
IoTivity Programmer’s Guide
– Protocol Plugin Manager for Linux

1 CONTENTS

2 Overview ... 3

2.1 Overall Flows .. 3

3 Using Plugin Manager ... 4

3.1 Setting Plugin Configuration ... 4

3.2 Locating Plugin and Manifest File ... 4

3.3 Starting Plugins with Attribute ... 5

3.4 Getting Plugin Information ... 6

4 Using Plugin Resources ... 6

4.1 MQTT Fan Plugin .. 6

5 SDK API .. 6

5.1 Protocol Plugin Manager API .. 7

6 Example ... 9

6.1 Linux Sample Application ... 9

2 OVERVIEW

This guide will help you to use protocol plugins and plugin manager. Using protocol plugins, your

application wii be able to communicate with various heterogeneous protocol devices using IoTivity API

as presented in the following diagram.

<Figure 1. Protocol Plugin Concept>

2.1 OVERALL FLOWS
Using Plugin Manager API, application can start plugins located in a specific folder. After starting a plugin,

the plugin will try to find devices using its own protocol and creates resource server when a device is

found. Then the application can find and communicate with the resource using base API in the same

manner as a normal IoTivity resource. The following diagram describes the corresponding flows.

<Figure 2. Overall Flow>

3 USING PLUGIN MANAGER

This guide is about how to start plugins using plugin manager.

3.1 SETTING PLUGIN CONFIGURATION
For plugin configuration, pluginmanager.xml file should be located in the folder in which the application

executable file exists. Then, plugin manager can load the config information when application creates

plugin manager instance. By editing the configuration file, application developer can change plugins.

3.2 LOCATING PLUGIN AND MANIFEST FILE
Before starting plugins, plugin binaries should be located in the path specified in the plugin configuration

(e.g., libpmimpl.so located in the path /sample-app). In addition, each plugins should be located in the

separate folder (e.g., /sample-app/plugins/mqtt-fan and /sample-app /plugins/hue as shown below).

/sample-app

 - sample-executable

 - pluginmanager.xml

 - libpmimpl.so

/ sample-app /plugins

/ sample-app /plugins/mqtt-fan

- mqttfanplugin.so

- plugin.xml

/ sample-app /plugins/hue

- hueplugin.so

- plugin.xml

<?xml version="1.0" encoding="utf-8"?>

<pluginManager>

 <pluginInfo

 PluginPath="./plugins">

 </pluginInfo>

</pluginManager>

Each plugin should have manifest XML file describing the following information and the manifest file

should be located within the same folder as the plugin source code.

Key Name Description

id Unique id of the plugin

version Version of the plugin

name Name of the plugin

resourcetype Supported OIC resource type of the plugin

provider-name Provider name of the plugin

The following XML description is a plugin manifest file of Philips Hue Plugin.

3.3 STARTING PLUGINS WITH ATTRIBUTE
With plugin information described in the manifest XML file, application can start plugins using the

following methods.

m_pm->startPlugins(“resourcetype”, “oic.fan”);

m_pm->startPlugins(“id”, “oic.plugin.mqtt-fan”);

<?xml version="1.0" encoding="UTF-8"?>

<plugin

id="oic.plugin.mqtt-fan"

version="0.1"

name="mqtt-fan"

resourcetype=“oic.fan” >

 <runtime library="fanserver_mqtt_plugin" funcs="mqtt_plugin_fanserver_funcs"/>

</plugin>

3.4 GETTING PLUGIN INFORMATION
After creating plugin manager instance, application can get information of the plugin as folllows.

4 USING PLUGIN RESOURCES

This guide describes how to communicate with non-oic devices using plugins and IoTivity API.

4.1 MQTT FAN PLUGIN
Application can find MQTT FAN device using “oic.fan” resource type and communicate with the

following attribute.

Attribute Key Attribute Value Type Description

power “on”, “off” String Turn on/off the fan

5 SDK API

This section provides information on the APIs exposed by Protocol Plugin Manager service for the use by
applications. SDK API is the facet of Protocol Plugin Manager to applications as shown in the Figure 3.

<<calls>>

<<Results>>

<Figure 3. Protocol Plugin Manager SDK APIs and Application >

PluginManager *m_pm = new PluginManager();

std::vector<Plugin> plugins = m_pm->getPlugins();

std::string name = plugins[0].getName();

std::string id = plugins[0].getId();

 Application

 PluginManager

5.1 PROTOCOL PLUGIN MANAGER API

“Protocol Plugin Manager” APIs provide methods for application to start and stop the plugins, scan for
plugins in the registered directory, get the list of plugins and also the state of plugins. The operations
provided in the SDK are listed below:

 startPlugins

 stopPlugins

 rescanPlugin

 getPlugins

 getState

startPlugins API can be used to start the plugins by specifying key and value as parameters. Using the

plugin information described in the manifest file, application can start plugins as follows.

startPlugins(“resourcetype”, “oic.fan”);

startPlugins(“id”, “oic.plugin.mqtt-fan”);

After starting, the plugin will try to find its device using its own protocol and will create a resource
server when the device is found. Then the application can find and communicate with the resource
using the base API as a normal IoTivity resource.

Prototype:

int PluginManager::startPlugins(const std::string key, const std::string value)

Parmaters:

 key - Key string of the plugin to be started.

 value - Value string of the plugin to be started.

Return Value:

 Returns 1 on Success, 0 on Failure.

stopPlugins API can be used to stop the plugins by specifying key and value as parameters. Key can be
name of a resource type (Example: ResourceType) and value is the resource type value (Example:
device.light). Once this API is called, the application can no longer find and communicate with the
resource.

rescanPlugin API can be used to rescan for plugins in the registered directory and to install those plugins

in the plugin manager table.

getPlugins API can be used to get the list of Plugins that are installed. An application can get the

information of plugin as folllows.

Prototype:

std::vector<Plugin> getPlugins(void);

Return Value:

 Returns available plugins’ information in an V.

Prototype:

int rescanPlugin();

Return Value:

 Returns 1 on Success, 0 on Failure.

Prototype:

int stopPlugins(const std::string key, const std::string value);

Parmaters:

 key - Key string of the plugin to be stopped.

 value - Value string of the plugin to be stopped.

Return Value:

 Returns 1 on Success, 0 on Failure.

getState API can be used to get the state of the plugin by providing plugin ID as parameter. This API

returns the plugin state in a string.

6 EXAMPLE

This section describes the Sample Application used for Protocol plugin manager.

6.1 LINUX SAMPLE APPLICATION

This section describes flow of sample application where we try to start, find and to perform operation

on the “mqtt-fan”plugin located in the plugins folder.

To start the application, run the mqttclient program as shown below.

Initially it creates an instance of PluginManager and shows the list of plugins available in the plugins

folder whose path is specified in the pluginmanager.xml.

Then it starts the fan plugin by passing the ResourceType(oic.fan) to the StartPlugins() API of

PluginManager.

~/iotivity/service/protocol-plugin/sample-app/linux/mqtt$./mqttclient

Current path is ../../../plugins

====== Plugins List ======

 ID NAME STATE TYPE

 oic.plugin.mqtt-fan mqtt-fan INSTALLED oic.fan

 oic.plugin.mqtt-light mqtt-light INSTALLED oic.light

Prototype:

std::string getState(const std::string plugID);

Parmaters:

 plugID - ID of the plugin for which state is being queried.

Return Value:

 Returns the state of the plugin in a String.

After starting the plugin, the fan resource will be discovered by calling the findResource() API of

OCPlatform. Once the fan resource is discovered, its URI, Host address, Resource Types and Resources

Interfaces will be displayed as shown below.

Finding Resource...

DISCOVERED Resource:

 URI of the resource: /a/fan

 Host address of the resource: coap://107.108.81.116:33279

 List of resource types:

 core.fan

 List of resource interfaces:

 oc.mi.def

 ~/iotivity/service/protocol-plugin/sample-app/linux/mqtt$./mqttclient

…………………………………..(Plugins List as shown above)…………………………………..

start plug-in oic.plugin.mqtt-fan.

start_fanserver [mosquitto] Null

Mosquitto is working

Mosquitto Connection is done

FanResource register time is: Mon Apr 20 12:26:37 2015

Finding Resource...

After discovering the fan resource, application will send put request to change the power of the fan

resource (1 - ON , 0 - OFF) as shown below.

Putting fan representation...

In entity handler wrapper:

 In Server CPP entity handler:

 requestFlag : Request === Handle by FanServer

 requestType : PUT

 state: true

 power: 1

PUT request was successful

 state: true

 power: 1

 name: John's fan

