TAR (5) BSDFile Formats Manual TAR (5)

NAME
tar — format of tape arctie files

DESCRIPTION
Thetar archive format collects annumber of files, directories, and other file system objects (symbolic
links, device nodes, etc.) into a single stream of byfé® format was originally designed to be used with
tape dies that operate with fixed-size blocks, but is widely used as a general packaging mechanism.

General Format
A tar archive mnsists of a series of 512-byte records. Each file system object requires a header record
which stores basic metadata (pathnammmes permissions, etc.) and zero or more records containigg an
file data. The end of the arehiis indicated by tw records consisting entirely of zero bytes.

For compatibility with tape dxies that use fied block sizes, programs that read or write tar filesys read

or write a fixed number of records with each 1/O operation. These “blocks” vaagsah multiple of the
record size. The maximum block size supported by early implementatas14@240 bytes or 20 records.
This is still the default for most implementations although block sizes of 1MiB (2048 record9)evrdes
commonly used with modern high-speed tape&edri (Note:the terms “block” and “record” here are not
entirely standard; this document follows the \eanion established by John Gilmore in documenting
pdtar .)

Old-Style Archive Format
The original tar archie format has been extended mdimes to include additional information thatrious
implementors found necessaryhis section describes thanant implemented by the tar command included
in Version 7AT&T UNIX, which seems to be the earliest widely-used version of the tar program.

The header record for an old-sty#e archive mnsists of the following:

struct header_old_tar {
char name[100] ;
char node[8];
char uid[8];
char gid[8];
char size[12];
char ntime[12];
char checksuni 8] ;
char linkflag[1];
char 1inkname[100];
char pad[255];

i

All unused bytes in the header record are filled with nulls.

name Pahname, stored as a null-terminated strificarly tar implementations only stored regular files
(including hardlinks to those filesPne common early coantion used a trailing "/" character to
indicate a directory name, allowing directory permissions awmuep information to be arclhed
and restored.

mode File mode, stored as an octal number in ASCII.
uid, gid User id and group id of owneaas atal numbers in ASCII.

size Size of file, as octal number in ASCIFor regular files only this indicates the amount of data that
follows the headerln particular this field was ignored by early tar implementations wheraet-
ing hardlinks. Modern writers shouldradys store a zero length for hardlink entries.

BSD DecembeR3, 2011 1

TAR (5) BSDFile Formats Manual TAR (5)

mtime Modification time of file, as an octal number in ASCTihis indicates the number of seconds since
the start of the epoch, 00:00:00 UTC January 1, 18ifle that ngaive values should bevaided
here, as theare handled inconsistently.

checksum
Header checksum, stored as an octal number in ASK@lloompute the checksum, set the check-
sum field to all spaces, then sum all bytes in the header using unsigned arithirheticield
should be stored as six octal digits followed by a null and a space chahNamteithat may early
implementations of tar used signed arithmetic for the checksum field, which can cause interoper
ability problems when transferring areés between systems. Modern robust readers compute the
checksum both ways and accept the header if either computation matches.

linkflag, linkname
In order to presee/hardlinks and conseevtape, a file with multiple links is only written to the ar
chive the first time it is encountered. The next time it is encounteredjntkftag is set to an
ASCII ‘1" and thelinknamefield holds the first name under which this file appears. (Note that re
ular files hae a nll value in thdinkflag field.)

Early tar implementations varied invadhey terminated these fields. The tar command in Versiom&r

UNIX used the following carentions (this is also documented in early BSD manpages): the pathname must
be null-terminated; the mode, uid, and gid fields must end in a space and a null byte; the size and mtime
fields must end in a space; the checksum is terminated by a null and a EBpdgemplementations filled

the numeric fields with leading spaces. This seems ve haen common practice until thEEE Std
1003.1-1988 (POSIX1") standard was releaseBor best portability modern implementations should fill the
numeric fields with leading zeros.

Pre-POSIX Archives

An early draft ofiEEE Std 1003.1-1988 P0OSIX1") served as the basis for John Gilmealtar program
and mag system implementations from the late 1980s and early 1990s. Theseesughierally follaw the
POSIX ustar format described belavith the following variations:

. The magic value consists of thedigharacters “ustar” followed by a spacéhe version field con-
tains a space character followed by a null.

. The numeric fields are generally filled with leading spaces (not leading zeros as recommended in
the final standard).

. The prefix field is often not used, limiting pathnames to the 100 characters of old-stylesarchi

POSIX ustar Archives

BSD

IEEE Std 1003.1-1988 POsSIX1") defined a standard tar file format to be read and written by compliant
implementations of ar (1). Thisformat is often called the “ustar” format, after the magilug used in the
header (The name is an acronym for “Unix StandaRT.) It extends the historic format with wefields:

struct header _posi x_ustar {
char name[100] ;
char node[8];
char wuid[8];
char gid[8];
char size[12];
char ntinme[12];
char checksuni 8] ;
char typeflag[1];
char 1inkname[100];
char magic[6] ;
char version[2];
char unane[32] ;

DecembeR3, 2011 2

TAR (5) BSDFile Formats Manual TAR (5)

BSD

char gnane[32];
char devmaj or|[8];
char devmi nor| 8];
char prefix[155];
char pad[12];

i
typeflag Type of entry POSIX extended the earliéinkflag field with several nav type values:
“0” Regular file. NUL should be treated as a synonym, for compatibility purposes.
“1” Hard link.
‘2" Symbolic link.
“3” Character device node.
“4r Block device node.
“5” Directory.
“6” FIFO node.
“7" Reserved.

Other A POSIX-compliant implementation must treatyamnrecognized typeflag value as a
regular file. In particulgrwriters should ensure that all entrievda \alid filename so
that thg can be restored by readers that do not support the correspomntiémgien.
Uppercase letters "A" through "Z" are reserved for custaensions. Not¢hat soclets
and whiteout entries are not anle.

It is worth noting that thaizefield, in particulay has different meanings depending on the type.

For reqular files, of course, it indicates the amount of data following the he&dedirectories, it

may be used to indicate the total size of all files in the diredimryse by operating systems that

pre-allocate directory spac&or all other types, it should be set to zero by writers and ignored by
readers.

magic Contains the magic value “ustar” foled by a NUL byte to indicate that this is a POSIX standard
archive. Full compliance requires the uname and gname fields be properly set.

version Version. Thisshould be “00” (two copies of the ASCII digit zero) for POSIX standard arebi

unamegname
User and group names, as null-terminated ASCII strifidgese should be used in preference to
the uid/gid values when there set and the corresponding names exist on the system.

devmajor devminor
Major and minor numbers for character device or block device entry.

name prefix
If the pathname is too long to fit in the 100 bytes/jgied by the standard format, it can be split at
any/ character with the first portion going into the prefix fielidthe prefix field is not emptyhe
reader will prepend the prefixalue and d character to the regular name field to obtain the full
pathname. Thetandard does not require a trailihgharacter on directory names, though most
implementations still include this for compatibility reasons.

Note that all unused bytes must be setlh.

Field termination is specified slightly tfently by POSIX than by previous implementatiofi$ie magic
uname and gnamefields must hee a tailing NUL. The pathnamelinkname and prefix fields must hee a
trailing NUL unless the fill the entire field. (In particulait is possible to store a 256-character pathname if
it happens to hee a/ as the 156th characferPOSIXrequires numeric fields to be zero-padded in the front,
and requires them to be terminated with either spabklorcharacters.

Currently most tar implementations comply with the ustar format, occasionginding it by adding e
fields to the blank area at the end of the header record.

DecembeR3, 2011 3

TAR (5) BSDFile Formats Manual TAR (5)

Numeric Extensions
There hae keen seeral attempts toxdend the range of sizes or times supported by modifyimgriumbers
are stored in the header.

One obvious &ension to increase the size of files is to eliminate the terminating characters frardbe v
numeric fields.For example, the standard only allows the size field to contain 11 octal digits, reserving the
twelfth byte for a trailing NUL characteAllowing 12 octal digits allows file sizes up to 64 GB.

Another extension, utilized by GNU tatar, and other neertar implementations, permits binary numbers

in the standard numeric field3his is flagged by setting the high bit of the first byte. The remainder of the
field is treated as a signed twos-complemeate, Thispermits 95-bit values for the length and time fields
and 63-bit alues for the uid, gid, and device numbers. In partictiier provides a consistent way to handle
negdive ime values. GNUtar supports this extension for the length, mtime, ctime, and atime fildsg
Schilling’s gar program and the libareia library support this extension for all numeric fields. Note that this
extension is largely obsoleted by the extended attribute record provided by the pax interchange format.

Another early GNU extension all@d base-64 values rather than octal. This extension was siedratid
is no longer supported byyammplementation.

Pax Interchange Format
There are manattributes that cannot be portably stored in a POSIX ustarvarcl#EE Std 1003.1-2001
(“POSIX1") defined a “pax interchange format” that uses tww types of entries to hold teformatted
metadata that applies to following entries. Note that a pax interchange formae aschitstar archie in
evay respect.The nav data is stored in ustar-compatible awvehentries that use the “x” or “g” typeflagn
particular older implementations that do not fully support these extensionsxtridiact the metadata intoge
ular files, where the metadata can be examined as necessary.

An entry in a pax interchange format akehonsists of one or tavgandard ustar entries, each with itgno
header and data. The first optional entry storesxtended attributes for the following entryhis optional
first entry has an "x" typeflag and a size field that indicates the total size of the extendetdattine
extended attributes themselves are stored as a series of text-format lines encoded in the portable UTF-8
encoding. Eaclhine consists of a decimal numbargace, a ky gring, an equals sign, a value string, and a
new line. Thedecimal number indicates the length of the entire line, including the initial length field and the
trailing newline. Anexample of such a field is:

25 ctine=1084839148. 1212\ n
Keys in dl lowercase are standarays. \endors can add their owreys by pefixing them with an all
uppercase vendor name and a period. Note that,eutikhistoric headenumeric \alues are stored using
decimal, not octal A description of some commoreys follows:

atime , ctime , mtime
File access, inode change, and modification times. These fields cagaieene include a deci-
mal point and a fractional value.

hdrcharset
The character set used by the pax extensaneg. Bydefault, all tetual values in the pax
extended attribtes are assumed to be in UTF-8, including pathnames, user names, and group
names. Irsome cases, it is not possible to translate localentions into UTF-8. If this &y is
present and the value is the six-character ASCII string AR, then all textual values are
assumed to be in a platform-dependent multi-byte encoditzge that there are only owalid
values for this ky: “BINARY” or “ISO-IR 10646 2000 UTF-8".No other values are permitted by
the standard, and the latter value should generally not be used as it is the default wiegnighis k
not specified. In particulathis flag should not be used as a general mechanismwofdé#names
to be stored in arbitrary encodings.

BSD DecembeR3, 2011 4

TAR (5)

BSDFile Formats Manual TAR (5)

uname, uid , gname, gid

linkpath

path

realtime.

size

SCHILY.

User name, group name, and numeric UID and GllDes. Thaiser name and group name stored
here are encoded in UTF8 and can thus include non-ASCIl charatteesUID and GID fields
can be of arbitrary length.

The full path of the linked-to file. Note that this is encoded in UTF8 and can thus include non-
ASCII characters.

The full pathname of the entriNote that this is encoded in UTF8 and can thus include non-ASCII
characters.

0 security. 0O
These kys ae reserved and may be used for future standardization.

The size of the file. Note that there is no length limit on this fieldwaltp conforming archies to
store files much larger than the historic 8GB limit.

O
Vendor-specific attributes used by Jp&chilling’s star implementation.

SCHILY.acl.access , SCHILY .acl.default

Stores the access and aldf ACLs as textual strings in a format that is an extension of the format
specified by POSIX.1e draft 17. In particukeach user or group access specification can include a
fourth colon-separated field with the numeric UID or GID. ThisvelAACLs to be restored on
systems that may not V& mplete user or group informatiomadable (such as when NIS/YP or
LDAP services are temporarily wsilable).

SCHILY.devminor , SCHILY.devmajor

The full minor and major numbers for device nodes.

SCHILY .fflags

The file flags.

SCHILY .realsize

The full size of the file on disk. XXX explain? XXX

SCHILY.dev, SCHILY.ino , SCHILY.nlinks

The device numbemode numberand link count for the entryln particulat note that a pax inter
change format arché wsing Joeg Schilling’s SCHILY. Oextensions can store all of the data from
struct stat

LIBARCHIVE. O

Vendor-specific attributes used by titgarchive library and programs that use it.

LIBARCHIVE.creationtime

The time when the file was create@This should not be confused with the POSIX “ctime”
attribute, which refers to the time when the file metadata was last changed.)

LIBARCHIVE.xattr. nanespace.key

Libarchive gores POSIX.1e-style extended attributes usiegs lof this form. The key value is
URL-encoded: All non-ASCII characters and the tssecial characters “=" and “%” are encoded
as “%”" followed by two uppercase hexadecimal digits. The value of tleg ls the etended
attribute value encoded in base 64. XXX Detail the base-64 format here XXX

VENDORL(

BSD

XXX document other vendor-specific extensions XXX

DecembeR3, 2011 5

TAR (5) BSDFile Formats Manual TAR (5)

Any values stored in an extended attribwerode the corresponding values in the regular tar heddete

that compliant readers should ignore the regular fields whgratbeverridden. Thisis important, asast-

ing archvers are knan to store non-compliant values in the standard header fields in this situBtiere

are no limits on length for grof these fields.In particular numeric fields can be arbitrarily . All text

fields are encoded in UTF8. Compliant writers should store only portable 7-bit ASCII characters in the stan-
dard ustar header and use extended attributes wdventext value contains non-ASCII characters.

In addition to thex entry described alve, the pax interchange format also supporgsemtry Theg entry is
identical in format, but specifies attributes that seas @faults for all subsequent arehi entries. Theg
entry is not widely used.

Besides the ne x andg entries, the pax interchange format hasnadéner minor variations from the earlier
ustar format. The most troubling one is that hardlinks are permitted te lthta following them. This
allows readers to restoreyahardlink to a file without hang to rewind the archie © find an earlier entry
However, it creates complications for robust readers, as it is no longer clear whether orynstdhiel
ignore the size field for hardlink entries.

GNU Tar Ar chives

BSD

The GNU tar program started with a pre-POSIX format similar to that described earlier amtehdsceit
using seeral different mechanisms: It addedangelds to the empty space in the header (some of whash w
later used by POSIX for conflicting purposes); it allowed the header to be contiaieduttiple records;
and it defined ne entries that modify following entries (similar in principle to thentry described alve,

but each GNU special entry is single-purpose, unlike general-purpose entry). Asa result, GNU tar ar
chives ae not POSIX compatible, although more lenient POSIX-compliant readers can successfdly e
most GNU tar archies.

struct header_gnu_tar ({
char name[100] ;
char node[8];
char uid[8];
char gid[8];
char size[12];
char ntinme[12];
char checksuni 8] ;
char typeflag[1];
char 1inkname[100];
char magic[6] ;
char version[2];
char unane[32];
char gnane[32];
char devmaj or|[8];
char devmi nor[8];
char atinme[12];
char ctinme[12];
char offset[12];
char | ongnanes[4];
char unused[1];
struct {

char offset[12];
char nunbytes[12];

} sparse[4];
char isextended[1];
char realsize[12];

DecembeR3, 2011 6

TAR (5)

b

BSDFile Formats Manual TAR (5)

char pad[17];

typeflag GNU tar uses the following special entry types, in addition to those defined by POSIX:

magic

version

BSD

7

D

\Y,

GNU tar treats type "7" records identically to type "0" recordsept on one obscure
RTOS where thg are used to indicate the pre-allocation of a contiguous file on disk.

This indicates a directory entrydnlike the POSIX-standard "5" typeflag, the header is
followed by data records listing the names of files in this directéagh name is pre-
ceded by an ASCII "Y" if the file is stored in this akehir "N" if the file is not stored

in this archve. Each name is terminated with a null, and an extra null marks the end of
the name list. The purpose of this entry is to support incremental backups; a program
restoring from such an arefei may wish to delete files on disk that did naisein the
directory when the arcte was made.

Note that the "D" typeflag specifically violates POSIX, which requires that unrecognized
typeflags be restored as normal files. In this case, restoring the "D" entry as a file could
interfere with subsequent creation of the like-named directory.

The data for this entry is a long linkname for the following regular entry.
The data for this entry is a long pathname for the following regular entry.

This is a continuation of the last file on the previookime. GNUmulti-volume af
chives guarantee that each volume begins with a valid entry heddeansure this, a file

may be split, with part stored at the end of oakime, and part stored at thegbwing

of the next wlume. Theé'M" typeflag indicates that this entry continues an existing file.
Such entries can only occur as the first or second entry in aneafdta latter only if

the first entry is a volume labelThesizefield specifies the size of this entryhe offset

field at bytes 369-380 specifies the offset where this file fragmeiridheTherealsize

field specifies the total size of the file (which must egirgplusoffse). Whenextract-

ing, GNU tar checks that the header file name is the onexpéectng, that the header
offset is in the correct sequence, and that the sum of offset and size is equal to realsize.

Type "N" records are no longer generated by GNU Tduey contained a list of files to

be renamed or symlinked after extraction; this was originally used to support long
names. Theontents of this record are xtelescription of the operations to be done, in
the form “Rename %s to %s\n” or “Symlink %s to %s\n”; in either case, both filenames
are escaped using K&R C syntax. Due to security concerns, "N" recordsiage mer-

ally ignored when reading arefes.

This is a “sparse” regular file. Sparse files are stored as a series of fragifieats.
header contains a list of fragment offset/length pairs. If more than four such entries are
required, the header is extended as necessary with “extra” hedelesiens (an older
format that is no longer used), or “sparse” extensions.

The namefield should be interpreted as a tape/volume header n#@his.entry should
generally be ignored on extraction.

The magic field holds the fvcharacters “ustar” followed by a space. Note that POSIX ustar ar
chives havea trailing null.

The version field holds a space character fegld by a null. Note that POSIX ustar aresi use
two copies of the ASCII digit “0”.

DecembeR3, 2011 7

TAR (5) BSDFile Formats Manual TAR (5)

atime ctime
The time the file was last accessed and the time of last change of file information, stored in octal as
with mtime

longnames
This field is apparently no longer used.

Sparseoffset / numbytes
Each such structure specifies a single fragment of a spars&Haetwo fields store values as octal
numbers. Théragments are each padded to a multiple of 512 bytes in the@r€n extraction,
the list of fragments is collected from the header (includirygeatension headers), and the data is
then read and written to the file at appropriate offsets.

isextended
If this is set to non-zero, the header will be fakal by additional “sparse header” recor@&ch
such record contains information about as yres21 aditional sparse blocks as shown here:

struct gnu_sparse_header {
struct {
char offset[12];
char nunbytes[12];
} sparse[21];
char i sext ended[1] ;
char paddi ng[7] ;
b

realsize A binary representation of the fifetomplete size, with a much larger range than the POSIX file
size. Inparticular with Mtype files, the current entry is only a portion of the file. In that case, the
POSIX size field will indicate the size of this entry; thalsizefield will indicate the total size of
the file.

GNU tar pax archives
GNU tar 1.14 (XXX check this XXX) and later will write pax interchange format aeshihen you specify
the —-posix flag. Thisformat follows the pax interchange format closeling someSCHILY tags and
introducing ne keywords to store sparse file informatiolhere hae keen three iterations of the sparse file
support, referred to as “0.0”, “0.1”, and “1.0".

GNU.sparse.numblocks GNU.sparse.offset
GNU.sparse.size
The “0.0” format used an initigdbNU.sparse.numblocks attribute to indicate the number of
blocks in the file, a pair cBNU.sparse.offset and GNU.sparse.numbytes to indicate
the offset and size of each block, and a si@\J.sparse.size to indicate the full size of the
file. Thisis not the same as the size in the tar header because the latter value does not include the
size of ay holes. Thisformat required that the order of attrtbs be preserved and relied on read-
ers accepting multiple appearances of the same attribute names, which is not officially permitted
by the standards.

, GNU.sparse.numbytes

GNU.sparse.map
The “0.1” format used a single attribute that stored a comma-separated list of decimal numbers.
Each pair of numbers indicated théset and size, respeatly, of a Hock of data. This does not
work well if the archve is extracted by an archér that does not recognize this extension, since
mary pax implementations simply discard unrecognized attributes.

GNU.sparse.major , GNU.sparse.minor , GNU.sparse.name , GNU.sparse.realsize
The “1.0” format stores the sparse block map in one or more 512-byte blocks prepended to the file
data in the entry body The pax attributes indicate the existence of this map (via the

BSD DecembeR3, 2011 8

TAR (5) BSDFile Formats Manual TAR (5)

GNU.sparse.major and GNU.sparse.minor fields) and the full size of the fileThe
GNU.sparse.name holds the true name of the fildo avoid confusion, the name stored in the
regular tar header is a modified name so that extraction errors will be apparent to users.

Solaris Tar
XXX More Details Needed XXX

Solaris tar (bginning with SUNOS XXX 5.7 ?? XXX) supports an “extended” format that is fundamentally
similar to pax interchange format, with the following differences:

. Extended attribtes are stored in an entry whose typ¥,isot x, as sed by pax interchange for
mat. Thedetailed format of this entry appears to be the same as detailegifabthex entry.
. An additionalA header is used to store an ACL for the following regular efthe body of this

entry contains a sen-digit octal number followed by a zero byte, followed by the textu@l A
description. Theoctal value is the number of ACL entries plus a constant that indicatethe A
type: 01000000 for POSIX.1e ACLs and 03000000 for NFSv4 ACLs.

AIX Tar
XXX More details needed XXX

AIX Tar uses a ustar-formatted header with the tgpr storing coded ACL informationUnlike the

Solaris format, AIX tar writes this header after the regular file body to which it applies. The pathname in this
header is eitheNFS4 or AIXC to indicate the type of BL stored. The actual ACL is stored in platform-
specific binary format.

Mac OS X Tar
The tar distributed with Apple’Mac OS X stores most regular files a® tsparate files in the tar arehi
The two files hae the same name except that the first one has “._" prepended to the last path €léisent.

special file stores an AppleDouble-encoded binary blob with additional metadata about the second file,
including ACL, extended attributes, and resourcEsrecreate the original file on disk, each separate file can

be tracted and the Mac OS ¢opyfile () function can be used to unpack the separate metadata file and
apply it to th regular file.Corversely the same function pwides a “pack” option to encode thrtended
metadata from a file into a separate file whose contents can then be put into aviar archi

Note that the Apple extended attributes interact badly with long filenames. Since each file is stored with the
full name, a separate set of extensions needs to be included in tive éockiach one, doubling theve-
head required for files with long names.

Summary of tar type codes
The following list is a condensed summary of the type codes used in tar header records generdged by dif
ent tar implementations. More details about specific implementations can be fouad abo
NUL

Early tar programs stored a zero byte for regular files.

POSIX standard type code for a regular file.

POSIX standard type code for a hard link description.

POSIX standard type code for a symbolic link description.

POSIX standard type code for a character device node.

POSIX standard type code for a block device node.

POSIX standard type code for a directory.

POSIX standard type code for a FIFO.

POSIX reserved.

GNU tar used for pre-allocated files on some systems.

N~N~Nooah~wWNEO

BSD DecembeR3, 2011 9

TAR (5) BSDFile Formats Manual TAR (5)

Solaris tar ACL description stored prior to a regular file header.
AIX tar ACL description stored after the file body.

GNU tar directory dump.

GNU tar long linkname for the following header.

GNU tar long pathname for the following header.

GNU tar multvzolume markerindicating the file is a continuation of a file from the previous volume.
GNU tar long filename support. Deprecated.

GNU tar sparse regular file.

GNU tar tape/volume header name.

Solaris tar general-purpose extension header.

POSIX pax interchange format global extensions.

POSIX pax interchange format per-file extensions.

xXexXx<nzrXOoO>»>»

SEE ALSO

ar (1), pax(1),tar (1)

STANDARDS

Thetar utility is no longer a part of POSIX or the Single Unix Standard. It last appeared in Version 2 of
the SingleUNIX Specification (SUSv2). It has been supplanted in subsequent standargsubfi). The

ustar format is currently part of the specification for plae (1) utility. The pax interchange file format is
new with IEEE Std 1003.1-2001 POSIX1").

HISTORY

BSD

A tar command appeared in\&ath Edition Unix, which \as released in Januaf@79. Itreplaced thep
program from Fourth Edition Unix which in turn replaced the program from First Edition UnixJohn
Gilmore’spdtar public-domain implementation (circa 1987) was highly influential and formed the basis of
GNU tar (circa 1988).Joeg Shilling’s star archier is another open-source (GPL) areéi (originally
developed circa 1985) which features complete support for pax interchange format.

This documentation &s written as part of th&barchive and bsdtar project by Tim Kientzle
Kientzle@FreeBSD.ofg

DecembeR3, 2011 10

