
1

IoTivity Programmer’s Guide
– Things Manager for Android

2

1 CONTENTS

2 Things Manager... 4

3 Terminology .. 4

3.1 Group .. 4

3.2 ActionSet .. 4

3.3 Things Manager ... 5

3.4 Things Configuration .. 5

3.5 Things Diagnostics .. 5

4 ANDROID SDK API ... 5

4.1 Group Manager API .. 6

4.2 Things Configuration & Diagnostics API ... 13

4.2.1 Things Configuration ... 13

4.2.2 Resource Model of Things Configuration .. 15

4.2.3 Things Diagnostics ... 15

4.2.4 Resource Model of Things Diagnostics and FactorySet .. 16

5 Things Manager Architecture ... 18

5.1 Context Diagram ... 18

6 Example : Group Formation & Group Action .. 18

6.1 EXAMPLE SCENARIO: ... 19

6.2 Working Flow .. 20

6.2.1 Run all light bulb applications ... 20

6.2.2 Run the TM sample app to control a group .. 21

6.2.3 Create group action set,”AllBulbsOn” and “AllBulbsOff”.. 22

6.2.4 Execute a group action .. 23

6.2.5 Create, Execute and Cancel ActionSet (RECURSIVE_ALLBULBON) 24

6.2.6 Create, Execute and Cancel ActionSet (SCHEDULED_ALLBULBOFF) 26

6.2.7 GetActionSet (ALLBULBOFF) ... 27

6.2.8 DeleteActionSet (ALLBULBOFF) .. 28

6.2.9 Request an observe to a bookmark application ... 28

6.2.10 Change a status of bookmark resource ... 29

7 Example : Things Configuration & Diagnostics ... 30

7.1 Example Scenario ... 30

3

7.2 Working Flow .. 31

7.2.1 Run all relevant applications: a bootstrapserver (Linux), con-server(Android) and TM

sample(Android) app . .. 31

7.2.2 doBootStrap : .. 32

7.2.3 Find All Groups .. 34

7.2.4 Find All Resources ... 34

7.2.5 Get a Configuration resource .. 34

7.2.6 Update Attribute (region) ... 35

7.2.7 Factory Reset ... 37

7.2.8 Reboot ... 38

7.2.9 Get Supported Configuration Units... 38

4

2 THINGS MANAGER

Things Manager is one of the primitive services provided by Iotivity framework to manage a group of

things in the network. Things Manager also provides rich functionalities to manage multiple things. With

Things Manager functionalities and its offering SDK APIs, developers can easily implement a variety of

applications to find candidate devices to form a group, create a group of found devices, create a group

action for the group, and execute the group action. Also configuration and diagnostics function for

multiple things can be supported by these APIs. The purpose of this guide is to provide the details for

developers to understand and fully utilize given SDK APIs and how the Things Manager works to support

the APIs. Lastly, this guide introduces explanatory scenarios for a group formation, group action, group

synchronization, things configuration and things diagnostics and shows a series of procedure of sample

applications to describe the scenarios for a better understanding on Things Manager.

3 TERMINOLOGY

3.1 GROUP

A set of devices in an IoTivity local network and remote networks for accomplishing the specific goal.

Using several kinds of criteria, devices can be a member of a specific group. However, basically those

member devices don’t have any information about the group. Only the device that creates this group

can have and maintain the information about this group.

Currently, resource type can be used as criteria for group formation and more criteria’s will be provided

in future.

3.2 ACTIONSET

A set of action descriptions needed by remote devices as the member of a specific group. For a

particular group, multiple action sets can be assigned. One action set can have multiple actions and one

action should be assigned to one specific member devices’ characteristic. Currently only resource type

can be used as device’s characteristic.

To create an action set, one may need to know the Delimiter serialization. With the Delimiter, one

specifies an action set as below.

movieTime*10 1*uri=coap://10.251.44.228:49858/a/light|power=on*

uri=coap://10.251.44.221:49858/a/light|power=on

A first segment before the first asterisk(*) is an action set name. The second segment indicates a time-

related information which is used for scheduled/recursive group action features. The first digit in the

segment is either delay or a step of time delay and the second digit is a type of group action, e.g., a

normal/scheduled/recursive group action. If the type indicates a normal group action, the first digit will

be ignored. If the type does a scheduled group action, the first digit will be utilized as a time delay such

5

as after 10 seconds. If the type does a recursive group action, the first digit will be utilized as a step of

time delay such as every 10 seconds.

The third segment goes before a next asterisk. In the above example,

“uri=coap://10.251.44.228:49858/a/light|power=on” is the segment. This can be also divided into two

sub segments by a vertical bar(|): URI and a pair of attribute key and value. The remained string from

the second asterisk is same as the third segment.

3.3 THINGS MANAGER

A software service which helps to create a specific group and maintain that group. Group action feature

-creating, maintaining and executing group action related with this group .

Richer API regarding configuration of multiple things and diagnostics of multiple things are provided by

Things Manager.

A more detailed description of Things Manager and its relevant components will be provided later in this

guide.

3.4 THINGS CONFIGURATION

Things Manager provides APIs to access a Configuration resource’s value to get/update a system

parameter. The extent of what a Configuration resource covers could be all system-specific. On the

server side, bootstrapping requisite information (i.e. system configuration parameters) from a bootstrap

server to access other IoT services. On the client side, getting/updating the system configuration

parameters from/to multiple remote things.

3.5 THINGS DIAGNOSTICS

The purpose of a Things Manager in terms of diagnostics is to request a system command (e.g., Factory

Reset, Reboot) with a diagnostic purpose to a resource server by accessing a Diagnostics resource’s

value from a client that is remotely located.

4 ANDROID SDK API

SDK API is the facet of Things Manager to applications as shown in the Figure 1.

Figure 1 Things Manager SDK APIs and Application

6

4.1 GROUP MANAGER API

This APIs provides methods for application to find appropriate devices (i.e. things) in network, create a

group of the devices, check presence of member devices in the group, and actuate a group action in a

more convenient way.

The operations provided in the SDK are listed below:

 findCandidateResources

 subscribeCollectionPresence

 findGroup

 createGroup

 joinGroup

 leaveGroup

 deleteGroup

 getGroupList

 addActionSet

 executeActionSet

 cancelActionSet

 getActionSet

 deleteActionSet

 bindResourceToGroup

findCandidateResource() is to request Things Manager to find resources in network. The

findCandidateResource() function has a key parameter to give a condition to find appropriate resources

out of all available resources in network. One of conditions provided is a resource type.

With the parameter, developers can indicate a list of resource types they want to find and create a

group.

Note: Listeners are provided to receive responses asynchronously, users can register using Set

listener methods provided by SDK.

Prototype:

 OCStackResult findCandidateResources(Vector<String> resourceTypes)
[Without WaitTime]

 OCStackResult findCandidateResources(Vector<String> resourceTypes, int waitTime)
[With WaitTime]

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setFindCandidateResourceListener(IFindCandidateResourceListener listener)

Callback for this API :

 public void onResourceCallback(Vector<OCresource> resources)

7

Note that for registering a callback function to get notification when resources are discovered in the

network, setFindCandidateResourceListener() is used.

subscribeCollectionPresence() is to request Things Manager to subscribe for the presence state of the

resource. The only parameter is OCResource which indicates a target child resource.

Note that for registering a callback function to get child resource presence status,

setSubscribePresenceListener() is used.

findGroup() is to request Things Manager to find a specific remote group when a resource tries to join a

group. The only parameter is collectionResourceTypes which is the resource types of a group to find and

join.

Note that for registering a callback function to get group discovery status, setGroupListener() is used.

Prototype:

 OCStackResult findGroup(Vector<String> resourceTypes)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setGroupListener(IFindGroupListener listener)

Callback for this API :

 public void onGroupFindCallback(OCResource resource)

Prototype:

 OCStackResult subscribeCollectionPresence(OCResource resource)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setSubscribePresenceListener(ISubscribePresenceListener listener)

Callback for this API

 public void onPresenceCallback(String resource, OCStackResult result)

 OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

8

createGroup() is to request a Things Manager to create a group that is not existing. The only parameter

is collectionResourceType which is the resource type of a group to create.

joinGroup() is to request Things Manager to join an existing group. This is an overloaded function. One is

used when a resource that has a group tries to find a specific remote resource and makes it join a group.

The first parameter is collectionResourceType which is the resource type of a group to join. The second

parameter is resourceHandle which is the resource handle to join a group.

On the other hand, the other one is used when a resource that doesn’t have a group tries to find and

join a specific remote group. The first parameter is resource which is the group resource pointer to join.

The second parameter is resourceHandle which is the resource handle to join a group.

leaveGroup() is to request Things Manager to leave a joined group. The first parameter is

collectionResourceType which is the resource type of a group to leave. The second parameter is

resourceHandle which is the resource handle to leave a group.

Prototype:

 OCStackResult leaveGroup(String collectionResourceType, OCResourceHandle
resourceHandle)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Prototype:

 OCStackResult joinGroup(OCResource resource, int resourceHandle)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Prototype:

 OCStackResult joinGroup(String collectionResourceType, OCResourceHandle resourceHandle)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Prototype:

 OCStackResult createGroup (String collectionResourceType)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

9

deleteGroup() is to request Things Manager to delete a created group. The only parameter is

collectionResourceType which is the resource type of a group to delete.

getGroupList() is to request Things Manager to get a list of joined groups. This has no parameter and
returns the map with the resource type of a group and group resource handle.

addActionSet() is to request Things Manager to add a specific action set belonging to a specific resource.

The first parameter is a resource which a new action set will be added onto. The second parameter is a

newActionSet which is a target instance of ActionSet class to be added.

Note that for registering a callback function for the requested actions, setPutResourceListener() is used.

Prototype:

 int addActionSet(OcResource resource, ActionSet actionSet)

Register a callback for this API:

 public void setPutResourceListener (IOCResourcePutCallback listener)

Callback for this API :

 public void onPutResponseCallback(Vector <OCHeaderOption> headerOptions,

 OCRepresentation rep, int errorValue)

Prototype:

 Map<String, int> getGroupList()

Prototype:

 OCStackResult deleteGroup(String collectionResourceType)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

10

executeActionSet() is to request Things Manager to execute a specific action set belonging to a specific
resource. This is a kind of overloaded functions and has two types. One is used when one wants to
execute an action set immediately. The first parameter is a resource which is a target resource. The
second parameter is an actionsetName which is a string indicating an action set name to be executed.

Note that for registering a callback function for the requested actions, setPostResourceListener() is used.

executeActionSet() with delay parameter is used for execute an action set after a given delay in seconds.

The first and second parameters are same as those of the above function. The third parameter is a

delay which is a time delay used to postpone an execution of action set. The unit of this delay is a

second. Note that even if you did not create the group action as a scheduled group action, the group

action will be executed after the delay by using this parameter.

Prototype:

 OCStackResult executeActionSet(OCResource resource, String actionsetName, long delay)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setPostResourceListener (IOCResourcePostCallback listener)

Callback for this API :

 public void onPostResponseCallback (Vector<OCHeaderOption>headerOptions,

 OCRepresentation rep, int errorValue)

Prototype:

 OCStackResult executeActionSet(OCResource resource, String actionsetName)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setPostResourceListener (IOCResourcePostCallback listener)

Callback for this API :

 public void onPostResponseCallback (Vector<OCHeaderOption>headerOptions,

 OCRepresentation rep, int errorValue)

11

CancelActionSet() is to request Things Manager to cancel the execution of action set.

getActionSet() is to request Things Manager to get an existing action set belonging to a specific resource.

The first parameter is a resource which is a target resource to be retrieved. The second parameter is

actionsetName which is a string indicating an action set name. When the callback function is called, an

action set string in Delimiter format will be returned.

Note that for registering a callback function for the requested actions, setGetResourceListener() is used.

Prototype:

 OCStackResult getActionSet(OCResource resource, String actionsetName)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setGetResourceListener (IOCResourceGetCallback listener)

Callback for this API :

 public void onGetResponseCallback (Vector<OCHeaderOption>headerOptions,

 OCRepresentation rep, int errorValue)

Prototype:

 OCStackResult cancelActionSet(OCResource resource, String actionsetName)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setPostResourceListener (IOCResourcePostCallback listener)

Callback for this API :

 public void onPostResponseCallback (Vector<OCHeaderOption>headerOptions,

 OCRepresentation rep, int errorValue)

12

deleteActionSet() is to request a Things Manager to delete an existing action set belonging to a specific

resource. The first parameter is a resource which is a target resource. The second parameter is an

actionsetName which is a string indicating an action set name to be deleted.

Note that for registering a callback function for the requested actions, setGetResourceListener() is used.

bindResourceToGroup() is to request a Things Manager to bind a found resource to group. The first

parameter is a resource which is the found resource in the network. The second parameter is a

collectionHandle which is a resource handle representing a group resource which the found resource is

about to join to. Resource handle of resource which bound to given group/collection will be returned

upon API success otherwise null.

In addition to Group Manager APIs, ActionSet class provides two useful APIs to action set information

translation. The action set information can be presented in two forms: ActionSet class form and a string

form in Delimiter format.

toString() is to request ActionSet class to provide a string serialized in Delimiter format.

Prototype:

 String toString()

Prototype:

 OCResourceHandle bindResourceToGroup(OCResource resource, OCResourceHandle
collectionHandle)

OCResourceHandle : Resource handle which is bound to given collection.

Prototype:

 OCStackResult deleteActionSet(OCResource resource, String actionsetName)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setGetResourceListener (IOCResourceGetCallback listener)

Callback for this API :

 public void onGetResponseCallback (Vector<OCHeaderOption>headerOptions,

 OCRepresentation rep, int errorValue)

13

toActionSet() is to request ActionSet to translate a string serialized in Delimiter format into an instance

of ActionSet class and get the instance. The only parameter is an actionsetString which is a target string

serialized in Delimiter format.

4.2 THINGS CONFIGURATION & DIAGNOSTICS API

4.2.1 Things Configuration

There are two main usages of this class:

 On the server side, bootstrapping requisite information (i.e. system configuration parameters)

from a bootstrap server to access other IoT services.

 On the client side, getting/updating the system configuration parameters from/to multiple

remote things.

On the server side, there is only one API for bootstrapping :

Note: Listeners are provided to receive responses asynchronously, user can register using Set listener

methods provided by SDK.

Note that for registering a callback function to receive asynchronous response for configuration feature

APIs, setConfigurationListener() is used.

On operating at first stage, a resource server should fetch a bunch of configuration information from a

bootstrap server to configure itself to access other IoT services. The information includes a system time

information(e.g., time zones), network information (e.g., IP Address), and security information (i.e.,

access control list). After fetching, the information has been stored in forms of resources, namely

Configuration resource.

On the client side, there are two APIs for getting/updating a resource value from/to resource server(s) :

updateConfiguration() and getConfiguration()

Prototype:

 OCStackResult doBootstrap()

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setConfigurationListener(IDiagnosticsListener listener)

Callback for this API :

 public void onBootStrapCallback(Vector<OCHeaderOption> headerOptions,

 OCRepresentation rep, int errorValue)

Prototype:

 ActionSet toActionSet(String actionsetString)

14

Note that for registering a callback function to receive asynchronous response for configuration feature

APIs, setConfigurationListener() is used.

The first parameter, resource, is a pointer of resource instance of Configuration resource. The resource

pointer can be acquired by performing findResource() function with a dedicated resource type,

“oic.con”. Note that, the resource pointer represents not only a single simple resource but also a

collection resource composing multiple simple resources. In other words, using these APIs, developers

can send a series of requests to multiple things by calling the corresponding function at once.

The second parameter, configurations, represents an indicator of which resource and attribute key

developers want to access and which value developers want to update. For convenience to access the

wanted value, ConfigurationName in configurations parameter should be an attribute key of

configuration resource, e.g., loc(Location), st(System Time), c(Currency), and r(Region) attribute keys.

And ConfigurationValue only used in updateConfiguration() function indicates a value to be updated.

Note that, only one configuration parameter is supported in this release. Multiple configuration

parameters will be supported in future release.

Prototypes:

 OCStackResult getConfigurations(OCResource resource, Vector<String> configurations)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setConfigurationListener(IDiagnosticsListener listener)

Callback for this API :

 public void onGetConfigurationsCallback(Vector<OCHeaderOption> headerOptions,
 OCRepresentation rep, int errorValue)

Prototypes:

 OCStackResult updateConfigurations(OCResource resource,
Map<String, String> configurations)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setConfigurationListener(IDiagnosticsListener listener)

Callback for this API :

 public void onUpdateConfigurationsCallback(Vector<OCHeaderOption> headerOptions,
 OCRepresentation rep, int errorValue)

15

As mentioned briefly, to access a resource with the above APIs, developers should know a

ConfigurationName replacing a resource URI. Things Configuration provides an additional APIs for this;

When calling this function, developers get to know which Configuration-Names are supported and their

brief descriptions. This information is provided in JSON format.

4.2.2 Resource Model of Things Configuration

Configuration resource currently has several attributes: location, system time, currency, and region. The

detail descriptions for those attributes are followed below.

Resource Name URI Resource Type

Configuration /oic/con oic.con

Attribute Attribute
Name (key)

Value Type Access
Modes

Description

Location loc Json R, W Provides location information
where available

System Time st Datetime R Reference time for the device

Currency c String R, W Indicate the currency that is
used for any monetary
transactions

Region r String R, W Indicate the current region in
which the device is located
geographically

4.2.3 Things Diagnostics

There are two functionalities in Things Diagnostics:(1) FactoryReset to restore all configuration

parameters to default one, and (2) Reboot to request a system rebooting.

The prototypes of APIs to provide these functionalities are as following;

Prototype:

 String getListOfSupportedConfigurationUnits(void)

16

Note that for registering a callback function to receive asynchronous response for diagnostics feature

APIs, setDiagnosticsListener() is used.

The first function, factoryReset(), is used to restore all configuration parameters to default one. All

configuration parameters refers Configuration resource, which they could have been modified for

various reasons (e.g., for a request to update a value). If developers on the client want to restore the

parameters, just use the factoryReset() function.

Additionally, for the purpose of storing default configuration parameters on a resource server side, the

server maintains a FactorySet resource which stores all default configuration parameters. If the server

receives a request of FactoryReset() from the client, the server refers a FactorySet resource to restore all

parameters of Configuration resource. Note that, a client can access a FactorySet resource to read

default parameters but cannot modify any parameter of the resource.

The second function, reboot(), is used to send a request to a server to be rebooted. On receiving the

request, the server attempts to reboot itself in a deterministic time.

4.2.4 Resource Model of Things Diagnostics and FactorySet

Diagnostics resource currently has three attributes: factory reset, reboot, and start stat collection. The

detail descriptions for those attributes are followed below.

Prototype

 OCStackResult reboot(OCResource resource)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setDiagnosticsListener(IDiagnosticsListener listener)

Callback for this API :

 public void onRebootCallback(Vector<OCHeaderOption> headerOptions,
OCRepresentation rep, int errorValue);

Prototype:

 OCStackResult factoryReset(OCResource resource)

OCStackResult : Returns OC_STACK_OK on Success , Error status code on Failure.

Register a callback for this API:

 public void setDiagnosticsListener(IDiagnosticsListener listener)

Callback for this API :

 public void onFactoryResetCallback(Vector<OCHeaderOption> headerOptions,
 OCRepresentation rep, int errorValue)

17

Resource Name URI Resource Type

Diagnostics /oic/diag oic.diag

Attribute Attribute
Name (key)

Value Type Access
Modes

Description

Factory_Reset fr bolean R, W 0 – No action (Default)

1 – Start Factory Reset. After
factory reset, this value shall be
changed back to the default
value

Reboot rb boolean R, W 0 – No action (Default)

1 – Start Reboot, After reboot,
this value shall be changed back
to the default value

StartStatCollection ssc boolean R, W 0 – No collection of statistics

1 – Start collection statistics.
Toggles between collecting and
not collecting any device
statistics depending on the
value being 0 or 1.

Diagnostics resource has three simple resources: Factory Reset, Reboot, and Start Collection. The

Factory Reset and Reboot resources are responsible for FactoryReset and Reboot functionalities in

Things Diagnostics, respectively. The other resource, Start Collection, is to start collecting device-related

statistics itself when the resource’s value is set to TRUE.

FactorySet resource is identical to Configuration resource except URI and resource type. It is only used

to store default attribute values of Configuration resource which would be used to restore all values of

Configuration resource to be default values. Thus, a list of attributes maintained in FactorySet resource

is same as one in Configuration resource.

Resource Name URI Resource Type

FactorySet /factorySet factoryset

18

5 THINGS MANAGER ARCHITECTURE

5.1 CONTEXT DIAGRAM

Things Manager service operates in the IoTivity Base messaging environment as shown in the Figure 5.

Figure 5. Things Manager Context Diagram

6 EXAMPLE : GROUP FORMATION & GROUP ACTION

This section is to show the functionality of group management and group action. With example, it can

be understood how group can be made and how can we use it.

A Group can have homogeneous or heterogeneous member things. Multiple groups can be handled

simultaneously.

Group Action can be triggered by user’s action (i.e. switch control) or by registered action. User

application can subscribe this kind of action to particular group. Example Scenario:

19

6.1 EXAMPLE SCENARIO:

Figure 6. Example Scenario for testing Group Formation/Action Feature

- Scenario 1: Bulb Control Service

There are mainly two entities composing “Bulb Control System”: one mobile phone and two bulbs.

This scenario shows that users can easily manage their at-home light bulbs with their mobile phone.

One of convincing situations for the scenario is the moment that users leave home for work; they may

want to turn all bulbs at home off with their phone.

a) At initial stage, we assume that two bulbs are already on.

b) After an application to control the bulbs executed on the phone, the phone discovers the
bulbs around it and sets them as “Group” for Bulb Control Service.

c) After “Group” made, user can see a switch to control.

d) Once clicking the switch to off, the bulbs are going to turning off.

- Scenario 2: Help Your Reading Service (using bookmark)

a) At initial stage, we assume that the bulbs are already off and the bookmark is put in a book.

20

b) The phone discovers the bookmark and bulbs. First, when all bulbs are found, “Group” can
be made. And when the bookmark is found, the phone requests the bookmark to observe a
book’s openness. After that, the bookmark will notice its status whenever it changes.
(openclose, closeopen)

c) A book reader opens his/her book.

d) Then the bulbs are going to turn.

6.2 WORKING FLOW
This section introduces an experimental example of the scenarios where light bulbs and bookmark run

on Ubuntu platform and the TM sample app on Android Mobile phone. This section describes how

Things (i.e. bulbs and bookmark) can make group communication and what kind of features can be

provided by Things Manager, specifically Group Manager.

6.2.1 Run all light bulb applications

First of all, users execute light bulb applications corresponding to actuators (called resources from here).

To execute all light bulb applications, enter as follows:

As seeing above, users can know details of the registration for the light bulb resource including resource

URI, resource type, and resource interface.

Next, users execute a bookmark application. To do, enter as follows:

~/deviceB/service/things-manager/build/linux/release$./lightserver

Resource URI : /a/light

 Resource Type Name : core.light

 Resource Interface : oc.mi.def

 Resource creation is successful with resource handle : 0x1dd1de0

…

~/deviceC/service/things-manager/build/linux/release$./lightserver

…

21

6.2.2 Run the TM sample app to control a group

Now, users execute Android application, called a “TM sample app”. Once the application is executed, it

shows two options: GROUP APIS & CONFIGURATION APIS.

MAIN MENU SCREEN:

 GROUP APIS: For verifying Group Manager APIs.

 CONFIGURATION APIS: For verifying Things Configuration and Diagnostic APIs.

Once you select the first option the below screen will be shown:

If resource is running in background, then resource information will be displayed as shown in the below

screenshot

GROUP APIS SCREEN:

~/deviceD/service/things-manager/build/linux/release$./bookmark

Resource URI : /core/bookmark

 Resource Type Name : core.bookmark

 Resource Interface : oc.mi.def

 Resource creation is successful with resource handle : 0xfd6da0

…

22

 Find Group: Clicking Find Group button invokes findGroup API for the resource of the type
“b.collection”

After that, click Find Group button to find the group resource. Once we find the group resource, a list of

actions will be displayed which can be performed. Group comprising the found light resources. Group

information will be displayed as shown in the below screenshot

6.2.3 Create group action set,”AllBulbsOn” and “AllBulbsOff”

The next step is to define group action sets for the group. In this example, there are two predefined

group action sets: “AllBulbsOn” and “AllBulbsOff”.

To create action set “AllBulbsOn” & “ALLBULBOFF” click on the 1st option in the app

23

6.2.4 Execute a group action

To execute action set “AllBulbsOn”, click on the 2nd option in the App.

After that, users can notice that all light bulb applications have an “On” event as follows:

To execute action set “AllBulbsOff”, click on the 3rd option in the App.

In execution of “./lightserver

…

In entity handler wrapper:

 In Server CPP entity handler:

 requestFlag : Request

 requestType : PUT

 power: on

24

Then, users can notice that all light bulb applications have an “Off” event as follows:

6.2.5 Create, Execute and Cancel ActionSet (RECURSIVE_ALLBULBON)

User can create an action set that can be triggered recursively.

In sample application we are giving time duration of 5 seconds .

To create a recursive action set “ALLBULBON” click on the 4th option in the app.

To execute the recursive action set “ALLBULBON” click on the 4.1 option in the App.

In execution of “./lightserver”

…

In entity handler wrapper:

 In Server CPP entity handler:

 requestFlag : Request

 requestType : PUT

 power: off

25

Then users can notice that all light bulb applications have an “On” event after each 5 seconds as follows:

(until user cancel it by clicking 4.2 option in the app)

To cancel the recursive action set “ALLBULBON” click on the 4.2 option in the App. It will stop the

recursive action set “ALLBULBON”.

In execution of “./lightserver

…

In entity handler wrapper:

 In Server CPP entity handler:

 requestFlag : Request

 requestType : PUT

 power: on

26

6.2.6 Create, Execute and Cancel ActionSet (SCHEDULED_ALLBULBOFF)

User can create an action set that can be triggered at the given date and time.

To create a scheduled action set “ALLBULBOFF” click on the 5th option in the app.

On clicking the 5th option the following dialog will be shown:

To execute scheduled action set “ALLBULBOFF” click on the 5.1 option in the App.

27

To cancel the scheduled action set “AllBulbsOFF” click on the 5.2 option in the App. It will cancel the

scheduled action set that has been executed using 5.1 option.

6.2.7 GetActionSet (ALLBULBOFF)

To get an actionset “ALLBULBOFF” that we have created using 1st option of the UI.

28

6.2.8 DeleteActionSet (ALLBULBOFF)

To delete an action set “ALLBULBOFF” that we have created earlier using 1st option of the UI.

6.2.9 Request an observe to a bookmark application

For the second scenario mentioned in Section7.1, the “TM sample app” needs to monitor how a

bookmark’s status changes. To do this, the “TM sample app” utilizes an observe option of CoAP

specification.

To request an observe, click on the 8th option i.e. “Find Bookmark to Observe”. Then the “TM sample

app” discovers a bookmark resource in a network and then sends an observe request to the found

resource server.

29

If the observe request is successfully delivered to a bookmark resource server, users can see the below

prompt.

6.2.10 Change a status of bookmark resource

If users want to change a status of the bookmark resource, simply put a digit “0” or “5” as follows:

Once the status changes, the bookmark application sends the notification to the groupserver application.

If the notification informs that a book is opened, just execute an “AllBulbOn” action set and send a

request for light bulb resource to turn on.

After that, users can notice that all light bulb applications have an “On” event as follows:

In execution of “./lightserver”

…

In entity handler wrapper:

 In Server CPP entity handler:

 requestFlag : Request

 requestType : PUT

 power: on

In execution of “./bookmark”

Input a integer(0:opened, 5:close) : 0

…

In execution of “./bookmark”

Input a integer(0:opened, 5:close) :

…

30

7 EXAMPLE : THINGS CONFIGURATION & DIAGNOSTICS

This section is to show the functionalities of things configuration and diagnostics. As discussed in Section

5, a things configuration is to get/update system configuration parameters and a things diagnostics is to

request a set of specified functions with diagnostic purpose such as a factory reset and system reboot.

7.1 EXAMPLE SCENARIO

Figure 7. Example Scenario for testing Things Configuration/Diagnostics Feature

Scenario 1: Things Configuration (Get/Update)

We assume that there are two things(i.e. resource servers) to be managed by the administrator(i.e. a

resource client). Additionally, we also assume that a simple bootstrap server is installed in purpose that

things can fetch essential configuration parameters to access other IoT service. For E.g.: resource servers

fetch information about the region and time from boot strap servers.

a) Bootstrap sever and resource server should be running

b) Resource server should get essential configuration parameters from bootstrap server

c) When resource client application starts, it can discover resource server

d) Resource client can get/update configuration parameter from resource server.

Scenario 2: Things Diagnostics (Factory Reset/Reboot)

This scenario shows two requests from an administrator to things: First is a factory reset and second is a

system reboot. A factory reset is to restore all system configuration parameters to default one. And a

system reboot is just to let the system reboot.

a) Bootstrap sever and resource server should be running

b) Resource server should get essential configuration parameters from bootstrap server

c) When resource client application starts, it can discover resource server

31

d) Resource client can send factory reset command to resource server to erase all the

configuration parameter which got from bootstrap server

e) Resource client can send Reboot command to let the resource server to do system reboot

7.2 WORKING FLOW

This section introduces an experimental example of the scenarios run on Ubuntu platform & Android

App.

7.2.1 Run all relevant applications: a bootstrapserver (Linux), con-server(Android) and TM

sample(Android) app .

First of all, users execute all relevant applications. A bootstrapserver application represents a bootstrap

server, a con-server application does a Thing, and a TM sample application does an administrator.

To execute the applications, enter as follows:

Now, run the con-server Android App

MAIN MENU SCREEN :

Two options are provided on the main menu :

 doBootStrap

 Create Configuration resources

~/deviceA/service/things-manager/build/linux/release$./bootstrapserver

…

32

7.2.2 doBootStrap :

This API is used by resource server, to receive configuration information from an available bootstrap

server to configure it to access other IoT services. We receive configuration information in

onBootStrapCallback, we are updating same information to UI as shown in the below figure.

7.2.2.1 Create Configuration resources:

Create configuration resources with the retrieved configuration parameters from a bootstrap server.

 Configuration resource

 Diagnostics resource

 FactorySetresource

After successful creation of all the resources the UI will be updated as shown below

33

we can test the Configuration APIs of Things Manager by running our sample app that has con-client in it

i.e. CONFIGURATION APIS.

Now, Run the TM sample app

MAIN MENU SCREEN:

 CONFIGURATION APIS: Click on this menu to test Things configuration and Diagnostic APIs.

CONFIGURATION APIS SCREEN:

Note that in the above snapshots, since in a single snapshot all options cannot be shown, two snapshots

are captured to show all the options.

34

7.2.3 Find All Groups

Search for the groups of the type core.configuration.resourceset, core.diagnostics.resourceset and

core.factoryset.resourceset using API findCandidateResources.

7.2.4 Find All Resources

Search for the resources of the type oic.con, oic.diag and factorySet using API findCandidateResources.

7.2.5 Get a Configuration resource

Get configuration table from “oic.con” resource. We will get four attributes of configuration resource :

Location, System Time, Currency and Region as shown in below screenshot.

35

7.2.6 Update Attribute (region)

Set attribute “region” of oic.con resource with new value(India).

Once user select Update attribute(region) option in the app the following dialog will be shown

36

If user clicks ok then, the following screen will be shown

Now, if user clicks on the 3rd option “Get a Configuration resource”, user will see the region attributes

has been set to the new value given by him.

37

7.2.7 Factory Reset

Invoke factoryReset on “oic.diag” resource to restore all system configuration parameters to default one.

Note that now, If you press Get Configuration (region) option, you can see that it’s been reset to default

value:

38

7.2.8 Reboot

Invoke reboot on “oic.diag” resource to reboot the con-server.

7.2.9 Get Supported Configuration Units

Get supported configuration unit in JSon format.

