Tizen SDK Development Guide

Table of Contents

= 1 Introduction
= 2 Setup Build Environment
= 2.1 Linux(Ubuntu)
= 2.1.1 Install Tizen SDK
= 2.1.2 Install Ruby
= 2.1.3 Install Packages needed by DIBS
= 2.1.4 Install Pre-Requisite Packages
= 2.1.5 More
= 2.2 Windows
= 2.2.1 Install Tizen SDK
= 2.2.2 Install Ruby
= 2.2.3 Install rubyzip module
= 2.2.4 Install Packages needed by DIBS
= 2.2.5 Install MSYS GIT
= 2.2.6 More
= 3 Simple Local Build and Test
= 3.1 Build Package
= 3.2 Install Package
= 3.3 Launch your own SDK
= 4 Simple Remote Build and Test
= 4.1 Download source code and modified and push to upstream
= 4.2 Remote build command
= 5 More DIBS commands
= 5.1 List Up Available Packages
= 5.2 Update Package List
= 5.3 Upgrade Packages
= 5.4 Install SDK

Introduction

Tizen SDK is composed of many separate packages which have their own
dependencies. And DIBS(Distributed Intelligent Build System) is the build
system designed for building the kind of complexity needed. It provides various
features.

= Has own packaging system and packaging interface

= Provides distributed package server/build Server
= Provides Automatic dependency checker/resolver
= Provides client/server tools which are easy to use

This guide will show how to build Tizen SDK packages using DIBS

Setup Build Environment

Linux(Ubuntu)

Install Tizen SDK
= Install the SDK with “SDK Development Tools”
Install Ruby

= To use DIBS, you have to install Ruby 1.8.7

__

= Higher version of Ruby is not tested yet!

Install Packages needed by DIBS

Install Pre—Requisite Packages
To build or develop SDK, you have to install the following packages

= For emulator development:
= bcc bison flex autoconf gcc libglul-mesa-dev libsdl1.2-dev
libgtk2.0-dev libsdl-imagel.2-dev libsdl-gfx1.2-dev debhelper
libxml2-dev libasound2-dev libx11-dev zliblg-dev uuid-dev
libv4l-dev
- GDB 7.2
= quilt libncurses5-dev libexpatl-dev libreadline-dev mingw32(only
for building windows version)

= GCC4.5

= quilt texinfo bison flex mingw32(only for building windows version)

For your convenience,

= Add DIBS path to $PATH in shell configuration file. ex) .bashrc

export PATH={SDK Install dir}/tools/dibs:$PATH

Windows
Install Tizen SDK
Install the SDK first
Install Ruby

= You can download Ruby binary at..

1
1Ftp://ftp._ruby-lang.org/pub/ruby/binaries/mswin32/ruby-1.8.7-i386-mswin32.zip
:http://rubyforge.org/frs/download.php/75679/rubyinstalIer—1.8.7—p357.exe

Install rubyzip module

= You should install ruby zip module after installing ruby

= Execute the following commands on MinGW environment

1$ mingw-get.exe update

1 - -

,$ mingw-get.exe install msys-wget
1$ mingw-get.exe install msys-zip
'$ mingw-get.exe install msys-unzip
1

Install MSYS GIT

= Download the MSYS binary

e e e e e e e e e e = = = = ==

» |nstall it
More
For your convenience,

= Add "/usr/bin/ruby" shell script

1
1#1/bin/sh
:{Yuby install dir}/bin/ruby.exe $@

1#1/bin/sh
:/c/Ruby187/bin/ruby.exe $@

1
1#1/bin/sh
:{MSYS GIT install dir}/bin/git.exe $0

1#1/bin/sh
\/c/Progran\ Files/Git/bin/git.exe $0

= Add DIBS path to $PATH in shell configuration file. ex) /etc/profile

_—— e e e e —— = =

Simple Local Build and Test

If you have downloaded an SDK source package and modified it, and you
would want to build and apply it to the Tizen SDK, Please refer the following
process.

Build Package

Building a SDK package is very simple. Here is the command for building the
package.

1

V4% pkg-build -u <package server url> [-0 <os>] [-c] [-h] [-v]

:## -u : Package server URL which contains binary and development packages.

| IT ommited, it will use previous server URL.

V## -0 : Target 0S(ubuntu-32/ubuntu-64/windows-32/windows-64/macos-64)

:## -c > Clean build""

1 IT set, start build after downloading all dependent packages

! IT not set, it will not download dependent packages if already downloaded
\## -h > Display help

\## -v o Display version

And Here are simple steps

1. Git clone and move to source directory
= ex) $> git clone review.tizen.org:sdk/ide/common-eplugin
= ex) $> cd common-eplugin
2. Type the command
= ex) $> pkg-build -u
http://<package_server_address>/<package_server_name>/<distrib
ution_name>
3. Now you can see the package files(*.zip, *.tar.gz) in your source
directory

Install Package

Installing a SDK package is also very simple. Here is the command for installing
package files

1
:## pkg-cli install-file -P <package file path> [-I <location>] [-u <package server url>] [--trace] [--force] :
\## -P : Binary package file(*.zip) path which you want to install 1
\## -1 : Install root location of target SDK |

1

! If omitted, current working directory path will be set

:## -u > Package server URL which contains binary and development packages.

| ## If ommited, it will use previous server URL.

:## ex) http://172.21.17.55/dibs/unstable

\## —-trace > Install the package with all dependent packages

1## --force : Install the package by force

This option will allow installing the package that has lower or equal version compare to installed

Now let's assume that you have just finished building and have a Tizen SDK
installation on '~/tizen-sdk’

1. Just type the command
= ex) $> pkg-cli install-file -P common-eplugin_0.20.6_linux.zip -I
~/tizen-sdk

Launch your own SDK

Now you can check your modifications. Launch your SDK!!

1. Type the following command or use the short-cut for launching Tizen
SDK.
= ex) $> ~/tizen-sdk/ide/startup.sh

Simple Remote Build and Test

If you want to modify the Tizen SDK source file and upload it to the package
server using build server then using DIBS,here is the simple process to do it.

Download source code and modified and push to
upstream

= Tizen control source code using git.
1. Download Tizen source code using git command
2. Modified source code
3. Push to upstream using git command
= If source code change is accepted then you can build using
build server
4. Execute remote build command
= If source code builds successfully then upload the package
file to the package server.

Remote build command

Remote build command is simple.

1
:## build-cli build -N <project name> -d <server address> [-o0 <os>] [-w <password>] [--async]” :
V## -N : Project name. This should be set before through "build-svr add-prj" command !
\## -d : Build server adoress: 127.0.0.1:2224 '
14 -0 - Target operating system: ubuntu-32/ubuntu-64/windows-32/windows-64/macos-64 I
V#4 —w - Password for managing project. If a password is set before through "build-svr add-prj" command, you !
:shauld input the password :
\## --async : asynchronous job 1
1 1

= You can request to build project to build server. After that, package will
be uploaded to package server

= The project name should be set before through "build-svr add-prj"
command

= Step

1. Request to build project to build server
= ex) $> build-cli build -N dibs -d
<build_server_address>:<build_server_port_number>

More DIBS commands

There are more useful commands provided

List Up Available Packages

You can list up available packages of server.

:## pkg-cli list-rpkg [-o0 <os>] [-u <package server url>]

\## -0 Target 0S(ubuntu-32/ubuntu-64/windows-32/windows-64/macos-64)

\## -u : Package server URL which contains binary and development packages.
! IT ommited, it will use previous server URL.

1. List up packages
= ex) $> pkg-cli update -u
http://<package_server_address>/<package_server_name>/<distrib
ution_name>
= ex) $> pkg-cli list-rpkg
2. List up packages with updating

= ex) $> pkg-cli list-rpkg —u

http://<package_server_address>/<package_server_name>/<distrib

ution_name>

You can list up packages of your install directory

1

\## pkg-cli list-Ipkg [-1 <location>]

Vg% -1 : Install root location of target SDK

! If omitted, current working directory path will be set

1. List up packages
= ex) $> pkg-cli list-lpkg -l ~/tizen-sdk

Update Package List

You should have package list of server in your host before listing, installing and
downloading packages. So, if you want to install the latest package, then you

should update your package list before installing.

e e e e e e e e e e e e e e e e e e e o e e = o = = = ==

:## pkg-cli update [-u <package server url>]

\## -u > Package server URL which contains binary and development packages.

1 If ommited, it will use previous server URL.

1. Update package list from server
= ex) $> pkg-cli update -u

http://<package_server_address>/<package_server_name>/<distrib

ution_name>
2. Install / download packages from server

= ex) $> pkg-cli install -P nativeapp-eplugin -1 ~/tizen-sdk
= ex) $> pkg-cli install -P unittest-eplugin -I ~/tizen-sdk
= eXx) $> pkg-cli download -P base-ide-product -1 ~/downloads
3. If package is updated on server and you want to use is, you should
update your package list. If you do not set the server url, it will be set

previous server URL.
= ex) $> pkg-cli update

= ex) $> pkg-cli install -P nativeapp-eplugin -| ~/tizen-sdk

Upgrade Packages

You can upgrade your installed packages from server.

_—— e e e m == = =

> Package server URL which contains binary and development packages.

IT ommited, it will use previous server URL.

> Install root location of target SDK

IT omitted, current working directory path will be set

Check package for upgrading
= $> pkg-cli update -u
http://<package_server_address>/<package_server_name>/<distrib
ution_name>
= $> pkg-cli check-upgrade - ~/tizen-sdk
Upgrade packages
= $> pkg-cli upgrade -l ~/tizen-sdk
Upgrade packages with updating
= $> pkg-cli upgrade -I ~/tizen-sdk -u
http://<package_server_address>/<package_server_name>/<distrib
ution_name>
If you want to upgrade specific package, you can upgrade it as installing
= $> pkg-cli install -P common-eplugin -1 ~/tizen-sdk -u
http://<package_server_address>/<package_server_name>/<distrib
ution_name>

Install SDK

You c

command is used for installing packages by network. But you can also set meta

an also install new SDK using the network install command. Basically this

package as package name like TIZEN-IDE, EMULATOR-TOOLS and
EMULATOR-IMAGE.

V## pkg-cli install -P <package name> [-0 <o0s>] [-u <package server url>] [-1 <location>] [--trace] [--force]
:## -P : Binary package name which you want to install

V2 -0 -

:## -1 -

1
1 7% --tra

target 0S: ubuntu-32/ubuntu-64/windows-32/windows-64/macos-64
IT ommited, it will host os.

-u > Package server URL which contains binary and development packages.

If ommited, it will use previous server URL.

Install root Iocation of target SDK

IT omitted, current working directory path will be set
ce - Install the package with all dependent packages

V## --force : Install the package by force

This option will allow installing the package that has lower or equal version compare to installed

1.

2.

Install "TIZEN-IDE" by network to new location("~/tizen-sdk2")
= ex) $> pkg-cli install -P TYPICAL -l ~/tizen-sdk2 —--trace \
Change Tizen SDK configuration

= ex) $> echo
"TIZEN_SDK_INSTALLED PATH=/home/{username}/tizen-sdk2" >
~/tizen-sdk-data/tizensdkpath
3. Launch your SDK!
= ex) $> ~/tizen-sdk2/ide/startup.sh

