/* YACC parser for Java expressions, for GDB.
Copyright (C) 1997-2013 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
/* Parse a Java expression from text in a string,
and return the result as a struct expression pointer.
That structure contains arithmetic operations in reverse polish,
with constants represented by operations that are followed by special data.
See expression.h for the details of the format.
What is important here is that it can be built up sequentially
during the process of parsing; the lower levels of the tree always
come first in the result. Well, almost always; see ArrayAccess.
Note that malloc's and realloc's in this file are transformed to
xmalloc and xrealloc respectively by the same sed command in the
makefile that remaps any other malloc/realloc inserted by the parser
generator. Doing this with #defines and trying to control the interaction
with include files ( and for example) just became
too messy, particularly when such includes can be inserted at random
times by the parser generator. */
%{
#include "defs.h"
#include "gdb_string.h"
#include
#include "expression.h"
#include "value.h"
#include "parser-defs.h"
#include "language.h"
#include "jv-lang.h"
#include "bfd.h" /* Required by objfiles.h. */
#include "symfile.h" /* Required by objfiles.h. */
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
#include "block.h"
#define parse_type builtin_type (parse_gdbarch)
#define parse_java_type builtin_java_type (parse_gdbarch)
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
as well as gratuitiously global symbol names, so we can have multiple
yacc generated parsers in gdb. Note that these are only the variables
produced by yacc. If other parser generators (bison, byacc, etc) produce
additional global names that conflict at link time, then those parser
generators need to be fixed instead of adding those names to this list. */
#define yymaxdepth java_maxdepth
#define yyparse java_parse
#define yylex java_lex
#define yyerror java_error
#define yylval java_lval
#define yychar java_char
#define yydebug java_debug
#define yypact java_pact
#define yyr1 java_r1
#define yyr2 java_r2
#define yydef java_def
#define yychk java_chk
#define yypgo java_pgo
#define yyact java_act
#define yyexca java_exca
#define yyerrflag java_errflag
#define yynerrs java_nerrs
#define yyps java_ps
#define yypv java_pv
#define yys java_s
#define yy_yys java_yys
#define yystate java_state
#define yytmp java_tmp
#define yyv java_v
#define yy_yyv java_yyv
#define yyval java_val
#define yylloc java_lloc
#define yyreds java_reds /* With YYDEBUG defined */
#define yytoks java_toks /* With YYDEBUG defined */
#define yyname java_name /* With YYDEBUG defined */
#define yyrule java_rule /* With YYDEBUG defined */
#define yylhs java_yylhs
#define yylen java_yylen
#define yydefred java_yydefred
#define yydgoto java_yydgoto
#define yysindex java_yysindex
#define yyrindex java_yyrindex
#define yygindex java_yygindex
#define yytable java_yytable
#define yycheck java_yycheck
#define yyss java_yyss
#define yysslim java_yysslim
#define yyssp java_yyssp
#define yystacksize java_yystacksize
#define yyvs java_yyvs
#define yyvsp java_yyvsp
#ifndef YYDEBUG
#define YYDEBUG 1 /* Default to yydebug support */
#endif
#define YYFPRINTF parser_fprintf
int yyparse (void);
static int yylex (void);
void yyerror (char *);
static struct type *java_type_from_name (struct stoken);
static void push_expression_name (struct stoken);
static void push_fieldnames (struct stoken);
static struct expression *copy_exp (struct expression *, int);
static void insert_exp (int, struct expression *);
%}
/* Although the yacc "value" of an expression is not used,
since the result is stored in the structure being created,
other node types do have values. */
%union
{
LONGEST lval;
struct {
LONGEST val;
struct type *type;
} typed_val_int;
struct {
DOUBLEST dval;
struct type *type;
} typed_val_float;
struct symbol *sym;
struct type *tval;
struct stoken sval;
struct ttype tsym;
struct symtoken ssym;
struct block *bval;
enum exp_opcode opcode;
struct internalvar *ivar;
int *ivec;
}
%{
/* YYSTYPE gets defined by %union */
static int parse_number (char *, int, int, YYSTYPE *);
%}
%type rcurly Dims Dims_opt
%type ClassOrInterfaceType ClassType /* ReferenceType Type ArrayType */
%type IntegralType FloatingPointType NumericType PrimitiveType ArrayType PrimitiveOrArrayType
%token INTEGER_LITERAL
%token FLOATING_POINT_LITERAL
%token IDENTIFIER
%token STRING_LITERAL
%token BOOLEAN_LITERAL
%token TYPENAME
%type Name SimpleName QualifiedName ForcedName
/* A NAME_OR_INT is a symbol which is not known in the symbol table,
but which would parse as a valid number in the current input radix.
E.g. "c" when input_radix==16. Depending on the parse, it will be
turned into a name or into a number. */
%token NAME_OR_INT
%token ERROR
/* Special type cases, put in to allow the parser to distinguish different
legal basetypes. */
%token LONG SHORT BYTE INT CHAR BOOLEAN DOUBLE FLOAT
%token VARIABLE
%token ASSIGN_MODIFY
%token SUPER NEW
%left ','
%right '=' ASSIGN_MODIFY
%right '?'
%left OROR
%left ANDAND
%left '|'
%left '^'
%left '&'
%left EQUAL NOTEQUAL
%left '<' '>' LEQ GEQ
%left LSH RSH
%left '+' '-'
%left '*' '/' '%'
%right INCREMENT DECREMENT
%right '.' '[' '('
%%
start : exp1
| type_exp
;
type_exp: PrimitiveOrArrayType
{
write_exp_elt_opcode(OP_TYPE);
write_exp_elt_type($1);
write_exp_elt_opcode(OP_TYPE);
}
;
PrimitiveOrArrayType:
PrimitiveType
| ArrayType
;
StringLiteral:
STRING_LITERAL
{
write_exp_elt_opcode (OP_STRING);
write_exp_string ($1);
write_exp_elt_opcode (OP_STRING);
}
;
Literal:
INTEGER_LITERAL
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type ($1.type);
write_exp_elt_longcst ((LONGEST)($1.val));
write_exp_elt_opcode (OP_LONG); }
| NAME_OR_INT
{ YYSTYPE val;
parse_number ($1.ptr, $1.length, 0, &val);
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (val.typed_val_int.type);
write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
write_exp_elt_opcode (OP_LONG);
}
| FLOATING_POINT_LITERAL
{ write_exp_elt_opcode (OP_DOUBLE);
write_exp_elt_type ($1.type);
write_exp_elt_dblcst ($1.dval);
write_exp_elt_opcode (OP_DOUBLE); }
| BOOLEAN_LITERAL
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (parse_java_type->builtin_boolean);
write_exp_elt_longcst ((LONGEST)$1);
write_exp_elt_opcode (OP_LONG); }
| StringLiteral
;
/* UNUSED:
Type:
PrimitiveType
| ReferenceType
;
*/
PrimitiveType:
NumericType
| BOOLEAN
{ $$ = parse_java_type->builtin_boolean; }
;
NumericType:
IntegralType
| FloatingPointType
;
IntegralType:
BYTE
{ $$ = parse_java_type->builtin_byte; }
| SHORT
{ $$ = parse_java_type->builtin_short; }
| INT
{ $$ = parse_java_type->builtin_int; }
| LONG
{ $$ = parse_java_type->builtin_long; }
| CHAR
{ $$ = parse_java_type->builtin_char; }
;
FloatingPointType:
FLOAT
{ $$ = parse_java_type->builtin_float; }
| DOUBLE
{ $$ = parse_java_type->builtin_double; }
;
/* UNUSED:
ReferenceType:
ClassOrInterfaceType
| ArrayType
;
*/
ClassOrInterfaceType:
Name
{ $$ = java_type_from_name ($1); }
;
ClassType:
ClassOrInterfaceType
;
ArrayType:
PrimitiveType Dims
{ $$ = java_array_type ($1, $2); }
| Name Dims
{ $$ = java_array_type (java_type_from_name ($1), $2); }
;
Name:
IDENTIFIER
| QualifiedName
;
ForcedName:
SimpleName
| QualifiedName
;
SimpleName:
IDENTIFIER
| NAME_OR_INT
;
QualifiedName:
Name '.' SimpleName
{ $$.length = $1.length + $3.length + 1;
if ($1.ptr + $1.length + 1 == $3.ptr
&& $1.ptr[$1.length] == '.')
$$.ptr = $1.ptr; /* Optimization. */
else
{
$$.ptr = (char *) malloc ($$.length + 1);
make_cleanup (free, $$.ptr);
sprintf ($$.ptr, "%.*s.%.*s",
$1.length, $1.ptr, $3.length, $3.ptr);
} }
;
/*
type_exp: type
{ write_exp_elt_opcode(OP_TYPE);
write_exp_elt_type($1);
write_exp_elt_opcode(OP_TYPE);}
;
*/
/* Expressions, including the comma operator. */
exp1 : Expression
| exp1 ',' Expression
{ write_exp_elt_opcode (BINOP_COMMA); }
;
Primary:
PrimaryNoNewArray
| ArrayCreationExpression
;
PrimaryNoNewArray:
Literal
| '(' Expression ')'
| ClassInstanceCreationExpression
| FieldAccess
| MethodInvocation
| ArrayAccess
| lcurly ArgumentList rcurly
{ write_exp_elt_opcode (OP_ARRAY);
write_exp_elt_longcst ((LONGEST) 0);
write_exp_elt_longcst ((LONGEST) $3);
write_exp_elt_opcode (OP_ARRAY); }
;
lcurly:
'{'
{ start_arglist (); }
;
rcurly:
'}'
{ $$ = end_arglist () - 1; }
;
ClassInstanceCreationExpression:
NEW ClassType '(' ArgumentList_opt ')'
{ internal_error (__FILE__, __LINE__,
_("FIXME - ClassInstanceCreationExpression")); }
;
ArgumentList:
Expression
{ arglist_len = 1; }
| ArgumentList ',' Expression
{ arglist_len++; }
;
ArgumentList_opt:
/* EMPTY */
{ arglist_len = 0; }
| ArgumentList
;
ArrayCreationExpression:
NEW PrimitiveType DimExprs Dims_opt
{ internal_error (__FILE__, __LINE__,
_("FIXME - ArrayCreationExpression")); }
| NEW ClassOrInterfaceType DimExprs Dims_opt
{ internal_error (__FILE__, __LINE__,
_("FIXME - ArrayCreationExpression")); }
;
DimExprs:
DimExpr
| DimExprs DimExpr
;
DimExpr:
'[' Expression ']'
;
Dims:
'[' ']'
{ $$ = 1; }
| Dims '[' ']'
{ $$ = $1 + 1; }
;
Dims_opt:
Dims
| /* EMPTY */
{ $$ = 0; }
;
FieldAccess:
Primary '.' SimpleName
{ push_fieldnames ($3); }
| VARIABLE '.' SimpleName
{ push_fieldnames ($3); }
/*| SUPER '.' SimpleName { FIXME } */
;
FuncStart:
Name '('
{ push_expression_name ($1); }
;
MethodInvocation:
FuncStart
{ start_arglist(); }
ArgumentList_opt ')'
{ write_exp_elt_opcode (OP_FUNCALL);
write_exp_elt_longcst ((LONGEST) end_arglist ());
write_exp_elt_opcode (OP_FUNCALL); }
| Primary '.' SimpleName '(' ArgumentList_opt ')'
{ error (_("Form of method invocation not implemented")); }
| SUPER '.' SimpleName '(' ArgumentList_opt ')'
{ error (_("Form of method invocation not implemented")); }
;
ArrayAccess:
Name '[' Expression ']'
{
/* Emit code for the Name now, then exchange it in the
expout array with the Expression's code. We could
introduce a OP_SWAP code or a reversed version of
BINOP_SUBSCRIPT, but that makes the rest of GDB pay
for our parsing kludges. */
struct expression *name_expr;
push_expression_name ($1);
name_expr = copy_exp (expout, expout_ptr);
expout_ptr -= name_expr->nelts;
insert_exp (expout_ptr-length_of_subexp (expout, expout_ptr),
name_expr);
free (name_expr);
write_exp_elt_opcode (BINOP_SUBSCRIPT);
}
| VARIABLE '[' Expression ']'
{ write_exp_elt_opcode (BINOP_SUBSCRIPT); }
| PrimaryNoNewArray '[' Expression ']'
{ write_exp_elt_opcode (BINOP_SUBSCRIPT); }
;
PostfixExpression:
Primary
| Name
{ push_expression_name ($1); }
| VARIABLE
/* Already written by write_dollar_variable. */
| PostIncrementExpression
| PostDecrementExpression
;
PostIncrementExpression:
PostfixExpression INCREMENT
{ write_exp_elt_opcode (UNOP_POSTINCREMENT); }
;
PostDecrementExpression:
PostfixExpression DECREMENT
{ write_exp_elt_opcode (UNOP_POSTDECREMENT); }
;
UnaryExpression:
PreIncrementExpression
| PreDecrementExpression
| '+' UnaryExpression
| '-' UnaryExpression
{ write_exp_elt_opcode (UNOP_NEG); }
| '*' UnaryExpression
{ write_exp_elt_opcode (UNOP_IND); } /*FIXME not in Java */
| UnaryExpressionNotPlusMinus
;
PreIncrementExpression:
INCREMENT UnaryExpression
{ write_exp_elt_opcode (UNOP_PREINCREMENT); }
;
PreDecrementExpression:
DECREMENT UnaryExpression
{ write_exp_elt_opcode (UNOP_PREDECREMENT); }
;
UnaryExpressionNotPlusMinus:
PostfixExpression
| '~' UnaryExpression
{ write_exp_elt_opcode (UNOP_COMPLEMENT); }
| '!' UnaryExpression
{ write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
| CastExpression
;
CastExpression:
'(' PrimitiveType Dims_opt ')' UnaryExpression
{ write_exp_elt_opcode (UNOP_CAST);
write_exp_elt_type (java_array_type ($2, $3));
write_exp_elt_opcode (UNOP_CAST); }
| '(' Expression ')' UnaryExpressionNotPlusMinus
{
int last_exp_size = length_of_subexp(expout, expout_ptr);
struct type *type;
int i;
int base = expout_ptr - last_exp_size - 3;
if (base < 0 || expout->elts[base+2].opcode != OP_TYPE)
error (_("Invalid cast expression"));
type = expout->elts[base+1].type;
/* Remove the 'Expression' and slide the
UnaryExpressionNotPlusMinus down to replace it. */
for (i = 0; i < last_exp_size; i++)
expout->elts[base + i] = expout->elts[base + i + 3];
expout_ptr -= 3;
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
type = lookup_pointer_type (type);
write_exp_elt_opcode (UNOP_CAST);
write_exp_elt_type (type);
write_exp_elt_opcode (UNOP_CAST);
}
| '(' Name Dims ')' UnaryExpressionNotPlusMinus
{ write_exp_elt_opcode (UNOP_CAST);
write_exp_elt_type (java_array_type (java_type_from_name ($2), $3));
write_exp_elt_opcode (UNOP_CAST); }
;
MultiplicativeExpression:
UnaryExpression
| MultiplicativeExpression '*' UnaryExpression
{ write_exp_elt_opcode (BINOP_MUL); }
| MultiplicativeExpression '/' UnaryExpression
{ write_exp_elt_opcode (BINOP_DIV); }
| MultiplicativeExpression '%' UnaryExpression
{ write_exp_elt_opcode (BINOP_REM); }
;
AdditiveExpression:
MultiplicativeExpression
| AdditiveExpression '+' MultiplicativeExpression
{ write_exp_elt_opcode (BINOP_ADD); }
| AdditiveExpression '-' MultiplicativeExpression
{ write_exp_elt_opcode (BINOP_SUB); }
;
ShiftExpression:
AdditiveExpression
| ShiftExpression LSH AdditiveExpression
{ write_exp_elt_opcode (BINOP_LSH); }
| ShiftExpression RSH AdditiveExpression
{ write_exp_elt_opcode (BINOP_RSH); }
/* | ShiftExpression >>> AdditiveExpression { FIXME } */
;
RelationalExpression:
ShiftExpression
| RelationalExpression '<' ShiftExpression
{ write_exp_elt_opcode (BINOP_LESS); }
| RelationalExpression '>' ShiftExpression
{ write_exp_elt_opcode (BINOP_GTR); }
| RelationalExpression LEQ ShiftExpression
{ write_exp_elt_opcode (BINOP_LEQ); }
| RelationalExpression GEQ ShiftExpression
{ write_exp_elt_opcode (BINOP_GEQ); }
/* | RelationalExpresion INSTANCEOF ReferenceType { FIXME } */
;
EqualityExpression:
RelationalExpression
| EqualityExpression EQUAL RelationalExpression
{ write_exp_elt_opcode (BINOP_EQUAL); }
| EqualityExpression NOTEQUAL RelationalExpression
{ write_exp_elt_opcode (BINOP_NOTEQUAL); }
;
AndExpression:
EqualityExpression
| AndExpression '&' EqualityExpression
{ write_exp_elt_opcode (BINOP_BITWISE_AND); }
;
ExclusiveOrExpression:
AndExpression
| ExclusiveOrExpression '^' AndExpression
{ write_exp_elt_opcode (BINOP_BITWISE_XOR); }
;
InclusiveOrExpression:
ExclusiveOrExpression
| InclusiveOrExpression '|' ExclusiveOrExpression
{ write_exp_elt_opcode (BINOP_BITWISE_IOR); }
;
ConditionalAndExpression:
InclusiveOrExpression
| ConditionalAndExpression ANDAND InclusiveOrExpression
{ write_exp_elt_opcode (BINOP_LOGICAL_AND); }
;
ConditionalOrExpression:
ConditionalAndExpression
| ConditionalOrExpression OROR ConditionalAndExpression
{ write_exp_elt_opcode (BINOP_LOGICAL_OR); }
;
ConditionalExpression:
ConditionalOrExpression
| ConditionalOrExpression '?' Expression ':' ConditionalExpression
{ write_exp_elt_opcode (TERNOP_COND); }
;
AssignmentExpression:
ConditionalExpression
| Assignment
;
Assignment:
LeftHandSide '=' ConditionalExpression
{ write_exp_elt_opcode (BINOP_ASSIGN); }
| LeftHandSide ASSIGN_MODIFY ConditionalExpression
{ write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
write_exp_elt_opcode ($2);
write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
;
LeftHandSide:
ForcedName
{ push_expression_name ($1); }
| VARIABLE
/* Already written by write_dollar_variable. */
| FieldAccess
| ArrayAccess
;
Expression:
AssignmentExpression
;
%%
/* Take care of parsing a number (anything that starts with a digit).
Set yylval and return the token type; update lexptr.
LEN is the number of characters in it. */
/*** Needs some error checking for the float case ***/
static int
parse_number (char *p, int len, int parsed_float, YYSTYPE *putithere)
{
ULONGEST n = 0;
ULONGEST limit, limit_div_base;
int c;
int base = input_radix;
struct type *type;
if (parsed_float)
{
const char *suffix;
int suffix_len;
if (! parse_float (p, len, &putithere->typed_val_float.dval, &suffix))
return ERROR;
suffix_len = p + len - suffix;
if (suffix_len == 0)
putithere->typed_val_float.type = parse_type->builtin_double;
else if (suffix_len == 1)
{
/* See if it has `f' or `d' suffix (float or double). */
if (tolower (*suffix) == 'f')
putithere->typed_val_float.type =
parse_type->builtin_float;
else if (tolower (*suffix) == 'd')
putithere->typed_val_float.type =
parse_type->builtin_double;
else
return ERROR;
}
else
return ERROR;
return FLOATING_POINT_LITERAL;
}
/* Handle base-switching prefixes 0x, 0t, 0d, 0 */
if (p[0] == '0')
switch (p[1])
{
case 'x':
case 'X':
if (len >= 3)
{
p += 2;
base = 16;
len -= 2;
}
break;
case 't':
case 'T':
case 'd':
case 'D':
if (len >= 3)
{
p += 2;
base = 10;
len -= 2;
}
break;
default:
base = 8;
break;
}
c = p[len-1];
/* A paranoid calculation of (1<<64)-1. */
limit = (ULONGEST)0xffffffff;
limit = ((limit << 16) << 16) | limit;
if (c == 'l' || c == 'L')
{
type = parse_java_type->builtin_long;
len--;
}
else
{
type = parse_java_type->builtin_int;
}
limit_div_base = limit / (ULONGEST) base;
while (--len >= 0)
{
c = *p++;
if (c >= '0' && c <= '9')
c -= '0';
else if (c >= 'A' && c <= 'Z')
c -= 'A' - 10;
else if (c >= 'a' && c <= 'z')
c -= 'a' - 10;
else
return ERROR; /* Char not a digit */
if (c >= base)
return ERROR;
if (n > limit_div_base
|| (n *= base) > limit - c)
error (_("Numeric constant too large"));
n += c;
}
/* If the type is bigger than a 32-bit signed integer can be, implicitly
promote to long. Java does not do this, so mark it as
parse_type->builtin_uint64 rather than parse_java_type->builtin_long.
0x80000000 will become -0x80000000 instead of 0x80000000L, because we
don't know the sign at this point. */
if (type == parse_java_type->builtin_int && n > (ULONGEST)0x80000000)
type = parse_type->builtin_uint64;
putithere->typed_val_int.val = n;
putithere->typed_val_int.type = type;
return INTEGER_LITERAL;
}
struct token
{
char *operator;
int token;
enum exp_opcode opcode;
};
static const struct token tokentab3[] =
{
{">>=", ASSIGN_MODIFY, BINOP_RSH},
{"<<=", ASSIGN_MODIFY, BINOP_LSH}
};
static const struct token tokentab2[] =
{
{"+=", ASSIGN_MODIFY, BINOP_ADD},
{"-=", ASSIGN_MODIFY, BINOP_SUB},
{"*=", ASSIGN_MODIFY, BINOP_MUL},
{"/=", ASSIGN_MODIFY, BINOP_DIV},
{"%=", ASSIGN_MODIFY, BINOP_REM},
{"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
{"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
{"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
{"++", INCREMENT, BINOP_END},
{"--", DECREMENT, BINOP_END},
{"&&", ANDAND, BINOP_END},
{"||", OROR, BINOP_END},
{"<<", LSH, BINOP_END},
{">>", RSH, BINOP_END},
{"==", EQUAL, BINOP_END},
{"!=", NOTEQUAL, BINOP_END},
{"<=", LEQ, BINOP_END},
{">=", GEQ, BINOP_END}
};
/* Read one token, getting characters through lexptr. */
static int
yylex (void)
{
int c;
int namelen;
unsigned int i;
char *tokstart;
char *tokptr;
int tempbufindex;
static char *tempbuf;
static int tempbufsize;
retry:
prev_lexptr = lexptr;
tokstart = lexptr;
/* See if it is a special token of length 3. */
for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
{
lexptr += 3;
yylval.opcode = tokentab3[i].opcode;
return tokentab3[i].token;
}
/* See if it is a special token of length 2. */
for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
{
lexptr += 2;
yylval.opcode = tokentab2[i].opcode;
return tokentab2[i].token;
}
switch (c = *tokstart)
{
case 0:
return 0;
case ' ':
case '\t':
case '\n':
lexptr++;
goto retry;
case '\'':
/* We either have a character constant ('0' or '\177' for example)
or we have a quoted symbol reference ('foo(int,int)' in C++
for example). */
lexptr++;
c = *lexptr++;
if (c == '\\')
c = parse_escape (parse_gdbarch, &lexptr);
else if (c == '\'')
error (_("Empty character constant"));
yylval.typed_val_int.val = c;
yylval.typed_val_int.type = parse_java_type->builtin_char;
c = *lexptr++;
if (c != '\'')
{
namelen = skip_quoted (tokstart) - tokstart;
if (namelen > 2)
{
lexptr = tokstart + namelen;
if (lexptr[-1] != '\'')
error (_("Unmatched single quote"));
namelen -= 2;
tokstart++;
goto tryname;
}
error (_("Invalid character constant"));
}
return INTEGER_LITERAL;
case '(':
paren_depth++;
lexptr++;
return c;
case ')':
if (paren_depth == 0)
return 0;
paren_depth--;
lexptr++;
return c;
case ',':
if (comma_terminates && paren_depth == 0)
return 0;
lexptr++;
return c;
case '.':
/* Might be a floating point number. */
if (lexptr[1] < '0' || lexptr[1] > '9')
goto symbol; /* Nope, must be a symbol. */
/* FALL THRU into number case. */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
/* It's a number. */
int got_dot = 0, got_e = 0, toktype;
char *p = tokstart;
int hex = input_radix > 10;
if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
{
p += 2;
hex = 1;
}
else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
{
p += 2;
hex = 0;
}
for (;; ++p)
{
/* This test includes !hex because 'e' is a valid hex digit
and thus does not indicate a floating point number when
the radix is hex. */
if (!hex && !got_e && (*p == 'e' || *p == 'E'))
got_dot = got_e = 1;
/* This test does not include !hex, because a '.' always indicates
a decimal floating point number regardless of the radix. */
else if (!got_dot && *p == '.')
got_dot = 1;
else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
&& (*p == '-' || *p == '+'))
/* This is the sign of the exponent, not the end of the
number. */
continue;
/* We will take any letters or digits. parse_number will
complain if past the radix, or if L or U are not final. */
else if ((*p < '0' || *p > '9')
&& ((*p < 'a' || *p > 'z')
&& (*p < 'A' || *p > 'Z')))
break;
}
toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
if (toktype == ERROR)
{
char *err_copy = (char *) alloca (p - tokstart + 1);
memcpy (err_copy, tokstart, p - tokstart);
err_copy[p - tokstart] = 0;
error (_("Invalid number \"%s\""), err_copy);
}
lexptr = p;
return toktype;
}
case '+':
case '-':
case '*':
case '/':
case '%':
case '|':
case '&':
case '^':
case '~':
case '!':
case '<':
case '>':
case '[':
case ']':
case '?':
case ':':
case '=':
case '{':
case '}':
symbol:
lexptr++;
return c;
case '"':
/* Build the gdb internal form of the input string in tempbuf,
translating any standard C escape forms seen. Note that the
buffer is null byte terminated *only* for the convenience of
debugging gdb itself and printing the buffer contents when
the buffer contains no embedded nulls. Gdb does not depend
upon the buffer being null byte terminated, it uses the length
string instead. This allows gdb to handle C strings (as well
as strings in other languages) with embedded null bytes */
tokptr = ++tokstart;
tempbufindex = 0;
do {
/* Grow the static temp buffer if necessary, including allocating
the first one on demand. */
if (tempbufindex + 1 >= tempbufsize)
{
tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
}
switch (*tokptr)
{
case '\0':
case '"':
/* Do nothing, loop will terminate. */
break;
case '\\':
tokptr++;
c = parse_escape (parse_gdbarch, &tokptr);
if (c == -1)
{
continue;
}
tempbuf[tempbufindex++] = c;
break;
default:
tempbuf[tempbufindex++] = *tokptr++;
break;
}
} while ((*tokptr != '"') && (*tokptr != '\0'));
if (*tokptr++ != '"')
{
error (_("Unterminated string in expression"));
}
tempbuf[tempbufindex] = '\0'; /* See note above */
yylval.sval.ptr = tempbuf;
yylval.sval.length = tempbufindex;
lexptr = tokptr;
return (STRING_LITERAL);
}
if (!(c == '_' || c == '$'
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
/* We must have come across a bad character (e.g. ';'). */
error (_("Invalid character '%c' in expression"), c);
/* It's a name. See how long it is. */
namelen = 0;
for (c = tokstart[namelen];
(c == '_'
|| c == '$'
|| (c >= '0' && c <= '9')
|| (c >= 'a' && c <= 'z')
|| (c >= 'A' && c <= 'Z')
|| c == '<');
)
{
if (c == '<')
{
int i = namelen;
while (tokstart[++i] && tokstart[i] != '>');
if (tokstart[i] == '>')
namelen = i;
}
c = tokstart[++namelen];
}
/* The token "if" terminates the expression and is NOT
removed from the input stream. */
if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
{
return 0;
}
lexptr += namelen;
tryname:
/* Catch specific keywords. Should be done with a data structure. */
switch (namelen)
{
case 7:
if (strncmp (tokstart, "boolean", 7) == 0)
return BOOLEAN;
break;
case 6:
if (strncmp (tokstart, "double", 6) == 0)
return DOUBLE;
break;
case 5:
if (strncmp (tokstart, "short", 5) == 0)
return SHORT;
if (strncmp (tokstart, "false", 5) == 0)
{
yylval.lval = 0;
return BOOLEAN_LITERAL;
}
if (strncmp (tokstart, "super", 5) == 0)
return SUPER;
if (strncmp (tokstart, "float", 5) == 0)
return FLOAT;
break;
case 4:
if (strncmp (tokstart, "long", 4) == 0)
return LONG;
if (strncmp (tokstart, "byte", 4) == 0)
return BYTE;
if (strncmp (tokstart, "char", 4) == 0)
return CHAR;
if (strncmp (tokstart, "true", 4) == 0)
{
yylval.lval = 1;
return BOOLEAN_LITERAL;
}
break;
case 3:
if (strncmp (tokstart, "int", 3) == 0)
return INT;
if (strncmp (tokstart, "new", 3) == 0)
return NEW;
break;
default:
break;
}
yylval.sval.ptr = tokstart;
yylval.sval.length = namelen;
if (*tokstart == '$')
{
write_dollar_variable (yylval.sval);
return VARIABLE;
}
/* Input names that aren't symbols but ARE valid hex numbers,
when the input radix permits them, can be names or numbers
depending on the parse. Note we support radixes > 16 here. */
if (((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
(tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
{
YYSTYPE newlval; /* Its value is ignored. */
int hextype = parse_number (tokstart, namelen, 0, &newlval);
if (hextype == INTEGER_LITERAL)
return NAME_OR_INT;
}
return IDENTIFIER;
}
void
yyerror (char *msg)
{
if (prev_lexptr)
lexptr = prev_lexptr;
if (msg)
error (_("%s: near `%s'"), msg, lexptr);
else
error (_("error in expression, near `%s'"), lexptr);
}
static struct type *
java_type_from_name (struct stoken name)
{
char *tmp = copy_name (name);
struct type *typ = java_lookup_class (tmp);
if (typ == NULL || TYPE_CODE (typ) != TYPE_CODE_STRUCT)
error (_("No class named `%s'"), tmp);
return typ;
}
/* If NAME is a valid variable name in this scope, push it and return 1.
Otherwise, return 0. */
static int
push_variable (struct stoken name)
{
char *tmp = copy_name (name);
struct field_of_this_result is_a_field_of_this;
struct symbol *sym;
sym = lookup_symbol (tmp, expression_context_block, VAR_DOMAIN,
&is_a_field_of_this);
if (sym && SYMBOL_CLASS (sym) != LOC_TYPEDEF)
{
if (symbol_read_needs_frame (sym))
{
if (innermost_block == 0 ||
contained_in (block_found, innermost_block))
innermost_block = block_found;
}
write_exp_elt_opcode (OP_VAR_VALUE);
/* We want to use the selected frame, not another more inner frame
which happens to be in the same block. */
write_exp_elt_block (NULL);
write_exp_elt_sym (sym);
write_exp_elt_opcode (OP_VAR_VALUE);
return 1;
}
if (is_a_field_of_this.type != NULL)
{
/* it hangs off of `this'. Must not inadvertently convert from a
method call to data ref. */
if (innermost_block == 0 ||
contained_in (block_found, innermost_block))
innermost_block = block_found;
write_exp_elt_opcode (OP_THIS);
write_exp_elt_opcode (OP_THIS);
write_exp_elt_opcode (STRUCTOP_PTR);
write_exp_string (name);
write_exp_elt_opcode (STRUCTOP_PTR);
return 1;
}
return 0;
}
/* Assuming a reference expression has been pushed, emit the
STRUCTOP_PTR ops to access the field named NAME. If NAME is a
qualified name (has '.'), generate a field access for each part. */
static void
push_fieldnames (struct stoken name)
{
int i;
struct stoken token;
token.ptr = name.ptr;
for (i = 0; ; i++)
{
if (i == name.length || name.ptr[i] == '.')
{
/* token.ptr is start of current field name. */
token.length = &name.ptr[i] - token.ptr;
write_exp_elt_opcode (STRUCTOP_PTR);
write_exp_string (token);
write_exp_elt_opcode (STRUCTOP_PTR);
token.ptr += token.length + 1;
}
if (i >= name.length)
break;
}
}
/* Helper routine for push_expression_name.
Handle a qualified name, where DOT_INDEX is the index of the first '.' */
static void
push_qualified_expression_name (struct stoken name, int dot_index)
{
struct stoken token;
char *tmp;
struct type *typ;
token.ptr = name.ptr;
token.length = dot_index;
if (push_variable (token))
{
token.ptr = name.ptr + dot_index + 1;
token.length = name.length - dot_index - 1;
push_fieldnames (token);
return;
}
token.ptr = name.ptr;
for (;;)
{
token.length = dot_index;
tmp = copy_name (token);
typ = java_lookup_class (tmp);
if (typ != NULL)
{
if (dot_index == name.length)
{
write_exp_elt_opcode(OP_TYPE);
write_exp_elt_type(typ);
write_exp_elt_opcode(OP_TYPE);
return;
}
dot_index++; /* Skip '.' */
name.ptr += dot_index;
name.length -= dot_index;
dot_index = 0;
while (dot_index < name.length && name.ptr[dot_index] != '.')
dot_index++;
token.ptr = name.ptr;
token.length = dot_index;
write_exp_elt_opcode (OP_SCOPE);
write_exp_elt_type (typ);
write_exp_string (token);
write_exp_elt_opcode (OP_SCOPE);
if (dot_index < name.length)
{
dot_index++;
name.ptr += dot_index;
name.length -= dot_index;
push_fieldnames (name);
}
return;
}
else if (dot_index >= name.length)
break;
dot_index++; /* Skip '.' */
while (dot_index < name.length && name.ptr[dot_index] != '.')
dot_index++;
}
error (_("unknown type `%.*s'"), name.length, name.ptr);
}
/* Handle Name in an expression (or LHS).
Handle VAR, TYPE, TYPE.FIELD1....FIELDN and VAR.FIELD1....FIELDN. */
static void
push_expression_name (struct stoken name)
{
char *tmp;
struct type *typ;
int i;
for (i = 0; i < name.length; i++)
{
if (name.ptr[i] == '.')
{
/* It's a Qualified Expression Name. */
push_qualified_expression_name (name, i);
return;
}
}
/* It's a Simple Expression Name. */
if (push_variable (name))
return;
tmp = copy_name (name);
typ = java_lookup_class (tmp);
if (typ != NULL)
{
write_exp_elt_opcode(OP_TYPE);
write_exp_elt_type(typ);
write_exp_elt_opcode(OP_TYPE);
}
else
{
struct minimal_symbol *msymbol;
msymbol = lookup_minimal_symbol (tmp, NULL, NULL);
if (msymbol != NULL)
write_exp_msymbol (msymbol);
else if (!have_full_symbols () && !have_partial_symbols ())
error (_("No symbol table is loaded. Use the \"file\" command"));
else
error (_("No symbol \"%s\" in current context."), tmp);
}
}
/* The following two routines, copy_exp and insert_exp, aren't specific to
Java, so they could go in parse.c, but their only purpose is to support
the parsing kludges we use in this file, so maybe it's best to isolate
them here. */
/* Copy the expression whose last element is at index ENDPOS - 1 in EXPR
into a freshly malloc'ed struct expression. Its language_defn is set
to null. */
static struct expression *
copy_exp (struct expression *expr, int endpos)
{
int len = length_of_subexp (expr, endpos);
struct expression *new
= (struct expression *) malloc (sizeof (*new) + EXP_ELEM_TO_BYTES (len));
new->nelts = len;
memcpy (new->elts, expr->elts + endpos - len, EXP_ELEM_TO_BYTES (len));
new->language_defn = 0;
return new;
}
/* Insert the expression NEW into the current expression (expout) at POS. */
static void
insert_exp (int pos, struct expression *new)
{
int newlen = new->nelts;
/* Grow expout if necessary. In this function's only use at present,
this should never be necessary. */
if (expout_ptr + newlen > expout_size)
{
expout_size = max (expout_size * 2, expout_ptr + newlen + 10);
expout = (struct expression *)
realloc ((char *) expout, (sizeof (struct expression)
+ EXP_ELEM_TO_BYTES (expout_size)));
}
{
int i;
for (i = expout_ptr - 1; i >= pos; i--)
expout->elts[i + newlen] = expout->elts[i];
}
memcpy (expout->elts + pos, new->elts, EXP_ELEM_TO_BYTES (newlen));
expout_ptr += newlen;
}