xGSVJn, xLAQRn, xHETRD, xSYTRD; parameter comment: put LWORK dimension in parentheses
[platform/upstream/lapack.git] / SRC / sgsvj0.f
index 975205e..381557c 100644 (file)
+*> \brief \b SGSVJ0 pre-processor for the routine sgesvj.
+*
+*  =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+*            http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SGSVJ0 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgsvj0.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgsvj0.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgsvj0.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+*  Definition:
+*  ===========
+*
+*       SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
+*                          SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+*       .. Scalar Arguments ..
+*       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
+*       REAL               EPS, SFMIN, TOL
+*       CHARACTER*1        JOBV
+*       ..
+*       .. Array Arguments ..
+*       REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
+*      $                   WORK( LWORK )
+*       ..
+*
+*
+*> \par Purpose:
+*  =============
+*>
+*> \verbatim
+*>
+*> SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
+*> purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
+*> it does not check convergence (stopping criterion). Few tuning
+*> parameters (marked by [TP]) are available for the implementer.
+*> \endverbatim
+*
+*  Arguments:
+*  ==========
+*
+*> \param[in] JOBV
+*> \verbatim
+*>          JOBV is CHARACTER*1
+*>          Specifies whether the output from this procedure is used
+*>          to compute the matrix V:
+*>          = 'V': the product of the Jacobi rotations is accumulated
+*>                 by postmulyiplying the N-by-N array V.
+*>                (See the description of V.)
+*>          = 'A': the product of the Jacobi rotations is accumulated
+*>                 by postmulyiplying the MV-by-N array V.
+*>                (See the descriptions of MV and V.)
+*>          = 'N': the Jacobi rotations are not accumulated.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*>          M is INTEGER
+*>          The number of rows of the input matrix A.  M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*>          N is INTEGER
+*>          The number of columns of the input matrix A.
+*>          M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*>          A is REAL array, dimension (LDA,N)
+*>          On entry, M-by-N matrix A, such that A*diag(D) represents
+*>          the input matrix.
+*>          On exit,
+*>          A_onexit * D_onexit represents the input matrix A*diag(D)
+*>          post-multiplied by a sequence of Jacobi rotations, where the
+*>          rotation threshold and the total number of sweeps are given in
+*>          TOL and NSWEEP, respectively.
+*>          (See the descriptions of D, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*>          LDA is INTEGER
+*>          The leading dimension of the array A.  LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] D
+*> \verbatim
+*>          D is REAL array, dimension (N)
+*>          The array D accumulates the scaling factors from the fast scaled
+*>          Jacobi rotations.
+*>          On entry, A*diag(D) represents the input matrix.
+*>          On exit, A_onexit*diag(D_onexit) represents the input matrix
+*>          post-multiplied by a sequence of Jacobi rotations, where the
+*>          rotation threshold and the total number of sweeps are given in
+*>          TOL and NSWEEP, respectively.
+*>          (See the descriptions of A, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in,out] SVA
+*> \verbatim
+*>          SVA is REAL array, dimension (N)
+*>          On entry, SVA contains the Euclidean norms of the columns of
+*>          the matrix A*diag(D).
+*>          On exit, SVA contains the Euclidean norms of the columns of
+*>          the matrix onexit*diag(D_onexit).
+*> \endverbatim
+*>
+*> \param[in] MV
+*> \verbatim
+*>          MV is INTEGER
+*>          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+*>                           sequence of Jacobi rotations.
+*>          If JOBV = 'N',   then MV is not referenced.
+*> \endverbatim
+*>
+*> \param[in,out] V
+*> \verbatim
+*>          V is REAL array, dimension (LDV,N)
+*>          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+*>                           sequence of Jacobi rotations.
+*>          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+*>                           sequence of Jacobi rotations.
+*>          If JOBV = 'N',   then V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*>          LDV is INTEGER
+*>          The leading dimension of the array V,  LDV >= 1.
+*>          If JOBV = 'V', LDV .GE. N.
+*>          If JOBV = 'A', LDV .GE. MV.
+*> \endverbatim
+*>
+*> \param[in] EPS
+*> \verbatim
+*>          EPS is REAL
+*>          EPS = SLAMCH('Epsilon')
+*> \endverbatim
+*>
+*> \param[in] SFMIN
+*> \verbatim
+*>          SFMIN is REAL
+*>          SFMIN = SLAMCH('Safe Minimum')
+*> \endverbatim
+*>
+*> \param[in] TOL
+*> \verbatim
+*>          TOL is REAL
+*>          TOL is the threshold for Jacobi rotations. For a pair
+*>          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
+*>          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*> \endverbatim
+*>
+*> \param[in] NSWEEP
+*> \verbatim
+*>          NSWEEP is INTEGER
+*>          NSWEEP is the number of sweeps of Jacobi rotations to be
+*>          performed.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*>          WORK is REAL array, dimension (LWORK)
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*>          LWORK is INTEGER
+*>          LWORK is the dimension of WORK. LWORK .GE. M.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*>          INFO is INTEGER
+*>          = 0 : successful exit.
+*>          < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> \endverbatim
+*
+*  Authors:
+*  ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date December 2016
+*
+*> \ingroup realOTHERcomputational
+*
+*> \par Further Details:
+*  =====================
+*>
+*> SGSVJ0 is used just to enable SGESVJ to call a simplified version of
+*> itself to work on a submatrix of the original matrix.
+*>
+*> \par Contributors:
+*  ==================
+*>
+*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
+*>
+*> \par Bugs, Examples and Comments:
+*  =================================
+*>
+*> Please report all bugs and send interesting test examples and comments to
+*> drmac@math.hr. Thank you.
+*
+*  =====================================================================
       SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
-     &        SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
-*
-*  -- LAPACK routine (version 3.2)                                    --
-*
-*  -- Contributed by Zlatko Drmac of the University of Zagreb and     --
-*  -- Kresimir Veselic of the Fernuniversitaet Hagen                  --
-*  -- November 2008                                                   --
+     $                   SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 *
+*  -- LAPACK computational routine (version 3.7.0) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*     December 2016
 *
-* This routine is also part of SIGMA (version 1.23, October 23. 2008.)
-* SIGMA is a library of algorithms for highly accurate algorithms for
-* computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the
-* eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0.
-*
-*     Scalar Arguments
-*
-      IMPLICIT    NONE
-      INTEGER     INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
-      REAL        EPS, SFMIN, TOL
-      CHARACTER*1 JOBV
-*
-*     Array Arguments
-*
-      REAL        A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
-     &            WORK( LWORK )
+*     .. Scalar Arguments ..
+      INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
+      REAL               EPS, SFMIN, TOL
+      CHARACTER*1        JOBV
+*     ..
+*     .. Array Arguments ..
+      REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
+     $                   WORK( LWORK )
 *     ..
 *
-*  Purpose
-*  ~~~~~~~
-*  SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
-*  purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
-*  it does not check convergence (stopping criterion). Few tuning
-*  parameters (marked by [TP]) are available for the implementer.
-*
-*  Further details
-*  ~~~~~~~~~~~~~~~
-*  SGSVJ0 is used just to enable SGESVJ to call a simplified version of
-*  itself to work on a submatrix of the original matrix.
-*
-*  Contributors
-*  ~~~~~~~~~~~~
-*  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
-*
-*  Bugs, Examples and Comments
-*  ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-*  Please report all bugs and send interesting test examples and comments to
-*  drmac@math.hr. Thank you.
-*
-*  Arguments
-*  ~~~~~~~~~
-*
-*  JOBV    (input) CHARACTER*1
-*          Specifies whether the output from this procedure is used
-*          to compute the matrix V:
-*          = 'V': the product of the Jacobi rotations is accumulated
-*                 by postmulyiplying the N-by-N array V.
-*                (See the description of V.)
-*          = 'A': the product of the Jacobi rotations is accumulated
-*                 by postmulyiplying the MV-by-N array V.
-*                (See the descriptions of MV and V.)
-*          = 'N': the Jacobi rotations are not accumulated.
-*
-*  M       (input) INTEGER
-*          The number of rows of the input matrix A.  M >= 0.
-*
-*  N       (input) INTEGER
-*          The number of columns of the input matrix A.
-*          M >= N >= 0.
-*
-*  A       (input/output) REAL array, dimension (LDA,N)
-*          On entry, M-by-N matrix A, such that A*diag(D) represents
-*          the input matrix.
-*          On exit,
-*          A_onexit * D_onexit represents the input matrix A*diag(D)
-*          post-multiplied by a sequence of Jacobi rotations, where the
-*          rotation threshold and the total number of sweeps are given in
-*          TOL and NSWEEP, respectively.
-*          (See the descriptions of D, TOL and NSWEEP.)
-*
-*  LDA     (input) INTEGER
-*          The leading dimension of the array A.  LDA >= max(1,M).
-*
-*  D       (input/workspace/output) REAL array, dimension (N)
-*          The array D accumulates the scaling factors from the fast scaled
-*          Jacobi rotations.
-*          On entry, A*diag(D) represents the input matrix.
-*          On exit, A_onexit*diag(D_onexit) represents the input matrix
-*          post-multiplied by a sequence of Jacobi rotations, where the
-*          rotation threshold and the total number of sweeps are given in
-*          TOL and NSWEEP, respectively.
-*          (See the descriptions of A, TOL and NSWEEP.)
-*
-*  SVA     (input/workspace/output) REAL array, dimension (N)
-*          On entry, SVA contains the Euclidean norms of the columns of
-*          the matrix A*diag(D).
-*          On exit, SVA contains the Euclidean norms of the columns of
-*          the matrix onexit*diag(D_onexit).
-*
-*  MV      (input) INTEGER
-*          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
-*                           sequence of Jacobi rotations.
-*          If JOBV = 'N',   then MV is not referenced.
-*
-*  V       (input/output) REAL array, dimension (LDV,N)
-*          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
-*                           sequence of Jacobi rotations.
-*          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
-*                           sequence of Jacobi rotations.
-*          If JOBV = 'N',   then V is not referenced.
-*
-*  LDV     (input) INTEGER
-*          The leading dimension of the array V,  LDV >= 1.
-*          If JOBV = 'V', LDV .GE. N.
-*          If JOBV = 'A', LDV .GE. MV.
-*
-*  EPS     (input) INTEGER
-*          EPS = SLAMCH('Epsilon')
-*
-*  SFMIN   (input) INTEGER
-*          SFMIN = SLAMCH('Safe Minimum')
-*
-*  TOL     (input) REAL
-*          TOL is the threshold for Jacobi rotations. For a pair
-*          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
-*          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
-*
-*  NSWEEP  (input) INTEGER
-*          NSWEEP is the number of sweeps of Jacobi rotations to be
-*          performed.
-*
-*  WORK    (workspace) REAL array, dimension LWORK.
-*
-*  LWORK   (input) INTEGER
-*          LWORK is the dimension of WORK. LWORK .GE. M.
-*
-*  INFO    (output) INTEGER
-*          = 0 : successful exit.
-*          < 0 : if INFO = -i, then the i-th argument had an illegal value
-*
-*     Local Parameters
-      REAL        ZERO,         HALF,         ONE,         TWO
-      PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0, TWO = 2.0E0 )
-
-*     Local Scalars
-      REAL      AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG, BIGTHETA,
-     &          CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN,
-     &          ROOTTOL, SMALL, SN, T, TEMP1, THETA, THSIGN
-      INTEGER   BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1, ISWROT,
-     &          jbc, jgl, KBL, LKAHEAD, MVL, NBL, NOTROT, p, PSKIPPED,
-     &          q, ROWSKIP, SWBAND
-      LOGICAL   APPLV, ROTOK, RSVEC
-
-*     Local Arrays
-      REAL      FASTR(5)
-*
-*     Intrinsic Functions
-      INTRINSIC ABS, AMAX1, AMIN1, FLOAT, MIN0, SIGN, SQRT
-*
-*     External Functions
-      REAL      SDOT, SNRM2
-      INTEGER   ISAMAX
-      LOGICAL   LSAME
-      EXTERNAL  ISAMAX, LSAME, SDOT, SNRM2
+*  =====================================================================
 *
-*     External Subroutines
-      EXTERNAL  SAXPY, SCOPY, SLASCL, SLASSQ, SROTM, SSWAP
+*     .. Local Parameters ..
+      REAL               ZERO, HALF, ONE
+      PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
+*     ..
+*     .. Local Scalars ..
+      REAL               AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
+     $                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
+     $                   ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
+     $                   THSIGN
+      INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
+     $                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
+     $                   NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
+      LOGICAL            APPLV, ROTOK, RSVEC
+*     ..
+*     .. Local Arrays ..
+      REAL               FASTR( 5 )
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          ABS, MAX, FLOAT, MIN, SIGN, SQRT
+*     ..
+*     .. External Functions ..
+      REAL               SDOT, SNRM2
+      INTEGER            ISAMAX
+      LOGICAL            LSAME
+      EXTERNAL           ISAMAX, LSAME, SDOT, SNRM2
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           SAXPY, SCOPY, SLASCL, SLASSQ, SROTM, SSWAP
+*     ..
+*     .. Executable Statements ..
 *
-*     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~|
+*     Test the input parameters.
 *
-      APPLV = LSAME(JOBV,'A')
-      RSVEC = LSAME(JOBV,'V')
-      IF ( .NOT.( RSVEC .OR. APPLV .OR. LSAME(JOBV,'N'))) THEN
+      APPLV = LSAME( JOBV, 'A' )
+      RSVEC = LSAME( JOBV, 'V' )
+      IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
          INFO = -1
-      ELSE IF ( M .LT. 0 ) THEN
+      ELSE IF( M.LT.0 ) THEN
          INFO = -2
-      ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M )) THEN
+      ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
          INFO = -3
-      ELSE IF ( LDA .LT. M ) THEN
+      ELSE IF( LDA.LT.M ) THEN
          INFO = -5
-      ELSE IF ( MV .LT. 0 ) THEN
+      ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
          INFO = -8
-      ELSE IF ( LDV .LT. M ) THEN
+      ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
+     $         ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
          INFO = -10
-      ELSE IF ( TOL .LE. EPS ) THEN
+      ELSE IF( TOL.LE.EPS ) THEN
          INFO = -13
-      ELSE IF ( NSWEEP .LT. 0 ) THEN
+      ELSE IF( NSWEEP.LT.0 ) THEN
          INFO = -14
-      ELSE IF ( LWORK .LT. M ) THEN
+      ELSE IF( LWORK.LT.M ) THEN
          INFO = -16
       ELSE
          INFO = 0
       END IF
 *
 *     #:(
-      IF ( INFO .NE. 0 ) THEN
+      IF( INFO.NE.0 ) THEN
          CALL XERBLA( 'SGSVJ0', -INFO )
          RETURN
       END IF
 *
-      IF ( RSVEC ) THEN
+      IF( RSVEC ) THEN
          MVL = N
-      ELSE IF ( APPLV ) THEN
+      ELSE IF( APPLV ) THEN
          MVL = MV
       END IF
       RSVEC = RSVEC .OR. APPLV
 
-      ROOTEPS     = SQRT(EPS)
-      ROOTSFMIN   = SQRT(SFMIN)
-      SMALL       = SFMIN  / EPS
-      BIG         = ONE   / SFMIN
-      ROOTBIG     = ONE  / ROOTSFMIN
-      BIGTHETA    = ONE  / ROOTEPS
-      ROOTTOL     = SQRT(TOL)
-*
+      ROOTEPS = SQRT( EPS )
+      ROOTSFMIN = SQRT( SFMIN )
+      SMALL = SFMIN / EPS
+      BIG = ONE / SFMIN
+      ROOTBIG = ONE / ROOTSFMIN
+      BIGTHETA = ONE / ROOTEPS
+      ROOTTOL = SQRT( TOL )
 *
-*     -#- Row-cyclic Jacobi SVD algorithm with column pivoting -#-
+*     .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
 *
-      EMPTSW   = ( N * ( N - 1 ) ) / 2
-      NOTROT   = 0
-      FASTR(1) = ZERO
+      EMPTSW = ( N*( N-1 ) ) / 2
+      NOTROT = 0
+      FASTR( 1 ) = ZERO
 *
-*     -#- Row-cyclic pivot strategy with de Rijk's pivoting -#-
+*     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
 *
 
       SWBAND = 0
 *     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure
 *     ......
 
-      KBL = MIN0( 8, N )
+      KBL = MIN( 8, N )
 *[TP] KBL is a tuning parameter that defines the tile size in the
 *     tiling of the p-q loops of pivot pairs. In general, an optimal
 *     value of KBL depends on the matrix dimensions and on the
 *     parameters of the computer's memory.
 *
       NBL = N / KBL
-      IF ( ( NBL * KBL ) .NE. N ) NBL = NBL + 1
+      IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
 
       BLSKIP = ( KBL**2 ) + 1
 *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
 
-      ROWSKIP = MIN0( 5, KBL )
+      ROWSKIP = MIN( 5, KBL )
 *[TP] ROWSKIP is a tuning parameter.
 
       LKAHEAD = 1
       DO 1993 i = 1, NSWEEP
 *     .. go go go ...
 *
-      MXAAPQ = ZERO
-      MXSINJ = ZERO
-      ISWROT = 0
+         MXAAPQ = ZERO
+         MXSINJ = ZERO
+         ISWROT = 0
 *
-      NOTROT = 0
-      PSKIPPED = 0
+         NOTROT = 0
+         PSKIPPED = 0
 *
-      DO 2000 ibr = 1, NBL
+         DO 2000 ibr = 1, NBL
 
-      igl = ( ibr - 1 ) * KBL + 1
+            igl = ( ibr-1 )*KBL + 1
 *
-      DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL - ibr )
+            DO 1002 ir1 = 0, MIN( LKAHEAD, NBL-ibr )
 *
-      igl = igl + ir1 * KBL
+               igl = igl + ir1*KBL
 *
-      DO 2001 p = igl, MIN0( igl + KBL - 1, N - 1)
+               DO 2001 p = igl, MIN( igl+KBL-1, N-1 )
 
 *     .. de Rijk's pivoting
-      q   = ISAMAX( N-p+1, SVA(p), 1 ) + p - 1
-      IF ( p .NE. q ) THEN
-         CALL SSWAP( M, A(1,p), 1, A(1,q), 1 )
-         IF ( RSVEC ) CALL SSWAP( MVL, V(1,p), 1, V(1,q), 1 )
-         TEMP1   = SVA(p)
-         SVA(p)  = SVA(q)
-         SVA(q)  = TEMP1
-         TEMP1   = D(p)
-         D(p) = D(q)
-         D(q) = TEMP1
-      END IF
-*
-      IF ( ir1 .EQ. 0 ) THEN
+                  q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+                  IF( p.NE.q ) THEN
+                     CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+                     IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1,
+     $                                      V( 1, q ), 1 )
+                     TEMP1 = SVA( p )
+                     SVA( p ) = SVA( q )
+                     SVA( q ) = TEMP1
+                     TEMP1 = D( p )
+                     D( p ) = D( q )
+                     D( q ) = TEMP1
+                  END IF
+*
+                  IF( ir1.EQ.0 ) THEN
 *
 *        Column norms are periodically updated by explicit
 *        norm computation.
 *        If properly implemented SNRM2 is available, the IF-THEN-ELSE
 *        below should read "AAPP = SNRM2( M, A(1,p), 1 ) * D(p)".
 *
-         IF ((SVA(p) .LT. ROOTBIG) .AND. (SVA(p) .GT. ROOTSFMIN)) THEN
-            SVA(p) = SNRM2( M, A(1,p), 1 ) * D(p)
-         ELSE
-            TEMP1 = ZERO
-            AAPP  = ZERO
-            CALL SLASSQ( M, A(1,p), 1, TEMP1, AAPP )
-            SVA(p) = TEMP1 * SQRT(AAPP) * D(p)
-         END IF
-         AAPP = SVA(p)
-      ELSE
-         AAPP = SVA(p)
-      END IF
+                     IF( ( SVA( p ).LT.ROOTBIG ) .AND.
+     $                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
+                        SVA( p ) = SNRM2( M, A( 1, p ), 1 )*D( p )
+                     ELSE
+                        TEMP1 = ZERO
+                        AAPP = ONE
+                        CALL SLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
+                        SVA( p ) = TEMP1*SQRT( AAPP )*D( p )
+                     END IF
+                     AAPP = SVA( p )
+                  ELSE
+                     AAPP = SVA( p )
+                  END IF
 
 *
-      IF ( AAPP .GT. ZERO ) THEN
+                  IF( AAPP.GT.ZERO ) THEN
 *
-      PSKIPPED = 0
+                     PSKIPPED = 0
 *
-      DO 2002 q = p + 1, MIN0( igl + KBL - 1, N )
+                     DO 2002 q = p + 1, MIN( igl+KBL-1, N )
 *
-      AAQQ = SVA(q)
+                        AAQQ = SVA( q )
 
-      IF ( AAQQ .GT. ZERO ) THEN
-*
-         AAPP0 = AAPP
-         IF ( AAQQ .GE. ONE ) THEN
-            ROTOK  = ( SMALL*AAPP ) .LE. AAQQ
-            IF ( AAPP .LT. ( BIG / AAQQ ) ) THEN
-               AAPQ = ( SDOT(M, A(1,p), 1, A(1,q), 1 ) *
-     &                  D(p) * D(q) / AAQQ ) / AAPP
-            ELSE
-               CALL SCOPY( M, A(1,p), 1, WORK, 1 )
-               CALL SLASCL( 'G', 0, 0, AAPP, D(p), M,
-     &              1, WORK, LDA, IERR )
-               AAPQ = SDOT( M, WORK,1, A(1,q),1 )*D(q) / AAQQ
-            END IF
-         ELSE
-            ROTOK  = AAPP .LE. ( AAQQ / SMALL )
-            IF ( AAPP .GT.  ( SMALL / AAQQ ) ) THEN
-               AAPQ = ( SDOT( M, A(1,p), 1, A(1,q), 1 ) *
-     &               D(p) * D(q) / AAQQ ) / AAPP
-            ELSE
-               CALL SCOPY( M, A(1,q), 1, WORK, 1 )
-               CALL SLASCL( 'G', 0, 0, AAQQ, D(q), M,
-     &              1, WORK, LDA, IERR )
-               AAPQ = SDOT( M, WORK,1, A(1,p),1 )*D(p) / AAPP
-            END IF
-         END IF
+                        IF( AAQQ.GT.ZERO ) THEN
+*
+                           AAPP0 = AAPP
+                           IF( AAQQ.GE.ONE ) THEN
+                              ROTOK = ( SMALL*AAPP ).LE.AAQQ
+                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
+     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
+     $                                  / AAPP
+                              ELSE
+                                 CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
+                                 CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
+     $                                        M, 1, WORK, LDA, IERR )
+                                 AAPQ = SDOT( M, WORK, 1, A( 1, q ),
+     $                                  1 )*D( q ) / AAQQ
+                              END IF
+                           ELSE
+                              ROTOK = AAPP.LE.( AAQQ / SMALL )
+                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
+     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
+     $                                  / AAPP
+                              ELSE
+                                 CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
+                                 CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
+     $                                        M, 1, WORK, LDA, IERR )
+                                 AAPQ = SDOT( M, WORK, 1, A( 1, p ),
+     $                                  1 )*D( p ) / AAPP
+                              END IF
+                           END IF
 *
-         MXAAPQ = AMAX1( MXAAPQ, ABS(AAPQ) )
+                           MXAAPQ = MAX( MXAAPQ, ABS( AAPQ ) )
 *
 *        TO rotate or NOT to rotate, THAT is the question ...
 *
-         IF ( ABS( AAPQ ) .GT. TOL ) THEN
+                           IF( ABS( AAPQ ).GT.TOL ) THEN
 *
 *           .. rotate
 *           ROTATED = ROTATED + ONE
 *
-            IF ( ir1 .EQ. 0 ) THEN
-               NOTROT   = 0
-               PSKIPPED = 0
-               ISWROT   = ISWROT  + 1
-            END IF
-*
-            IF ( ROTOK ) THEN
-*
-               AQOAP = AAQQ / AAPP
-               APOAQ = AAPP / AAQQ
-               THETA = - HALF * ABS( AQOAP - APOAQ ) / AAPQ
-*
-               IF ( ABS( THETA ) .GT. BIGTHETA ) THEN
-*
-                  T        = HALF / THETA
-                  FASTR(3) =   T * D(p) / D(q)
-                  FASTR(4) = - T * D(q) / D(p)
-                  CALL SROTM( M,   A(1,p), 1, A(1,q), 1, FASTR )
-                  IF ( RSVEC )
-     &            CALL SROTM( MVL, V(1,p), 1, V(1,q), 1, FASTR )
-                  SVA(q) = AAQQ*SQRT( AMAX1(ZERO,ONE + T*APOAQ*AAPQ) )
-                  AAPP   = AAPP*SQRT( ONE - T*AQOAP*AAPQ )
-                  MXSINJ = AMAX1( MXSINJ, ABS(T) )
-*
-               ELSE
+                              IF( ir1.EQ.0 ) THEN
+                                 NOTROT = 0
+                                 PSKIPPED = 0
+                                 ISWROT = ISWROT + 1
+                              END IF
+*
+                              IF( ROTOK ) THEN
+*
+                                 AQOAP = AAQQ / AAPP
+                                 APOAQ = AAPP / AAQQ
+                                 THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
+*
+                                 IF( ABS( THETA ).GT.BIGTHETA ) THEN
+*
+                                    T = HALF / THETA
+                                    FASTR( 3 ) = T*D( p ) / D( q )
+                                    FASTR( 4 ) = -T*D( q ) / D( p )
+                                    CALL SROTM( M, A( 1, p ), 1,
+     $                                          A( 1, q ), 1, FASTR )
+                                    IF( RSVEC )CALL SROTM( MVL,
+     $                                              V( 1, p ), 1,
+     $                                              V( 1, q ), 1,
+     $                                              FASTR )
+                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                         ONE+T*APOAQ*AAPQ ) )
+                                    AAPP = AAPP*SQRT( MAX( ZERO,
+     $                                         ONE-T*AQOAP*AAPQ ) )
+                                    MXSINJ = MAX( MXSINJ, ABS( T ) )
+*
+                                 ELSE
 *
 *                 .. choose correct signum for THETA and rotate
 *
-                  THSIGN =  - SIGN(ONE,AAPQ)
-                  T  = ONE / ( THETA + THSIGN*SQRT(ONE+THETA*THETA) )
-                  CS = SQRT( ONE / ( ONE + T*T ) )
-                  SN = T * CS
-*
-                  MXSINJ = AMAX1( MXSINJ, ABS(SN) )
-                  SVA(q) = AAQQ*SQRT( AMAX1(ZERO, ONE+T*APOAQ*AAPQ) )
-                  AAPP   = AAPP*SQRT( AMAX1(ZERO, ONE-T*AQOAP*AAPQ) )
-*
-                  APOAQ = D(p) / D(q)
-                  AQOAP = D(q) / D(p)
-                  IF ( D(p) .GE. ONE ) THEN
-                     IF ( D(q) .GE.  ONE ) THEN
-                        FASTR(3) =   T * APOAQ
-                        FASTR(4) = - T * AQOAP
-                        D(p)  = D(p) * CS
-                        D(q)  = D(q) * CS
-                        CALL SROTM( M,   A(1,p),1, A(1,q),1, FASTR )
-                        IF ( RSVEC )
-     &                  CALL SROTM( MVL, V(1,p),1, V(1,q),1, FASTR )
-                     ELSE
-                        CALL SAXPY( M,    -T*AQOAP, A(1,q),1, A(1,p),1 )
-                        CALL SAXPY( M, CS*SN*APOAQ, A(1,p),1, A(1,q),1 )
-                        D(p) = D(p) * CS
-                        D(q) = D(q) / CS
-                        IF ( RSVEC ) THEN
-                        CALL SAXPY(MVL,   -T*AQOAP, V(1,q),1,V(1,p),1)
-                        CALL SAXPY(MVL,CS*SN*APOAQ, V(1,p),1,V(1,q),1)
-                        END IF
-                     END IF
-                  ELSE
-                     IF ( D(q) .GE. ONE ) THEN
-                        CALL SAXPY( M,     T*APOAQ, A(1,p),1, A(1,q),1 )
-                        CALL SAXPY( M,-CS*SN*AQOAP, A(1,q),1, A(1,p),1 )
-                        D(p) = D(p) / CS
-                        D(q) = D(q) * CS
-                        IF ( RSVEC ) THEN
-                        CALL SAXPY(MVL, T*APOAQ,    V(1,p),1,V(1,q),1)
-                        CALL SAXPY(MVL,-CS*SN*AQOAP,V(1,q),1,V(1,p),1)
-                        END IF
-                     ELSE
-                        IF ( D(p) .GE. D(q) ) THEN
-                           CALL SAXPY( M,-T*AQOAP,   A(1,q),1,A(1,p),1 )
-                           CALL SAXPY( M,CS*SN*APOAQ,A(1,p),1,A(1,q),1 )
-                           D(p) = D(p) * CS
-                           D(q) = D(q) / CS
-                           IF ( RSVEC ) THEN
-                           CALL SAXPY(MVL, -T*AQOAP,  V(1,q),1,V(1,p),1)
-                           CALL SAXPY(MVL,CS*SN*APOAQ,V(1,p),1,V(1,q),1)
-                           END IF
-                        ELSE
-                           CALL SAXPY( M, T*APOAQ,    A(1,p),1,A(1,q),1)
-                           CALL SAXPY( M,-CS*SN*AQOAP,A(1,q),1,A(1,p),1)
-                           D(p) = D(p) / CS
-                           D(q) = D(q) * CS
-                          IF ( RSVEC ) THEN
-                          CALL SAXPY(MVL, T*APOAQ,    V(1,p),1,V(1,q),1)
-                          CALL SAXPY(MVL,-CS*SN*AQOAP,V(1,q),1,V(1,p),1)
-                          END IF
-                        END IF
-                     END IF
-                  ENDIF
-               END IF
-*
-            ELSE
+                                    THSIGN = -SIGN( ONE, AAPQ )
+                                    T = ONE / ( THETA+THSIGN*
+     $                                  SQRT( ONE+THETA*THETA ) )
+                                    CS = SQRT( ONE / ( ONE+T*T ) )
+                                    SN = T*CS
+*
+                                    MXSINJ = MAX( MXSINJ, ABS( SN ) )
+                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                         ONE+T*APOAQ*AAPQ ) )
+                                    AAPP = AAPP*SQRT( MAX( ZERO,
+     $                                     ONE-T*AQOAP*AAPQ ) )
+*
+                                    APOAQ = D( p ) / D( q )
+                                    AQOAP = D( q ) / D( p )
+                                    IF( D( p ).GE.ONE ) THEN
+                                       IF( D( q ).GE.ONE ) THEN
+                                          FASTR( 3 ) = T*APOAQ
+                                          FASTR( 4 ) = -T*AQOAP
+                                          D( p ) = D( p )*CS
+                                          D( q ) = D( q )*CS
+                                          CALL SROTM( M, A( 1, p ), 1,
+     $                                                A( 1, q ), 1,
+     $                                                FASTR )
+                                          IF( RSVEC )CALL SROTM( MVL,
+     $                                        V( 1, p ), 1, V( 1, q ),
+     $                                        1, FASTR )
+                                       ELSE
+                                          CALL SAXPY( M, -T*AQOAP,
+     $                                                A( 1, q ), 1,
+     $                                                A( 1, p ), 1 )
+                                          CALL SAXPY( M, CS*SN*APOAQ,
+     $                                                A( 1, p ), 1,
+     $                                                A( 1, q ), 1 )
+                                          D( p ) = D( p )*CS
+                                          D( q ) = D( q ) / CS
+                                          IF( RSVEC ) THEN
+                                             CALL SAXPY( MVL, -T*AQOAP,
+     $                                                   V( 1, q ), 1,
+     $                                                   V( 1, p ), 1 )
+                                             CALL SAXPY( MVL,
+     $                                                   CS*SN*APOAQ,
+     $                                                   V( 1, p ), 1,
+     $                                                   V( 1, q ), 1 )
+                                          END IF
+                                       END IF
+                                    ELSE
+                                       IF( D( q ).GE.ONE ) THEN
+                                          CALL SAXPY( M, T*APOAQ,
+     $                                                A( 1, p ), 1,
+     $                                                A( 1, q ), 1 )
+                                          CALL SAXPY( M, -CS*SN*AQOAP,
+     $                                                A( 1, q ), 1,
+     $                                                A( 1, p ), 1 )
+                                          D( p ) = D( p ) / CS
+                                          D( q ) = D( q )*CS
+                                          IF( RSVEC ) THEN
+                                             CALL SAXPY( MVL, T*APOAQ,
+     $                                                   V( 1, p ), 1,
+     $                                                   V( 1, q ), 1 )
+                                             CALL SAXPY( MVL,
+     $                                                   -CS*SN*AQOAP,
+     $                                                   V( 1, q ), 1,
+     $                                                   V( 1, p ), 1 )
+                                          END IF
+                                       ELSE
+                                          IF( D( p ).GE.D( q ) ) THEN
+                                             CALL SAXPY( M, -T*AQOAP,
+     $                                                   A( 1, q ), 1,
+     $                                                   A( 1, p ), 1 )
+                                             CALL SAXPY( M, CS*SN*APOAQ,
+     $                                                   A( 1, p ), 1,
+     $                                                   A( 1, q ), 1 )
+                                             D( p ) = D( p )*CS
+                                             D( q ) = D( q ) / CS
+                                             IF( RSVEC ) THEN
+                                                CALL SAXPY( MVL,
+     $                                               -T*AQOAP,
+     $                                               V( 1, q ), 1,
+     $                                               V( 1, p ), 1 )
+                                                CALL SAXPY( MVL,
+     $                                               CS*SN*APOAQ,
+     $                                               V( 1, p ), 1,
+     $                                               V( 1, q ), 1 )
+                                             END IF
+                                          ELSE
+                                             CALL SAXPY( M, T*APOAQ,
+     $                                                   A( 1, p ), 1,
+     $                                                   A( 1, q ), 1 )
+                                             CALL SAXPY( M,
+     $                                                   -CS*SN*AQOAP,
+     $                                                   A( 1, q ), 1,
+     $                                                   A( 1, p ), 1 )
+                                             D( p ) = D( p ) / CS
+                                             D( q ) = D( q )*CS
+                                             IF( RSVEC ) THEN
+                                                CALL SAXPY( MVL,
+     $                                               T*APOAQ, V( 1, p ),
+     $                                               1, V( 1, q ), 1 )
+                                                CALL SAXPY( MVL,
+     $                                               -CS*SN*AQOAP,
+     $                                               V( 1, q ), 1,
+     $                                               V( 1, p ), 1 )
+                                             END IF
+                                          END IF
+                                       END IF
+                                    END IF
+                                 END IF
+*
+                              ELSE
 *              .. have to use modified Gram-Schmidt like transformation
-               CALL SCOPY( M, A(1,p), 1, WORK, 1 )
-               CALL SLASCL( 'G',0,0,AAPP,ONE,M,1,WORK,LDA,IERR )
-               CALL SLASCL( 'G',0,0,AAQQ,ONE,M,1,   A(1,q),LDA,IERR )
-               TEMP1 = -AAPQ * D(p) / D(q)
-               CALL SAXPY ( M, TEMP1, WORK, 1, A(1,q), 1 )
-               CALL SLASCL( 'G',0,0,ONE,AAQQ,M,1,   A(1,q),LDA,IERR )
-               SVA(q) = AAQQ*SQRT( AMAX1( ZERO, ONE - AAPQ*AAPQ ) )
-               MXSINJ = AMAX1( MXSINJ, SFMIN )
-            END IF
+                                 CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
+                                 CALL SLASCL( 'G', 0, 0, AAPP, ONE, M,
+     $                                        1, WORK, LDA, IERR )
+                                 CALL SLASCL( 'G', 0, 0, AAQQ, ONE, M,
+     $                                        1, A( 1, q ), LDA, IERR )
+                                 TEMP1 = -AAPQ*D( p ) / D( q )
+                                 CALL SAXPY( M, TEMP1, WORK, 1,
+     $                                       A( 1, q ), 1 )
+                                 CALL SLASCL( 'G', 0, 0, ONE, AAQQ, M,
+     $                                        1, A( 1, q ), LDA, IERR )
+                                 SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                      ONE-AAPQ*AAPQ ) )
+                                 MXSINJ = MAX( MXSINJ, SFMIN )
+                              END IF
 *           END IF ROTOK THEN ... ELSE
 *
 *           In the case of cancellation in updating SVA(q), SVA(p)
 *           recompute SVA(q), SVA(p).
-            IF ( (SVA(q) / AAQQ )**2 .LE. ROOTEPS  ) THEN
-               IF ((AAQQ .LT. ROOTBIG).AND.(AAQQ .GT. ROOTSFMIN)) THEN
-                  SVA(q) = SNRM2( M, A(1,q), 1 ) * D(q)
-               ELSE
-                  T    = ZERO
-                  AAQQ = ZERO
-                  CALL SLASSQ( M, A(1,q), 1, T, AAQQ )
-                  SVA(q) = T * SQRT(AAQQ) * D(q)
-               END IF
-            END IF
-            IF ( ( AAPP / AAPP0) .LE. ROOTEPS  ) THEN
-               IF ((AAPP .LT. ROOTBIG).AND.(AAPP .GT. ROOTSFMIN)) THEN
-                  AAPP = SNRM2( M, A(1,p), 1 ) * D(p)
-               ELSE
-                  T    = ZERO
-                  AAPP = ZERO
-                  CALL SLASSQ( M, A(1,p), 1, T, AAPP )
-                  AAPP = T * SQRT(AAPP) * D(p)
-               END IF
-               SVA(p) = AAPP
-            END IF
-*
-         ELSE
+                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+     $                            THEN
+                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
+     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
+                                    SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
+     $                                         D( q )
+                                 ELSE
+                                    T = ZERO
+                                    AAQQ = ONE
+                                    CALL SLASSQ( M, A( 1, q ), 1, T,
+     $                                           AAQQ )
+                                    SVA( q ) = T*SQRT( AAQQ )*D( q )
+                                 END IF
+                              END IF
+                              IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
+                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
+     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
+                                    AAPP = SNRM2( M, A( 1, p ), 1 )*
+     $                                     D( p )
+                                 ELSE
+                                    T = ZERO
+                                    AAPP = ONE
+                                    CALL SLASSQ( M, A( 1, p ), 1, T,
+     $                                           AAPP )
+                                    AAPP = T*SQRT( AAPP )*D( p )
+                                 END IF
+                                 SVA( p ) = AAPP
+                              END IF
+*
+                           ELSE
 *        A(:,p) and A(:,q) already numerically orthogonal
-            IF ( ir1 .EQ. 0 ) NOTROT   = NOTROT + 1
-            PSKIPPED = PSKIPPED + 1
-         END IF
-      ELSE
+                              IF( ir1.EQ.0 )NOTROT = NOTROT + 1
+                              PSKIPPED = PSKIPPED + 1
+                           END IF
+                        ELSE
 *        A(:,q) is zero column
-         IF ( ir1. EQ. 0 ) NOTROT = NOTROT + 1
-         PSKIPPED = PSKIPPED + 1
-      END IF
+                           IF( ir1.EQ.0 )NOTROT = NOTROT + 1
+                           PSKIPPED = PSKIPPED + 1
+                        END IF
 *
-      IF ( ( i .LE. SWBAND ) .AND. ( PSKIPPED .GT. ROWSKIP ) ) THEN
-         IF ( ir1 .EQ. 0 ) AAPP = - AAPP
-         NOTROT = 0
-         GO TO 2103
-      END IF
+                        IF( ( i.LE.SWBAND ) .AND.
+     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
+                           IF( ir1.EQ.0 )AAPP = -AAPP
+                           NOTROT = 0
+                           GO TO 2103
+                        END IF
 *
- 2002 CONTINUE
+ 2002                CONTINUE
 *     END q-LOOP
 *
- 2103 CONTINUE
+ 2103                CONTINUE
 *     bailed out of q-loop
 
-      SVA(p) = AAPP
+                     SVA( p ) = AAPP
 
-      ELSE
-         SVA(p) = AAPP
-         IF ( ( ir1 .EQ. 0 ) .AND. (AAPP .EQ. ZERO) )
-     &        NOTROT=NOTROT+MIN0(igl+KBL-1,N)-p
-      END IF
+                  ELSE
+                     SVA( p ) = AAPP
+                     IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
+     $                   NOTROT = NOTROT + MIN( igl+KBL-1, N ) - p
+                  END IF
 *
- 2001 CONTINUE
+ 2001          CONTINUE
 *     end of the p-loop
 *     end of doing the block ( ibr, ibr )
- 1002 CONTINUE
+ 1002       CONTINUE
 *     end of ir1-loop
 *
 *........................................................
 * ... go to the off diagonal blocks
 *
-      igl = ( ibr - 1 ) * KBL + 1
+            igl = ( ibr-1 )*KBL + 1
 *
-      DO 2010 jbc = ibr + 1, NBL
+            DO 2010 jbc = ibr + 1, NBL
 *
-         jgl = ( jbc - 1 ) * KBL + 1
+               jgl = ( jbc-1 )*KBL + 1
 *
 *        doing the block at ( ibr, jbc )
 *
-         IJBLSK = 0
-         DO 2100 p = igl, MIN0( igl + KBL - 1, N )
-*
-         AAPP = SVA(p)
-*
-         IF ( AAPP .GT. ZERO ) THEN
-*
-         PSKIPPED = 0
-*
-         DO 2200 q = jgl, MIN0( jgl + KBL - 1, N )
-*
-         AAQQ = SVA(q)
-*
-         IF ( AAQQ .GT. ZERO ) THEN
-            AAPP0 = AAPP
-*
-*     -#- M x 2 Jacobi SVD -#-
-*
-*        -#- Safe Gram matrix computation -#-
-*
-         IF ( AAQQ .GE. ONE ) THEN
-            IF ( AAPP .GE. AAQQ ) THEN
-               ROTOK = ( SMALL*AAPP ) .LE. AAQQ
-            ELSE
-               ROTOK = ( SMALL*AAQQ ) .LE. AAPP
-            END IF
-            IF ( AAPP .LT. ( BIG / AAQQ ) ) THEN
-               AAPQ = ( SDOT(M, A(1,p), 1, A(1,q), 1 ) *
-     &                  D(p) * D(q) / AAQQ ) / AAPP
-            ELSE
-               CALL SCOPY( M, A(1,p), 1, WORK, 1 )
-               CALL SLASCL( 'G', 0, 0, AAPP, D(p), M,
-     &              1, WORK, LDA, IERR )
-               AAPQ = SDOT( M, WORK, 1, A(1,q), 1 ) *
-     &                D(q) / AAQQ
-            END IF
-         ELSE
-            IF ( AAPP .GE. AAQQ ) THEN
-               ROTOK = AAPP .LE. ( AAQQ / SMALL )
-            ELSE
-               ROTOK = AAQQ .LE. ( AAPP / SMALL )
-            END IF
-            IF ( AAPP .GT.  ( SMALL / AAQQ ) ) THEN
-               AAPQ = ( SDOT( M, A(1,p), 1, A(1,q), 1 ) *
-     &               D(p) * D(q) / AAQQ ) / AAPP
-            ELSE
-               CALL SCOPY( M, A(1,q), 1, WORK, 1 )
-               CALL SLASCL( 'G', 0, 0, AAQQ, D(q), M, 1,
-     &              WORK, LDA, IERR )
-               AAPQ = SDOT(M,WORK,1,A(1,p),1) * D(p) / AAPP
-            END IF
-         END IF
+               IJBLSK = 0
+               DO 2100 p = igl, MIN( igl+KBL-1, N )
+*
+                  AAPP = SVA( p )
+*
+                  IF( AAPP.GT.ZERO ) THEN
+*
+                     PSKIPPED = 0
+*
+                     DO 2200 q = jgl, MIN( jgl+KBL-1, N )
+*
+                        AAQQ = SVA( q )
+*
+                        IF( AAQQ.GT.ZERO ) THEN
+                           AAPP0 = AAPP
+*
+*     .. M x 2 Jacobi SVD ..
+*
+*        .. Safe Gram matrix computation ..
+*
+                           IF( AAQQ.GE.ONE ) THEN
+                              IF( AAPP.GE.AAQQ ) THEN
+                                 ROTOK = ( SMALL*AAPP ).LE.AAQQ
+                              ELSE
+                                 ROTOK = ( SMALL*AAQQ ).LE.AAPP
+                              END IF
+                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
+     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
+     $                                  / AAPP
+                              ELSE
+                                 CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
+                                 CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
+     $                                        M, 1, WORK, LDA, IERR )
+                                 AAPQ = SDOT( M, WORK, 1, A( 1, q ),
+     $                                  1 )*D( q ) / AAQQ
+                              END IF
+                           ELSE
+                              IF( AAPP.GE.AAQQ ) THEN
+                                 ROTOK = AAPP.LE.( AAQQ / SMALL )
+                              ELSE
+                                 ROTOK = AAQQ.LE.( AAPP / SMALL )
+                              END IF
+                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
+     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
+     $                                  / AAPP
+                              ELSE
+                                 CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
+                                 CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
+     $                                        M, 1, WORK, LDA, IERR )
+                                 AAPQ = SDOT( M, WORK, 1, A( 1, p ),
+     $                                  1 )*D( p ) / AAPP
+                              END IF
+                           END IF
 *
-         MXAAPQ = AMAX1( MXAAPQ, ABS(AAPQ) )
+                           MXAAPQ = MAX( MXAAPQ, ABS( AAPQ ) )
 *
 *        TO rotate or NOT to rotate, THAT is the question ...
 *
-         IF ( ABS( AAPQ ) .GT. TOL ) THEN
-            NOTROT   = 0
+                           IF( ABS( AAPQ ).GT.TOL ) THEN
+                              NOTROT = 0
 *           ROTATED  = ROTATED + 1
-            PSKIPPED = 0
-            ISWROT   = ISWROT  + 1
-*
-            IF ( ROTOK ) THEN
-*
-               AQOAP = AAQQ / AAPP
-               APOAQ = AAPP / AAQQ
-               THETA = - HALF * ABS( AQOAP - APOAQ ) / AAPQ
-               IF ( AAQQ .GT. AAPP0 ) THETA = - THETA
-*
-               IF ( ABS( THETA ) .GT. BIGTHETA ) THEN
-                  T = HALF / THETA
-                  FASTR(3) =  T * D(p) / D(q)
-                  FASTR(4) = -T * D(q) / D(p)
-                  CALL SROTM( M,   A(1,p), 1, A(1,q), 1, FASTR )
-                  IF ( RSVEC )
-     &            CALL SROTM( MVL, V(1,p), 1, V(1,q), 1, FASTR )
-                  SVA(q) = AAQQ*SQRT( AMAX1(ZERO,ONE + T*APOAQ*AAPQ) )
-                  AAPP   = AAPP*SQRT( AMAX1(ZERO,ONE - T*AQOAP*AAPQ) )
-                  MXSINJ = AMAX1( MXSINJ, ABS(T) )
-               ELSE
+                              PSKIPPED = 0
+                              ISWROT = ISWROT + 1
+*
+                              IF( ROTOK ) THEN
+*
+                                 AQOAP = AAQQ / AAPP
+                                 APOAQ = AAPP / AAQQ
+                                 THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
+                                 IF( AAQQ.GT.AAPP0 )THETA = -THETA
+*
+                                 IF( ABS( THETA ).GT.BIGTHETA ) THEN
+                                    T = HALF / THETA
+                                    FASTR( 3 ) = T*D( p ) / D( q )
+                                    FASTR( 4 ) = -T*D( q ) / D( p )
+                                    CALL SROTM( M, A( 1, p ), 1,
+     $                                          A( 1, q ), 1, FASTR )
+                                    IF( RSVEC )CALL SROTM( MVL,
+     $                                              V( 1, p ), 1,
+     $                                              V( 1, q ), 1,
+     $                                              FASTR )
+                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                         ONE+T*APOAQ*AAPQ ) )
+                                    AAPP = AAPP*SQRT( MAX( ZERO,
+     $                                     ONE-T*AQOAP*AAPQ ) )
+                                    MXSINJ = MAX( MXSINJ, ABS( T ) )
+                                 ELSE
 *
 *                 .. choose correct signum for THETA and rotate
 *
-                  THSIGN = - SIGN(ONE,AAPQ)
-                  IF ( AAQQ .GT. AAPP0 ) THSIGN = - THSIGN
-                  T  = ONE / ( THETA + THSIGN*SQRT(ONE+THETA*THETA) )
-                  CS = SQRT( ONE / ( ONE + T*T ) )
-                  SN = T * CS
-                  MXSINJ = AMAX1( MXSINJ, ABS(SN) )
-                  SVA(q) = AAQQ*SQRT( AMAX1(ZERO, ONE+T*APOAQ*AAPQ) )
-                  AAPP   = AAPP*SQRT( ONE - T*AQOAP*AAPQ)
-*
-                  APOAQ = D(p) / D(q)
-                  AQOAP = D(q) / D(p)
-                  IF ( D(p) .GE. ONE ) THEN
-*
-                     IF ( D(q) .GE.  ONE ) THEN
-                        FASTR(3) =   T * APOAQ
-                        FASTR(4) = - T * AQOAP
-                        D(p)  = D(p) * CS
-                        D(q)  = D(q) * CS
-                        CALL SROTM( M,   A(1,p),1, A(1,q),1, FASTR )
-                        IF ( RSVEC )
-     &                  CALL SROTM( MVL, V(1,p),1, V(1,q),1, FASTR )
-                     ELSE
-                        CALL SAXPY( M,    -T*AQOAP, A(1,q),1, A(1,p),1 )
-                        CALL SAXPY( M, CS*SN*APOAQ, A(1,p),1, A(1,q),1 )
-                        IF ( RSVEC ) THEN
-                        CALL SAXPY( MVL, -T*AQOAP,  V(1,q),1, V(1,p),1 )
-                        CALL SAXPY( MVL,CS*SN*APOAQ,V(1,p),1, V(1,q),1 )
-                        END IF
-                        D(p) = D(p) * CS
-                        D(q) = D(q) / CS
-                     END IF
-                  ELSE
-                     IF ( D(q) .GE. ONE ) THEN
-                        CALL SAXPY( M,     T*APOAQ, A(1,p),1, A(1,q),1 )
-                        CALL SAXPY( M,-CS*SN*AQOAP, A(1,q),1, A(1,p),1 )
-                        IF ( RSVEC ) THEN
-                        CALL SAXPY(MVL,T*APOAQ,     V(1,p),1, V(1,q),1 )
-                        CALL SAXPY(MVL,-CS*SN*AQOAP,V(1,q),1, V(1,p),1 )
-                        END IF
-                        D(p) = D(p) / CS
-                        D(q) = D(q) * CS
-                     ELSE
-                        IF ( D(p) .GE. D(q) ) THEN
-                           CALL SAXPY( M,-T*AQOAP,   A(1,q),1,A(1,p),1 )
-                           CALL SAXPY( M,CS*SN*APOAQ,A(1,p),1,A(1,q),1 )
-                           D(p) = D(p) * CS
-                           D(q) = D(q) / CS
-                           IF ( RSVEC ) THEN
-                           CALL SAXPY( MVL, -T*AQOAP, V(1,q),1,V(1,p),1)
-                           CALL SAXPY(MVL,CS*SN*APOAQ,V(1,p),1,V(1,q),1)
-                           END IF
-                        ELSE
-                           CALL SAXPY(M, T*APOAQ,    A(1,p),1,A(1,q),1)
-                           CALL SAXPY(M,-CS*SN*AQOAP,A(1,q),1,A(1,p),1)
-                           D(p) = D(p) / CS
-                           D(q) = D(q) * CS
-                          IF ( RSVEC ) THEN
-                          CALL SAXPY(MVL, T*APOAQ,    V(1,p),1,V(1,q),1)
-                          CALL SAXPY(MVL,-CS*SN*AQOAP,V(1,q),1,V(1,p),1)
-                          END IF
-                        END IF
-                     END IF
-                  ENDIF
-               END IF
-*
-            ELSE
-               IF ( AAPP .GT. AAQQ ) THEN
-                  CALL SCOPY( M, A(1,p), 1, WORK, 1 )
-                  CALL SLASCL('G',0,0,AAPP,ONE,M,1,WORK,LDA,IERR)
-                  CALL SLASCL('G',0,0,AAQQ,ONE,M,1,   A(1,q),LDA,IERR)
-                  TEMP1 = -AAPQ * D(p) / D(q)
-                  CALL SAXPY(M,TEMP1,WORK,1,A(1,q),1)
-                  CALL SLASCL('G',0,0,ONE,AAQQ,M,1,A(1,q),LDA,IERR)
-                  SVA(q) = AAQQ*SQRT(AMAX1(ZERO, ONE - AAPQ*AAPQ))
-                  MXSINJ = AMAX1( MXSINJ, SFMIN )
-               ELSE
-                  CALL SCOPY( M, A(1,q), 1, WORK, 1 )
-                  CALL SLASCL('G',0,0,AAQQ,ONE,M,1,WORK,LDA,IERR)
-                  CALL SLASCL('G',0,0,AAPP,ONE,M,1,   A(1,p),LDA,IERR)
-                  TEMP1 = -AAPQ * D(q) / D(p)
-                  CALL SAXPY(M,TEMP1,WORK,1,A(1,p),1)
-                  CALL SLASCL('G',0,0,ONE,AAPP,M,1,A(1,p),LDA,IERR)
-                  SVA(p) = AAPP*SQRT(AMAX1(ZERO, ONE - AAPQ*AAPQ))
-                  MXSINJ = AMAX1( MXSINJ, SFMIN )
-               END IF
-            END IF
+                                    THSIGN = -SIGN( ONE, AAPQ )
+                                    IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
+                                    T = ONE / ( THETA+THSIGN*
+     $                                  SQRT( ONE+THETA*THETA ) )
+                                    CS = SQRT( ONE / ( ONE+T*T ) )
+                                    SN = T*CS
+                                    MXSINJ = MAX( MXSINJ, ABS( SN ) )
+                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                         ONE+T*APOAQ*AAPQ ) )
+                                    AAPP = AAPP*SQRT( MAX( ZERO,
+     $                                         ONE-T*AQOAP*AAPQ ) )
+*
+                                    APOAQ = D( p ) / D( q )
+                                    AQOAP = D( q ) / D( p )
+                                    IF( D( p ).GE.ONE ) THEN
+*
+                                       IF( D( q ).GE.ONE ) THEN
+                                          FASTR( 3 ) = T*APOAQ
+                                          FASTR( 4 ) = -T*AQOAP
+                                          D( p ) = D( p )*CS
+                                          D( q ) = D( q )*CS
+                                          CALL SROTM( M, A( 1, p ), 1,
+     $                                                A( 1, q ), 1,
+     $                                                FASTR )
+                                          IF( RSVEC )CALL SROTM( MVL,
+     $                                        V( 1, p ), 1, V( 1, q ),
+     $                                        1, FASTR )
+                                       ELSE
+                                          CALL SAXPY( M, -T*AQOAP,
+     $                                                A( 1, q ), 1,
+     $                                                A( 1, p ), 1 )
+                                          CALL SAXPY( M, CS*SN*APOAQ,
+     $                                                A( 1, p ), 1,
+     $                                                A( 1, q ), 1 )
+                                          IF( RSVEC ) THEN
+                                             CALL SAXPY( MVL, -T*AQOAP,
+     $                                                   V( 1, q ), 1,
+     $                                                   V( 1, p ), 1 )
+                                             CALL SAXPY( MVL,
+     $                                                   CS*SN*APOAQ,
+     $                                                   V( 1, p ), 1,
+     $                                                   V( 1, q ), 1 )
+                                          END IF
+                                          D( p ) = D( p )*CS
+                                          D( q ) = D( q ) / CS
+                                       END IF
+                                    ELSE
+                                       IF( D( q ).GE.ONE ) THEN
+                                          CALL SAXPY( M, T*APOAQ,
+     $                                                A( 1, p ), 1,
+     $                                                A( 1, q ), 1 )
+                                          CALL SAXPY( M, -CS*SN*AQOAP,
+     $                                                A( 1, q ), 1,
+     $                                                A( 1, p ), 1 )
+                                          IF( RSVEC ) THEN
+                                             CALL SAXPY( MVL, T*APOAQ,
+     $                                                   V( 1, p ), 1,
+     $                                                   V( 1, q ), 1 )
+                                             CALL SAXPY( MVL,
+     $                                                   -CS*SN*AQOAP,
+     $                                                   V( 1, q ), 1,
+     $                                                   V( 1, p ), 1 )
+                                          END IF
+                                          D( p ) = D( p ) / CS
+                                          D( q ) = D( q )*CS
+                                       ELSE
+                                          IF( D( p ).GE.D( q ) ) THEN
+                                             CALL SAXPY( M, -T*AQOAP,
+     $                                                   A( 1, q ), 1,
+     $                                                   A( 1, p ), 1 )
+                                             CALL SAXPY( M, CS*SN*APOAQ,
+     $                                                   A( 1, p ), 1,
+     $                                                   A( 1, q ), 1 )
+                                             D( p ) = D( p )*CS
+                                             D( q ) = D( q ) / CS
+                                             IF( RSVEC ) THEN
+                                                CALL SAXPY( MVL,
+     $                                               -T*AQOAP,
+     $                                               V( 1, q ), 1,
+     $                                               V( 1, p ), 1 )
+                                                CALL SAXPY( MVL,
+     $                                               CS*SN*APOAQ,
+     $                                               V( 1, p ), 1,
+     $                                               V( 1, q ), 1 )
+                                             END IF
+                                          ELSE
+                                             CALL SAXPY( M, T*APOAQ,
+     $                                                   A( 1, p ), 1,
+     $                                                   A( 1, q ), 1 )
+                                             CALL SAXPY( M,
+     $                                                   -CS*SN*AQOAP,
+     $                                                   A( 1, q ), 1,
+     $                                                   A( 1, p ), 1 )
+                                             D( p ) = D( p ) / CS
+                                             D( q ) = D( q )*CS
+                                             IF( RSVEC ) THEN
+                                                CALL SAXPY( MVL,
+     $                                               T*APOAQ, V( 1, p ),
+     $                                               1, V( 1, q ), 1 )
+                                                CALL SAXPY( MVL,
+     $                                               -CS*SN*AQOAP,
+     $                                               V( 1, q ), 1,
+     $                                               V( 1, p ), 1 )
+                                             END IF
+                                          END IF
+                                       END IF
+                                    END IF
+                                 END IF
+*
+                              ELSE
+                                 IF( AAPP.GT.AAQQ ) THEN
+                                    CALL SCOPY( M, A( 1, p ), 1, WORK,
+     $                                          1 )
+                                    CALL SLASCL( 'G', 0, 0, AAPP, ONE,
+     $                                           M, 1, WORK, LDA, IERR )
+                                    CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
+     $                                           M, 1, A( 1, q ), LDA,
+     $                                           IERR )
+                                    TEMP1 = -AAPQ*D( p ) / D( q )
+                                    CALL SAXPY( M, TEMP1, WORK, 1,
+     $                                          A( 1, q ), 1 )
+                                    CALL SLASCL( 'G', 0, 0, ONE, AAQQ,
+     $                                           M, 1, A( 1, q ), LDA,
+     $                                           IERR )
+                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                         ONE-AAPQ*AAPQ ) )
+                                    MXSINJ = MAX( MXSINJ, SFMIN )
+                                 ELSE
+                                    CALL SCOPY( M, A( 1, q ), 1, WORK,
+     $                                          1 )
+                                    CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
+     $                                           M, 1, WORK, LDA, IERR )
+                                    CALL SLASCL( 'G', 0, 0, AAPP, ONE,
+     $                                           M, 1, A( 1, p ), LDA,
+     $                                           IERR )
+                                    TEMP1 = -AAPQ*D( q ) / D( p )
+                                    CALL SAXPY( M, TEMP1, WORK, 1,
+     $                                          A( 1, p ), 1 )
+                                    CALL SLASCL( 'G', 0, 0, ONE, AAPP,
+     $                                           M, 1, A( 1, p ), LDA,
+     $                                           IERR )
+                                    SVA( p ) = AAPP*SQRT( MAX( ZERO,
+     $                                         ONE-AAPQ*AAPQ ) )
+                                    MXSINJ = MAX( MXSINJ, SFMIN )
+                                 END IF
+                              END IF
 *           END IF ROTOK THEN ... ELSE
 *
 *           In the case of cancellation in updating SVA(q)
 *           .. recompute SVA(q)
-            IF ( (SVA(q) / AAQQ )**2 .LE. ROOTEPS  ) THEN
-               IF ((AAQQ .LT. ROOTBIG).AND.(AAQQ .GT. ROOTSFMIN)) THEN
-                  SVA(q) = SNRM2( M, A(1,q), 1 ) * D(q)
-               ELSE
-                  T    = ZERO
-                  AAQQ = ZERO
-                  CALL SLASSQ( M, A(1,q), 1, T, AAQQ )
-                  SVA(q) = T * SQRT(AAQQ) * D(q)
-               END IF
-            END IF
-            IF ( (AAPP / AAPP0 )**2 .LE. ROOTEPS  ) THEN
-               IF ((AAPP .LT. ROOTBIG).AND.(AAPP .GT. ROOTSFMIN)) THEN
-                  AAPP = SNRM2( M, A(1,p), 1 ) * D(p)
-               ELSE
-                  T    = ZERO
-                  AAPP = ZERO
-                  CALL SLASSQ( M, A(1,p), 1, T, AAPP )
-                  AAPP = T * SQRT(AAPP) * D(p)
-               END IF
-               SVA(p) = AAPP
-            END IF
+                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+     $                            THEN
+                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
+     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
+                                    SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
+     $                                         D( q )
+                                 ELSE
+                                    T = ZERO
+                                    AAQQ = ONE
+                                    CALL SLASSQ( M, A( 1, q ), 1, T,
+     $                                           AAQQ )
+                                    SVA( q ) = T*SQRT( AAQQ )*D( q )
+                                 END IF
+                              END IF
+                              IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
+                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
+     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
+                                    AAPP = SNRM2( M, A( 1, p ), 1 )*
+     $                                     D( p )
+                                 ELSE
+                                    T = ZERO
+                                    AAPP = ONE
+                                    CALL SLASSQ( M, A( 1, p ), 1, T,
+     $                                           AAPP )
+                                    AAPP = T*SQRT( AAPP )*D( p )
+                                 END IF
+                                 SVA( p ) = AAPP
+                              END IF
 *              end of OK rotation
-         ELSE
-            NOTROT   = NOTROT   + 1
-            PSKIPPED = PSKIPPED + 1
-            IJBLSK   = IJBLSK   + 1
-         END IF
-      ELSE
-         NOTROT   = NOTROT   + 1
-         PSKIPPED = PSKIPPED + 1
-         IJBLSK   = IJBLSK   + 1
-      END IF
+                           ELSE
+                              NOTROT = NOTROT + 1
+                              PSKIPPED = PSKIPPED + 1
+                              IJBLSK = IJBLSK + 1
+                           END IF
+                        ELSE
+                           NOTROT = NOTROT + 1
+                           PSKIPPED = PSKIPPED + 1
+                           IJBLSK = IJBLSK + 1
+                        END IF
 *
-      IF ( ( i .LE. SWBAND ) .AND. ( IJBLSK .GE. BLSKIP ) ) THEN
-         SVA(p) = AAPP
-         NOTROT = 0
-         GO TO 2011
-      END IF
-      IF ( ( i .LE. SWBAND ) .AND. ( PSKIPPED .GT. ROWSKIP ) ) THEN
-         AAPP = -AAPP
-         NOTROT = 0
-         GO TO 2203
-      END IF
+                        IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
+     $                      THEN
+                           SVA( p ) = AAPP
+                           NOTROT = 0
+                           GO TO 2011
+                        END IF
+                        IF( ( i.LE.SWBAND ) .AND.
+     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
+                           AAPP = -AAPP
+                           NOTROT = 0
+                           GO TO 2203
+                        END IF
 *
- 2200    CONTINUE
+ 2200                CONTINUE
 *        end of the q-loop
- 2203    CONTINUE
+ 2203                CONTINUE
 *
-         SVA(p) = AAPP
+                     SVA( p ) = AAPP
 *
-      ELSE
-         IF ( AAPP .EQ. ZERO ) NOTROT=NOTROT+MIN0(jgl+KBL-1,N)-jgl+1
-         IF ( AAPP .LT. ZERO ) NOTROT = 0
-      END IF
+                  ELSE
+                     IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
+     $                   MIN( jgl+KBL-1, N ) - jgl + 1
+                     IF( AAPP.LT.ZERO )NOTROT = 0
+                  END IF
 
- 2100 CONTINUE
+ 2100          CONTINUE
 *     end of the p-loop
- 2010 CONTINUE
+ 2010       CONTINUE
 *     end of the jbc-loop
- 2011 CONTINUE
+ 2011       CONTINUE
 *2011 bailed out of the jbc-loop
-      DO 2012 p = igl, MIN0( igl + KBL - 1, N )
-         SVA(p) = ABS(SVA(p))
- 2012 CONTINUE
+            DO 2012 p = igl, MIN( igl+KBL-1, N )
+               SVA( p ) = ABS( SVA( p ) )
+ 2012       CONTINUE
 *
- 2000 CONTINUE
+ 2000    CONTINUE
 *2000 :: end of the ibr-loop
 *
 *     .. update SVA(N)
-      IF ((SVA(N) .LT. ROOTBIG).AND.(SVA(N) .GT. ROOTSFMIN)) THEN
-         SVA(N) = SNRM2( M, A(1,N), 1 ) * D(N)
-      ELSE
-         T    = ZERO
-         AAPP = ZERO
-         CALL SLASSQ( M, A(1,N), 1, T, AAPP )
-         SVA(N) = T * SQRT(AAPP) * D(N)
-      END IF
+         IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
+     $       THEN
+            SVA( N ) = SNRM2( M, A( 1, N ), 1 )*D( N )
+         ELSE
+            T = ZERO
+            AAPP = ONE
+            CALL SLASSQ( M, A( 1, N ), 1, T, AAPP )
+            SVA( N ) = T*SQRT( AAPP )*D( N )
+         END IF
 *
 *     Additional steering devices
 *
-      IF ( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
-     &     ( ISWROT .LE. N ) ) )
-     &   SWBAND = i
+         IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
+     $       ( ISWROT.LE.N ) ) )SWBAND = i
 *
-      IF ((i.GT.SWBAND+1).AND. (MXAAPQ.LT.FLOAT(N)*TOL).AND.
-     &   (FLOAT(N)*MXAAPQ*MXSINJ.LT.TOL))THEN
-        GO TO 1994
-      END IF
+         IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.FLOAT( N )*TOL ) .AND.
+     $       ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
+            GO TO 1994
+         END IF
 *
-      IF ( NOTROT .GE. EMPTSW ) GO TO 1994
+         IF( NOTROT.GE.EMPTSW )GO TO 1994
 
  1993 CONTINUE
 *     end i=1:NSWEEP loop
 *
 *     Sort the vector D.
       DO 5991 p = 1, N - 1
-         q = ISAMAX( N-p+1, SVA(p), 1 ) + p - 1
-         IF ( p .NE. q ) THEN
-            TEMP1  = SVA(p)
-            SVA(p) = SVA(q)
-            SVA(q) = TEMP1
-            TEMP1   = D(p)
-            D(p) = D(q)
-            D(q) = TEMP1
-            CALL SSWAP( M, A(1,p), 1, A(1,q), 1 )
-            IF ( RSVEC ) CALL SSWAP( MVL, V(1,p), 1, V(1,q), 1 )
+         q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+         IF( p.NE.q ) THEN
+            TEMP1 = SVA( p )
+            SVA( p ) = SVA( q )
+            SVA( q ) = TEMP1
+            TEMP1 = D( p )
+            D( p ) = D( q )
+            D( q ) = TEMP1
+            CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+            IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
          END IF
  5991 CONTINUE
 *
 *     .. END OF SGSVJ0
 *     ..
       END
-*