is up to the caller *
+ *     to figure out any alignment problems and to conspire for the    *
+ *     bytes/word to be emitted in the right order. Bigendians beware! *
+ *                                                                     *
+\************************************************************************/
 
 /* Note that atof-ieee always has X and P precisions enabled.  it is up
    to md_atof to filter them out if the target machine does not support
    them.  */
 
-char *                         /* Return pointer past text consumed. */
+/* Returns pointer past text consumed. */
+char *
 atof_ieee (str, what_kind, words)
-     char *            str;    /* Text to convert to binary. */
-     char              what_kind; /* 'd', 'f', 'g', 'h' */
-     LITTLENUM_TYPE *  words;  /* Build the binary here. */
+     char *str;                        /* Text to convert to binary. */
+     int what_kind;            /* 'd', 'f', 'g', 'h' */
+     LITTLENUM_TYPE *words;    /* Build the binary here. */
 {
-       static LITTLENUM_TYPE   bits [MAX_PRECISION + MAX_PRECISION + GUARD];
-                               /* Extra bits for zeroed low-order bits. */
-                               /* The 1st MAX_PRECISION are zeroed, */
-                               /* the last contain flonum bits. */
-       char *          return_value;
-       int             precision; /* Number of 16-bit words in the format. */
-       long    exponent_bits;
-
-       return_value = str;
-       generic_floating_point_number.low       = bits + MAX_PRECISION;
-       generic_floating_point_number.high      = NULL;
-       generic_floating_point_number.leader    = NULL;
-       generic_floating_point_number.exponent  = NULL;
-       generic_floating_point_number.sign      = '\0';
-
-                               /* Use more LittleNums than seems */
-                               /* necessary: the highest flonum may have */
-                               /* 15 leading 0 bits, so could be useless. */
-
-       bzero (bits, sizeof(LITTLENUM_TYPE) * MAX_PRECISION);
-
-       switch(what_kind) {
-       case 'f':
-       case 'F':
-       case 's':
-       case 'S':
-               precision = F_PRECISION;
-               exponent_bits = 8;
-               break;
-
-       case 'd':
-       case 'D':
-       case 'r':
-       case 'R':
-               precision = D_PRECISION;
-               exponent_bits = 11;
-               break;
-
-       case 'x':
-       case 'X':
-       case 'e':
-       case 'E':
-               precision = X_PRECISION;
-               exponent_bits = 15;
-               break;
-
-       case 'p':
-       case 'P':
-               
-               precision = P_PRECISION;
-               exponent_bits= -1;
-               break;
-
-       default:
-               make_invalid_floating_point_number (words);
-               return NULL;
-       }
+  /* Extra bits for zeroed low-order bits.  The 1st MAX_PRECISION are
+     zeroed, the last contain flonum bits. */
+  static LITTLENUM_TYPE bits[MAX_PRECISION + MAX_PRECISION + GUARD];
+  char *return_value;
+  /* Number of 16-bit words in the format. */
+  int precision;
+  long exponent_bits;
+  FLONUM_TYPE save_gen_flonum;
+
+  /* We have to save the generic_floating_point_number because it
+     contains storage allocation about the array of LITTLENUMs where
+     the value is actually stored.  We will allocate our own array of
+     littlenums below, but have to restore the global one on exit.  */
+  save_gen_flonum = generic_floating_point_number;
+
+  return_value = str;
+  generic_floating_point_number.low = bits + MAX_PRECISION;
+  generic_floating_point_number.high = NULL;
+  generic_floating_point_number.leader = NULL;
+  generic_floating_point_number.exponent = 0;
+  generic_floating_point_number.sign = '\0';
+
+  /* Use more LittleNums than seems necessary: the highest flonum may
+     have 15 leading 0 bits, so could be useless. */
+
+  memset (bits, '\0', sizeof (LITTLENUM_TYPE) * MAX_PRECISION);
+
+  switch (what_kind)
+    {
+    case 'f':
+    case 'F':
+    case 's':
+    case 'S':
+      precision = F_PRECISION;
+      exponent_bits = 8;
+      break;
+
+    case 'd':
+    case 'D':
+    case 'r':
+    case 'R':
+      precision = D_PRECISION;
+      exponent_bits = 11;
+      break;
+
+    case 'x':
+    case 'X':
+    case 'e':
+    case 'E':
+      precision = X_PRECISION;
+      exponent_bits = 15;
+      break;
+
+    case 'p':
+    case 'P':
+
+      precision = P_PRECISION;
+      exponent_bits = -1;
+      break;
+
+    default:
+      make_invalid_floating_point_number (words);
+      return (NULL);
+    }
 
-       generic_floating_point_number.high = generic_floating_point_number.low + precision - 1 + GUARD;
+  generic_floating_point_number.high
+    = generic_floating_point_number.low + precision - 1 + GUARD;
 
-       if (atof_generic (& return_value, ".", EXP_CHARS, & generic_floating_point_number)) {
-               /* as_bad("Error converting floating point number (Exponent overflow?)"); */
-               make_invalid_floating_point_number (words);
-               return NULL;
-       }
-       gen_to_words(words, precision, exponent_bits);
-       return return_value;
+  if (atof_generic (&return_value, ".", EXP_CHARS,
+                   &generic_floating_point_number))
+    {
+      make_invalid_floating_point_number (words);
+      return (NULL);
+    }
+  gen_to_words (words, precision, exponent_bits);
+
+  /* Restore the generic_floating_point_number's storage alloc (and
+     everything else).  */
+  generic_floating_point_number = save_gen_flonum;
+
+  return return_value;
 }
 
-/* Turn generic_floating_point_number into a real float/double/extended */
-int gen_to_words(words, precision, exponent_bits)
-LITTLENUM_TYPE *words;
-int precision;
-long exponent_bits;
+/* Turn generic_floating_point_number into a real float/double/extended.  */
+int
+gen_to_words (words, precision, exponent_bits)
+     LITTLENUM_TYPE *words;
+     int precision;
+     long exponent_bits;
 {
-       int return_value=0;
-
-       long    exponent_1;
-       long    exponent_2;
-       long    exponent_3;
-       long    exponent_4;
-       int             exponent_skippage;
-       LITTLENUM_TYPE  word1;
-       LITTLENUM_TYPE *        lp;
-
-       if (generic_floating_point_number.low > generic_floating_point_number.leader) {
-               /* 0.0e0 seen. */
-               if(generic_floating_point_number.sign=='+')
-                       words[0]=0x0000;
-               else
-                       words[0]=0x8000;
-               bzero (&words[1], sizeof(LITTLENUM_TYPE) * (precision-1));
-               return return_value;
+  int return_value = 0;
+
+  long exponent_1;
+  long exponent_2;
+  long exponent_3;
+  long exponent_4;
+  int exponent_skippage;
+  LITTLENUM_TYPE word1;
+  LITTLENUM_TYPE *lp;
+  LITTLENUM_TYPE *words_end;
+
+  words_end = words + precision;
+#ifdef TC_M68K
+  if (precision == X_PRECISION)
+    /* On the m68k the extended precision format has a gap of 16 bits
+       between the exponent and the mantissa.  */
+    words_end++;
+#endif
+
+  if (generic_floating_point_number.low > generic_floating_point_number.leader)
+    {
+      /* 0.0e0 seen. */
+      if (generic_floating_point_number.sign == '+')
+       words[0] = 0x0000;
+      else
+       words[0] = 0x8000;
+      memset (&words[1], '\0',
+             (words_end - words - 1) * sizeof (LITTLENUM_TYPE));
+      return (return_value);
+    }
+
+  /* NaN:  Do the right thing */
+  if (generic_floating_point_number.sign == 0)
+    {
+      if (precision == F_PRECISION)
+       {
+         words[0] = 0x7fff;
+         words[1] = 0xffff;
+       }
+      else if (precision == X_PRECISION)
+       {
+#ifdef TC_M68K
+         words[0] = 0x7fff;
+         words[1] = 0;
+         words[2] = 0xffff;
+         words[3] = 0xffff;
+         words[4] = 0xffff;
+         words[5] = 0xffff;
+#else /* ! TC_M68K */
+#ifdef TC_I386
+         words[0] = 0xffff;
+         words[1] = 0xc000;
+         words[2] = 0;
+         words[3] = 0;
+         words[4] = 0;
+#else /* ! TC_I386 */
+         abort ();
+#endif /* ! TC_I386 */
+#endif /* ! TC_M68K */
+       }
+      else
+       {
+         words[0] = 0x7fff;
+         words[1] = 0xffff;
+         words[2] = 0xffff;
+         words[3] = 0xffff;
+       }
+      return return_value;
+    }
+  else if (generic_floating_point_number.sign == 'P')
+    {
+      /* +INF:  Do the right thing */
+      if (precision == F_PRECISION)
+       {
+         words[0] = 0x7f80;
+         words[1] = 0;
+       }
+      else if (precision == X_PRECISION)
+       {
+#ifdef TC_M68K
+         words[0] = 0x7fff;
+         words[1] = 0;
+         words[2] = 0;
+         words[3] = 0;
+         words[4] = 0;
+         words[5] = 0;
+#else /* ! TC_M68K */
+#ifdef TC_I386
+         words[0] = 0x7fff;
+         words[1] = 0x8000;
+         words[2] = 0;
+         words[3] = 0;
+         words[4] = 0;
+#else /* ! TC_I386 */
+         abort ();
+#endif /* ! TC_I386 */
+#endif /* ! TC_M68K */
+       }
+      else
+       {
+         words[0] = 0x7ff0;
+         words[1] = 0;
+         words[2] = 0;
+         words[3] = 0;
+       }
+      return (return_value);
+    }
+  else if (generic_floating_point_number.sign == 'N')
+    {
+      /* Negative INF */
+      if (precision == F_PRECISION)
+       {
+         words[0] = 0xff80;
+         words[1] = 0x0;
+       }
+      else if (precision == X_PRECISION)
+       {
+#ifdef TC_M68K
+         words[0] = 0xffff;
+         words[1] = 0;
+         words[2] = 0;
+         words[3] = 0;
+         words[4] = 0;
+         words[5] = 0;
+#else /* ! TC_M68K */
+#ifdef TC_I386
+         words[0] = 0xffff;
+         words[1] = 0x8000;
+         words[2] = 0;
+         words[3] = 0;
+         words[4] = 0;
+#else /* ! TC_I386 */
+         abort ();
+#endif /* ! TC_I386 */
+#endif /* ! TC_M68K */
+       }
+      else
+       {
+         words[0] = 0xfff0;
+         words[1] = 0x0;
+         words[2] = 0x0;
+         words[3] = 0x0;
+       }
+      return (return_value);
+    }
+  /*
+   * The floating point formats we support have:
+   * Bit 15 is sign bit.
+   * Bits 14:n are excess-whatever exponent.
+   * Bits n-1:0 (if any) are most significant bits of fraction.
+   * Bits 15:0 of the next word(s) are the next most significant bits.
+   *
+   * So we need: number of bits of exponent, number of bits of
+   * mantissa.
+   */
+  bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
+  littlenum_pointer = generic_floating_point_number.leader;
+  littlenums_left = (1
+                    + generic_floating_point_number.leader
+                    - generic_floating_point_number.low);
+  /* Seek (and forget) 1st significant bit */
+  for (exponent_skippage = 0; !next_bits (1); ++exponent_skippage);;
+  exponent_1 = (generic_floating_point_number.exponent
+               + generic_floating_point_number.leader
+               + 1
+               - generic_floating_point_number.low);
+  /* Radix LITTLENUM_RADIX, point just higher than
+     generic_floating_point_number.leader. */
+  exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
+  /* Radix 2. */
+  exponent_3 = exponent_2 - exponent_skippage;
+  /* Forget leading zeros, forget 1st bit. */
+  exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
+  /* Offset exponent. */
+
+  lp = words;
+
+  /* Word 1. Sign, exponent and perhaps high bits. */
+  word1 = ((generic_floating_point_number.sign == '+')
+          ? 0
+          : (1 << (LITTLENUM_NUMBER_OF_BITS - 1)));
+
+  /* Assume 2's complement integers. */
+  if (exponent_4 <= 0)
+    {
+      int prec_bits;
+      int num_bits;
+
+      unget_bits (1);
+      num_bits = -exponent_4;
+      prec_bits = LITTLENUM_NUMBER_OF_BITS * precision - (exponent_bits + 1 + num_bits);
+#ifdef TC_I386
+      if (precision == X_PRECISION && exponent_bits == 15)
+       {
+         /* On the i386 a denormalized extended precision float is
+            shifted down by one, effectively decreasing the exponent
+            bias by one.  */
+         prec_bits -= 1;
+         num_bits += 1;
        }
+#endif
 
-       /* NaN:  Do the right thing */
-       if(generic_floating_point_number.sign==0) {
-               if(precision==F_PRECISION) {
-                       words[0]=0x7fff;
-                       words[1]=0xffff;
-               } else {
-                       words[0]=0x7fff;
-                       words[1]=0xffff;
-                       words[2]=0xffff;
-                       words[3]=0xffff;
+      if (num_bits >= LITTLENUM_NUMBER_OF_BITS - exponent_bits)
+       {
+         /* Bigger than one littlenum */
+         num_bits -= (LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits;
+         *lp++ = word1;
+         if (num_bits + exponent_bits + 1 > precision * LITTLENUM_NUMBER_OF_BITS)
+           {
+             /* Exponent overflow */
+             make_invalid_floating_point_number (words);
+             return (return_value);
+           }
+#ifdef TC_M68K
+         if (precision == X_PRECISION && exponent_bits == 15)
+           *lp++ = 0;
+#endif
+         while (num_bits >= LITTLENUM_NUMBER_OF_BITS)
+           {
+             num_bits -= LITTLENUM_NUMBER_OF_BITS;
+             *lp++ = 0;
+           }
+         if (num_bits)
+           *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS - (num_bits));
+       }
+      else
+       {
+         if (precision == X_PRECISION && exponent_bits == 15)
+           {
+             *lp++ = word1;
+#ifdef TC_M68K
+             *lp++ = 0;
+#endif
+             *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS - num_bits);
+           }
+         else
+           {
+             word1 |= next_bits ((LITTLENUM_NUMBER_OF_BITS - 1) - (exponent_bits + num_bits));
+             *lp++ = word1;
+           }
+       }
+      while (lp < words_end)
+       *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS);
+
+      /* Round the mantissa up, but don't change the number */
+      if (next_bits (1))
+       {
+         --lp;
+         if (prec_bits >= LITTLENUM_NUMBER_OF_BITS)
+           {
+             int n = 0;
+             int tmp_bits;
+
+             n = 0;
+             tmp_bits = prec_bits;
+             while (tmp_bits > LITTLENUM_NUMBER_OF_BITS)
+               {
+                 if (lp[n] != (LITTLENUM_TYPE) - 1)
+                   break;
+                 --n;
+                 tmp_bits -= LITTLENUM_NUMBER_OF_BITS;
                }
-               return return_value;
-       } else if(generic_floating_point_number.sign=='P') {
-               /* +INF:  Do the right thing */
-               if(precision==F_PRECISION) {
-                       words[0]=0x7f80;
-                       words[1]=0;
-               } else {
-                       words[0]=0x7ff0;
-                       words[1]=0;
-                       words[2]=0;
-                       words[3]=0;
+             if (tmp_bits > LITTLENUM_NUMBER_OF_BITS
+                 || (lp[n] & mask[tmp_bits]) != mask[tmp_bits]
+                 || (prec_bits != (precision * LITTLENUM_NUMBER_OF_BITS
+                                   - exponent_bits - 1)
+#ifdef TC_I386
+                     /* An extended precision float with only the integer
+                        bit set would be invalid.  That must be converted
+                        to the smallest normalized number.  */
+                     && !(precision == X_PRECISION
+                          && prec_bits == (precision * LITTLENUM_NUMBER_OF_BITS
+                                           - exponent_bits - 2))
+#endif
+                     ))
+               {
+                 unsigned long carry;
+
+                 for (carry = 1; carry && (lp >= words); lp--)
+                   {
+                     carry = *lp + carry;
+                     *lp = carry;
+                     carry >>= LITTLENUM_NUMBER_OF_BITS;
+                   }
                }
-               return return_value;
-       } else if(generic_floating_point_number.sign=='N') {
-               /* Negative INF */
-               if(precision==F_PRECISION) {
-                       words[0]=0xff80;
-                       words[1]=0x0;
-               } else {
-                       words[0]=0xfff0;
-                       words[1]=0x0;
-                       words[2]=0x0;
-                       words[3]=0x0;
+             else
+               {
+                 /* This is an overflow of the denormal numbers.  We
+                     need to forget what we have produced, and instead
+                     generate the smallest normalized number.  */
+                 lp = words;
+                 word1 = ((generic_floating_point_number.sign == '+')
+                          ? 0
+                          : (1 << (LITTLENUM_NUMBER_OF_BITS - 1)));
+                 word1 |= (1
+                           << ((LITTLENUM_NUMBER_OF_BITS - 1)
+                               - exponent_bits));
+                 *lp++ = word1;
+#ifdef TC_I386
+                 /* Set the integer bit in the extended precision format.
+                    This cannot happen on the m68k where the mantissa
+                    just overflows into the integer bit above.  */
+                 if (precision == X_PRECISION)
+                   *lp++ = 1 << (LITTLENUM_NUMBER_OF_BITS - 1);
+#endif
+                 while (lp < words_end)
+                   *lp++ = 0;
                }
-               return return_value;
+           }
+         else
+           *lp += 1;
        }
-               /*
-                * The floating point formats we support have:
-                * Bit 15 is sign bit.
-                * Bits 14:n are excess-whatever exponent.
-                * Bits n-1:0 (if any) are most significant bits of fraction.
-                * Bits 15:0 of the next word(s) are the next most significant bits.
-                *
-                * So we need: number of bits of exponent, number of bits of
-                * mantissa.
-                */
-       bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
-       littlenum_pointer = generic_floating_point_number.leader;
-       littlenums_left = 1+generic_floating_point_number.leader - generic_floating_point_number.low;
-       /* Seek (and forget) 1st significant bit */
-       for (exponent_skippage = 0;! next_bits(1); exponent_skippage ++)
-               ;
-       exponent_1 = generic_floating_point_number.exponent + generic_floating_point_number.leader + 1 -
- generic_floating_point_number.low;
-       /* Radix LITTLENUM_RADIX, point just higher than generic_floating_point_number.leader. */
-       exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
-       /* Radix 2. */
-       exponent_3 = exponent_2 - exponent_skippage;
-       /* Forget leading zeros, forget 1st bit. */
-       exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
-       /* Offset exponent. */
-
-       lp = words;
-
-       /* Word 1. Sign, exponent and perhaps high bits. */
-       word1 =   (generic_floating_point_number.sign == '+') ? 0 : (1<<(LITTLENUM_NUMBER_OF_BITS-1));
-
-       /* Assume 2's complement integers. */
-       if(exponent_4<1 && exponent_4>=-62) {
-               int prec_bits;
-               int num_bits;
-
-               unget_bits(1);
-               num_bits= -exponent_4;
-               prec_bits=LITTLENUM_NUMBER_OF_BITS*precision-(exponent_bits+1+num_bits);
-               if(precision==X_PRECISION && exponent_bits==15)
-                       prec_bits-=LITTLENUM_NUMBER_OF_BITS+1;
-
-               if(num_bits>=LITTLENUM_NUMBER_OF_BITS-exponent_bits) {
-                       /* Bigger than one littlenum */
-                       num_bits-=(LITTLENUM_NUMBER_OF_BITS-1)-exponent_bits;
-                       *lp++=word1;
-                       if(num_bits+exponent_bits+1>=precision*LITTLENUM_NUMBER_OF_BITS) {
-                               /* Exponent overflow */
-                               make_invalid_floating_point_number(words);
-                               return return_value;
-                       }
-                       if(precision==X_PRECISION && exponent_bits==15) {
-                               *lp++=0;
-                               *lp++=0;
-                               num_bits-=LITTLENUM_NUMBER_OF_BITS-1;
-                       }
-                       while(num_bits>=LITTLENUM_NUMBER_OF_BITS) {
-                               num_bits-=LITTLENUM_NUMBER_OF_BITS;
-                               *lp++=0;
-                       }
-                       if(num_bits)
-                               *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-(num_bits));
-               } else {
-                       if(precision==X_PRECISION && exponent_bits==15) {
-                               *lp++=word1;
-                               *lp++=0;
-                               if(num_bits==LITTLENUM_NUMBER_OF_BITS) {
-                                       *lp++=0;
-                                       *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-1);
-                               } else if(num_bits==LITTLENUM_NUMBER_OF_BITS-1)
-                                       *lp++=0;
-                               else
-                                       *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-1-num_bits);
-                               num_bits=0;
-                       } else {
-                               word1|= next_bits ((LITTLENUM_NUMBER_OF_BITS-1) - (exponent_bits+num_bits));
-                               *lp++=word1;
-                       }
-               }
-               while(lp<words+precision)
-                       *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS);
-
-               /* Round the mantissa up, but don't change the number */
-               if(next_bits(1)) {
-                       --lp;
-                       if(prec_bits>LITTLENUM_NUMBER_OF_BITS) {
-                               int n = 0;
-                               int tmp_bits;
-
-                               n=0;
-                               tmp_bits=prec_bits;
-                               while(tmp_bits>LITTLENUM_NUMBER_OF_BITS) {
-                                       if(lp[n]!=(LITTLENUM_TYPE)-1)
-                                               break;
-                                       --n;
-                                       tmp_bits-=LITTLENUM_NUMBER_OF_BITS;
-                               }
-                               if(tmp_bits>LITTLENUM_NUMBER_OF_BITS || (lp[n]&mask[tmp_bits])!=mask[tmp_bits]) {
-                                       unsigned long carry;
-
-                                       for (carry = 1; carry && (lp >= words); lp --) {
-                                               carry = * lp + carry;
-                                               * lp = carry;
-                                               carry >>= LITTLENUM_NUMBER_OF_BITS;
-                                       }
-                               }
-                       } else if((*lp&mask[prec_bits])!=mask[prec_bits])
-                               lp++;
-               }
 
-               return return_value;
-       } else  if (exponent_4 & ~ mask [exponent_bits]) {
-                       /*
-                        * Exponent overflow. Lose immediately.
-                        */
-
-                       /*
-                        * We leave return_value alone: admit we read the
-                        * number, but return a floating exception
-                        * because we can't encode the number.
-                        */
-               make_invalid_floating_point_number (words);
-               return return_value;
-       } else {
-               word1 |=  (exponent_4 << ((LITTLENUM_NUMBER_OF_BITS-1) - exponent_bits))
-                       | next_bits ((LITTLENUM_NUMBER_OF_BITS-1) - exponent_bits);
-       }
+      return return_value;
+    }
+  else if ((unsigned long) exponent_4 >= mask[exponent_bits])
+    {
+      /*
+       * Exponent overflow. Lose immediately.
+       */
+
+      /*
+       * We leave return_value alone: admit we read the
+       * number, but return a floating exception
+       * because we can't encode the number.
+       */
+      make_invalid_floating_point_number (words);
+      return return_value;
+    }
+  else
+    {
+      word1 |= (exponent_4 << ((LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits))
+       | next_bits ((LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits);
+    }
 
-       * lp ++ = word1;
+  *lp++ = word1;
 
-       /* X_PRECISION is special: it has 16 bits of zero in the middle,
-          followed by a 1 bit. */
-       if(exponent_bits==15 && precision==X_PRECISION) {
-               *lp++=0;
-               *lp++= 1<<(LITTLENUM_NUMBER_OF_BITS)|next_bits(LITTLENUM_NUMBER_OF_BITS-1);
-       }
+  /* X_PRECISION is special: on the 68k, it has 16 bits of zero in the
+     middle.  Either way, it is then followed by a 1 bit. */
+  if (exponent_bits == 15 && precision == X_PRECISION)
+    {
+#ifdef TC_M68K
+      *lp++ = 0;
+#endif
+      *lp++ = (1 << (LITTLENUM_NUMBER_OF_BITS - 1)
+              | next_bits (LITTLENUM_NUMBER_OF_BITS - 1));
+    }
 
-       /* The rest of the words are just mantissa bits. */
-       while(lp < words + precision)
-               *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS);
-
-       if (next_bits (1)) {
-               unsigned long   carry;
-                       /*
-                        * Since the NEXT bit is a 1, round UP the mantissa.
-                        * The cunning design of these hidden-1 floats permits
-                        * us to let the mantissa overflow into the exponent, and
-                        * it 'does the right thing'. However, we lose if the
-                        * highest-order bit of the lowest-order word flips.
-                        * Is that clear?
-                        */
-
-
-/* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
-       Please allow at least 1 more bit in carry than is in a LITTLENUM.
-       We need that extra bit to hold a carry during a LITTLENUM carry
-       propagation. Another extra bit (kept 0) will assure us that we
-       don't get a sticky sign bit after shifting right, and that
-       permits us to propagate the carry without any masking of bits.
-#endif */
-               for (carry = 1, lp --; carry && (lp >= words); lp --) {
-                       carry = * lp + carry;
-                       * lp = carry;
-                       carry >>= LITTLENUM_NUMBER_OF_BITS;
-               }
-               if ( (word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)) ) {
-                       /* We leave return_value alone: admit we read the
-                        * number, but return a floating exception
-                        * because we can't encode the number.
-                        */
-                       *words&= ~ (1 << (LITTLENUM_NUMBER_OF_BITS - 1));
-                       /* make_invalid_floating_point_number (words); */
-                       /* return return_value; */
-               }
+  /* The rest of the words are just mantissa bits. */
+  while (lp < words_end)
+    *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS);
+
+  if (next_bits (1))
+    {
+      unsigned long carry;
+      /*
+       * Since the NEXT bit is a 1, round UP the mantissa.
+       * The cunning design of these hidden-1 floats permits
+       * us to let the mantissa overflow into the exponent, and
+       * it 'does the right thing'. However, we lose if the
+       * highest-order bit of the lowest-order word flips.
+       * Is that clear?
+       */
+
+      /* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
+        Please allow at least 1 more bit in carry than is in a LITTLENUM.
+        We need that extra bit to hold a carry during a LITTLENUM carry
+        propagation. Another extra bit (kept 0) will assure us that we
+        don't get a sticky sign bit after shifting right, and that
+        permits us to propagate the carry without any masking of bits.
+        #endif */
+      for (carry = 1, lp--; carry && (lp >= words); lp--)
+       {
+         carry = *lp + carry;
+         *lp = carry;
+         carry >>= LITTLENUM_NUMBER_OF_BITS;
        }
-       return (return_value);
+      if (precision == X_PRECISION && exponent_bits == 15)
+       {
+         /* Extended precision numbers have an explicit integer bit
+            that we may have to restore.  */
+         if (lp == words)
+           {
+#ifdef TC_M68K
+             /* On the m68k there is a gap of 16 bits.  We must
+                explicitly propagate the carry into the exponent. */
+             words[0] += words[1];
+             words[1] = 0;
+             lp++;
+#endif
+             /* Put back the integer bit.  */ 
+             lp[1] |= 1 << (LITTLENUM_NUMBER_OF_BITS - 1);
+           }
+       }
+      if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)))
+       {
+         /* We leave return_value alone: admit we read the
+          * number, but return a floating exception
+          * because we can't encode the number.
+          */
+         *words &= ~(1 << (LITTLENUM_NUMBER_OF_BITS - 1));
+         /* make_invalid_floating_point_number (words); */
+         /* return return_value; */
+       }
+    }
+  return (return_value);
 }
 
-/* This routine is a real kludge.  Someone really should do it better, but
-   I'm too lazy, and I don't understand this stuff all too well anyway
-   (JF)
- */
-void
-int_to_gen(x)
-long x;
+#if 0 /* unused */
+/* This routine is a real kludge.  Someone really should do it better,
+   but I'm too lazy, and I don't understand this stuff all too well
  anyway. (JF)  */
+static void
+int_to_gen (x)
+     long x;
 {
-       char buf[20];
-       char *bufp;
+  char buf[20];
+  char *bufp;
 
-       sprintf(buf,"%ld",x);
-       bufp= &buf[0];
-       if(atof_generic(&bufp,".", EXP_CHARS, &generic_floating_point_number))
-               as_bad("Error converting number to floating point (Exponent overflow?)");
+  sprintf (buf, "%ld", x);
+  bufp = &buf[0];
+  if (atof_generic (&bufp, ".", EXP_CHARS, &generic_floating_point_number))
+    as_bad (_("Error converting number to floating point (Exponent overflow?)"));
 }
+#endif
 
 #ifdef TEST
 char *
-print_gen(gen)
-FLONUM_TYPE *gen;
+print_gen (gen)
+     FLONUM_TYPE *gen;
 {
-       FLONUM_TYPE f;
-       LITTLENUM_TYPE arr[10];
-       double dv;
-       float fv;
-       static char sbuf[40];
-
-       if(gen) {
-               f=generic_floating_point_number;
-               generic_floating_point_number= *gen;
-       }
-       gen_to_words(&arr[0],4,11);
-       bcopy(&arr[0],&dv,sizeof(double));
-       sprintf(sbuf,"%x %x %x %x %.14G   ",arr[0],arr[1],arr[2],arr[3],dv);
-       gen_to_words(&arr[0],2,8);
-       bcopy(&arr[0],&fv,sizeof(float));
-       sprintf(sbuf+strlen(sbuf),"%x %x %.12g\n",arr[0],arr[1],fv);
-       if(gen)
-               generic_floating_point_number=f;
-       return sbuf;
+  FLONUM_TYPE f;
+  LITTLENUM_TYPE arr[10];
+  double dv;
+  float fv;
+  static char sbuf[40];
+
+  if (gen)
+    {
+      f = generic_floating_point_number;
+      generic_floating_point_number = *gen;
+    }
+  gen_to_words (&arr[0], 4, 11);
+  memcpy (&dv, &arr[0], sizeof (double));
+  sprintf (sbuf, "%x %x %x %x %.14G   ", arr[0], arr[1], arr[2], arr[3], dv);
+  gen_to_words (&arr[0], 2, 8);
+  memcpy (&fv, &arr[0], sizeof (float));
+  sprintf (sbuf + strlen (sbuf), "%x %x %.12g\n", arr[0], arr[1], fv);
+
+  if (gen)
+    {
+      generic_floating_point_number = f;
+    }
+
+  return (sbuf);
 }
+
 #endif
+
+/* end of atof-ieee.c */