
IoTivity Programmer’s Guide
– Protocol Plugin Manager For Tizen

1 CONTENTS

2 Overview ... 3

2.1 Overall Flows .. 3

3 Using Plugin Manager ... 4

3.1 Setting Plugin Configuration ... 4

3.2 Locating Plugin and Manifest File ... 5

4 Using Plugin Resources ... 6

4.1 MQTT Fan Plugin .. 6

5 SDK API .. 6

5.1 Protocol Plugin Manager API .. 6

6 Example ... 9

6.1 Tizen Sample Application ... 9

2 OVERVIEW

This guide will help you to use protocol plugins. Using protocol plugins, your application can

communicate with various protocol devices using IoTivity APIs as shown in the following diagram.

<Figure 1. Protocol Plugin Concept>

2.1 OVERALL FLOWS
Using Plugin Manager APIs, application can start plugins that are located in a specific folder. After

starting a plugin, the plugin will try to find its device using own protocol and creates resource server

when the device is found. Then application can find and communicate with the resource using base APIs

similar to normal IoTivity resource. Following diagram describes the flows.

<Figure 2. Overall Flow>

3 USING PLUGIN MANAGER

This section describes plugin configuration which is the manifest file of the plugin and the required

folder structure for the plugins in the application.

3.1 SETTING PLUGIN CONFIGURATION
For plugin configuration, PluginManager.xml file should be located in the “lib” folder of the application.

Then, plugin manager can load the config information when the application creates plugin manager

instance.

Example :

<?xml version="1.0" encoding="utf-8"?>

<pluginManager>

 <pluginInfo

 PluginPath=”/opt/usr/apps/org.iotivity.service.ppm.ppmsampleapp/lib/plugins”>

 </pluginInfo>

</pluginManager>

<?xml version="1.0" encoding="utf-8"?>

<pluginManager>

 <pluginInfo

 PluginPath="PATH_TO_PLUGIN_FOLDER_OF_THE_APPLICATION”>

 </pluginInfo>

</pluginManager>

3.2 LOCATING PLUGIN AND MANIFEST FILE
Before starting plugins, plugin binary should be located in the path specified in the plugin configuration

and plugins should be present in the path in a separate folder.

Given an example of how to locate plugin (“mqtt-fan”) in a Tizen Application

Following XML description is a plugin manifest file of “mqtt-fan” plugin

Each plugin has a manifest XML file in the same folder and will have following information.

Key Name Description

id Unique id of the plugin

version Version of the plugin

name Name of the plugin

url URL of the plugin

resourcetype Supported OIC resource type by the plugin

Runtime Library .so file of the plugin

<?xml version="1.0" encoding="UTF-8"?>

<plugin id="oic.plugin.mqtt-fan"

 version="0.1"

 name="mqtt-fan"

 url="fan"

 resourcetype="oic.fan">

<runtime library="fanserver_mqtt_plugin" funcs="mqtt_plugin_fanserver_funcs"/>

</plugin>

/sample-app/tizen/Application_Name/lib/plugins/mqtt-fan

- fanserver_mqtt_plugin.so

- plugin.xml (Described below)

4 USING PLUGIN RESOURCES

This section describes how to communicate with non-oic devices using plugins and IoTivity API.

4.1 MQTT FAN PLUGIN
Application can find MQTT FAN device using “oic.fan” resource type and communicate with following

attributes

Attribute Key Attribute Value Type Description

power “on”, “off” String Turn on/off the fan

5 SDK API

This section provides information on the APIs exposed by Protocol Plugin Manager service for the use by
applications. SDK API is the facet of Protocol Plugin Manager to applications as shown in the Figure 3.

<<calls>>

<<Results>>

<Figure 3. Protocol Plugin Manager SDK APIs and Application >

5.1 PROTOCOL PLUGIN MANAGER API

“Protocol Plugin Manager” APIs provide methods for application to start and stop the plugins, scan for
plugins in the registered directory, get the list of plugins and also the state of plugins. The operations
provided in the SDK are listed below:

 startPlugins

 stopPlugins

 rescanPlugin

 getPlugins

 getState

startPlugins API can be used to start the plugins by specifying key and value as parameters. Using the

plugin information described in the manifest file, application can start plugins as follows.

startPlugins(“resourcetype”, “oic.fan”);

startPlugins(“id”, “oic.plugin.mqtt-fan”);

 Application

 PluginManager

After starting, the plugin will try to find its device using its own protocol and will create a resource
server when the device is found. Then the application can find and communicate with the resource
using the base API as a normal IoTivity resource.

stopPlugins API can be used to stop the plugins by specifying key and value as parameters. Key can be
name of a resource type (Example: ResourceType) and value is the resource type value (Example:
device.light). Once this API is called, the application can no longer find and communicate with the
resource.

rescanPlugin API can be used to rescan for plugins in the registered directory and to install those plugins

in the plugin manager table.

Prototype:

int rescanPlugin();

Return Value:

 Returns 1 on Success, 0 on Failure.

Prototype:

int stopPlugins(const std::string key, const std::string value);

Parmaters:

 key - Key string of the plugin to be stopped.

 value - Value string of the plugin to be stopped.

Return Value:

 Returns 1 on Success, 0 on Failure.

Prototype:

int PluginManager::startPlugins(const std::string key, const std::string value)

Parmaters:

 key - Key string of the plugin to be started.

 value - Value string of the plugin to be started.

Return Value:

 Returns 1 on Success, 0 on Failure.

getPlugins API can be used to get the list of Plugins that are installed. An application can get the

information of plugin as folllows.

getState API can be used to get the state of the plugin by providing plugin ID as parameter. This API

returns the plugin state in a string.

Prototype:

std::string getState(const std::string plugID);

Parmaters:

 plugID - ID of the plugin for which state is being queried.

Return Value:

 Returns the state of the plugin in a String.

Prototype:

std::vector<Plugin> getPlugins(void);

Return Value:

 Returns available plugins’ information in an V.

6 EXAMPLE

This section describes the sample application for Protocol plugin manager.

6.1 TIZEN SAMPLE APPLICATION

This section describes flow of Sample Application in which we are trying to start, find and to perform

operation on the “mqtt-fan”plugin located in the plugins folder of the application (Complete folder

structure of the application for the plugins is described in section 4 : Using Plugin Manager).

Application Main Screen :

If a user clicks on the “Invoke Fan Plugin” button, it will create a instance of PluginManager class and will

call getPlugins() API of PluginManager to get list of all plugins. In this sample it will return one plugin as

there is only one plugin the plugin folder of the application i.e. mqtt-fan.

After finding, sample app starts the plugin by calling startPlugin() API of PluginManager.

User can see the logs for these calls on the UI :

After starting the plugin, application finds the plugin using findResource API of OCPlatform to see

whether mqtt-fan plugin is started or not. If it has been started, it will get the fan resource as shown in

the UI.

Once fan resource is found, application sends put request to change the power of the fan resource (1 -

on , 0 - off) shown in the UI.

