xGSVJn, xLAQRn, xHETRD, xSYTRD; parameter comment: put LWORK dimension in parentheses
[platform/upstream/lapack.git] / SRC / sgsvj0.f
index 1279162..381557c 100644 (file)
-      SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
-     +                   SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
-*
-*  -- LAPACK routine (version 3.3.0)                                    --
+*> \brief \b SGSVJ0 pre-processor for the routine sgesvj.
+*
+*  =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+*            http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SGSVJ0 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgsvj0.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgsvj0.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgsvj0.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+*  Definition:
+*  ===========
+*
+*       SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
+*                          SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+*       .. Scalar Arguments ..
+*       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
+*       REAL               EPS, SFMIN, TOL
+*       CHARACTER*1        JOBV
+*       ..
+*       .. Array Arguments ..
+*       REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
+*      $                   WORK( LWORK )
+*       ..
+*
+*
+*> \par Purpose:
+*  =============
+*>
+*> \verbatim
+*>
+*> SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
+*> purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
+*> it does not check convergence (stopping criterion). Few tuning
+*> parameters (marked by [TP]) are available for the implementer.
+*> \endverbatim
+*
+*  Arguments:
+*  ==========
+*
+*> \param[in] JOBV
+*> \verbatim
+*>          JOBV is CHARACTER*1
+*>          Specifies whether the output from this procedure is used
+*>          to compute the matrix V:
+*>          = 'V': the product of the Jacobi rotations is accumulated
+*>                 by postmulyiplying the N-by-N array V.
+*>                (See the description of V.)
+*>          = 'A': the product of the Jacobi rotations is accumulated
+*>                 by postmulyiplying the MV-by-N array V.
+*>                (See the descriptions of MV and V.)
+*>          = 'N': the Jacobi rotations are not accumulated.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*>          M is INTEGER
+*>          The number of rows of the input matrix A.  M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*>          N is INTEGER
+*>          The number of columns of the input matrix A.
+*>          M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*>          A is REAL array, dimension (LDA,N)
+*>          On entry, M-by-N matrix A, such that A*diag(D) represents
+*>          the input matrix.
+*>          On exit,
+*>          A_onexit * D_onexit represents the input matrix A*diag(D)
+*>          post-multiplied by a sequence of Jacobi rotations, where the
+*>          rotation threshold and the total number of sweeps are given in
+*>          TOL and NSWEEP, respectively.
+*>          (See the descriptions of D, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*>          LDA is INTEGER
+*>          The leading dimension of the array A.  LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] D
+*> \verbatim
+*>          D is REAL array, dimension (N)
+*>          The array D accumulates the scaling factors from the fast scaled
+*>          Jacobi rotations.
+*>          On entry, A*diag(D) represents the input matrix.
+*>          On exit, A_onexit*diag(D_onexit) represents the input matrix
+*>          post-multiplied by a sequence of Jacobi rotations, where the
+*>          rotation threshold and the total number of sweeps are given in
+*>          TOL and NSWEEP, respectively.
+*>          (See the descriptions of A, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in,out] SVA
+*> \verbatim
+*>          SVA is REAL array, dimension (N)
+*>          On entry, SVA contains the Euclidean norms of the columns of
+*>          the matrix A*diag(D).
+*>          On exit, SVA contains the Euclidean norms of the columns of
+*>          the matrix onexit*diag(D_onexit).
+*> \endverbatim
+*>
+*> \param[in] MV
+*> \verbatim
+*>          MV is INTEGER
+*>          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+*>                           sequence of Jacobi rotations.
+*>          If JOBV = 'N',   then MV is not referenced.
+*> \endverbatim
+*>
+*> \param[in,out] V
+*> \verbatim
+*>          V is REAL array, dimension (LDV,N)
+*>          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+*>                           sequence of Jacobi rotations.
+*>          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+*>                           sequence of Jacobi rotations.
+*>          If JOBV = 'N',   then V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*>          LDV is INTEGER
+*>          The leading dimension of the array V,  LDV >= 1.
+*>          If JOBV = 'V', LDV .GE. N.
+*>          If JOBV = 'A', LDV .GE. MV.
+*> \endverbatim
+*>
+*> \param[in] EPS
+*> \verbatim
+*>          EPS is REAL
+*>          EPS = SLAMCH('Epsilon')
+*> \endverbatim
+*>
+*> \param[in] SFMIN
+*> \verbatim
+*>          SFMIN is REAL
+*>          SFMIN = SLAMCH('Safe Minimum')
+*> \endverbatim
+*>
+*> \param[in] TOL
+*> \verbatim
+*>          TOL is REAL
+*>          TOL is the threshold for Jacobi rotations. For a pair
+*>          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
+*>          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*> \endverbatim
+*>
+*> \param[in] NSWEEP
+*> \verbatim
+*>          NSWEEP is INTEGER
+*>          NSWEEP is the number of sweeps of Jacobi rotations to be
+*>          performed.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*>          WORK is REAL array, dimension (LWORK)
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*>          LWORK is INTEGER
+*>          LWORK is the dimension of WORK. LWORK .GE. M.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*>          INFO is INTEGER
+*>          = 0 : successful exit.
+*>          < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> \endverbatim
+*
+*  Authors:
+*  ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date December 2016
+*
+*> \ingroup realOTHERcomputational
+*
+*> \par Further Details:
+*  =====================
+*>
+*> SGSVJ0 is used just to enable SGESVJ to call a simplified version of
+*> itself to work on a submatrix of the original matrix.
+*>
+*> \par Contributors:
+*  ==================
+*>
+*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
+*>
+*> \par Bugs, Examples and Comments:
+*  =================================
+*>
+*> Please report all bugs and send interesting test examples and comments to
+*> drmac@math.hr. Thank you.
 *
-*  -- Contributed by Zlatko Drmac of the University of Zagreb and     --
-*  -- Kresimir Veselic of the Fernuniversitaet Hagen                  --
-*     November 2010
+*  =====================================================================
+      SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
+     $                   SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 *
+*  -- LAPACK computational routine (version 3.7.0) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*     December 2016
 *
-* This routine is also part of SIGMA (version 1.23, October 23. 2008.)
-* SIGMA is a library of algorithms for highly accurate algorithms for
-* computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the
-* eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0.
-*
-      IMPLICIT           NONE
-*     ..
 *     .. Scalar Arguments ..
       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
       REAL               EPS, SFMIN, TOL
 *     ..
 *     .. Array Arguments ..
       REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
-     +                   WORK( LWORK )
+     $                   WORK( LWORK )
 *     ..
 *
-*  Purpose
-*  =======
-*
-*  SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
-*  purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
-*  it does not check convergence (stopping criterion). Few tuning
-*  parameters (marked by [TP]) are available for the implementer.
-*
-*  Further Details
-*  ~~~~~~~~~~~~~~~
-*  SGSVJ0 is used just to enable SGESVJ to call a simplified version of
-*  itself to work on a submatrix of the original matrix.
-*
-*  Contributors
-*  ~~~~~~~~~~~~
-*  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
-*
-*  Bugs, Examples and Comments
-*  ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-*  Please report all bugs and send interesting test examples and comments to
-*  drmac@math.hr. Thank you.
-*
-*  Arguments
-*  =========
-*
-*  JOBV    (input) CHARACTER*1
-*          Specifies whether the output from this procedure is used
-*          to compute the matrix V:
-*          = 'V': the product of the Jacobi rotations is accumulated
-*                 by postmulyiplying the N-by-N array V.
-*                (See the description of V.)
-*          = 'A': the product of the Jacobi rotations is accumulated
-*                 by postmulyiplying the MV-by-N array V.
-*                (See the descriptions of MV and V.)
-*          = 'N': the Jacobi rotations are not accumulated.
-*
-*  M       (input) INTEGER
-*          The number of rows of the input matrix A.  M >= 0.
-*
-*  N       (input) INTEGER
-*          The number of columns of the input matrix A.
-*          M >= N >= 0.
-*
-*  A       (input/output) REAL array, dimension (LDA,N)
-*          On entry, M-by-N matrix A, such that A*diag(D) represents
-*          the input matrix.
-*          On exit,
-*          A_onexit * D_onexit represents the input matrix A*diag(D)
-*          post-multiplied by a sequence of Jacobi rotations, where the
-*          rotation threshold and the total number of sweeps are given in
-*          TOL and NSWEEP, respectively.
-*          (See the descriptions of D, TOL and NSWEEP.)
-*
-*  LDA     (input) INTEGER
-*          The leading dimension of the array A.  LDA >= max(1,M).
-*
-*  D       (input/workspace/output) REAL array, dimension (N)
-*          The array D accumulates the scaling factors from the fast scaled
-*          Jacobi rotations.
-*          On entry, A*diag(D) represents the input matrix.
-*          On exit, A_onexit*diag(D_onexit) represents the input matrix
-*          post-multiplied by a sequence of Jacobi rotations, where the
-*          rotation threshold and the total number of sweeps are given in
-*          TOL and NSWEEP, respectively.
-*          (See the descriptions of A, TOL and NSWEEP.)
-*
-*  SVA     (input/workspace/output) REAL array, dimension (N)
-*          On entry, SVA contains the Euclidean norms of the columns of
-*          the matrix A*diag(D).
-*          On exit, SVA contains the Euclidean norms of the columns of
-*          the matrix onexit*diag(D_onexit).
-*
-*  MV      (input) INTEGER
-*          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
-*                           sequence of Jacobi rotations.
-*          If JOBV = 'N',   then MV is not referenced.
-*
-*  V       (input/output) REAL array, dimension (LDV,N)
-*          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
-*                           sequence of Jacobi rotations.
-*          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
-*                           sequence of Jacobi rotations.
-*          If JOBV = 'N',   then V is not referenced.
-*
-*  LDV     (input) INTEGER
-*          The leading dimension of the array V,  LDV >= 1.
-*          If JOBV = 'V', LDV .GE. N.
-*          If JOBV = 'A', LDV .GE. MV.
-*
-*  EPS     (input) INTEGER
-*          EPS = SLAMCH('Epsilon')
-*
-*  SFMIN   (input) INTEGER
-*          SFMIN = SLAMCH('Safe Minimum')
-*
-*  TOL     (input) REAL
-*          TOL is the threshold for Jacobi rotations. For a pair
-*          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
-*          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
-*
-*  NSWEEP  (input) INTEGER
-*          NSWEEP is the number of sweeps of Jacobi rotations to be
-*          performed.
-*
-*  WORK    (workspace) REAL array, dimension LWORK.
-*
-*  LWORK   (input) INTEGER
-*          LWORK is the dimension of WORK. LWORK .GE. M.
-*
-*  INFO    (output) INTEGER
-*          = 0 : successful exit.
-*          < 0 : if INFO = -i, then the i-th argument had an illegal value
-*
 *  =====================================================================
 *
 *     .. Local Parameters ..
-      REAL               ZERO, HALF, ONE, TWO
-      PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
-     +                   TWO = 2.0E0 )
+      REAL               ZERO, HALF, ONE
+      PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
 *     ..
 *     .. Local Scalars ..
       REAL               AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
-     +                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
-     +                   ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
-     +                   THSIGN
+     $                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
+     $                   ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
+     $                   THSIGN
       INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
-     +                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
-     +                   NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
+     $                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
+     $                   NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
       LOGICAL            APPLV, ROTOK, RSVEC
 *     ..
 *     .. Local Arrays ..
       REAL               FASTR( 5 )
 *     ..
 *     .. Intrinsic Functions ..
-      INTRINSIC          ABS, AMAX1, AMIN1, FLOAT, MIN0, SIGN, SQRT
+      INTRINSIC          ABS, MAX, FLOAT, MIN, SIGN, SQRT
 *     ..
 *     .. External Functions ..
       REAL               SDOT, SNRM2
          INFO = -5
       ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
          INFO = -8
-      ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR. 
-     &         ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
+      ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
+     $         ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
          INFO = -10
       ELSE IF( TOL.LE.EPS ) THEN
          INFO = -13
       BIGTHETA = ONE / ROOTEPS
       ROOTTOL = SQRT( TOL )
 *
-*
 *     .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
 *
       EMPTSW = ( N*( N-1 ) ) / 2
 *     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure
 *     ......
 
-      KBL = MIN0( 8, N )
+      KBL = MIN( 8, N )
 *[TP] KBL is a tuning parameter that defines the tile size in the
 *     tiling of the p-q loops of pivot pairs. In general, an optimal
 *     value of KBL depends on the matrix dimensions and on the
       BLSKIP = ( KBL**2 ) + 1
 *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
 
-      ROWSKIP = MIN0( 5, KBL )
+      ROWSKIP = MIN( 5, KBL )
 *[TP] ROWSKIP is a tuning parameter.
 
       LKAHEAD = 1
 
             igl = ( ibr-1 )*KBL + 1
 *
-            DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
+            DO 1002 ir1 = 0, MIN( LKAHEAD, NBL-ibr )
 *
                igl = igl + ir1*KBL
 *
-               DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
+               DO 2001 p = igl, MIN( igl+KBL-1, N-1 )
 
 *     .. de Rijk's pivoting
                   q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
                   IF( p.NE.q ) THEN
                      CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
                      IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1,
-     +                                      V( 1, q ), 1 )
+     $                                      V( 1, q ), 1 )
                      TEMP1 = SVA( p )
                      SVA( p ) = SVA( q )
                      SVA( q ) = TEMP1
 *        below should read "AAPP = SNRM2( M, A(1,p), 1 ) * D(p)".
 *
                      IF( ( SVA( p ).LT.ROOTBIG ) .AND.
-     +                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
+     $                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
                         SVA( p ) = SNRM2( M, A( 1, p ), 1 )*D( p )
                      ELSE
                         TEMP1 = ZERO
 *
                      PSKIPPED = 0
 *
-                     DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
+                     DO 2002 q = p + 1, MIN( igl+KBL-1, N )
 *
                         AAQQ = SVA( q )
 
                               ROTOK = ( SMALL*AAPP ).LE.AAQQ
                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
-     +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
-     +                                  / AAPP
+     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
+     $                                  / AAPP
                               ELSE
                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
                                  CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
-     +                                        M, 1, WORK, LDA, IERR )
+     $                                        M, 1, WORK, LDA, IERR )
                                  AAPQ = SDOT( M, WORK, 1, A( 1, q ),
-     +                                  1 )*D( q ) / AAQQ
+     $                                  1 )*D( q ) / AAQQ
                               END IF
                            ELSE
                               ROTOK = AAPP.LE.( AAQQ / SMALL )
                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
-     +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
-     +                                  / AAPP
+     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
+     $                                  / AAPP
                               ELSE
                                  CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
                                  CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
-     +                                        M, 1, WORK, LDA, IERR )
+     $                                        M, 1, WORK, LDA, IERR )
                                  AAPQ = SDOT( M, WORK, 1, A( 1, p ),
-     +                                  1 )*D( p ) / AAPP
+     $                                  1 )*D( p ) / AAPP
                               END IF
                            END IF
 *
-                           MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
+                           MXAAPQ = MAX( MXAAPQ, ABS( AAPQ ) )
 *
 *        TO rotate or NOT to rotate, THAT is the question ...
 *
                                     FASTR( 3 ) = T*D( p ) / D( q )
                                     FASTR( 4 ) = -T*D( q ) / D( p )
                                     CALL SROTM( M, A( 1, p ), 1,
-     +                                          A( 1, q ), 1, FASTR )
+     $                                          A( 1, q ), 1, FASTR )
                                     IF( RSVEC )CALL SROTM( MVL,
-     +                                              V( 1, p ), 1,
-     +                                              V( 1, q ), 1,
-     +                                              FASTR )
-                                    SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
-     +                                         ONE+T*APOAQ*AAPQ ) )
-                                    AAPP = AAPP*SQRT( AMAX1( ZERO, 
-     +                                         ONE-T*AQOAP*AAPQ ) )
-                                    MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+     $                                              V( 1, p ), 1,
+     $                                              V( 1, q ), 1,
+     $                                              FASTR )
+                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                         ONE+T*APOAQ*AAPQ ) )
+                                    AAPP = AAPP*SQRT( MAX( ZERO,
+     $                                         ONE-T*AQOAP*AAPQ ) )
+                                    MXSINJ = MAX( MXSINJ, ABS( T ) )
 *
                                  ELSE
 *
 *
                                     THSIGN = -SIGN( ONE, AAPQ )
                                     T = ONE / ( THETA+THSIGN*
-     +                                  SQRT( ONE+THETA*THETA ) )
+     $                                  SQRT( ONE+THETA*THETA ) )
                                     CS = SQRT( ONE / ( ONE+T*T ) )
                                     SN = T*CS
 *
-                                    MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
-                                    SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
-     +                                         ONE+T*APOAQ*AAPQ ) )
-                                    AAPP = AAPP*SQRT( AMAX1( ZERO,
-     +                                     ONE-T*AQOAP*AAPQ ) )
+                                    MXSINJ = MAX( MXSINJ, ABS( SN ) )
+                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                         ONE+T*APOAQ*AAPQ ) )
+                                    AAPP = AAPP*SQRT( MAX( ZERO,
+     $                                     ONE-T*AQOAP*AAPQ ) )
 *
                                     APOAQ = D( p ) / D( q )
                                     AQOAP = D( q ) / D( p )
                                           D( p ) = D( p )*CS
                                           D( q ) = D( q )*CS
                                           CALL SROTM( M, A( 1, p ), 1,
-     +                                                A( 1, q ), 1,
-     +                                                FASTR )
+     $                                                A( 1, q ), 1,
+     $                                                FASTR )
                                           IF( RSVEC )CALL SROTM( MVL,
-     +                                        V( 1, p ), 1, V( 1, q ),
-     +                                        1, FASTR )
+     $                                        V( 1, p ), 1, V( 1, q ),
+     $                                        1, FASTR )
                                        ELSE
                                           CALL SAXPY( M, -T*AQOAP,
-     +                                                A( 1, q ), 1,
-     +                                                A( 1, p ), 1 )
+     $                                                A( 1, q ), 1,
+     $                                                A( 1, p ), 1 )
                                           CALL SAXPY( M, CS*SN*APOAQ,
-     +                                                A( 1, p ), 1,
-     +                                                A( 1, q ), 1 )
+     $                                                A( 1, p ), 1,
+     $                                                A( 1, q ), 1 )
                                           D( p ) = D( p )*CS
                                           D( q ) = D( q ) / CS
                                           IF( RSVEC ) THEN
                                              CALL SAXPY( MVL, -T*AQOAP,
-     +                                                   V( 1, q ), 1,
-     +                                                   V( 1, p ), 1 )
+     $                                                   V( 1, q ), 1,
+     $                                                   V( 1, p ), 1 )
                                              CALL SAXPY( MVL,
-     +                                                   CS*SN*APOAQ,
-     +                                                   V( 1, p ), 1,
-     +                                                   V( 1, q ), 1 )
+     $                                                   CS*SN*APOAQ,
+     $                                                   V( 1, p ), 1,
+     $                                                   V( 1, q ), 1 )
                                           END IF
                                        END IF
                                     ELSE
                                        IF( D( q ).GE.ONE ) THEN
                                           CALL SAXPY( M, T*APOAQ,
-     +                                                A( 1, p ), 1,
-     +                                                A( 1, q ), 1 )
+     $                                                A( 1, p ), 1,
+     $                                                A( 1, q ), 1 )
                                           CALL SAXPY( M, -CS*SN*AQOAP,
-     +                                                A( 1, q ), 1,
-     +                                                A( 1, p ), 1 )
+     $                                                A( 1, q ), 1,
+     $                                                A( 1, p ), 1 )
                                           D( p ) = D( p ) / CS
                                           D( q ) = D( q )*CS
                                           IF( RSVEC ) THEN
                                              CALL SAXPY( MVL, T*APOAQ,
-     +                                                   V( 1, p ), 1,
-     +                                                   V( 1, q ), 1 )
+     $                                                   V( 1, p ), 1,
+     $                                                   V( 1, q ), 1 )
                                              CALL SAXPY( MVL,
-     +                                                   -CS*SN*AQOAP,
-     +                                                   V( 1, q ), 1,
-     +                                                   V( 1, p ), 1 )
+     $                                                   -CS*SN*AQOAP,
+     $                                                   V( 1, q ), 1,
+     $                                                   V( 1, p ), 1 )
                                           END IF
                                        ELSE
                                           IF( D( p ).GE.D( q ) ) THEN
                                              CALL SAXPY( M, -T*AQOAP,
-     +                                                   A( 1, q ), 1,
-     +                                                   A( 1, p ), 1 )
+     $                                                   A( 1, q ), 1,
+     $                                                   A( 1, p ), 1 )
                                              CALL SAXPY( M, CS*SN*APOAQ,
-     +                                                   A( 1, p ), 1,
-     +                                                   A( 1, q ), 1 )
+     $                                                   A( 1, p ), 1,
+     $                                                   A( 1, q ), 1 )
                                              D( p ) = D( p )*CS
                                              D( q ) = D( q ) / CS
                                              IF( RSVEC ) THEN
                                                 CALL SAXPY( MVL,
-     +                                               -T*AQOAP,
-     +                                               V( 1, q ), 1,
-     +                                               V( 1, p ), 1 )
+     $                                               -T*AQOAP,
+     $                                               V( 1, q ), 1,
+     $                                               V( 1, p ), 1 )
                                                 CALL SAXPY( MVL,
-     +                                               CS*SN*APOAQ,
-     +                                               V( 1, p ), 1,
-     +                                               V( 1, q ), 1 )
+     $                                               CS*SN*APOAQ,
+     $                                               V( 1, p ), 1,
+     $                                               V( 1, q ), 1 )
                                              END IF
                                           ELSE
                                              CALL SAXPY( M, T*APOAQ,
-     +                                                   A( 1, p ), 1,
-     +                                                   A( 1, q ), 1 )
+     $                                                   A( 1, p ), 1,
+     $                                                   A( 1, q ), 1 )
                                              CALL SAXPY( M,
-     +                                                   -CS*SN*AQOAP,
-     +                                                   A( 1, q ), 1,
-     +                                                   A( 1, p ), 1 )
+     $                                                   -CS*SN*AQOAP,
+     $                                                   A( 1, q ), 1,
+     $                                                   A( 1, p ), 1 )
                                              D( p ) = D( p ) / CS
                                              D( q ) = D( q )*CS
                                              IF( RSVEC ) THEN
                                                 CALL SAXPY( MVL,
-     +                                               T*APOAQ, V( 1, p ),
-     +                                               1, V( 1, q ), 1 )
+     $                                               T*APOAQ, V( 1, p ),
+     $                                               1, V( 1, q ), 1 )
                                                 CALL SAXPY( MVL,
-     +                                               -CS*SN*AQOAP,
-     +                                               V( 1, q ), 1,
-     +                                               V( 1, p ), 1 )
+     $                                               -CS*SN*AQOAP,
+     $                                               V( 1, q ), 1,
+     $                                               V( 1, p ), 1 )
                                              END IF
                                           END IF
                                        END IF
 *              .. have to use modified Gram-Schmidt like transformation
                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
                                  CALL SLASCL( 'G', 0, 0, AAPP, ONE, M,
-     +                                        1, WORK, LDA, IERR )
+     $                                        1, WORK, LDA, IERR )
                                  CALL SLASCL( 'G', 0, 0, AAQQ, ONE, M,
-     +                                        1, A( 1, q ), LDA, IERR )
+     $                                        1, A( 1, q ), LDA, IERR )
                                  TEMP1 = -AAPQ*D( p ) / D( q )
                                  CALL SAXPY( M, TEMP1, WORK, 1,
-     +                                       A( 1, q ), 1 )
+     $                                       A( 1, q ), 1 )
                                  CALL SLASCL( 'G', 0, 0, ONE, AAQQ, M,
-     +                                        1, A( 1, q ), LDA, IERR )
-                                 SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
-     +                                      ONE-AAPQ*AAPQ ) )
-                                 MXSINJ = AMAX1( MXSINJ, SFMIN )
+     $                                        1, A( 1, q ), LDA, IERR )
+                                 SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                      ONE-AAPQ*AAPQ ) )
+                                 MXSINJ = MAX( MXSINJ, SFMIN )
                               END IF
 *           END IF ROTOK THEN ... ELSE
 *
 *           In the case of cancellation in updating SVA(q), SVA(p)
 *           recompute SVA(q), SVA(p).
                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
-     +                            THEN
+     $                            THEN
                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
-     +                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
+     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
-     +                                         D( q )
+     $                                         D( q )
                                  ELSE
                                     T = ZERO
                                     AAQQ = ONE
                                     CALL SLASSQ( M, A( 1, q ), 1, T,
-     +                                           AAQQ )
+     $                                           AAQQ )
                                     SVA( q ) = T*SQRT( AAQQ )*D( q )
                                  END IF
                               END IF
                               IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
-     +                               ( AAPP.GT.ROOTSFMIN ) ) THEN
+     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
-     +                                     D( p )
+     $                                     D( p )
                                  ELSE
                                     T = ZERO
                                     AAPP = ONE
                                     CALL SLASSQ( M, A( 1, p ), 1, T,
-     +                                           AAPP )
+     $                                           AAPP )
                                     AAPP = T*SQRT( AAPP )*D( p )
                                  END IF
                                  SVA( p ) = AAPP
                         END IF
 *
                         IF( ( i.LE.SWBAND ) .AND.
-     +                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
+     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
                            IF( ir1.EQ.0 )AAPP = -AAPP
                            NOTROT = 0
                            GO TO 2103
                   ELSE
                      SVA( p ) = AAPP
                      IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
-     +                   NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
+     $                   NOTROT = NOTROT + MIN( igl+KBL-1, N ) - p
                   END IF
 *
  2001          CONTINUE
 *        doing the block at ( ibr, jbc )
 *
                IJBLSK = 0
-               DO 2100 p = igl, MIN0( igl+KBL-1, N )
+               DO 2100 p = igl, MIN( igl+KBL-1, N )
 *
                   AAPP = SVA( p )
 *
 *
                      PSKIPPED = 0
 *
-                     DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
+                     DO 2200 q = jgl, MIN( jgl+KBL-1, N )
 *
                         AAQQ = SVA( q )
 *
                               END IF
                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
-     +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
-     +                                  / AAPP
+     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
+     $                                  / AAPP
                               ELSE
                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
                                  CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
-     +                                        M, 1, WORK, LDA, IERR )
+     $                                        M, 1, WORK, LDA, IERR )
                                  AAPQ = SDOT( M, WORK, 1, A( 1, q ),
-     +                                  1 )*D( q ) / AAQQ
+     $                                  1 )*D( q ) / AAQQ
                               END IF
                            ELSE
                               IF( AAPP.GE.AAQQ ) THEN
                               END IF
                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
-     +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
-     +                                  / AAPP
+     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
+     $                                  / AAPP
                               ELSE
                                  CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
                                  CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
-     +                                        M, 1, WORK, LDA, IERR )
+     $                                        M, 1, WORK, LDA, IERR )
                                  AAPQ = SDOT( M, WORK, 1, A( 1, p ),
-     +                                  1 )*D( p ) / AAPP
+     $                                  1 )*D( p ) / AAPP
                               END IF
                            END IF
 *
-                           MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
+                           MXAAPQ = MAX( MXAAPQ, ABS( AAPQ ) )
 *
 *        TO rotate or NOT to rotate, THAT is the question ...
 *
                                     FASTR( 3 ) = T*D( p ) / D( q )
                                     FASTR( 4 ) = -T*D( q ) / D( p )
                                     CALL SROTM( M, A( 1, p ), 1,
-     +                                          A( 1, q ), 1, FASTR )
+     $                                          A( 1, q ), 1, FASTR )
                                     IF( RSVEC )CALL SROTM( MVL,
-     +                                              V( 1, p ), 1,
-     +                                              V( 1, q ), 1,
-     +                                              FASTR )
-                                    SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
-     +                                         ONE+T*APOAQ*AAPQ ) )
-                                    AAPP = AAPP*SQRT( AMAX1( ZERO,
-     +                                     ONE-T*AQOAP*AAPQ ) )
-                                    MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+     $                                              V( 1, p ), 1,
+     $                                              V( 1, q ), 1,
+     $                                              FASTR )
+                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                         ONE+T*APOAQ*AAPQ ) )
+                                    AAPP = AAPP*SQRT( MAX( ZERO,
+     $                                     ONE-T*AQOAP*AAPQ ) )
+                                    MXSINJ = MAX( MXSINJ, ABS( T ) )
                                  ELSE
 *
 *                 .. choose correct signum for THETA and rotate
                                     THSIGN = -SIGN( ONE, AAPQ )
                                     IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
                                     T = ONE / ( THETA+THSIGN*
-     +                                  SQRT( ONE+THETA*THETA ) )
+     $                                  SQRT( ONE+THETA*THETA ) )
                                     CS = SQRT( ONE / ( ONE+T*T ) )
                                     SN = T*CS
-                                    MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
-                                    SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
-     +                                         ONE+T*APOAQ*AAPQ ) )
-                                    AAPP = AAPP*SQRT( AMAX1( ZERO, 
-     +                                         ONE-T*AQOAP*AAPQ ) )
+                                    MXSINJ = MAX( MXSINJ, ABS( SN ) )
+                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                         ONE+T*APOAQ*AAPQ ) )
+                                    AAPP = AAPP*SQRT( MAX( ZERO,
+     $                                         ONE-T*AQOAP*AAPQ ) )
 *
                                     APOAQ = D( p ) / D( q )
                                     AQOAP = D( q ) / D( p )
                                           D( p ) = D( p )*CS
                                           D( q ) = D( q )*CS
                                           CALL SROTM( M, A( 1, p ), 1,
-     +                                                A( 1, q ), 1,
-     +                                                FASTR )
+     $                                                A( 1, q ), 1,
+     $                                                FASTR )
                                           IF( RSVEC )CALL SROTM( MVL,
-     +                                        V( 1, p ), 1, V( 1, q ),
-     +                                        1, FASTR )
+     $                                        V( 1, p ), 1, V( 1, q ),
+     $                                        1, FASTR )
                                        ELSE
                                           CALL SAXPY( M, -T*AQOAP,
-     +                                                A( 1, q ), 1,
-     +                                                A( 1, p ), 1 )
+     $                                                A( 1, q ), 1,
+     $                                                A( 1, p ), 1 )
                                           CALL SAXPY( M, CS*SN*APOAQ,
-     +                                                A( 1, p ), 1,
-     +                                                A( 1, q ), 1 )
+     $                                                A( 1, p ), 1,
+     $                                                A( 1, q ), 1 )
                                           IF( RSVEC ) THEN
                                              CALL SAXPY( MVL, -T*AQOAP,
-     +                                                   V( 1, q ), 1,
-     +                                                   V( 1, p ), 1 )
+     $                                                   V( 1, q ), 1,
+     $                                                   V( 1, p ), 1 )
                                              CALL SAXPY( MVL,
-     +                                                   CS*SN*APOAQ,
-     +                                                   V( 1, p ), 1,
-     +                                                   V( 1, q ), 1 )
+     $                                                   CS*SN*APOAQ,
+     $                                                   V( 1, p ), 1,
+     $                                                   V( 1, q ), 1 )
                                           END IF
                                           D( p ) = D( p )*CS
                                           D( q ) = D( q ) / CS
                                     ELSE
                                        IF( D( q ).GE.ONE ) THEN
                                           CALL SAXPY( M, T*APOAQ,
-     +                                                A( 1, p ), 1,
-     +                                                A( 1, q ), 1 )
+     $                                                A( 1, p ), 1,
+     $                                                A( 1, q ), 1 )
                                           CALL SAXPY( M, -CS*SN*AQOAP,
-     +                                                A( 1, q ), 1,
-     +                                                A( 1, p ), 1 )
+     $                                                A( 1, q ), 1,
+     $                                                A( 1, p ), 1 )
                                           IF( RSVEC ) THEN
                                              CALL SAXPY( MVL, T*APOAQ,
-     +                                                   V( 1, p ), 1,
-     +                                                   V( 1, q ), 1 )
+     $                                                   V( 1, p ), 1,
+     $                                                   V( 1, q ), 1 )
                                              CALL SAXPY( MVL,
-     +                                                   -CS*SN*AQOAP,
-     +                                                   V( 1, q ), 1,
-     +                                                   V( 1, p ), 1 )
+     $                                                   -CS*SN*AQOAP,
+     $                                                   V( 1, q ), 1,
+     $                                                   V( 1, p ), 1 )
                                           END IF
                                           D( p ) = D( p ) / CS
                                           D( q ) = D( q )*CS
                                        ELSE
                                           IF( D( p ).GE.D( q ) ) THEN
                                              CALL SAXPY( M, -T*AQOAP,
-     +                                                   A( 1, q ), 1,
-     +                                                   A( 1, p ), 1 )
+     $                                                   A( 1, q ), 1,
+     $                                                   A( 1, p ), 1 )
                                              CALL SAXPY( M, CS*SN*APOAQ,
-     +                                                   A( 1, p ), 1,
-     +                                                   A( 1, q ), 1 )
+     $                                                   A( 1, p ), 1,
+     $                                                   A( 1, q ), 1 )
                                              D( p ) = D( p )*CS
                                              D( q ) = D( q ) / CS
                                              IF( RSVEC ) THEN
                                                 CALL SAXPY( MVL,
-     +                                               -T*AQOAP,
-     +                                               V( 1, q ), 1,
-     +                                               V( 1, p ), 1 )
+     $                                               -T*AQOAP,
+     $                                               V( 1, q ), 1,
+     $                                               V( 1, p ), 1 )
                                                 CALL SAXPY( MVL,
-     +                                               CS*SN*APOAQ,
-     +                                               V( 1, p ), 1,
-     +                                               V( 1, q ), 1 )
+     $                                               CS*SN*APOAQ,
+     $                                               V( 1, p ), 1,
+     $                                               V( 1, q ), 1 )
                                              END IF
                                           ELSE
                                              CALL SAXPY( M, T*APOAQ,
-     +                                                   A( 1, p ), 1,
-     +                                                   A( 1, q ), 1 )
+     $                                                   A( 1, p ), 1,
+     $                                                   A( 1, q ), 1 )
                                              CALL SAXPY( M,
-     +                                                   -CS*SN*AQOAP,
-     +                                                   A( 1, q ), 1,
-     +                                                   A( 1, p ), 1 )
+     $                                                   -CS*SN*AQOAP,
+     $                                                   A( 1, q ), 1,
+     $                                                   A( 1, p ), 1 )
                                              D( p ) = D( p ) / CS
                                              D( q ) = D( q )*CS
                                              IF( RSVEC ) THEN
                                                 CALL SAXPY( MVL,
-     +                                               T*APOAQ, V( 1, p ),
-     +                                               1, V( 1, q ), 1 )
+     $                                               T*APOAQ, V( 1, p ),
+     $                                               1, V( 1, q ), 1 )
                                                 CALL SAXPY( MVL,
-     +                                               -CS*SN*AQOAP,
-     +                                               V( 1, q ), 1,
-     +                                               V( 1, p ), 1 )
+     $                                               -CS*SN*AQOAP,
+     $                                               V( 1, q ), 1,
+     $                                               V( 1, p ), 1 )
                                              END IF
                                           END IF
                                        END IF
                               ELSE
                                  IF( AAPP.GT.AAQQ ) THEN
                                     CALL SCOPY( M, A( 1, p ), 1, WORK,
-     +                                          1 )
+     $                                          1 )
                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
-     +                                           M, 1, WORK, LDA, IERR )
+     $                                           M, 1, WORK, LDA, IERR )
                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
-     +                                           M, 1, A( 1, q ), LDA,
-     +                                           IERR )
+     $                                           M, 1, A( 1, q ), LDA,
+     $                                           IERR )
                                     TEMP1 = -AAPQ*D( p ) / D( q )
                                     CALL SAXPY( M, TEMP1, WORK, 1,
-     +                                          A( 1, q ), 1 )
+     $                                          A( 1, q ), 1 )
                                     CALL SLASCL( 'G', 0, 0, ONE, AAQQ,
-     +                                           M, 1, A( 1, q ), LDA,
-     +                                           IERR )
-                                    SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
-     +                                         ONE-AAPQ*AAPQ ) )
-                                    MXSINJ = AMAX1( MXSINJ, SFMIN )
+     $                                           M, 1, A( 1, q ), LDA,
+     $                                           IERR )
+                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
+     $                                         ONE-AAPQ*AAPQ ) )
+                                    MXSINJ = MAX( MXSINJ, SFMIN )
                                  ELSE
                                     CALL SCOPY( M, A( 1, q ), 1, WORK,
-     +                                          1 )
+     $                                          1 )
                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
-     +                                           M, 1, WORK, LDA, IERR )
+     $                                           M, 1, WORK, LDA, IERR )
                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
-     +                                           M, 1, A( 1, p ), LDA,
-     +                                           IERR )
+     $                                           M, 1, A( 1, p ), LDA,
+     $                                           IERR )
                                     TEMP1 = -AAPQ*D( q ) / D( p )
                                     CALL SAXPY( M, TEMP1, WORK, 1,
-     +                                          A( 1, p ), 1 )
+     $                                          A( 1, p ), 1 )
                                     CALL SLASCL( 'G', 0, 0, ONE, AAPP,
-     +                                           M, 1, A( 1, p ), LDA,
-     +                                           IERR )
-                                    SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
-     +                                         ONE-AAPQ*AAPQ ) )
-                                    MXSINJ = AMAX1( MXSINJ, SFMIN )
+     $                                           M, 1, A( 1, p ), LDA,
+     $                                           IERR )
+                                    SVA( p ) = AAPP*SQRT( MAX( ZERO,
+     $                                         ONE-AAPQ*AAPQ ) )
+                                    MXSINJ = MAX( MXSINJ, SFMIN )
                                  END IF
                               END IF
 *           END IF ROTOK THEN ... ELSE
 *           In the case of cancellation in updating SVA(q)
 *           .. recompute SVA(q)
                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
-     +                            THEN
+     $                            THEN
                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
-     +                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
+     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
-     +                                         D( q )
+     $                                         D( q )
                                  ELSE
                                     T = ZERO
                                     AAQQ = ONE
                                     CALL SLASSQ( M, A( 1, q ), 1, T,
-     +                                           AAQQ )
+     $                                           AAQQ )
                                     SVA( q ) = T*SQRT( AAQQ )*D( q )
                                  END IF
                               END IF
                               IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
-     +                               ( AAPP.GT.ROOTSFMIN ) ) THEN
+     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
-     +                                     D( p )
+     $                                     D( p )
                                  ELSE
                                     T = ZERO
                                     AAPP = ONE
                                     CALL SLASSQ( M, A( 1, p ), 1, T,
-     +                                           AAPP )
+     $                                           AAPP )
                                     AAPP = T*SQRT( AAPP )*D( p )
                                  END IF
                                  SVA( p ) = AAPP
                         END IF
 *
                         IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
-     +                      THEN
+     $                      THEN
                            SVA( p ) = AAPP
                            NOTROT = 0
                            GO TO 2011
                         END IF
                         IF( ( i.LE.SWBAND ) .AND.
-     +                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
+     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
                            AAPP = -AAPP
                            NOTROT = 0
                            GO TO 2203
 *
                   ELSE
                      IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
-     +                   MIN0( jgl+KBL-1, N ) - jgl + 1
+     $                   MIN( jgl+KBL-1, N ) - jgl + 1
                      IF( AAPP.LT.ZERO )NOTROT = 0
                   END IF
 
 *     end of the jbc-loop
  2011       CONTINUE
 *2011 bailed out of the jbc-loop
-            DO 2012 p = igl, MIN0( igl+KBL-1, N )
+            DO 2012 p = igl, MIN( igl+KBL-1, N )
                SVA( p ) = ABS( SVA( p ) )
  2012       CONTINUE
 *
 *
 *     .. update SVA(N)
          IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
-     +       THEN
+     $       THEN
             SVA( N ) = SNRM2( M, A( 1, N ), 1 )*D( N )
          ELSE
             T = ZERO
 *     Additional steering devices
 *
          IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
-     +       ( ISWROT.LE.N ) ) )SWBAND = i
+     $       ( ISWROT.LE.N ) ) )SWBAND = i
 *
          IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.FLOAT( N )*TOL ) .AND.
-     +       ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
+     $       ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
             GO TO 1994
          END IF
 *