Add macro defs to shader regen
[platform/core/uifw/dali-toolkit.git] / dali-scene3d / public-api / loader / mesh-definition.cpp
index a485e97..7875012 100644 (file)
@@ -25,6 +25,7 @@
 #include <dali/public-api/math/compile-time-math.h>
 #include <cstring>
 #include <fstream>
+#include <functional>
 #include <type_traits>
 
 namespace Dali::Scene3D::Loader
@@ -113,7 +114,7 @@ void ReadValues(const std::vector<uint8_t>& valuesBuffer, const std::vector<uint
   }
 }
 
-bool ReadAccessor(const MeshDefinition::Accessor& accessor, std::istream& source, uint8_t* target)
+bool ReadAccessor(const MeshDefinition::Accessor& accessor, std::istream& source, uint8_t* target, std::vector<uint32_t>* sparseIndices)
 {
   bool success = false;
 
@@ -152,33 +153,65 @@ bool ReadAccessor(const MeshDefinition::Accessor& accessor, std::istream& source
       return false;
     }
 
+    // If non-null sparse indices vector, prepare it for output
+    if(sparseIndices)
+    {
+      sparseIndices->resize(accessor.mSparse->mCount);
+    }
+
     switch(indices.mElementSizeHint)
     {
       case 1u:
       {
         ReadValues<uint8_t>(valuesBuffer, indicesBuffer, target, accessor.mSparse->mCount, values.mElementSizeHint);
+        if(sparseIndices)
+        {
+          // convert 8-bit indices into 32-bit
+          std::transform(indicesBuffer.begin(), indicesBuffer.end(), sparseIndices->begin(), [](const uint8_t& value) { return uint32_t(value); });
+        }
         break;
       }
       case 2u:
       {
         ReadValues<uint16_t>(valuesBuffer, indicesBuffer, target, accessor.mSparse->mCount, values.mElementSizeHint);
+        if(sparseIndices)
+        {
+          // convert 16-bit indices into 32-bit
+          std::transform(reinterpret_cast<uint16_t*>(indicesBuffer.data()),
+                         reinterpret_cast<uint16_t*>(indicesBuffer.data()) + accessor.mSparse->mCount,
+                         sparseIndices->begin(),
+                         [](const uint16_t& value) {
+                           return uint32_t(value);
+                         });
+        }
         break;
       }
       case 4u:
       {
         ReadValues<uint32_t>(valuesBuffer, indicesBuffer, target, accessor.mSparse->mCount, values.mElementSizeHint);
+        if(sparseIndices)
+        {
+          std::copy(indicesBuffer.begin(), indicesBuffer.end(), reinterpret_cast<uint8_t*>(sparseIndices->data()));
+        }
         break;
       }
       default:
+      {
         DALI_ASSERT_DEBUG(!"Unsupported type for an index");
+      }
     }
   }
 
   return success;
 }
 
+bool ReadAccessor(const MeshDefinition::Accessor& accessor, std::istream& source, uint8_t* target)
+{
+  return ReadAccessor(accessor, source, target, nullptr);
+}
+
 template<typename T>
-void ReadJointAccessor(MeshDefinition::RawData& raw, const MeshDefinition::Accessor& accessor, std::istream& source, const std::string& meshPath)
+void ReadJointAccessor(MeshDefinition::RawData& raw, const MeshDefinition::Accessor& accessor, std::istream& source, const std::string& meshPath, const std::string& name)
 {
   constexpr auto sizeofBlobUnit = sizeof(T) * 4;
 
@@ -208,7 +241,74 @@ void ReadJointAccessor(MeshDefinition::RawData& raw, const MeshDefinition::Acces
       ++floats;
     }
   }
-  raw.mAttribs.push_back({"aJoints", Property::VECTOR4, static_cast<uint32_t>(outBufferSize / sizeof(Vector4)), std::move(buffer)});
+  raw.mAttribs.push_back({name, Property::VECTOR4, static_cast<uint32_t>(outBufferSize / sizeof(Vector4)), std::move(buffer)});
+}
+
+void ReadTypedJointAccessor(MeshDefinition::RawData& raw, uint32_t flags, MeshDefinition::Accessor& accessor, std::iostream& stream, std::string& path, const std::string& name)
+{
+  if(MaskMatch(flags, MeshDefinition::U16_JOINT_IDS))
+  {
+    ReadJointAccessor<uint16_t>(raw, accessor, stream, path, name);
+  }
+  else if(MaskMatch(flags, MeshDefinition::U8_JOINT_IDS))
+  {
+    ReadJointAccessor<uint8_t>(raw, accessor, stream, path, name);
+  }
+  else
+  {
+    ReadJointAccessor<float>(raw, accessor, stream, path, name);
+  }
+}
+
+template<typename T>
+void ReadWeightAccessor(MeshDefinition::RawData& raw, const MeshDefinition::Accessor& accessor, std::istream& source, const std::string& meshPath, const std::string& name)
+{
+  constexpr auto sizeofBlobUnit = sizeof(T) * 4;
+
+  DALI_ASSERT_ALWAYS(((accessor.mBlob.mLength % sizeofBlobUnit == 0) ||
+                      accessor.mBlob.mStride >= sizeofBlobUnit) &&
+                     "weights buffer length not a multiple of element size");
+  const auto inBufferSize  = accessor.mBlob.GetBufferSize();
+  const auto outBufferSize = (sizeof(Vector4) / sizeofBlobUnit) * inBufferSize;
+
+  std::vector<uint8_t> buffer(outBufferSize);
+  auto                 inBuffer = buffer.data() + outBufferSize - inBufferSize;
+  if(!ReadAccessor(accessor, source, inBuffer))
+  {
+    ExceptionFlinger(ASSERT_LOCATION) << "Failed to read weights from '" << meshPath << "'.";
+  }
+
+  if constexpr(sizeofBlobUnit != sizeof(Vector4))
+  {
+    auto       floats = reinterpret_cast<float*>(buffer.data());
+    const auto end    = inBuffer + inBufferSize;
+    while(inBuffer != end)
+    {
+      const auto value = *reinterpret_cast<T*>(inBuffer);
+      // Normalize weight value. value /= 255 for uint8_t weight, and value /= 65535 for uint16_t weight.
+      *floats = static_cast<float>(value) / static_cast<float>((1 << (sizeof(T) * 8)) - 1);
+
+      inBuffer += sizeof(T);
+      ++floats;
+    }
+  }
+  raw.mAttribs.push_back({name, Property::VECTOR4, static_cast<uint32_t>(outBufferSize / sizeof(Vector4)), std::move(buffer)});
+}
+
+void ReadTypedWeightAccessor(MeshDefinition::RawData& raw, uint32_t flags, MeshDefinition::Accessor& accessor, std::iostream& stream, std::string& path, std::string name)
+{
+  if(MaskMatch(flags, MeshDefinition::U16_WEIGHT))
+  {
+    ReadWeightAccessor<uint16_t>(raw, accessor, stream, path, name);
+  }
+  else if(MaskMatch(flags, MeshDefinition::U8_WEIGHT))
+  {
+    ReadWeightAccessor<uint8_t>(raw, accessor, stream, path, name);
+  }
+  else
+  {
+    ReadWeightAccessor<float>(raw, accessor, stream, path, name);
+  }
 }
 
 template<bool use32BitsIndices, typename IndexProviderType = IndexProvider<use32BitsIndices>>
@@ -379,58 +479,221 @@ void CalculateTextureSize(uint32_t totalTextureSize, uint32_t& textureWidth, uin
   textureHeight = 1u << powHeight;
 }
 
-void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDefinition::BlendShape>& blendShapes, uint32_t numberOfVertices, float& blendShapeUnnormalizeFactor, BufferDefinition::Vector& buffers)
+template<typename T>
+float GetNormalizedScale()
+{
+  return 1.0f / (std::numeric_limits<T>::max());
+}
+
+template<typename T>
+void DequantizeData(std::vector<uint8_t>& buffer, float* dequantizedValues, uint32_t numValues, bool normalized)
+{
+  // see https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization#encoding-quantized-data
+
+  T* values = reinterpret_cast<T*>(buffer.data());
+
+  for(uint32_t i = 0; i < numValues; ++i)
+  {
+    *dequantizedValues = normalized ? std::max((*values) * GetNormalizedScale<T>(), -1.0f) : *values;
+
+    values++;
+    dequantizedValues++;
+  }
+}
+
+void GetDequantizedData(std::vector<uint8_t>& buffer, uint32_t numComponents, uint32_t count, uint32_t flags, bool normalized)
+{
+  bool dequantized = false;
+
+  std::vector<uint8_t> dequantizedBuffer(count * numComponents * sizeof(float));
+  float*               dequantizedValues = reinterpret_cast<float*>(dequantizedBuffer.data());
+
+  if(MaskMatch(flags, MeshDefinition::Flags::S8_POSITION) || MaskMatch(flags, MeshDefinition::Flags::S8_NORMAL) || MaskMatch(flags, MeshDefinition::Flags::S8_TANGENT) || MaskMatch(flags, MeshDefinition::Flags::S8_TEXCOORD))
+  {
+    DequantizeData<int8_t>(buffer, dequantizedValues, numComponents * count, normalized);
+    dequantized = true;
+  }
+  else if(MaskMatch(flags, MeshDefinition::Flags::U8_POSITION) || MaskMatch(flags, MeshDefinition::Flags::U8_TEXCOORD))
+  {
+    DequantizeData<uint8_t>(buffer, dequantizedValues, numComponents * count, normalized);
+    dequantized = true;
+  }
+  else if(MaskMatch(flags, MeshDefinition::Flags::S16_POSITION) || MaskMatch(flags, MeshDefinition::Flags::S16_NORMAL) || MaskMatch(flags, MeshDefinition::Flags::S16_TANGENT) || MaskMatch(flags, MeshDefinition::Flags::S16_TEXCOORD))
+  {
+    DequantizeData<int16_t>(buffer, dequantizedValues, numComponents * count, normalized);
+    dequantized = true;
+  }
+  else if(MaskMatch(flags, MeshDefinition::Flags::U16_POSITION) || MaskMatch(flags, MeshDefinition::Flags::U16_TEXCOORD))
+  {
+    DequantizeData<uint16_t>(buffer, dequantizedValues, numComponents * count, normalized);
+    dequantized = true;
+  }
+
+  if(dequantized)
+  {
+    buffer = std::move(dequantizedBuffer);
+  }
+}
+
+void GetDequantizedMinMax(std::vector<float>& min, std::vector<float>& max, uint32_t flags)
+{
+  float scale = 1.0f;
+
+  if(MaskMatch(flags, MeshDefinition::Flags::S8_POSITION) || MaskMatch(flags, MeshDefinition::Flags::S8_NORMAL) || MaskMatch(flags, MeshDefinition::Flags::S8_TANGENT) || MaskMatch(flags, MeshDefinition::Flags::S8_TEXCOORD))
+  {
+    scale = GetNormalizedScale<int8_t>();
+  }
+  else if(MaskMatch(flags, MeshDefinition::Flags::U8_POSITION) || MaskMatch(flags, MeshDefinition::Flags::U8_TEXCOORD))
+  {
+    scale = GetNormalizedScale<uint8_t>();
+  }
+  else if(MaskMatch(flags, MeshDefinition::Flags::S16_POSITION) || MaskMatch(flags, MeshDefinition::Flags::S16_NORMAL) || MaskMatch(flags, MeshDefinition::Flags::S16_TANGENT) || MaskMatch(flags, MeshDefinition::Flags::S16_TEXCOORD))
+  {
+    scale = GetNormalizedScale<int16_t>();
+  }
+  else if(MaskMatch(flags, MeshDefinition::Flags::U16_POSITION) || MaskMatch(flags, MeshDefinition::Flags::U16_TEXCOORD))
+  {
+    scale = GetNormalizedScale<uint16_t>();
+  }
+
+  if(scale != 1.0f)
+  {
+    for(float& value : min)
+    {
+      value = std::max(value * scale, -1.0f);
+    }
+
+    for(float& value : max)
+    {
+      value = std::min(value * scale, 1.0f);
+    }
+  }
+}
+
+void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, std::vector<MeshDefinition::BlendShape>& blendShapes, uint32_t numberOfVertices, float& blendShapeUnnormalizeFactor, BufferDefinition::Vector& buffers)
 {
   uint32_t geometryBufferIndex = 0u;
-  float    maxDistance         = 0.f;
+  float    maxDistanceSquared  = 0.f;
   Vector3* geometryBufferV3    = reinterpret_cast<Vector3*>(geometryBuffer);
-  for(const auto& blendShape : blendShapes)
+  for(auto& blendShape : blendShapes)
   {
     if(blendShape.deltas.IsDefined())
     {
-      DALI_ASSERT_ALWAYS(((blendShape.deltas.mBlob.mLength % sizeof(Vector3) == 0u) ||
-                          blendShape.deltas.mBlob.mStride >= sizeof(Vector3)) &&
-                         "Blend Shape position buffer length not a multiple of element size");
+      const auto bufferSize = blendShape.deltas.mBlob.GetBufferSize();
+      uint32_t   numVector3;
 
-      const auto           bufferSize = blendShape.deltas.mBlob.GetBufferSize();
-      std::vector<uint8_t> buffer(bufferSize);
-      if(ReadAccessor(blendShape.deltas, buffers[blendShape.deltas.mBufferIdx].GetBufferStream(), buffer.data()))
+      if(MaskMatch(blendShape.mFlags, MeshDefinition::S8_POSITION))
+      {
+        DALI_ASSERT_ALWAYS(((blendShape.deltas.mBlob.mLength % (sizeof(uint8_t) * 3) == 0) ||
+                            blendShape.deltas.mBlob.mStride >= (sizeof(uint8_t) * 3)) &&
+                           "Blend Shape position buffer length not a multiple of element size");
+        numVector3 = static_cast<uint32_t>(bufferSize / (sizeof(uint8_t) * 3));
+      }
+      else if(MaskMatch(blendShape.mFlags, MeshDefinition::S16_POSITION))
+      {
+        DALI_ASSERT_ALWAYS(((blendShape.deltas.mBlob.mLength % (sizeof(uint16_t) * 3) == 0) ||
+                            blendShape.deltas.mBlob.mStride >= (sizeof(uint16_t) * 3)) &&
+                           "Blend Shape position buffer length not a multiple of element size");
+        numVector3 = static_cast<uint32_t>(bufferSize / (sizeof(uint16_t) * 3));
+      }
+      else
+      {
+        DALI_ASSERT_ALWAYS(((blendShape.deltas.mBlob.mLength % sizeof(Vector3) == 0) ||
+                            blendShape.deltas.mBlob.mStride >= sizeof(Vector3)) &&
+                           "Blend Shape position buffer length not a multiple of element size");
+        numVector3 = static_cast<uint32_t>(bufferSize / sizeof(Vector3));
+      }
+
+      std::vector<uint8_t>  buffer(bufferSize);
+      std::vector<uint32_t> sparseIndices{};
+
+      if(ReadAccessor(blendShape.deltas, buffers[blendShape.deltas.mBufferIdx].GetBufferStream(), buffer.data(), &sparseIndices))
       {
-        blendShape.deltas.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector3)), reinterpret_cast<float*>(buffer.data()));
+        GetDequantizedData(buffer, 3u, numVector3, blendShape.mFlags & MeshDefinition::POSITIONS_MASK, blendShape.deltas.mNormalized);
+
+        if(blendShape.deltas.mNormalized)
+        {
+          GetDequantizedMinMax(blendShape.deltas.mBlob.mMin, blendShape.deltas.mBlob.mMax, blendShape.mFlags & MeshDefinition::POSITIONS_MASK);
+        }
+
+        blendShape.deltas.mBlob.ApplyMinMax(numVector3, reinterpret_cast<float*>(buffer.data()), &sparseIndices);
+
         // Calculate the difference with the original mesh.
         // Find the max distance to normalize the deltas.
-        const Vector3* const deltasBuffer = reinterpret_cast<const Vector3* const>(buffer.data());
+        const auto* const deltasBuffer = reinterpret_cast<const Vector3* const>(buffer.data());
 
-        for(uint32_t index = 0u; index < numberOfVertices; ++index)
-        {
-          Vector3& delta = geometryBufferV3[geometryBufferIndex++];
-          delta          = deltasBuffer[index];
+        auto ProcessVertex = [&geometryBufferV3, &deltasBuffer, &maxDistanceSquared](uint32_t geometryBufferIndex, uint32_t deltaIndex) {
+          Vector3& delta = geometryBufferV3[geometryBufferIndex] = deltasBuffer[deltaIndex];
+          delta                                                  = deltasBuffer[deltaIndex];
+          return std::max(maxDistanceSquared, delta.LengthSquared());
+        };
 
-          maxDistance = std::max(maxDistance, delta.LengthSquared());
+        if(sparseIndices.empty())
+        {
+          for(uint32_t index = 0u; index < numberOfVertices; ++index)
+          {
+            maxDistanceSquared = ProcessVertex(geometryBufferIndex++, index);
+          }
+        }
+        else
+        {
+          // initialize blendshape texture
+          // TODO: there may be a case when sparse accessor uses a base buffer view for initial values.
+          std::fill(geometryBufferV3 + geometryBufferIndex, geometryBufferV3 + geometryBufferIndex + numberOfVertices, Vector3::ZERO);
+          for(auto index : sparseIndices)
+          {
+            maxDistanceSquared = ProcessVertex(geometryBufferIndex + index, index);
+          }
+          geometryBufferIndex += numberOfVertices;
         }
       }
     }
 
     if(blendShape.normals.IsDefined())
     {
-      DALI_ASSERT_ALWAYS(((blendShape.normals.mBlob.mLength % sizeof(Vector3) == 0u) ||
-                          blendShape.normals.mBlob.mStride >= sizeof(Vector3)) &&
-                         "Blend Shape normals buffer length not a multiple of element size");
+      const auto bufferSize = blendShape.normals.mBlob.GetBufferSize();
+      uint32_t   numVector3;
 
-      const auto           bufferSize = blendShape.normals.mBlob.GetBufferSize();
-      std::vector<uint8_t> buffer(bufferSize);
-      if(ReadAccessor(blendShape.normals, buffers[blendShape.normals.mBufferIdx].GetBufferStream(), buffer.data()))
+      if(MaskMatch(blendShape.mFlags, MeshDefinition::S8_NORMAL))
+      {
+        DALI_ASSERT_ALWAYS(((blendShape.normals.mBlob.mLength % (sizeof(int8_t) * 3) == 0) ||
+                            blendShape.normals.mBlob.mStride >= (sizeof(int8_t) * 3)) &&
+                           "Blend Shape normals buffer length not a multiple of element size");
+        numVector3 = static_cast<uint32_t>(bufferSize / (sizeof(int8_t) * 3));
+      }
+      else if(MaskMatch(blendShape.mFlags, MeshDefinition::S16_NORMAL))
       {
-        blendShape.normals.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector3)), reinterpret_cast<float*>(buffer.data()));
+        DALI_ASSERT_ALWAYS(((blendShape.normals.mBlob.mLength % (sizeof(int16_t) * 3) == 0) ||
+                            blendShape.normals.mBlob.mStride >= (sizeof(int16_t) * 3)) &&
+                           "Blend Shape normals buffer length not a multiple of element size");
+        numVector3 = static_cast<uint32_t>(bufferSize / (sizeof(int16_t) * 3));
+      }
+      else
+      {
+        DALI_ASSERT_ALWAYS(((blendShape.normals.mBlob.mLength % sizeof(Vector3) == 0) ||
+                            blendShape.normals.mBlob.mStride >= sizeof(Vector3)) &&
+                           "Blend Shape normals buffer length not a multiple of element size");
+        numVector3 = static_cast<uint32_t>(bufferSize / sizeof(Vector3));
+      }
 
-        // Calculate the difference with the original mesh, and translate to make all values positive.
-        const Vector3* const deltasBuffer = reinterpret_cast<const Vector3* const>(buffer.data());
+      std::vector<uint8_t>  buffer(bufferSize);
+      std::vector<uint32_t> sparseIndices;
+
+      if(ReadAccessor(blendShape.normals, buffers[blendShape.normals.mBufferIdx].GetBufferStream(), buffer.data(), &sparseIndices))
+      {
+        GetDequantizedData(buffer, 3u, numVector3, blendShape.mFlags & MeshDefinition::NORMALS_MASK, blendShape.normals.mNormalized);
 
-        for(uint32_t index = 0u; index < numberOfVertices; ++index)
+        if(blendShape.normals.mNormalized)
         {
-          Vector3& delta = geometryBufferV3[geometryBufferIndex++];
-          delta          = deltasBuffer[index];
+          GetDequantizedMinMax(blendShape.normals.mBlob.mMin, blendShape.normals.mBlob.mMax, blendShape.mFlags & MeshDefinition::NORMALS_MASK);
+        }
 
+        blendShape.normals.mBlob.ApplyMinMax(numVector3, reinterpret_cast<float*>(buffer.data()), &sparseIndices);
+
+        // Calculate the difference with the original mesh, and translate to make all values positive.
+        const Vector3* const deltasBuffer  = reinterpret_cast<const Vector3* const>(buffer.data());
+        auto                 ProcessVertex = [&geometryBufferV3, &deltasBuffer, &maxDistanceSquared](uint32_t geometryBufferIndex, uint32_t deltaIndex) {
+          Vector3& delta = geometryBufferV3[geometryBufferIndex] = deltasBuffer[deltaIndex];
           delta.x *= 0.5f;
           delta.y *= 0.5f;
           delta.z *= 0.5f;
@@ -438,30 +701,73 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
           delta.x += 0.5f;
           delta.y += 0.5f;
           delta.z += 0.5f;
+        };
+
+        if(sparseIndices.empty())
+        {
+          for(uint32_t index = 0u; index < numberOfVertices; ++index)
+          {
+            ProcessVertex(geometryBufferIndex++, index);
+          }
+        }
+        else
+        {
+          std::fill(geometryBufferV3 + geometryBufferIndex, geometryBufferV3 + geometryBufferIndex + numberOfVertices, Vector3(0.5, 0.5, 0.5));
+          for(auto index : sparseIndices)
+          {
+            ProcessVertex(geometryBufferIndex + index, index);
+          }
+          geometryBufferIndex += numberOfVertices;
         }
       }
     }
 
     if(blendShape.tangents.IsDefined())
     {
-      DALI_ASSERT_ALWAYS(((blendShape.tangents.mBlob.mLength % sizeof(Vector3) == 0u) ||
-                          blendShape.tangents.mBlob.mStride >= sizeof(Vector3)) &&
-                         "Blend Shape tangents buffer length not a multiple of element size");
+      const auto bufferSize = blendShape.tangents.mBlob.GetBufferSize();
 
-      const auto           bufferSize = blendShape.tangents.mBlob.GetBufferSize();
-      std::vector<uint8_t> buffer(bufferSize);
-      if(ReadAccessor(blendShape.tangents, buffers[blendShape.tangents.mBufferIdx].GetBufferStream(), buffer.data()))
+      uint32_t numVector3;
+
+      if(MaskMatch(blendShape.mFlags, MeshDefinition::S8_TANGENT))
+      {
+        DALI_ASSERT_ALWAYS(((blendShape.tangents.mBlob.mLength % (sizeof(int8_t) * 3) == 0) ||
+                            blendShape.tangents.mBlob.mStride >= (sizeof(int8_t) * 3)) &&
+                           "Blend Shape tangents buffer length not a multiple of element size");
+        numVector3 = static_cast<uint32_t>(bufferSize / (sizeof(int8_t) * 3));
+      }
+      else if(MaskMatch(blendShape.mFlags, MeshDefinition::S16_TANGENT))
       {
-        blendShape.tangents.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector3)), reinterpret_cast<float*>(buffer.data()));
+        DALI_ASSERT_ALWAYS(((blendShape.tangents.mBlob.mLength % (sizeof(int16_t) * 3) == 0) ||
+                            blendShape.tangents.mBlob.mStride >= (sizeof(int16_t) * 3)) &&
+                           "Blend Shape tangents buffer length not a multiple of element size");
+        numVector3 = static_cast<uint32_t>(bufferSize / (sizeof(int16_t) * 3));
+      }
+      else
+      {
+        DALI_ASSERT_ALWAYS(((blendShape.tangents.mBlob.mLength % sizeof(Vector3) == 0) ||
+                            blendShape.tangents.mBlob.mStride >= sizeof(Vector3)) &&
+                           "Blend Shape tangents buffer length not a multiple of element size");
+        numVector3 = static_cast<uint32_t>(bufferSize / sizeof(Vector3));
+      }
 
-        // Calculate the difference with the original mesh, and translate to make all values positive.
-        const Vector3* const deltasBuffer = reinterpret_cast<const Vector3* const>(buffer.data());
+      std::vector<uint8_t>  buffer(bufferSize);
+      std::vector<uint32_t> sparseIndices;
+
+      if(ReadAccessor(blendShape.tangents, buffers[blendShape.tangents.mBufferIdx].GetBufferStream(), buffer.data(), &sparseIndices))
+      {
+        GetDequantizedData(buffer, 3u, numVector3, blendShape.mFlags & MeshDefinition::TANGENTS_MASK, blendShape.tangents.mNormalized);
 
-        for(uint32_t index = 0u; index < numberOfVertices; ++index)
+        if(blendShape.tangents.mNormalized)
         {
-          Vector3& delta = geometryBufferV3[geometryBufferIndex++];
-          delta          = deltasBuffer[index];
+          GetDequantizedMinMax(blendShape.tangents.mBlob.mMin, blendShape.tangents.mBlob.mMax, blendShape.mFlags & MeshDefinition::TANGENTS_MASK);
+        }
 
+        blendShape.tangents.mBlob.ApplyMinMax(numVector3, reinterpret_cast<float*>(buffer.data()), &sparseIndices);
+
+        // Calculate the difference with the original mesh, and translate to make all values positive.
+        const Vector3* const deltasBuffer  = reinterpret_cast<const Vector3* const>(buffer.data());
+        auto                 ProcessVertex = [&geometryBufferV3, &deltasBuffer, &maxDistanceSquared](uint32_t geometryBufferIndex, uint32_t deltaIndex) {
+          Vector3& delta = geometryBufferV3[geometryBufferIndex] = deltasBuffer[deltaIndex];
           delta.x *= 0.5f;
           delta.y *= 0.5f;
           delta.z *= 0.5f;
@@ -469,12 +775,37 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
           delta.x += 0.5f;
           delta.y += 0.5f;
           delta.z += 0.5f;
+        };
+
+        if(sparseIndices.empty())
+        {
+          for(uint32_t index = 0u; index < numberOfVertices; ++index)
+          {
+            ProcessVertex(geometryBufferIndex++, index);
+          }
+        }
+        else
+        {
+          std::fill(geometryBufferV3 + geometryBufferIndex, geometryBufferV3 + geometryBufferIndex + numberOfVertices, Vector3(0.5, 0.5, 0.5));
+          for(auto index : sparseIndices)
+          {
+            ProcessVertex(geometryBufferIndex + index, index);
+          }
+          geometryBufferIndex += numberOfVertices;
         }
       }
     }
   }
 
   geometryBufferIndex = 0u;
+
+  const float maxDistance = sqrtf(maxDistanceSquared);
+
+  const float normalizeFactor = (maxDistanceSquared < Math::MACHINE_EPSILON_100) ? 1.f : (0.5f / maxDistance);
+
+  // Calculate and store the unnormalize factor.
+  blendShapeUnnormalizeFactor = maxDistance * 2.0f;
+
   for(const auto& blendShape : blendShapes)
   {
     // Normalize all the deltas and translate to a possitive value.
@@ -482,8 +813,6 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
     // whose values that are less than zero are clamped.
     if(blendShape.deltas.IsDefined())
     {
-      const float normalizeFactor = (fabsf(maxDistance) < Math::MACHINE_EPSILON_1000) ? 1.f : (0.5f / sqrtf(maxDistance));
-
       for(uint32_t index = 0u; index < numberOfVertices; ++index)
       {
         Vector3& delta = geometryBufferV3[geometryBufferIndex++];
@@ -491,9 +820,6 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
         delta.y        = Clamp(((delta.y * normalizeFactor) + 0.5f), 0.f, 1.f);
         delta.z        = Clamp(((delta.z * normalizeFactor) + 0.5f), 0.f, 1.f);
       }
-
-      // Calculate and store the unnormalize factor.
-      blendShapeUnnormalizeFactor = 1.f / normalizeFactor;
     }
 
     if(blendShape.normals.IsDefined())
@@ -533,19 +859,23 @@ MeshDefinition::SparseBlob::SparseBlob(Blob&& indices, Blob&& values, uint32_t c
 
 MeshDefinition::Accessor::Accessor(const MeshDefinition::Blob&       blob,
                                    const MeshDefinition::SparseBlob& sparse,
-                                   Index                             bufferIndex)
+                                   Index                             bufferIndex,
+                                   bool                              normalized)
 : mBlob{blob},
   mSparse{(sparse.mIndices.IsDefined() && sparse.mValues.IsDefined()) ? new SparseBlob{sparse} : nullptr},
-  mBufferIdx(bufferIndex)
+  mBufferIdx(bufferIndex),
+  mNormalized(normalized)
 {
 }
 
 MeshDefinition::Accessor::Accessor(MeshDefinition::Blob&&       blob,
                                    MeshDefinition::SparseBlob&& sparse,
-                                   Index                        bufferIndex)
+                                   Index                        bufferIndex,
+                                   bool                         normalized)
 : mBlob{std::move(blob)},
   mSparse{(sparse.mIndices.IsDefined() && sparse.mValues.IsDefined()) ? new SparseBlob{std::move(sparse)} : nullptr},
-  mBufferIdx(bufferIndex)
+  mBufferIdx(bufferIndex),
+  mNormalized(normalized)
 {
 }
 
@@ -564,7 +894,7 @@ void MeshDefinition::Blob::ComputeMinMax(std::vector<float>& min, std::vector<fl
   }
 }
 
-void MeshDefinition::Blob::ApplyMinMax(const std::vector<float>& min, const std::vector<float>& max, uint32_t count, float* values)
+void MeshDefinition::Blob::ApplyMinMax(const std::vector<float>& min, const std::vector<float>& max, uint32_t count, float* values, std::vector<uint32_t>* sparseIndices)
 {
   DALI_ASSERT_DEBUG(max.size() == min.size() || max.size() * min.size() == 0);
   const auto numComponents = std::max(min.size(), max.size());
@@ -613,9 +943,9 @@ void MeshDefinition::Blob::ComputeMinMax(uint32_t numComponents, uint32_t count,
   ComputeMinMax(mMin, mMax, numComponents, count, values);
 }
 
-void MeshDefinition::Blob::ApplyMinMax(uint32_t count, float* values) const
+void MeshDefinition::Blob::ApplyMinMax(uint32_t count, float* values, std::vector<uint32_t>* sparseIndices) const
 {
-  ApplyMinMax(mMin, mMax, count, values);
+  ApplyMinMax(mMin, mMax, count, values, sparseIndices);
 }
 
 void MeshDefinition::RawData::Attrib::AttachBuffer(Geometry& g) const
@@ -635,7 +965,11 @@ bool MeshDefinition::IsQuad() const
 
 bool MeshDefinition::IsSkinned() const
 {
-  return mJoints0.IsDefined() && mWeights0.IsDefined();
+  return !mJoints.empty() && !mWeights.empty();
+}
+uint32_t MeshDefinition::GetNumberOfJointSets() const
+{
+  return static_cast<uint32_t>(mJoints.size());
 }
 
 bool MeshDefinition::HasBlendShapes() const
@@ -732,13 +1066,38 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
     }
   }
 
+  uint32_t numberOfVertices = 0u;
+
   std::vector<Vector3> positions;
   if(mPositions.IsDefined())
   {
-    DALI_ASSERT_ALWAYS(((mPositions.mBlob.mLength % sizeof(Vector3) == 0) ||
-                        mPositions.mBlob.mStride >= sizeof(Vector3)) &&
-                       "Position buffer length not a multiple of element size");
-    const auto           bufferSize = mPositions.mBlob.GetBufferSize();
+    const auto bufferSize = mPositions.mBlob.GetBufferSize();
+    uint32_t   numVector3;
+
+    if(MaskMatch(mFlags, S8_POSITION) || MaskMatch(mFlags, U8_POSITION))
+    {
+      DALI_ASSERT_ALWAYS(((mPositions.mBlob.mLength % (sizeof(uint8_t) * 3) == 0) ||
+                          mPositions.mBlob.mStride >= (sizeof(uint8_t) * 3)) &&
+                         "Position buffer length not a multiple of element size");
+      numVector3 = static_cast<uint32_t>(bufferSize / (sizeof(uint8_t) * 3));
+    }
+    else if(MaskMatch(mFlags, S16_POSITION) || MaskMatch(mFlags, U16_POSITION))
+    {
+      DALI_ASSERT_ALWAYS(((mPositions.mBlob.mLength % (sizeof(uint16_t) * 3) == 0) ||
+                          mPositions.mBlob.mStride >= (sizeof(uint16_t) * 3)) &&
+                         "Position buffer length not a multiple of element size");
+      numVector3 = static_cast<uint32_t>(bufferSize / (sizeof(uint16_t) * 3));
+    }
+    else
+    {
+      DALI_ASSERT_ALWAYS(((mPositions.mBlob.mLength % sizeof(Vector3) == 0) ||
+                          mPositions.mBlob.mStride >= sizeof(Vector3)) &&
+                         "Position buffer length not a multiple of element size");
+      numVector3 = static_cast<uint32_t>(bufferSize / sizeof(Vector3));
+    }
+
+    numberOfVertices = numVector3;
+
     std::vector<uint8_t> buffer(bufferSize);
 
     std::string path;
@@ -748,7 +1107,13 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
       ExceptionFlinger(ASSERT_LOCATION) << "Failed to read positions from '" << path << "'.";
     }
 
-    uint32_t numVector3 = static_cast<uint32_t>(bufferSize / sizeof(Vector3));
+    GetDequantizedData(buffer, 3u, numVector3, mFlags & POSITIONS_MASK, mPositions.mNormalized);
+
+    if(mPositions.mNormalized)
+    {
+      GetDequantizedMinMax(mPositions.mBlob.mMin, mPositions.mBlob.mMax, mFlags & POSITIONS_MASK);
+    }
+
     if(mPositions.mBlob.mMin.size() != 3u || mPositions.mBlob.mMax.size() != 3u)
     {
       mPositions.mBlob.ComputeMinMax(3u, numVector3, reinterpret_cast<float*>(buffer.data()));
@@ -771,10 +1136,31 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
   auto       hasNormals  = mNormals.IsDefined();
   if(hasNormals)
   {
-    DALI_ASSERT_ALWAYS(((mNormals.mBlob.mLength % sizeof(Vector3) == 0) ||
-                        mNormals.mBlob.mStride >= sizeof(Vector3)) &&
-                       "Normal buffer length not a multiple of element size");
-    const auto           bufferSize = mNormals.mBlob.GetBufferSize();
+    const auto bufferSize = mNormals.mBlob.GetBufferSize();
+    uint32_t   numVector3;
+
+    if(MaskMatch(mFlags, S8_NORMAL))
+    {
+      DALI_ASSERT_ALWAYS(((mNormals.mBlob.mLength % (sizeof(int8_t) * 3) == 0) ||
+                          mNormals.mBlob.mStride >= (sizeof(int8_t) * 3)) &&
+                         "Normal buffer length not a multiple of element size");
+      numVector3 = static_cast<uint32_t>(bufferSize / (sizeof(int8_t) * 3));
+    }
+    else if(MaskMatch(mFlags, S16_NORMAL))
+    {
+      DALI_ASSERT_ALWAYS(((mNormals.mBlob.mLength % (sizeof(int16_t) * 3) == 0) ||
+                          mNormals.mBlob.mStride >= (sizeof(int16_t) * 3)) &&
+                         "Normal buffer length not a multiple of element size");
+      numVector3 = static_cast<uint32_t>(bufferSize / (sizeof(int16_t) * 3));
+    }
+    else
+    {
+      DALI_ASSERT_ALWAYS(((mNormals.mBlob.mLength % sizeof(Vector3) == 0) ||
+                          mNormals.mBlob.mStride >= sizeof(Vector3)) &&
+                         "Normal buffer length not a multiple of element size");
+      numVector3 = static_cast<uint32_t>(bufferSize / sizeof(Vector3));
+    }
+
     std::vector<uint8_t> buffer(bufferSize);
 
     std::string path;
@@ -784,9 +1170,16 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
       ExceptionFlinger(ASSERT_LOCATION) << "Failed to read normals from '" << path << "'.";
     }
 
-    mNormals.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector3)), reinterpret_cast<float*>(buffer.data()));
+    GetDequantizedData(buffer, 3u, numVector3, mFlags & NORMALS_MASK, mNormals.mNormalized);
+
+    if(mNormals.mNormalized)
+    {
+      GetDequantizedMinMax(mNormals.mBlob.mMin, mNormals.mBlob.mMax, mFlags & NORMALS_MASK);
+    }
+
+    mNormals.mBlob.ApplyMinMax(numVector3, reinterpret_cast<float*>(buffer.data()));
 
-    raw.mAttribs.push_back({"aNormal", Property::VECTOR3, static_cast<uint32_t>(bufferSize / sizeof(Vector3)), std::move(buffer)});
+    raw.mAttribs.push_back({"aNormal", Property::VECTOR3, numVector3, std::move(buffer)});
   }
   else if(mNormals.mBlob.mLength != 0 && isTriangles)
   {
@@ -807,23 +1200,45 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
     }
   }
 
-  const auto hasUvs = mTexCoords.IsDefined();
-  if(hasUvs)
+  if(!mTexCoords.empty() && mTexCoords[0].IsDefined())
   {
-    DALI_ASSERT_ALWAYS(((mTexCoords.mBlob.mLength % sizeof(Vector2) == 0) ||
-                        mTexCoords.mBlob.mStride >= sizeof(Vector2)) &&
-                       "Normal buffer length not a multiple of element size");
-    const auto           bufferSize = mTexCoords.mBlob.GetBufferSize();
+    auto& texCoords = mTexCoords[0];
+    const auto bufferSize = texCoords.mBlob.GetBufferSize();
+    uint32_t uvCount;
+
+    if(MaskMatch(mFlags, S8_TEXCOORD) || MaskMatch(mFlags, U8_TEXCOORD))
+    {
+      DALI_ASSERT_ALWAYS(((texCoords.mBlob.mLength % (sizeof(uint8_t) * 2) == 0) ||
+                          texCoords.mBlob.mStride >= (sizeof(uint8_t) * 2)) &&
+                         "TexCoords buffer length not a multiple of element size");
+      uvCount = static_cast<uint32_t>(bufferSize / (sizeof(uint8_t) * 2));
+    }
+    else if(MaskMatch(mFlags, S16_TEXCOORD) || MaskMatch(mFlags, U16_TEXCOORD))
+    {
+      DALI_ASSERT_ALWAYS(((texCoords.mBlob.mLength % (sizeof(uint16_t) * 2) == 0) ||
+                          texCoords.mBlob.mStride >= (sizeof(uint16_t) * 2)) &&
+                         "TexCoords buffer length not a multiple of element size");
+      uvCount = static_cast<uint32_t>(bufferSize / (sizeof(uint16_t) * 2));
+    }
+    else
+    {
+      DALI_ASSERT_ALWAYS(((texCoords.mBlob.mLength % sizeof(Vector2) == 0) ||
+                          texCoords.mBlob.mStride >= sizeof(Vector2)) &&
+                         "TexCoords buffer length not a multiple of element size");
+      uvCount = static_cast<uint32_t>(bufferSize / sizeof(Vector2));
+    }
+
     std::vector<uint8_t> buffer(bufferSize);
 
     std::string path;
-    auto&       stream = GetAvailableData(fileStream, meshPath, buffers[mTexCoords.mBufferIdx], path);
-    if(!ReadAccessor(mTexCoords, stream, buffer.data()))
+    auto&       stream = GetAvailableData(fileStream, meshPath, buffers[texCoords.mBufferIdx], path);
+    if(!ReadAccessor(texCoords, stream, buffer.data()))
     {
       ExceptionFlinger(ASSERT_LOCATION) << "Failed to read uv-s from '" << path << "'.";
     }
 
-    const auto uvCount = bufferSize / sizeof(Vector2);
+    GetDequantizedData(buffer, 2u, uvCount, mFlags & TEXCOORDS_MASK, texCoords.mNormalized);
+
     if(MaskMatch(mFlags, FLIP_UVS_VERTICAL))
     {
       auto uv    = reinterpret_cast<Vector2*>(buffer.data());
@@ -835,18 +1250,46 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
       }
     }
 
-    mTexCoords.mBlob.ApplyMinMax(static_cast<uint32_t>(uvCount), reinterpret_cast<float*>(buffer.data()));
+    if(texCoords.mNormalized)
+    {
+      GetDequantizedMinMax(texCoords.mBlob.mMin, texCoords.mBlob.mMax, mFlags & TEXCOORDS_MASK);
+    }
 
+    texCoords.mBlob.ApplyMinMax(static_cast<uint32_t>(uvCount), reinterpret_cast<float*>(buffer.data()));
     raw.mAttribs.push_back({"aTexCoord", Property::VECTOR2, static_cast<uint32_t>(uvCount), std::move(buffer)});
   }
 
   if(mTangents.IsDefined())
   {
-    uint32_t propertySize = static_cast<uint32_t>((mTangentType == Property::VECTOR4) ? sizeof(Vector4) : sizeof(Vector3));
-    DALI_ASSERT_ALWAYS(((mTangents.mBlob.mLength % propertySize == 0) ||
-                        mTangents.mBlob.mStride >= propertySize) &&
-                       "Tangents buffer length not a multiple of element size");
-    const auto           bufferSize = mTangents.mBlob.GetBufferSize();
+    const auto bufferSize = mTangents.mBlob.GetBufferSize();
+
+    uint32_t propertySize   = static_cast<uint32_t>((mTangentType == Property::VECTOR4) ? sizeof(Vector4) : sizeof(Vector3));
+    uint32_t componentCount = static_cast<uint32_t>(propertySize / sizeof(float));
+
+    uint32_t numTangents;
+
+    if(MaskMatch(mFlags, S8_TANGENT))
+    {
+      DALI_ASSERT_ALWAYS(((mTangents.mBlob.mLength % (sizeof(int8_t) * componentCount) == 0) ||
+                          mTangents.mBlob.mStride >= (sizeof(int8_t) * componentCount)) &&
+                         "Tangents buffer length not a multiple of element size");
+      numTangents = static_cast<uint32_t>(bufferSize / (sizeof(int8_t) * componentCount));
+    }
+    else if(MaskMatch(mFlags, S16_TANGENT))
+    {
+      DALI_ASSERT_ALWAYS(((mTangents.mBlob.mLength % (sizeof(int16_t) * componentCount) == 0) ||
+                          mTangents.mBlob.mStride >= (sizeof(int16_t) * componentCount)) &&
+                         "Tangents buffer length not a multiple of element size");
+      numTangents = static_cast<uint32_t>(bufferSize / (sizeof(int16_t) * componentCount));
+    }
+    else
+    {
+      DALI_ASSERT_ALWAYS(((mTangents.mBlob.mLength % propertySize == 0) ||
+                          mTangents.mBlob.mStride >= propertySize) &&
+                         "Tangents buffer length not a multiple of element size");
+      numTangents = static_cast<uint32_t>(bufferSize / propertySize);
+    }
+
     std::vector<uint8_t> buffer(bufferSize);
 
     std::string path;
@@ -855,9 +1298,17 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
     {
       ExceptionFlinger(ASSERT_LOCATION) << "Failed to read tangents from '" << path << "'.";
     }
-    mTangents.mBlob.ApplyMinMax(bufferSize / propertySize, reinterpret_cast<float*>(buffer.data()));
 
-    raw.mAttribs.push_back({"aTangent", mTangentType, static_cast<uint32_t>(bufferSize / propertySize), std::move(buffer)});
+    GetDequantizedData(buffer, componentCount, numTangents, mFlags & TANGENTS_MASK, mTangents.mNormalized);
+
+    if(mTangents.mNormalized)
+    {
+      GetDequantizedMinMax(mTangents.mBlob.mMin, mTangents.mBlob.mMax, mFlags & TANGENTS_MASK);
+    }
+
+    mTangents.mBlob.ApplyMinMax(numTangents, reinterpret_cast<float*>(buffer.data()));
+
+    raw.mAttribs.push_back({"aTangent", mTangentType, static_cast<uint32_t>(numTangents), std::move(buffer)});
   }
   else if(mTangents.mBlob.mLength != 0 && hasNormals && isTriangles)
   {
@@ -884,6 +1335,7 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
             GenerateTangents<true, true, true>,
           },
         }};
+    const bool hasUvs            = !mTexCoords.empty() && mTexCoords[0].IsDefined();
     const bool generateSuccessed = GenerateTangentsFunction[MaskMatch(mFlags, U32_INDICES)][mTangentType == Property::VECTOR3][hasUvs](raw);
     if(!generateSuccessed)
     {
@@ -891,25 +1343,26 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
     }
   }
 
-  if(mColors.IsDefined())
+  // Only support 1 vertex color
+  if(!mColors.empty() && mColors[0].IsDefined())
   {
-    uint32_t       propertySize = mColors.mBlob.mElementSizeHint;
+    uint32_t       propertySize = mColors[0].mBlob.mElementSizeHint;
     Property::Type propertyType = (propertySize == sizeof(Vector4)) ? Property::VECTOR4 : ((propertySize == sizeof(Vector3)) ? Property::VECTOR3 : Property::NONE);
     if(propertyType != Property::NONE)
     {
-      DALI_ASSERT_ALWAYS(((mColors.mBlob.mLength % propertySize == 0) ||
-                          mColors.mBlob.mStride >= propertySize) &&
+      DALI_ASSERT_ALWAYS(((mColors[0].mBlob.mLength % propertySize == 0) ||
+                          mColors[0].mBlob.mStride >= propertySize) &&
                          "Colors buffer length not a multiple of element size");
-      const auto           bufferSize = mColors.mBlob.GetBufferSize();
+      const auto           bufferSize = mColors[0].mBlob.GetBufferSize();
       std::vector<uint8_t> buffer(bufferSize);
 
       std::string path;
-      auto&       stream = GetAvailableData(fileStream, meshPath, buffers[mColors.mBufferIdx], path);
-      if(!ReadAccessor(mColors, stream, buffer.data()))
+      auto&       stream = GetAvailableData(fileStream, meshPath, buffers[mColors[0].mBufferIdx], path);
+      if(!ReadAccessor(mColors[0], stream, buffer.data()))
       {
         ExceptionFlinger(ASSERT_LOCATION) << "Failed to read colors from '" << path << "'.";
       }
-      mColors.mBlob.ApplyMinMax(bufferSize / propertySize, reinterpret_cast<float*>(buffer.data()));
+      mColors[0].mBlob.ApplyMinMax(bufferSize / propertySize, reinterpret_cast<float*>(buffer.data()));
 
       raw.mAttribs.push_back({"aVertexColor", propertyType, static_cast<uint32_t>(bufferSize / propertySize), std::move(buffer)});
     }
@@ -929,35 +1382,26 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
 
   if(IsSkinned())
   {
-    std::string pathJoint;
-    auto&       streamJoint = GetAvailableData(fileStream, meshPath, buffers[mJoints0.mBufferIdx], pathJoint);
-    if(MaskMatch(mFlags, U16_JOINT_IDS))
-    {
-      ReadJointAccessor<uint16_t>(raw, mJoints0, streamJoint, pathJoint);
-    }
-    else if(MaskMatch(mFlags, U8_JOINT_IDS))
-    {
-      ReadJointAccessor<uint8_t>(raw, mJoints0, streamJoint, pathJoint);
-    }
-    else
+    int setIndex = 0;
+    for(auto& accessor : mJoints)
     {
-      ReadJointAccessor<float>(raw, mJoints0, streamJoint, pathJoint);
+      std::string        pathJoint;
+      auto&              streamJoint = GetAvailableData(fileStream, meshPath, buffers[accessor.mBufferIdx], pathJoint);
+      std::ostringstream jointName;
+      jointName << "aJoints" << setIndex;
+      ++setIndex;
+      ReadTypedJointAccessor(raw, mFlags, accessor, streamJoint, pathJoint, jointName.str());
     }
-
-    DALI_ASSERT_ALWAYS(((mWeights0.mBlob.mLength % sizeof(Vector4) == 0) ||
-                        mWeights0.mBlob.mStride >= sizeof(Vector4)) &&
-                       "Weights buffer length not a multiple of element size");
-    const auto           bufferSize = mWeights0.mBlob.GetBufferSize();
-    std::vector<uint8_t> buffer(bufferSize);
-
-    std::string pathWeight;
-    auto&       streamWeight = GetAvailableData(fileStream, meshPath, buffers[mWeights0.mBufferIdx], pathWeight);
-    if(!ReadAccessor(mWeights0, streamWeight, buffer.data()))
+    setIndex = 0;
+    for(auto& accessor : mWeights)
     {
-      ExceptionFlinger(ASSERT_LOCATION) << "Failed to read weights from '" << pathWeight << "'.";
+      std::string        pathWeight;
+      auto&              streamWeight = GetAvailableData(fileStream, meshPath, buffers[accessor.mBufferIdx], pathWeight);
+      std::ostringstream weightName;
+      weightName << "aWeights" << setIndex;
+      ++setIndex;
+      ReadTypedWeightAccessor(raw, mFlags, accessor, streamWeight, pathWeight, weightName.str());
     }
-
-    raw.mAttribs.push_back({"aWeights", Property::VECTOR4, static_cast<uint32_t>(bufferSize / sizeof(Vector4)), std::move(buffer)});
   }
 
   // Calculate the Blob for the blend shapes.
@@ -965,22 +1409,31 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
   blendShapesBlob.mOffset = std::numeric_limits<unsigned int>::max();
   blendShapesBlob.mLength = 0u;
 
-  for(const auto& blendShape : mBlendShapes)
-  {
-    for(auto i : {&blendShape.deltas, &blendShape.normals, &blendShape.tangents})
+  uint32_t totalTextureSize(0u);
+
+  auto processAccessor = [&](const Accessor& accessor, uint32_t vector3Size) {
+    if(accessor.IsDefined())
     {
-      if(i->IsDefined())
-      {
-        blendShapesBlob.mOffset = std::min(blendShapesBlob.mOffset, i->mBlob.mOffset);
-        blendShapesBlob.mLength += i->mBlob.mLength;
-      }
+      blendShapesBlob.mOffset = std::min(blendShapesBlob.mOffset, accessor.mBlob.mOffset);
+      blendShapesBlob.mLength += accessor.mBlob.mLength;
+
+      totalTextureSize += accessor.mBlob.mLength / vector3Size;
     }
+  };
+
+  for(const auto& blendShape : mBlendShapes)
+  {
+    const auto positionMask = blendShape.mFlags & POSITIONS_MASK;
+    const auto normalMask   = blendShape.mFlags & NORMALS_MASK;
+    const auto tangentMask  = blendShape.mFlags & TANGENTS_MASK;
+
+    processAccessor(blendShape.deltas, MaskMatch(positionMask, S8_POSITION) ? sizeof(uint8_t) * 3 : (MaskMatch(positionMask, S16_POSITION) ? sizeof(uint16_t) * 3 : sizeof(Vector3)));
+    processAccessor(blendShape.normals, MaskMatch(normalMask, S8_NORMAL) ? sizeof(uint8_t) * 3 : (MaskMatch(normalMask, S16_NORMAL) ? sizeof(uint16_t) * 3 : sizeof(Vector3)));
+    processAccessor(blendShape.tangents, MaskMatch(tangentMask, S8_TANGENT) ? sizeof(uint8_t) * 3 : (MaskMatch(tangentMask, S16_TANGENT) ? sizeof(uint16_t) * 3 : sizeof(Vector3)));
   }
 
   if(HasBlendShapes())
   {
-    const uint32_t numberOfVertices = static_cast<uint32_t>(mPositions.mBlob.mLength / sizeof(Vector3));
-
     // Calculate the size of one buffer inside the texture.
     raw.mBlendShapeBufferOffset = numberOfVertices;
 
@@ -990,7 +1443,7 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
 
     if(!mBlendShapeHeader.IsDefined())
     {
-      CalculateTextureSize(static_cast<uint32_t>(blendShapesBlob.mLength / sizeof(Vector3)), textureWidth, textureHeight);
+      CalculateTextureSize(totalTextureSize, textureWidth, textureHeight);
       calculateGltf2BlendShapes = true;
     }
     else