Tizen Avengers - WebApi Guidelines

. Revision History
1. Overview

Ill. Guideline

Languages
Coding style
API guide

Unit test criteria
Source code

L T S o

License and Boilerplate
IV. Plugin Structure

Conventions
Structure

Spec file

Manifest file

GYP file
Implementation files

N o g NP

Plugin flow

V. WIDL

VI

1.
2.
3.
Tools

1

Conventions
Architecture

Example

Generate stub code

2. Using multiple JavaScript files
VIl. Implementation - JavaScript

Interface creation
Creating Manager entity
Properties definition
Methods definition
Exporting interface
Utils

Exceptions
Synchronous methods

© ® N o 0N

Asynchronous methods

i
©

Listeners
VIII. Implementation - C++

Lifecycle and plugin state
Privileges

Namespace and entry points
Plugin structure
Asynchronous calls
Listeners

Logger

© N o g wDN R

Error handling
IX. Devel package

1 Package structure
2. Creating custom web device plugins module

Revision History

Version Date Description Editor

0.1.0 2015-05-15 Initial Draft Woijciech Kosowicz

w.kosowicz@samsung.com

Pawel Kaczmarek
p.kaczmarek3@samsung.com

0.2.0 2015-05-22 Extended version

mailto:w.kosowicz@samsung.com
mailto:p.kaczmarek3@samsung.com

Version Date Description Editor

0.2.1 2015-06-01 Proofreading Rafal Galka
r.galka@samsung.com

0.3.0 2015-06-08 Supplemented C++ implementation guide Rafal Galka
r.galka@samsung.com

0.4.0 2015-06-16 Guideline Pawel Kaczmarek
p.kaczmarek3@samsung.com

0.5.0 2015-06-18 Devel package Pawel Kaczmarek
p.kaczmarek3@samsung.com

0.5.1 2015-06-24 Add info about WAPIOven.py Pawel Kaczmarek
p.kaczmarek3@samsung.com

0.6.0 2016-10-28 update devel package for tizen 3.0 Annie Park
hj.na.park@samsung.com

Overview

This document should be used as a guideline for developers who are creating web plugins for Tizen platform. Conventions and practices described here
could be used to develop new web plugins for Tizen 2.4 platform and higher version. Each plugin should be written with great attention on JavaScript.

Guideline

Languages

C++, JavaScript

Coding style
Use Google style guide, C++: http://google-styleguide.googlecode.com/svn/trunk/cppguide.html

JavaScript: http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml

API guide

Tizen Web Device API Guide Lines.pptx
http://platform.sec.samsung.net/slp/Tizen/Tizen%20Managed%20API/Web%20Device%20AP1/Tizen%20Web%20Device%20AP1%20Guide%20Lines.pptx

Unit test criteria

Tizen-Compliance-Tests-Device-API-UnitTest-Criteria.v0.11_SRPOL.xIsx
http://platform.sec.samsung.net/slp/Tizen/Tizen%20Managed%20AP1/Web%20Device%20API|/Tizen-Compliance-Tests-Device-API-UnitTest-
Criteria.v0.11_SRPOL.xIsx

Source code

For Tizen 2.4:

$ git clone ssh://<user.id>@168.219.209.56:29418/framework/web/webapi-plugins
$ cd webapi-plugins
$ git checkout origin/tizen_2.4

For Tizen 3.0

$ git clone ssh://<user.id>@168.219.209.56:29418/framework/web/webapi-plugins
$ cd webapi-plugins
$ git checkout origin/tizen_3.0

License and Boilerplate

Use this boilerplate in every new created source files.

/*
* Copyright (c) 2015 Samsung Electronics Co., Ltd All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.

mailto:r.galka@samsung.com
mailto:r.galka@samsung.com
mailto:p.kaczmarek3@samsung.com
mailto:p.kaczmarek3@samsung.com
mailto:p.kaczmarek3@samsung.com
mailto:hj.na.park@samsung.com
http://google-styleguide.googlecode.com/svn/trunk/cppguide.html
http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
http://platform.sec.samsung.net/slp/Tizen/Tizen%20Managed%20API/Web%20Device%20API/Tizen%20Web%20Device%20API%20Guide%20Lines.pptx
http://platform.sec.samsung.net/slp/Tizen/Tizen%20Managed%20API/Web%20Device%20API/Tizen-Compliance-Tests-Device-API-UnitTest-Criteria.v0.11_SRPOL.xlsx

* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and
* limitations under the License.
*/

Plugin Structure

Conventions

Each plugin is kept in separate directory inside src/ folder written in lowercase convention.

Structure
Each plugin contains following structure:

e <pluginname>.gyp

e <pluginname>_api.js

e <pluginname>_extension.h
e <pluginname>_extension.cc
e <pluginname>_instance.h

e <pluginname>_instance.cc

Spec file

Spec file (webapi-plugins.spec) keptinside packaging/ directory is build specification file used by RPM packaging system where variables are
defined. Those variables can be used to include or exclude particular modules from build for each profile (mobile, TV, wearable).

Manifest file

Each RPM package must have a manifest file where developers can specify the access control domain in which their application should be running and
potentially additional security policies for the application. It is necessary to build the project. The manifest file (webapi-plugins.manifest) is located
in the root directory of the project.

GYP file

Each plugin has its own gyp file that contains information specific for it. Plugin configuration file (gyp) is the equivalent of CMake. It contains information
what files to build what libraries to use for linking. There can be also found one main gyp file in src/ folder (tizen-wrt.gyp) that includes others.

Implementation files
Description of files required in plugin implementation.

e C++files (<pluginname>_extension.h, <pluginname>_extension.cc)
Extension nhamespace and other objects exported by JavaScript layer are set inside these files.
e C++files (<pluginname>_instance.h, <pluginname>_instance.cc)
These files are responsible for communication between JavaScript layer and Native API.
« JavaScript file (<pluginname>_api.js)
This file contains all methods required by each API. All operation should be done by JavaScript as much as possible. If JavaScript can do
something, it should do it. This file is responsible for checking arguments, calling C++ methods etc.

Plugin flow

lavaScript Layer C++ Layer Platform

Explanation of steps:

1. From JavaScript Layer information is sent to C++ Layer. This information consists of type of call (asynchronous, synchronous) arguments given
by user, any additional information that is required to successfully acquire required data. Data is sent in form of JSON.

2. C++ parses acquired JSON. After the data is processed. Appropriate platform functions are called with the specified arguments.

3. Platform returns specified values to C++ layer.

4. Another JSON is formed. It consists of data that was acquired from platform.

WIDL

Conventions
Currently WIDL version that is used in Samsung is described here: http://www.w3.0rg/TR/WebIDL/. This is document from 19 April 2012.

WIDL used for plugins creation is closer to previous drafts mainly this from 21 October 2010. It is described here: http://www.w3.0rg/TR/2010/WD-
WeblIDL-20101021/.

Architecture

Each plugin is separated from each other as a different module. We do this by using module key name.

1. module identifer
2. definitions
3.

Each module describes space, binding many connected definitions in one namespace. Inside each module there are sets of interface defined. Most of
the time there is one major interface defined, which is NolnterfaceObject. This is manager object which has only one property which is object that
actually implements manager functionality.

1. interface identifier indentifier-of-inherited-interface
2. interface-member
3.

Interface is a definition of an object, which can be realized in a system (an inheritance and overloading is possible). In interface definition you can put
following members:

« Constants.

« Attribute : Interface member, which represents variable inside object, can be changed, if it is not read only.

« Operation: Interface member, which represents method inside object. It is a function of programming language, which can be executed and
returns a result.

« Special operation: Performs a specific task. i.e. deleter, getter

« Static operation: It is not called for a specific instance of the interface, is called for static object regardless of an instance creation. It is connected
with the interface itself.

1. interface identifier

2 attribute type identifier

3 extended-attribute] const type identifier value

4 extended-attribute] attribute type identifier

5. readonly attribute type identifier

6 attribute type identifier inherits getter; ///Declared to change read only attribute //inherited from interface
7 attribute type identifier getraises (NoSuchvalue ///Exception declaration

8 return-type identifier(arguments

9

return-type identifier(argument-type argument-identifier ///regular operation
10. return-type identifier(optional argument
11. special-keywords return-type identifier(arguments ///special operation
12. extended-attribute]return-type identifier(arguments ///A variable number of //arguments
13. return-type identifier(arguments) raises (identifier) ///raises exception
14. caller return-type identifier(argument
15. caller return-type (argument
16. static return-type identifier(arguments
17.

Next step is to connect manager implementation with Tizen object.

1. Tizen implements ManagerObject

To provide actual implementations of ManagerObject, instance of its Manager interface definition has to be made. Inside this Manager interface all
attributes and functions that will be available form manager namespace, should be defined. There can be attributes which are other interfaces,
operations and everything that interfaces allows.

http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/2010/WD-WebIDL-20101021/

Additional interface can be available as a standalone types not connected to global namespace. Those are either obtained from operation of other
interfaces or constructed with theirs constructor method. Interface which are constructible are described as follows:

1. [Constructor(type argl, optional type? Arg2
2. Interface ConstructibleInterface

3. attributes

4, operations

5. an so on

6.

As one can see list of parameters is specified for such constructor. Not all parameters are mandatory, some can be preceded by optional keyword
and ? mark, after type to mark that this is not obligatory argument. Additionally some operations can be followed by raises key word to mark that,
described exception type can be thrown during execution of such method.

Because some operations can be asynchronous, it is necessary to provide callbacks objects that can be executed by such operation. Callback object is
special type of interface objectwith Callback=FunctionOnly extended attribute.

1. [Callback=FunctionOnly, NoInterfaceObject] interface SomeCallback
2. void someMethod(type agril

On the purpose of listeners which accepts dictionaries, there are callbacks that support more than one method. There is another definition of callback
which lacks of keyword Functiononly .

1 Callback, NoInterfaceObject] interface SomeDictionaryCallback
2 void firstmethod(type someargl

3. void secondmethod(type somearg2

4 any additional methods

5

Example
Example of WIDL file:
1. module Sample
2.
3. enum SampleEnums
4.
5.
6.
7.
8.
9. typedef (SampleEnums) SampleType
10.
11. NoInterfaceObject] interface SampleManagerObject
12. readonly attribute SampleManager sample
13.
14.
15. Tizen implements SampleManagerObject
16.
17. NoInterfaceObject] interface SampleManager
18. void sampleMethod(SampleType paraml, Sample2 param2) raises(WebAPIException
19. double sampleMethod2(SampleType paraml) raises(WebAPIException
20. void sampleMethod3(SampleCallback callback) raises(WebAPIException
21.
22.
23. Callback=FunctionOnly, NoInterfaceObject
24. interface SampleCallback
25, void onsuccess(Samplel paraml, Sample2 param2
26.
27.

Tools

Generate stub code

To generate stub files from the widl you can use stub generator located in tools/skeleton_generator/ directory and run the python command:

$ python WAPIOven.py -d <stub code destination directory name> <widl directory/pluginname>.widl

If tizen.widl is needed, add tizen.widl

1. $ python WAPIOven.py -d <stub code destination directory name> <widl directory/pluginname>.widl <widl
directory/>tizen.widl

Path to WAPIOven.py:

$ tools/skeleton_generator/WAPIOven.py

C

You need to install jinja2 for WAPIOven.py:

$ sudo apt-get install python-jinja2

Example:

$ sudo apt-get install python-jinja2
$ cd tools/skeleton_generator/
$ python WAPIOven.py -d ../../src/notification/ /web-device-api/web/widl/tizen/notification.widl

WIDL files can be found in the project repository:

$ git clone ssh://<username>@168.219.209.56:29418/doc/web-device-api

The widl files are placed in: web-device-api/web/widl/tizen/

Stub files generated by above command:

<pluginname>_api.js
<pluginname>_extension.h
<pluginname>_extension.cc
<pluginname>_instance.h
<pluginname>_instance.cc

What should be done when skeleton code was generated?

e <pluginname>.gyp file should be added
« entry points should be checked in <pluginname>_extension.cc file
« each method should be implemented in <pluginname>_instance.cc file

Using multiple JavaScript files
To use multiple JavaScript files in one plugin create js/ directory inside plugin directory and place JavaScript files.

Inside <pluginname>_api.js required JavaScript files should be added:

//= require('common.js');

//= require('calendar_item.js');

//= require('calendar.js');

//= require('calendar_manager.js');

//= require('calendar_attendee.js');

//= require('calendar_alarm.js');

//= require('calendar_recurrence_rule.js');

To merge all JavaScript files tools/mergejs.py file is used. This script merge all files mentioned in <pluginname>_api.js file into one file before
build process.

Implementation - JavaScript

Each plugin contains JavaScript files. This is the place where user input is being processed validated before send to C++ layer.

Badge API will be used to show the creation of JavaScript file (ot of content of this file will be already generated via Stub Generator).

Interface creation

The WIDL of BadgeManager — main entity that holds all the API methods looks like following:

1 NoInterfaceObject] interface BadgeManager

2 readonly attribute long maxBadgeCount

3 void setBadgeCount(ApplicationId appId, long count) raises(WebAPIException

4. long getBadgeCount(ApplicationId appId) raises(WebAPIException

5 void addChangelListener (ApplicationId[]appIdList, BadgeChangeCallback successCallback) raises(WebAPIException
6 void removeChangelListener (ApplicationId appIdList) raises(WebAPIException

7

Creating Manager entity

Object that will hold attributes and methods is defined as JavaScript function:

1. function BadgeManager

Properties definition

Properties are defined within the created JavaScript function like this:

1. var 999

2. Object this

3. true false
4

Because the property was defined as const , writable is set to false.

Methods definition

In accordance to WIDL BadgeManager contains setBadgeCount method. To define this method within JavaScript use prototype extension functionality:

1. BadgeManager function

Exporting interface

Once the object is created and all the methods and attributes are set it has to be exported so it will be visible when making call to tizen.badge
namespace. This is done using assigning new object instance to exports variable:

1. new BadgeManager //exported as tizen.badge
2. new CalendarManager //exported as tizen.calendar

Other namespaces within the module are exported as below:

1. CalendarAttendee CalendarAttendee
2. CalendarEvent CalendarEvent
3. CalendarTask CalendarTask

Utils

In src/utils/utils_api.js file there is a lot of useful tools that allow automatization of certain operations. Most often used tools from utils_api.js are
converter and validator. All tools are available under xwalk.utils namespace.

Converter

A lot of times conversion between JavaScript types will be required. The converter tool was created in order to make this operation easier.

1. var
2. var
Validator

When API JavaScript method is called first thing that has to be done in JavaScript layer of api implementation is to process and validate arguments
given by the user. The process of validation consists of ensuring that the proper amount of arguments was given and that they were of the expected
type and throwing exception if necessary.

Validator helps to ensure that user sent proper values. Validator is available at xwalk.utils.validator and predefined js types at

xwalk.utils.validator.types

Below can be found example of using validator inside setBadgeCount method that requires appld in form of string and long count value:

1. var
2. var Types
3.

var

~N o o b

Exceptions

At some point whether improper data is received or given to JavaScript might require to throw exceptions. The example below shows how to throw
properly predefined exceptions:

1. throw new WebAPIException(WebAPIException.TYPE_MISMATCH_ERR
2.

WebAPIException constructor takes as argument the type of error to be thrown. The second additional argument is error message.

Synchronous methods

In order to perform synchronous operation (one that does not require callback and the result is given instantly) callSync() method of Native manager
needs to be called:

var native_ new xwalk.utils.NativeManager (extension
var ret native_.callSync

appId: args.appId

count: args.count

if (native_.isFailure(ret
throw native_.getErrorObject(ret

0w N U~ WN R

The first argument is the command name registered in C++ layer that has to be called, the second is arguments object that will be passed to this
method. Result is assigned to ret variable.

Asynchronous methods

In order to work with method that requires callback instead of callSync(), call() method needs to be called. Apart from the first two arguments that are
exactly the same as in call() method (c++ method binding, object) it takes additional argument that is a function that will be called when the native call is
processed:

1. var native_ new xwalk.utils.NativeManager (extension
2. var callback function(result
3. if (native_.isFailure(result
4, native_.callIfPossible(args.errorCallback, native_.getErrorObject(result
5. else
6. var calendars native_.getResultObject(result
7. var c
8. calendars.forEach(function(i
9. c.push(new Calendar(new InternalCalendar (i
10.
11. args.successCallback(c
12.
13.
14.
15. native_.call callArgs, callback
Listeners

In order to work with listeners NativeManager provides addListener and removelListener methods. This method takes two arguments: one is
unique listenerId that will be processed when making a call from C++ to JavaScript. The second one is the function that is called whenever
expected event occurs.

var native new xwalk.utils.NativeManager (extension
var listenerId
native_.addListener(listenerId, function(data

// handle event data

native.callSync
type: this.type
listenerId: listenerId

© 0N U~ WwWNBR

Implementation - C++

Lifecycle and plugin state

All plugins instances are created by runtime on application launch. It's important to not initialize any database/service connections and platform handlers
in instance constructor. All resources should be "lazy" initialized just before first use, to keep starting time as short as possible. At the beginning the
initializer loads only basic information from plugins.json. This file is being generated during plugins build process, its body depends on defined modules.
Initialized resources can be referenced to instance and kept for further usage. Instance destructor is called on application termination and should
release all used resources to prevent memory leaks.

Native layer should be considered as stateless. It means that there is no strict reference between JavaScript and native data.
Example: If operation should change some object retrieved from platform, identifier should be passed again and additional check if object still exists
should be made.

Privileges

Some of the APl methods require privilege access. The privilege engine used in the project is Cynara. In Tizen 3.0 checking if application has privilege
to call method has been moved to C++ layer. It's the first step which should be checked.

Below can be found example of using Privilege in Alarm API:

const std::string kPrivilegeAlarm

1

2.

3. // inside add, remove, removeAll methods:

4, CHECK_PRIVILEGE_ACCESS(kPrivilegeAlarm out

Namespace and entry points

Extension namespace and other objects exported by JavaScript layer are defined inside <pluginname>_extension.cc file.

1. SetExtensionName //exported in JS as new NotificationManager();
2. const char* entry_points

3.

4 NULL

Plugin structure

In general Instance class (<pluginname>_instance.cc) should be treated as command dispatcher and should be as small as possible (similar to
Controller in MVC). It's responsibility should be limited to reading/validating arguments, forwarding call to business logic component and passing result
to JavaScript layer. Business logic should be implemented in additional classes with SOLID principles in mind.

Commands callable from JavaScript layer should be registered in constructor of <PluginName>Instance class which extends

common: :ParsedInstance .

1. // <pluginname>_instance.h
2. class MediaControllerInstance public common::ParsedInstance

Currently there is no difference in registering sync and async commands. But good practice is to separate them for readability and maintainability.
Common practice is to define two macros and call RegisterSyncHandler method from common::ParsedInstance .

1. // <pluginname>_instance.cc
2. MediaControllerInstance::MediaControllerInstance
3. #define REGISTER_SYNC(c, x) \

4, RegisterSyncHandler(c, std::bind(&MediaControllerInstance::x, this, _1, _2
5. #define REGISTER_ASYNC(c, x) \
6. RegisterSyncHandler(c, std::bind(&MediaControllerInstance::x, this 1 2
7.
8. REGISTER_SYNC
9. MediaControllerManagerGetClient
10. REGISTER_ASYNC
11. MediaControllerClientFindServers
12.
13. // ... other commands
14.

15. #undef REGISTER_SYNC
16. #undef REGISTER_ASYNC
17.

Static method registered as a handler must have proper signature:

1. void InstanceClass::HandlerName(const picojson::value& args, picojson::object& out

e args - object containing arguments passed from JavaScript layer
e out - object containing response data returned synchronously to JavaScript layer.

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

ReportSuccess(), ReportError() or LogAndReportError() helpers should be used to ensure proper structure of out object.

LogAndReportError() expands ReportError() function. It sets errorin out object but additionally prints message if ERROR log priority is on.

picojson::value data picojson::value<picojson::object
const PlatformResult& result model DoSomethingWithData(&data
if result

LogAndReportError(result out

return

0N A WN R

ReportSuccess(data, out

Asynchronous calls

To perform asynchronous request common: :TaskQueue component should be used. You should use lambda expression which calls business logic and

passes result to JavaScript layer by calling PostMessage(const char* msg) .

Asynchronous response is not matched to request automatically. You should pass callbackId received from JavaScript layer as an argument. It

allows to call the appropriate user callback in JS async message handler.

1. auto search this, args void
2
3 // business logic
4 picojson::value servers picojson::value(picojson::array
5. PlatformResult result client_->FindServers(&servers.get<picojson::array
6
7 // response object
8 picojson::value response picojson::value(picojson::object
9. picojson::object& response_obj response.get<picojson::object
10. response_obj["callbackId" args.get("callbackId"
11. if (result
12. ReportSuccess(servers, response_obj
13. else
14, LogAndReportError(result response_obj
15.
16.
17. // post JSON string to JS layer
18. PostMessage(response.serialize c_str
19.
20.

21. TaskQueue::GetInstance().Async(search

Listeners

Sending events from platform listeners is very similar to sending asynchronous responses. PostMessage(const char* msg) should be called with

listenerId passed from JavaScript layer.

1. auto listener this, args](picojson::value* data void
2.
3. if data
4, LoggerW("No data passed to json callback"
5. return
6.
7.
8. picojson::object& request_o data->get<picojson::object
9. request_o["listenerId" args.get("listenerId"
10.
11. PostMessage(data->serialize c_str
12.

Logger

Logger is available from common/logger.h Available log priorities are: DEBUG, INFO, WARN and ERROR . Each priority has macro which should be

used to filter messages based on level of importance:

e LoggerD() prints message with DEBUG priority

e LoggerI() prints message with INFO priority

e LoggerW() prints message with WARNING priority
e LoggerE() prints message with ERROR priority

Example:

1. LoggerD("Entered to getAll() function"

2. LoggerI object->data->size

3. Loggerw object

4. LoggerE

name
error

Error handling

Regarding to Google C++ Style Guide we do not use Exceptions.

To deliver error conditions to JavaScript layer, that can occur in the platform, LogAndReportError or ReportError method should be used. All
available error codes are defined in common/platform result.h

LogAndReportError can be used anywhere in native layer. It sets PlatformResult error object in response object which should be converted to exception

and thrown in JavaScript layer:

1. // C++ layer

if (native_.isFailure(ret
throw native_.getErrorObject(ret

a b~ wnN R

2. LogAndReportError(PlatformResult(ErrorCode: :NOT_FOUND_ERR out
3. LogAndReportError(PlatformResult(ErrorCode: :UNKNOWN_ERR out
// JavaScript layer
var native new xwalk.utils.NativeManager (extension

Devel package

After build process webapi-plugins-devel-xxx.rpm should be generated in gbs directory. Package contains required common headers files, gypi files and

webapi-plugins.pc file.

Package structure

| -usr
| ---include
| ----- webapi-plugins

|---1ib
| ----- pkgconfig

File webapi-plugins.pc source:

1. project_name=webapi-plugins
2. dirname=tizen-extensions-crosswalk
3. prefix=/usr
4. exec_prefix=${prefix
5. libdir=${prefix}/1lib/${dirname
6. includedir=${prefix}/include/${project_name}/src
7.
8. Name: ${project_name
9. Description: ${project_name
10. Version
11. Requires: dbus-1 dlog glib-2.0
12. Libs L${1libdir 1tizen_common
13. Cflags I${includedir
Creating custom web device plugins module

To create custom web device plugins module webapi-plugins.spec, tizen-wrt.gyp, webapi-plugins.manifest and src files are needed.

Skeleton below shows the required structure of test module.

— packaging
| L— webapi-plugins.spec

http://google-styleguide.googlecode.com/svn/trunk/cppguide.html#Exceptions

src
— test

| f— test_api.js

| }— test_extension.cc
| — test_extension.h
| |— test.gyp

| }— test_instance.cc
| L— test_instance.h
— tool

| — desc_gentool.cc
| — tool.gyp
L— tizen-wrt.gyp

L— webapi-plugins.manifest

webapi-plugins.spec source:

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39.
40.
41.
42.
43,
44.
45,
46.
a47.
48.
49.
50.
51.
52.
53.
54,
55.
56.
57.
58.
59.
60.
61.

. %bcond_with wayland

1
2.
3. %define _manifestdir %{TZ_SYS_RW_PACKAGES}

4. %define _desktop_icondir %{TZ_SYS_SHARE}/icons/default/small
5.

6. %define crosswalk_extensions tizen-extensions-crosswalk

7
8
9

. %define crosswalk_extensions_path %{ libdir}/%{crosswalk_extensions}

Name : webapi-plugins-test

Version: 0.1

Release: 0

License: Apache-2.0 and BSD-2.0 and MIT
Group: Development/Libraries

Summary : Tizen Test Web APIs

Source0: %{name}-%{version}.tar.gz

%ifarch %{arm} aarch64

ARM

%define tizen_is_emulator o]
%else

1586

%define tizen_is_emulator 1
%endif

BuildRequires: ninja
BuildRequires: pkgconfig(webapi-plugins)

%description
Tizen Test Web APIs

%prep
%setup -q

%build

export GYP_GENERATORS='ninja'

GYP_OPTIONS="--depth=. -Dtizen=1 -Dextension_build_type=Debug -Dextension_host_os=%{profile} -Dprivilege_engine=%
{tizen_privilege_engine}"

GYP_OPTIONS="$GYP_OPTIONS -Ddisplay_type=%{display_type}"

GYP_OPTIONS="$GYP_OPTIONS -Dcrosswalk_extensions_path=%{crosswalk_extensions_path}"

feature flags
GYP_OPTIONS="$GYP_OPTIONS -Dtizen_is_emulator=%{?tizen_is_emulator}"

/usr/include/webapi-plugins/tools/gyp/gyp $GYP_OPTIONS src/tizen-wrt.gyp

ninja -C out/Default %{?_smp_mflags}

%install

Extensions.

mkdir -p %{buildroot}%{crosswalk_extensions_path}

install -p -m 644 out/Default/libwebapis*.so %{buildroot}%{crosswalk_extensions_path}

execute desc_gentool

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:%{buildroot}%{crosswalk_extensions_path} out/Default/desc_gentool \
%{crosswalk_extensions_path} \

%{buildroot}%{crosswalk_extensions_path} > webapis-plugins.json

temporary plugins description for lazy loading
install -p -m 644 webapis-plugins.json %{buildroot}%{crosswalk_extensions_path}/webapis-plugins.json

62.
63.
64.
65.
66.
67.

tizen-wrt.gyp source:

© 0N O~ WNBR

R R R R R R R
No O R WNRO

test.gyp source:

© 0N O~ WNR

NN NNRNNNE B B R R e
NOUORAWNROO®OANOTOR®WNR O

webapi-plugins-devel-test.zip contains test module which depends on webapi-plugins devel package. Custom web device plugins module test is placed
in src/ directory and contains all required files. Please see Plugin structure chapter for more details.

To install custom web device plugins module webapi-plugins-xxx.rpm and webapi-plugins-devel-xxx.rpm must be installed first. After build and
installation webapi-plugins-test webapis.test namespace should be available.

1. var
2. // Hello!

file:///home/m.bruno2/Documents/tizen/api/webapi-plugins/doc/src/assets/webapi-plugins-devel-test.zip

