/** Copyright (c) 2017 Samsung Electronics Co., Ltd. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ namespace Tizen.NUI { /// /// The Rotation class. /// public class Rotation : global::System.IDisposable { private global::System.Runtime.InteropServices.HandleRef swigCPtr; protected bool swigCMemOwn; internal Rotation(global::System.IntPtr cPtr, bool cMemoryOwn) { swigCMemOwn = cMemoryOwn; swigCPtr = new global::System.Runtime.InteropServices.HandleRef(this, cPtr); } internal static global::System.Runtime.InteropServices.HandleRef getCPtr(Rotation obj) { return (obj == null) ? new global::System.Runtime.InteropServices.HandleRef(null, global::System.IntPtr.Zero) : obj.swigCPtr; } //A Flag to check who called Dispose(). (By User or DisposeQueue) private bool isDisposeQueued = false; //A Flat to check if it is already disposed. protected bool disposed = false; ~Rotation() { if(!isDisposeQueued) { isDisposeQueued = true; DisposeQueue.Instance.Add(this); } } /// /// To make the Rotation instance be disposed. /// public void Dispose() { //Throw excpetion if Dispose() is called in separate thread. if (!Window.IsInstalled()) { throw new System.InvalidOperationException("This API called from separate thread. This API must be called from MainThread."); } if (isDisposeQueued) { Dispose(DisposeTypes.Implicit); } else { Dispose(DisposeTypes.Explicit); System.GC.SuppressFinalize(this); } } protected virtual void Dispose(DisposeTypes type) { if (disposed) { return; } if(type == DisposeTypes.Explicit) { //Called by User //Release your own managed resources here. //You should release all of your own disposable objects here. } //Release your own unmanaged resources here. //You should not access any managed member here except static instance. //because the execution order of Finalizes is non-deterministic. if (swigCPtr.Handle != global::System.IntPtr.Zero) { if (swigCMemOwn) { swigCMemOwn = false; NDalicPINVOKE.delete_Rotation(swigCPtr); } swigCPtr = new global::System.Runtime.InteropServices.HandleRef(null, global::System.IntPtr.Zero); } disposed = true; } /// /// The addition operator. /// /// The first rotation. /// The second rotation. /// The rotation containing the result of the addition. public static Rotation operator +(Rotation arg1, Rotation arg2) { return arg1.Add(arg2); } /// /// The subtraction operator. /// /// The first rotation. /// The second rotation. /// The rotation containing the result of the subtraction. public static Rotation operator -(Rotation arg1, Rotation arg2) { return arg1.Subtract(arg2); } /// /// The unary negation operator. /// /// The first rotation. /// The rotation containing the negated result. public static Rotation operator -(Rotation arg1) { return arg1.Subtract(); } /// /// The multiplication operator. /// /// The first rotation. /// The second rotation. /// The rotation containing the result of the multiplication. public static Rotation operator *(Rotation arg1, Rotation arg2) { return arg1.Multiply(arg2); } /// /// The multiplication operator. /// /// Rotation. /// The vector to multiply. /// The rotation containing the result of the multiplication. public static Vector3 operator *(Rotation arg1, Vector3 arg2) { return arg1.Multiply(arg2); } /// /// The scale operator. /// /// Rotation. /// A value to scale by. /// The rotation containing the result of scaling. public static Rotation operator *(Rotation arg1, float arg2) { return arg1.Multiply(arg2); } /// /// The division operator. /// /// The first rotation. /// The second rotation. /// The rotation containing the result of scaling. public static Rotation operator /(Rotation arg1, Rotation arg2) { return arg1.Divide(arg2); } /// /// The scale operator. /// /// Rotation. /// A value to scale by. /// The rotation containing the result of scaling. public static Rotation operator /(Rotation arg1, float arg2) { return arg1.Divide(arg2); } /// /// The default constructor. /// public Rotation() : this(NDalicPINVOKE.new_Rotation__SWIG_0(), true) { if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); } /// /// The constructor from an axis and angle. /// /// The angle around the axis. /// The vector of the axis. public Rotation(Radian angle, Vector3 axis) : this(NDalicPINVOKE.new_Rotation__SWIG_1(Radian.getCPtr(angle), Vector3.getCPtr(axis)), true) { if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); } /// /// (0.0f,0.0f,0.0f,1.0f). /// public static Rotation IDENTITY { get { global::System.IntPtr cPtr = NDalicPINVOKE.Rotation_IDENTITY_get(); Rotation ret = (cPtr == global::System.IntPtr.Zero) ? null : new Rotation(cPtr, false); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } } /// /// Helper to check if this is an identity quaternion. /// /// True if this is identity quaternion. public bool IsIdentity() { bool ret = NDalicPINVOKE.Rotation_IsIdentity(swigCPtr); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// Converts the quaternion to an axis or angle pair. /// /// The result of an an axis. /// The result of angle in radians. /// True if converted correctly. public bool GetAxisAngle(Vector3 axis, Radian angle) { bool ret = NDalicPINVOKE.Rotation_GetAxisAngle(swigCPtr, Vector3.getCPtr(axis), Radian.getCPtr(angle)); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation Add(Rotation other) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Add(swigCPtr, Rotation.getCPtr(other)), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation Subtract(Rotation other) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Subtract__SWIG_0(swigCPtr, Rotation.getCPtr(other)), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation Multiply(Rotation other) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Multiply__SWIG_0(swigCPtr, Rotation.getCPtr(other)), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Vector3 Multiply(Vector3 other) { Vector3 ret = new Vector3(NDalicPINVOKE.Rotation_Multiply__SWIG_1(swigCPtr, Vector3.getCPtr(other)), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation Divide(Rotation other) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Divide__SWIG_0(swigCPtr, Rotation.getCPtr(other)), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation Multiply(float scale) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Multiply__SWIG_2(swigCPtr, scale), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation Divide(float scale) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Divide__SWIG_1(swigCPtr, scale), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation Subtract() { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Subtract__SWIG_1(swigCPtr), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation AddAssign(Rotation other) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_AddAssign(swigCPtr, Rotation.getCPtr(other)), false); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation SubtractAssign(Rotation other) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_SubtractAssign(swigCPtr, Rotation.getCPtr(other)), false); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation MultiplyAssign(Rotation other) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_MultiplyAssign__SWIG_0(swigCPtr, Rotation.getCPtr(other)), false); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation MultiplyAssign(float scale) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_MultiplyAssign__SWIG_1(swigCPtr, scale), false); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private Rotation DivideAssign(float scale) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_DivideAssign(swigCPtr, scale), false); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private bool EqualTo(Rotation rhs) { bool ret = NDalicPINVOKE.Rotation_EqualTo(swigCPtr, Rotation.getCPtr(rhs)); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } private bool NotEqualTo(Rotation rhs) { bool ret = NDalicPINVOKE.Rotation_NotEqualTo(swigCPtr, Rotation.getCPtr(rhs)); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// Returns the length of the rotation. /// /// The length of the rotation. public float Length() { float ret = NDalicPINVOKE.Rotation_Length(swigCPtr); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// Returns the squared length of the rotation. /// /// The squared length of the rotation. public float LengthSquared() { float ret = NDalicPINVOKE.Rotation_LengthSquared(swigCPtr); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// Normalizes this to unit length. /// public void Normalize() { NDalicPINVOKE.Rotation_Normalize(swigCPtr); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); } /// /// Normalized. /// /// A normalized version of this rotation. public Rotation Normalized() { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Normalized(swigCPtr), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// Conjugates this rotation. /// public void Conjugate() { NDalicPINVOKE.Rotation_Conjugate(swigCPtr); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); } /// /// Inverts this rotation. /// public void Invert() { NDalicPINVOKE.Rotation_Invert(swigCPtr); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); } /// /// Performs the logarithm of a rotation. /// /// The rotation representing the logarithm. public Rotation Log() { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Log(swigCPtr), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// Performs an exponent. /// /// The rotation representing the exponent. public Rotation Exp() { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Exp(swigCPtr), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// Returns the dot product of two rotations. /// /// The first rotation. /// The second rotation. /// The dot product of the two rotations. public static float Dot(Rotation q1, Rotation q2) { float ret = NDalicPINVOKE.Rotation_Dot(Rotation.getCPtr(q1), Rotation.getCPtr(q2)); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// The linear iterpolation (using a straight line between the two rotations). /// /// The start rotation. /// The end rotation. /// A progress value between 0 and 1. /// The interpolated rotation. public static Rotation Lerp(Rotation q1, Rotation q2, float t) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Lerp(Rotation.getCPtr(q1), Rotation.getCPtr(q2), t), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// The spherical linear interpolation (using the shortest arc of a great circle between the two rotations). /// /// The start rotation. /// The end rotation. /// A progress value between 0 and 1. /// The interpolated rotation. public static Rotation Slerp(Rotation q1, Rotation q2, float progress) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Slerp(Rotation.getCPtr(q1), Rotation.getCPtr(q2), progress), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// This version of slerp, used by squad, does not check for theta > 90. /// /// The start rotation. /// The end rotation. /// A progress value between 0 and 1. /// The interpolated rotation. public static Rotation SlerpNoInvert(Rotation q1, Rotation q2, float t) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_SlerpNoInvert(Rotation.getCPtr(q1), Rotation.getCPtr(q2), t), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// The spherical cubic interpolation. /// /// The start rotation. /// The end rotation. /// The control rotation for q1. /// The control rotation for q2. /// A progress value between 0 and 1. /// The interpolated rotation. public static Rotation Squad(Rotation start, Rotation end, Rotation ctrl1, Rotation ctrl2, float t) { Rotation ret = new Rotation(NDalicPINVOKE.Rotation_Squad(Rotation.getCPtr(start), Rotation.getCPtr(end), Rotation.getCPtr(ctrl1), Rotation.getCPtr(ctrl2), t), true); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } /// /// Returns the shortest angle between two rotations in radians. /// /// The first rotation. /// The second rotation. /// The angle between the two rotation. public static float AngleBetween(Rotation q1, Rotation q2) { float ret = NDalicPINVOKE.Rotation_AngleBetween(Rotation.getCPtr(q1), Rotation.getCPtr(q2)); if (NDalicPINVOKE.SWIGPendingException.Pending) throw NDalicPINVOKE.SWIGPendingException.Retrieve(); return ret; } } }