
IoTivity Programmer’s Guide
– Protocol Plug-in Manager for Android

1 CONTENTS

2 Overview ... 3

2.1 Overall Flows .. 3

3 Using Plugin Manager ... 4

3.1 Setting Plugin Configuration ... 4

3.2 Locating Plugin and Manifest File ... 4

4 Using Plugin Resources ... 8

4.1 Philps HUE Plugin .. 8

4.2 Samsung Galaxy Gear S Rich Notification Plugin .. 8

4.3 Belkin WeMo Plugin ... 8

5 ANDROID SDK API ... 9

5.1 Protocol Plug-in Manager API .. 9

6 Example ... 11

6.1 Android Sample Application ... 11

6.1.1 START PLUGIN ... 12

6.1.2 STOP PLUGIN ... 12

6.1.3 GET PLUGIN ... 13

6.1.4 GET STATE ... 13

6.1.5 RESCAN PLUGIN .. 13

2 OVERVIEW

This guide will help you to use protocol plugins. Using protocol plugins, your application can

communicate with various protocol devices using IoTivity APIs as shown in the following diagram.

<Figure 1. Protocol Plugin Concept>

2.1 OVERALL FLOWS
Using Plugin Manager APIs, application can start plugins that are located in a specific folder. After

starting a plugin, the plugin will try to find its device using own protocol and creates resource server

when the device is found. Then application can find and communicate with the resource using base APIs

similar to normal IoTivity resource. Following diagram describes the flows.

<Figure 2. Overall Flow>

3 USING PLUGIN MANAGER

This section describes how to start plugins using plugin manager.

3.1 SETTING PLUGIN CONFIGURATION
For plugin configuration, pluginmanager.xml file should be located in the assests/files folder of Android

application. Plugin manager will load the configuration information when the application creates plugin

manager instance. By editing the configuration file, application developer can change plugins.

3.2 LOCATING PLUGIN AND MANIFEST FILE
Before starting plugins, plugin jar files which are generated using 3rd party jars should be located in the

PluginPath specified in the pluginmanager.xml.

Note: For detailed information on how to generate plugin jars using the 3rd party jars for each of the

plugins, please refer “Getting Started - Protocol Plugin Manager for Android”

Following is the folder structure containing 3rd party jar files information.

<?xml version="1.0" encoding="utf-8"?>

<pluginManager>

 <pluginInfo

 PluginPath="/data/org.iotivity.service.ppm/files">

 name="pluginmanager"

 </pluginInfo>

</pluginManager>

</pluginManager>

/plugins/Android/

 plugin.gear.noti

 plugin.hue

 plugin.wemo

/plugin.gear.noti

 lib

 gson.jar

 richnotification.jar

 sdk.jar

 META-INF

 MANIFEST.MF

/plugin.hue

 lib

 huelocalsdk.jar

 huesdkresources.jar

 META-INF

 MANIFEST.MF

/plugin.wemo

 lib

 wemosdk.jar

 META-INF

 MANIFEST.MF

Each plugin has a manifest file (MANIFEST.MF) in its folder and will have following information.

 Key Name Description

Manifest-Version Version of the Manifest file

Bundle-Name Name of the plugin

Bundle-SymbolicName Symbolic name of the plugin

Bundle-ResourceType Supported OIC resource type by the plugin

Bundle-Version Version of the plugin

Bundle-ClassPath .classpath file path for the plugin

Export-Package List of plugin packages

Import-Package Packages required by the plugin

Bundle-Activator Plugin Activator package path. (Example:
oic.plugin.gear.noti.Activator)

Following is the description of Philips Hue Plugin’s manifest file.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Philips Hue Plugin

Bundle-SymbolicName: hue

Bundle-ResourceType: device.light

Bundle-Version: 1.0.0

Bundle-ClassPath: .,

 libs/

Export-Package: com.philips.lighting.annotations,

 com.philips.lighting.hue.listener,

 com.philips.lighting.hue.sdk,

 com.philips.lighting.hue.sdk.bridge.impl,

 ……………

Import-Package: org.osgi.framework,

 android.app,

 android.dalvik;resolution:=optional,

 android.util,

 android.content,

…………

Bundle-Activator: oic.plugin.hue.Activator

4 USING PLUGIN RESOURCES

This section describes how to communicate with non-oic devices using plugins and IoTivity API.

4.1 PHILPS HUE PLUGIN
Application can find Hue device with “device.light” resource type and communicate with following

attributes.

Attribute Key Attribute Value Type Description

power “on”, “off” String Turn on/off Hue bulb

color 0~10 Integer Change color of the bulb

4.2 SAMSUNG GALAXY GEAR S RICH NOTIFICATION PLUGIN
Application can find Galaxy Gear S device using “device.notify” resource type and communicate with

following attributes

Attribute Key Attribute Value Type Description

notify text String Send text notification to Galaxy Gear S

4.3 BELKIN WEMO PLUGIN
Application can find Wemo device using “device.smartplug” resource type and communicate with

following attributes

Attribute Key Attribute Value Type Description

power “on”, “off” String Turn on/off the Wemo switch

5 ANDROID SDK API

This section provides information on the APIs exposed by Protocol Plug-in Manager service for
the use by applications. SDK API is the facet of Protocol Plug-in Manager to applications as
shown in the Figure 3.

<<calls>>

<<callbacks>>

<Figure 3. Protocol Plug-in Manager SDK APIs and Application >

5.1 PROTOCOL PLUG-IN MANAGER API

These APIs provide methods for application to start and stop the plug-ins, scan for plug-ins in
the registered directory, get the list of plug-ins and also the state of plug-ins. The operations
provided in the SDK are listed below:

 startPlugins

 stopPlugins

 rescanPlugin

 getPlugins

 getState

startPlugins API can be used to start the plugins by specifying key and value as parameters.

Using the plugin information described in the manifest file, application can start plugins as

follows.

startPlugins(“resourcetype”, “device.smartplug”);

startPlugins(“id”, “wemo”);

After starting, the plugin will try to find its device using its own protocol and will create a
resource server when the device is found. Then the application can find and communicate with
the resource using the base API as a normal IoTivity resource.

 Application

Protocol Plug-in Manager jar

stopPlugins API can be used to stop the plugins by specifying key and value as parameters. Key
can be name of a resource type (Example: ResourceType) and value is the resource type value
(Example: device.light). Once this API is called, the application can no longer find and
communicate with the resource.

rescanPlugin API can be used to rescan for plug-ins in the registered directory and to install

those plug-ins in the plug-in manager table.

Prototype:

 int rescanPlugin ();

Return Value:

Returns 1 on Success, 0 on Failure.

Prototype:

 int stopPlugins(String key, String value)

Parmaters:

 key - Key string of the plug-in to be stopped.

 value - Value string of the plug-in to be stopped.

Return Value:

 Returns 1 on Success, 0 on Failure.

Prototype:

 int startPlugins(String key, String value);

Parmaters:

 key - Key string of the plug-in to be started.

 value - Value string of the plug-in to be started.

Return Value:

 Returns 1 on Success, 0 on Failure.

getPlugins API can be used to get the list of Plug-ins that are installed. An application can get

the information of plugin as folllows.

Vector<Plugin> plugins = getPlugins();

getState API can be used to get the state of the plug-in by providing plug-in ID as parameter.

This API returns the plug-in state in a string.

6 EXAMPLE

This section describes Sample Application for Protocol plugin manager.

6.1 ANDROID SAMPLE APPLICATION

This section shows the actions that we can perform on Belkin Plug, Gear Plug and Hue Bulb

devices using the plugins available in the assets folder of the application. Please refer Using

Plugin Manager section for information on plugin jar files.

Prototype:

 String getState(String plugID)

Parmaters:

 plugID - ID of the plug-in for which state is being queried.

Return Value:

 Returns the state of the plug-in in a String.

Prototype:

 Plugin[] getPlugins()

Return Value:

Returns available plug-ins’ information in an Array.

Application Main Screen :

6.1.1 START PLUGIN

Starts the plugin by taking its ResourceType as parameter.

For Belkin Plug, the ResourceType is “device.smartplug”.

For Gear Plug, the ResourceType is “device.notify”.

For Belkin Plug, the ResourceType is “device.light”.

After starting the plugin, our application finds those devices and reads their properties using

the Base APIs. Then it shows a Toast indicating that the device is connected. For Ex: “Belkin

Connected”.

Start Plugin has to be called first to perform the actions on the devices such as turn ON/OFF.

6.1.2 STOP PLUGIN

Stops the plugin by taking its ResourceType as parameter.

To find and perform actions on the devices after stopping the plugin, start plugin has to be

called.

To turn on/off

the Hue Bulb

Shows “Hue

ON/OFF” toast

To turn on/off the

Belkin Plug

Shows “ON/OFF”

toast

To turn on/off the

Gear Plug

Shows “Send Noti.

To Gear” toast

To increase the

brightness of Hue Bulb

To decrease the

brightness of Hue Bulb

6.1.3 GET PLUGIN

It returns an array of Plugin objects for the plugins located in the assets folder of the application.

Using the plugin objects, we can obtain the ID, Name, Version, and ProviderName of the plugins

using the Plugin APIs.

6.1.4 GET STATE

To get the current state of the plugin by providing the Plugin-ID as parameter.

The Plugin State can be any of the following:

 INSTALLED: Before starting the plugin

 ACTIVE: After starting the plugin

 RESOLVED: After stopping the plugin

6.1.5 RESCAN PLUGIN

It re-scans for all the plugins in the plugin path (See Using Plugin Manager).

