
0/59

Native TCT Guideline for Tizen3.0

1/59

Content Lists

Tizen Compliance Tests

Common TC Guide

RPM TC Guide

TPK TC Guide

Test Case Guide

TC Execution Guide

Coverage Measurement Guide

GDB Debugging for TCT Guide

2/59

Tizen Compliance Tests

3/59

Tizen Compliance Tests

Overview

- Tizen Compliance Tests (TCT) verify conformance to the Tizen Compliance Specification (TCS).

- These tests are intended to be used by Tizen device implementers to enable the Tizen-
compliant development environment for Tizen application developers.

Native TCT

- Native TCT is a set of tools and test cases to test Native requirements defined in the Tizen
Compliance Specification (TCS).

- It includes : Native TCT covers Signature, Native API, App Control, Privilege, Resource, Device
Capability Features

- Native TCT consists of :

• UTC (Unit Test Case)

• ITC (Integration Test Case)

• CTC (Compatibility Test Case)

• TBT (Tizen Behavior Test)

• EFL-UTC Packages

- TCT manager is a GUI tool to manage whole tests, from planning to results.

4/59

Common TC Guide

5/59

Prerequisite

TC Information

Directory Structure

1) TCT

A. Public Git Path (review.tizen.org) : test/tct/native/api

B. Branch : tizen_3.0

xml, spec files

scripts for build, install and utility by rpm packaging

c, cpp, h files for test cases

template files and scripts for running execution

tct-mgr tool

├── api
│ ├── BuildLog
│ │ ├── ctc
│ │ ├── itc
│ │ └── utc
│ ├── custom_tclist
│ ├── doc
│ ├── media
│ ├── packaging
│ │ ├── ctc
│ │ ├── itc
│ │ └── utc
│ ├── scripts
│ ├── scripts_tpk
│ ├── src
│ │ ├── common
│ │ ├── ctc
│ │ ├── itc
│ │ └── utc
│ ├── tct_conf
│ │ ├── asan
│ │ └── tct
│ ├── templates
│ │ ├── external_wrapper_asan
│ │ ├── external_wrapper_coverage
│ │ ├── external_wrapper_execution
│ │ ├── src-directory
│ │ ├── tct-package
│ │ └── tct-package-asan
│ ├── tmp
│ └── tool
│ └── NativeTCT_3.0

scripts for build and install by tpk packaging

6/59

Install TCT-MGR Tool

Prerequisite

- Python

- Java (1.6 and above version)

Download Tool

- Public Git Path (review.tizen.org) : test/tct/native/api

- Branch : tizen_3.0

- api/tool/NativeTCT_3.0.tar.gz

Install tct-mgr on host device

- Extract NativeTCT_3.0.tar.gz

- sudo python tct-setup.py

Install TCT backend runner on target/emulator

- sudo python /opt/tct/tizen_native_3.0/scripts/tct-config-device.py

7/59

Adding/Removing TCT Module

1) Go to project root directory : <api> directory

2) Run scripts/init.sh file : This will generate tcbuild and tcbuildsdk binary at root directory.

$./scripts/init.sh

3) Run addmod/addmodcpp command at project root location:

$ sudo ./tcbuild addmod [build_type] [module_name] (for adding ‘C’ module)

$ sudo ./tcbuild addmodcpp [build_type] [module_name] (for adding ‘CPP’ module)

[build_type] = “itc/ctc/utc”

The new module will be generated with default spec, xml and source files for given ‘build_type’ (itc / ctc / utc).

tct native header files will also get generated for mobile, wearable, tv and common_iot profile each inside src/’module_name’ folder.

If the module is not supported for any of the profile (mobile/wearable/tv/common_iot), then user should mention it in tct_unsupported.txt file for that profile.

Note : The tct framework will refer tct_unsupported.txt file to check for unsupported packages, and will automatically exclude such packages from tct build/install process.

[] : mandatory field
< > : optional field

Adding TCT Module

Removing TCT Module

1) Go to project root directory : <api> directory

2) Run scripts/init.sh file : This will generate tcbuild and tcbuildsdk binary at root directory.

$./scripts/init.sh

3) Run rmmod command at project root location:

$ sudo ./tcbuild rmmod [build_type] [module_name] (this command is applicable for ‘C’ as well as ‘CPP’ module)

[build_type] = “itc/ctc/utc”

The spec, xml and source files of the mentioned ‘module_name’ for given ‘build_type’ (itc / ctc / utc) will be removed from the <api> directory.

8/59

Merging mobile/wearable/tv/common_iot code to single branch code (1/8)

A. Developing tct header files, each for mobile, wearable, tv and common_iot separately.

a.) Now there will be no tct-<module-name>-<native/core>.h inside the module source directory.

Instead of this, there will be 3 tct header files (one each for mobile, wearable, tv and common_iot), in the following nomenclature form:

tct-<module-name>-<native/core>_<device-type>.h.

b.) These tct header files for mobile, wearable, tv and common_iot will be maintained and managed manually by the tct developer.

These tct header files will not be generated by tct build command. So, put the list of required test cases in their respective tct header files accordingly.

Installation file (retriever.sh) will also use these tct header files, and not source code file, to generate tests.xml and

<mobile/wearable/tv/common_iot>_pkg_info.xml for tct-manager execution.

tct header file (src/itc/efl-ext /tct-efl-ext-native_mobile.h)

9/59

Merging mobile/wearable/tv/common_iot code to single branch code (2/8)

B. Merging tct-<module-name>-<native/core>.c file for mobile/wearable/tv/common_iot branch to single file.

a.) At the starting lines of the file, include only device specific tct header file, as mention below.

Use this code snippet at the start of the file.
This will include only device specific tct header file.

b.) If there happens to be any differences in code for mobile/wearable/tv/common_iot, then write that part of code separately for that specific device type

using

‘#ifdef MOBILE’ -> Mobile specific code

‘#ifdef WEARABLE’ -> Wearable specific code

‘#ifdef TV’ -> TV specific code

‘#ifdef COMMON_IOT’ -> common_iot specific code

10/59

Merging mobile/wearable/tv/common_iot code to single branch code (3/8)

C. Merging source code files for mobile/wearable/tv/common_iot branch to single file.

This definition of ‘DeleteEvasWindow’ will be
compiled for TV only.

b.) In short, for any differences in source code file (.c and .h) for mobile/wearable/tv/common_iot, then write that part of code separately for that device type

using

‘#ifdef MOBILE’ -> Mobile specific code

‘#ifdef WEARABLE’ -> Wearable specific code

‘#ifdef TV’ -> TV specific code

‘#ifdef COMMON_IOT’ -> common_iot specific code

a.) If there happens to be any difference in source code file for mobile, wearable and tv, then write that part of code separately for that device type,

like as mention in below example, this definition of ‘DeleteEvasWindow’ function will be built for only TV.

11/59

Merging mobile/wearable/tv/common_iot code to single branch code (4/8)

D. Copying/Handling tpk and resource files

If the module needs specific tpk to be installed before execution, the tpk should be placed under ‘res/[device_target_type]/’ at its source folder.

These tpk will be installed automatically during the time of module execution.

[device_target_type]
“mobile/wearable/tv/common_iot”

Putting ‘tpk’ files at ‘res/[device_target_type]’.
At execution, tpk files will automatically be

installed to the device.

i. If the resource files need to be copied to ‘res’ folder at “DEVICE_SUITE_TARGET_30” device target location,

then put these files under ‘res/[device_target_type]/’ location at its source folder.

ii. post-inst.sh : Developer should use ‘post-inst.sh’ file to copy the resource files to any target device location or change any permission for the

device/resource files. The detailed description about using the ‘post-inst.sh’ file is mentioned in next slide.

Putting resource files at ‘res/[device_target_type]’.
Before execution, these files will automatically be copied to
‘{DEVICE_SUITE_TARGET_30}/res’ device location, and will

have “User::App::Shared” smack access label.

Copying/Handling the resource files

Copying tpk files

12/59

Merging mobile/wearable/tv/common_iot code to single branch code (5/8)

The tool executes post-inst.sh file at the device during execution.

This is module specific file, and it should be put under ‘post-install’ folder at its respective source folder location.

During tct install command, post-inst.sh automatically copied to tct zip package directory.

module spec file

src/utc/wav-player

1

Put post-inst.sh
file under
post-install

folder

2

Copying
resource files
to rpm ‘data’

package

i. Create ‘post-install’ folder at module tct source location and then create post-inst.sh file inside it.

ii. Copy necessary resource files to rpm data package in the spec file.

Please refer adjacent diagram to understand this.

iii. Edit post-inst.sh file.

a. Do copy and other permission related tasks in ‘inst’ block part.

This block will be executed on the target before test case execution starts.

b. Remove files and do other related tasks in ‘else’ block part.

This block will be executed on the target after test case execution ends.

module post-inst.sh

3 Resource files copied
to internal storage
directory location

with change in files
permission

Resource files
deleted

Below steps demonstrates the process to copy resource files from host to Internal Storage Directory location of the target device

E. Using post-inst.sh to do module specific operation

13/59

Merging mobile/wearable/tv/common_iot code to single branch code (6/8)

F. Add unsupported module information in ‘tct_unsupported.txt’ to avoid build and install in the unsupported profile.

a.) If there is an unsupported package in specific profile, Add package information into ‘tct’_unsupported.txt’ like below.

 Format : <device_type>:<architecture>:<build-type>:<module-name>;

tct/tct_unsupported.txt

G. “tct_common.h” should be added above “#ifdef [device type]“ in tct-[module_name]-core.c/native.c

14/59

Merging mobile/wearable/tv/common_iot code to single branch code (7/8)

H. Merging spec files for mobile/wearable/tv/common_iot branch to single spec file.

a.) In %build section, use below mentioned cmake command for mobile/wearable/tv/common_iot. Edit ‘-DBUILDTCTYPE’ to ‘itc or ctc or utc’ according to

each spec file.

Edit ‘-DBUILDTCTYPE’ to ‘itc or ctc or utc’ accordingly.

b.) If there happens to be any difference in other sections for mobile/wearable/tv/common_iot, then write that part of scripts separately for that specific

device type, like as mention below:

This segment of code will be executed for wearable
device only.

15/59

Merging mobile/wearable/tv/common_iot code to single branch code (8/8)

I. Merging CMakeLists.txt file of specific module for mobile/wearable/tv/common_iot branch to single

CMakeLists.txt file.

a.) If there happens to be any difference in CMakeLists.txt file for mobile, wearable, tv and common_iot, then write that part of code separately for that

device type, like as mention in below examples the packages requirement are different in mobile, wearable, tv and common_iot.

This segment of code will be executed for mobile
device only.

This segment of code will be executed for tv device
only.

This segment of code will be executed for wearable
device only.

16/59

Git Commit

Usage

- git add/rm <files>

- git commit –s –m [commit message]

- For raising patch on existing one, git commit –-amend

- git push origin HEAD:refs/for/tizen_3.0

Commit Message Rule

- [TC Type][Module][ACR-xxx or Non-ACR][description]

- Example

[UTC][application][ACR-519][Add TCs for set/unset_defapp]

[CTC][platform-permission][Non-ACR][Delete TC which need not privilege]

17/59

RPM TC Guide

18/59

TCT Source Code Build Process

1) Go to project root directory : <api> directory

2) Run scripts/init.sh file : This will generate tcbuild and tcbuildsdk binary at root directory.

$./scripts/init.sh

3) Run build command at project root location:

$ sudo ./tcbuild build <build_type> <module_name> [arch_type] [device_type] (for target build)

$ sudo ./tcbuildsdk build <build_type> <module_name> [arch_type] [device_type] (for emulator build)

<build_type> = “itc/ctc/utc”

[arch_type] = “armv7l/aarch64” (for tcbuild) and “i586/x86_64” (for tcbuildsdk)

[device_type] = “mobile/wearable/tv/common_iot”

At “api/tct_conf/tct” directory, there are tct<32/64>_<device_type>.conf files to support different build process. (32 means armv7l/i586 while 64 means aarch64/x86_64)

To change the build repo url location, please edit corresponding file according to its build configuration type (i.e. to build for wearable target 64 bits, edit tct64_wearable.conf)

The generated RPMS location will be unique for each device_type and architecture type.

RPM_DIR="$HOME/GBS-ROOT-TCT-[device_type]/local/repos/[target/sdk]/[armv7l/i586/aarch64/x86_64]/RPMS“

This will be handled by the script framework internally and user does not need to bother for this.

NOTE:

a.) To build all the packages (itc+ctc+utc for all modules),

 $ sudo ./tcbuild build [arch_type] [device_type]

b.) To build all the packages for specific build_type, (itc or ctc or utc),

 $ sudo ./tcbuild build <build_type> [arch_type] [device_type]

c.) [arch_type] and [device_type] position can be interchange without any effect.

 $ sudo ./tcbuild build <build_type> <module_name> [device_type] [arch_type]

 $ sudo ./tcbuild build <build_type> <module_name> [arch_type] [device_type]
Both commands are same

[] : mandatory field
< > : optional field

Build TCT Module by RPM approach

19/59

TCT Source Code Install and TCT-Manager Execution

1) Go to project root directory : <api> directory

2) Run installation command at project root location:

$ sudo ./tcbuild install <build_type> <module_name> [arch_type] [device_type] (for target install)

$ sudo ./tcbuildsdk install <build_type> <module_name> [arch_type] [device_type] (for emulator install)

[build_type] = “itc/ctc/utc”

[arch_type] = “armv7l/aarch64” (for tcbuild) and “i586/x86_64” (for tcbuildsdk)

[device_type] = “mobile/wearable/tv/common_iot”

3) Execution of installed rpm modules on tizen_3.0 tct-mgr : TC Execution Guide

NOTE:

a.) To install all the packages (itc+ctc+utc for all modules),

 $ sudo ./tcbuild install [arch_type] [device_type]

b.) To install all the packages for specific build_type, (itc or ctc or utc),

 $ sudo ./tcbuild install <build_type> [arch_type] [device_type]

c.) [arch_type] and [device_type] position can be interchange without any effect.

 $ sudo ./tcbuild install <build_type> <module_name> [device_type] [arch_type]

 $ sudo ./tcbuild install <build_type> <module_name> [arch_type] [device_type]

Both commands are same

[] : mandatory field
< > : optional field

Install TCT Module by RPM approach

20/59

TPK TC Guide

21/59

Prerequisite

Install SDK and Build sample tpk

1) SDK

A. Install Tizen-3.0 SDK (Update Tizen SDK to Tizen Studio) in Linux PC (having tizen-studio folder at path "/home/<username>/tizen-

studio")

B. Create security profile by the name “test” and Generate author certificate

- Tools > Certificate Manager

C. Create a Tizen empty project through Tizen IDE (at path “/home/<username>/workspace”)

- New > Tizen Native Project > Select one in Template > Finish

D. Build tpk of <C.>

 - Project Right Click > Build Signed Package

※ FAQ

1) scripts_tpk/tpk_create.sh: line 26: tizen: command not found

- Check whether tizen studio directory path of your linux PC is matching with below command in scripts_tpk/init.sh

 sudo ln -sf $HOME/tizen-studio/

2) Default compiler is llvm. But if you want to change to gcc compiler, change below codes.

 i) script_tpk/tpk_create.sh

 ii) Find “COMPILER_TYPE=“ and change to gcc

 iii) sh scripts_tpk/init.sh

3) Signing... Exception in thread "main" java.lang.NoClassDefFoundError: org/eclipse/ui/plugin/AbstractUIPlugin

 i) Check whether you create ‘test’ security file and build template app

 ii) If i) step already done,

 a) Remove workspace and workspace_<profile> directory

 b) Do i) step again

22/59

Build/Install TCT Module by TPK Approach

1) Go to project root directory : <api> directory

2) Run scripts_tpk/init.sh file : This will generate tpkbuild binary at root directory. This is common binary for device as well as emulator build.

$./scripts_tpk/init.sh

3) If SDK installation path is different than "/home/<username>/tizen-studio" then script_tpk/init.sh file is to be modified as per installed path.

4) This solution utilizes the source code present in “src” folder of tizen_3.0 branch and creates the corresponding tpk at path :

“/home/<username>/workspace_<profile>/<module-name>/Debug”

5) Run build command at project root location: (Do not use ‘sudo’)

$./tpkbuild build <build_type> <module-name> [arch_type] [device_type] builds specified module

$./tpkbuild build <build_type > [arch_type] [device_type] builds all either ITC or CTC or UTC modules present in src folder

$./tpkbuild build [arch_type] [device_type] builds all (ITC and CTC and UTC) modules present in src folder

<build_type> = “itc/ctc/utc”

[arch_type] = “armv7l/aarch64” (for device) and “i586/x86_64” (for emulator)

[device_type] = “mobile/wearable”

6) Run install command at project root location:

$ sudo ./tpkbuild install <build_type> <module-name> [arch_type] [device_type] installs specified module

$ sudo ./tpkbuild install <build_type > [arch_type] [device_type] installs all either ITC or CTC or UTC modules present in src folder

$ sudo ./tpkbuild install [arch_type] [device_type] installs all (ITC and CTC and UTC) modules present in src folder

<build_type> = “itc/ctc/utc”

[arch_type] = “armv7l/aarch64” (for device) and “i586/x86_64” (for emulator)

[device_type] = “mobile/wearable”

TCT zip file is located in “opt/tct/tizen_native_3.0/packages/[device_type]”

7) Execution of installed tpk modules on tizen_3.0 tct-mgr : TC Execution Guide

[] : mandatory field
< > : optional field

Build & Install TCT Module by TPK approach

23/59

Make spec.sh file for tpk build (1/2)

Contents of spec.sh file

• The section from spec file ((in rpm code, /packaging/itc/<module>.spec file)) in TCT Directory of the module which

copies some files to ‘data’ Or some tpk installation Or smack label set etc., is added in spec.sh file (which resides in

“scripts_tpk” folder) accordingly as required for specific modules.

• E.g “media-content” UTC

Spec.sh file in

scripts_tpk folder for media-contet module

Spec file in rpm code

/packaging/itc/<module>/native-
media-content-itc.spec file

24/59

Make spec.sh file for tpk build (2/2)

Contents of spec.sh file

• If “post-inst.sh” file exists in rpm code for any module (e.g in rpm code, /src/itc/<module>/post-install/ post-inst.sh)

then contents of this file should be added in ‘spec.sh’ file

• E.g “media-content” UTC

Spec.sh file in
scripts_tpk folder

 for media-contet module

Post-inst.sh file in rpm code

src/itc/media-content/post-install/post
-inst.sh file

25/59

RPM code hard-code handling in tpk_create.sh file (1/3)

If there is any hardcoded APP_ID or Path used in rpm code, then it is required to change this

value in case of TPK approach as in case of TPK, APP_ID and Path is different than rpm. E.g.

Case 1: APP_ID in source code

#define BADGE_PACKAGE "native.badge-itc“ (File: api/src/itc/badge/ITs-badge-common.h)

In case of TPK, package_id/app_id is: org.tizen.badge-native-itc

So, in tpk_create.sh file, it is handled as:

So, when “ITs-badge-common.h” file will be copied to /workspace/module/inc folder, package id
will be :

#define BADGE_PACKAGE “org.tizen.badge-native-itc”

26/59

RPM code hard-code handling in tpk_create.sh file (2/3)

If there is any hardcoded APP_ID or Path used in rpm code, then it is required to change this

value in case of TPK approach as in case of TPK, APP_ID and Path is different than rpm. E.g.

Case 2: Path changes

#define ICON_PATH "/usr/apps/core-accounts-svc-tests/shared/res/account.png“ (File: utc-accounts-svc.c)

In case of TPK, path should be: /opt/home/owner/apps_rw/org.tizen.accounts-svc-native-utc/shared/res/account.png“

So, in tpk_create.sh file, it is handled as:

So, when “utc-accounts-svc.c” file will be copied to /workspace/module/src folder, package id will be :

#define ICON_PATH “/opt/home/owner/apps_rw/org.tizen.accounts-svc-native-utc/shared/res/account.png“

27/59

RPM code hard-code handling in tpk_create.sh file (1/3)

If there is any hardcoded APP_ID or Path used in rpm code, then it is required to change this

value in case of TPK approach as in case of TPK, APP_ID and Path is different than rpm. E.g.

Case 3: APP_ID change in tizen-manifest file

In UTC “accounts-svc” module, app_id is core.accounts-svc-tests in core-accounts-svc-tests.xml file in rpm code.

But in case of TPK, app_id should be “org.tizen.accounts-svc-native-utc”

Tpk_create.sh file handling

for app_id in xml file

App_id in Xml file in rpm code

App_id in Tizen-manifest xml file in workspace

28/59

Test Case Guide

29/59

Test Case Method – Black Box Testing

Black Box Testing

- Method of software testing that examines the functionality of an application without peering
into its internal structures or workings

- Specific knowledge of the application's code/internal structure and programming knowledge in

general is not required. The tester is aware of what the software is supposed to do but is not

aware of how it does it.

Test Cases

- Test cases are built around specifications and requirements. Test cases are generally derived
from external descriptions of the software, including specifications, requirements and design
parameters.

- The test designer selects both valid and invalid inputs and determines the correct output

without any knowledge of the test object's internal structure.

TCT

- TCT MUST be developed by Black Box Testing method.

- TCT MUST be used only Public API and Public Enumeration and include Public Header.

30/59

Add Privileges

Add Privileges in manifest file

- Define the privileges required by your test app in xml file

- xml Location

• packaging/utc/core-<MODULE_NAME>-tests.xml

• packaging/itc/native<MODULE_NAME>-itc.xml

• packaging/ctc/native<MODULE_NAME>-ctc.xml

- Note

• Must add only public privilege in TCT

• Avoid typo mistake (this can cause installation issue of the tct binary over device)

• Remove unused privilege

<?xml version="1.0" encoding="utf-8"?>
<manifest

 <privileges>
 <privilege>http://tizen.org/privilege/externalstorage</privilege>
 <privilege>http://tizen.org/privilege/mediastorage</privilege>
 <privilege>http://tizen.org/privilege/content.write</privilege>
 </privileges>
</manifest>

Example

31/59

Startup() / Cleanup()

Annotation Rule & Naming Convention

Note

- Startup/Cleanup function Must return void type

- These routines run before/after each TC execution

- Should hold common routines of each test cases

/**
 * @function <TC_TYPE>_<MODULE_NAME>_startup
 * @description Called before each test
 * @parameter NA
 * @return NA
 */
void <TC_TYPE>_<MODULE_NAME>_startup(void)
{
 /* pre-condition of each TC */
}

/**
 * @function <TC_TYPE>_<MODULE_NAME>_cleanup
 * @description Called after each test
 * @parameter NA
 * @return NA
 */
void <TC_TYPE>_<MODULE_NAME>_cleanup(void)
{
 /* post-condition of each TC */
}

startup() cleanup()

int <TC_TYPE>_<MODULE_NAME>_startup(void)
{
 /* pre-condition of each TC */
 return 1;
} wrong

wrong

example

32/59

Test Case

Annotation Rule

Naming Convention

- Add at least one positive TC and one negative TC for each API

/**
 * @testcase utc_<MODULE_NAME>_<API_NAME>_p
 * @since_tizen
 * @description
*/
int utc_<MODULE_NAME>_<API_NAME>_p(void)
{
 /* Positive TC*/
 return 0;
}

/**
* @testcase ITc_<Mixed_API_NAME>_p
* @since_tizen
* @type
* @description
* @scenario
* @apicovered
* @passcase
* @failcase
* @precondition
* @postcondition
*/
int ITc_<Mixed_API_NAME>_p(void)
{
 /* Positive TC*/
 return 0;
}

UTC

ITC

TC Type Positive TC Negative TC

UTC
utc_<MODULE_NAME>_<API_NAME>_p

utc_<MODULE_NAME>_<API_NAME>_p2, p3, p4 ...
utc_<MODULE_NAME>_<API_NAME>_n

utc_<MODULE_NAME>_<API_NAME>_n2, n3, n4 ...

ITC/CTC
ITc/CTc_<Mixed_API_NAME>_p

ITc/CTc_<Mixed_API_NAME>_p2, p3, p4 ...
-

33/59

Verdict Check

You SHOULD use assert macros to evaluate the result of each API

Assert macros (Ensure that test case performs all cleanup if assert fails)

- Defined in src/common/assert.h for UTC

- Defined in src/common/tct_common.h for ITC/CTC

assert_eq(var, ref) - Check if var == ref, print both values otherwise

assert_neq(var, ref) - Check if var != ref, print both values otherwise

assert_gt(var, ref) - Check if var > ref, print both values otherwise

assert_geq(var, ref) - Check if var >= ref, print both values otherwise

assert_lt(var, ref) - Check if var < ref, print both values otherwise

assert_leq(var, ref) - Check if var <= ref, print both values otherwise

assert(exp) - Check if exp != NULL, print exp otherwise

PRINT_RESULT(eCompare, eRetVal, API, Error) - Check if eCompare == eRetval, print otherwise

PRINT_RESULT_NORETURN(eCompare, eRetVal, API, Error) - Check if eCompare == eRetval, print but not exit otherwise

PRINT_RESULT_CLEANUP(eCompare, eRetVal, API, Error, FreeResource) - Check if eCompare == eRetval, print and free otherwise

CHECK_VALUE_STRING(StringVariable, API) - Check if StringVariable != NULL, print otherwise

CHECK_VALUE_INT(Variable, API) - Check if Variable > 0, print otherwise

CHECK_HANDLE(Handle, API) - Check if Handle != NULL, print otherwise

Note: Please Ensure that test case performs all cleanup if asserts fails.

34/59

Feature Check

If there is any related feature required by api then feature checking routine must

be added before calling API

void utc_iotcon_startup(void)
{
 ret = system_info_get_platform_bool("http://tizen.org/feature/iot.oic",
&g_feature);

 if (SYSTEM_INFO_ERROR_NONE != ret) {
 fprintf(stderr, "system_info_get_platform_bool() Fail(%d)", ret);
 return;
 }

 if (true == g_feature) {
 ret = iotcon_connect();
 if (IOTCON_ERROR_NONE != ret){
 fprintf(stderr, " iotcon_connect() Fail(%d)", ret);
 return;
 }
 }
}

Example

If some feature is required by all TCs in
<module_name>.c then feature check routine should be

added in startup() function.
 If not, you should add it into each TC related with

feature

int utc_iotcon_get_timeout_p(void)
{
 if (false == g_feature) {
 ret = iotcon_get_timeout(NULL);
 assert_eq(ret, IOTCON_ERROR_NOT_SUPPORTED);
 return 0;
 }

 ret = iotcon_get_timeout(timeout);

If not supported, we should check whether return
value from each API is ERROR_NOT_SUPPRTED

Just in case of supported feature, we can
expect that API is working well

35/59

Callback Routine Check (1/2)

Asynchronous Callback : If API invokes Asynchronous callback, Must add Callback checking routine.

- Callback is invoked after API call returns.

- Need to wait for some proper time values after API call for callback hit.

- Validate callback values also if required.

Test Case Code

Wait for some time to
allow callback invocation

Callback routine check

Callback Function to be
invoked on target API call

Callback Function

Callback Function

36/59

Callback Routine Check (2/2)

Synchronous Callback : If API invokes Synchronous callback, Must add Callback checking routine.

- Callback is invoked before API call returns.

- No delay is required to wait for the callback after API has been called.

- Validate callback values also if required.

Callback Function

Test Case Code

Callback Function to be invoked on target API call

Callback Function

Callback routine
check immediately

after API Call

Validate Callback values

37/59

Proper Clean Up Process for Each TC

Use of Pair APIs :

- Pair APIs like Create/Destroy, Connect/Disconnect Must Not be used in single.

- Test Case must call pairing APIs at its proper locations so that Platform should

maintain its original state after each Test Case execution.

API call to Add event handler

API call to Remove event handler

Remove Testing Files/Data After TC Execution

- If Test Case needs any testing files/data, then it Must be created and then removed

after Test Case Execution gets over. Test case File Added for TC Execution

Test case File Removed during Uninstallation

Entry in Spec Files

38/59

API call in its Valid State

Call API in its Valid State when developing Positive Test Cases:

- If API needs to be called in certain state, that state Must be ensured before making

API call.

Pause should be called only
when Player State is ‘Playing’

Check Player for ‘Playing’ State before calling Pause

39/59

Avoid TC Crash and Memory Leak

Pointer/Handle Null Value Check:

- Before Using Handle Value, it Must be Null Check

- Before accessing Pointer/String values, it Must be Null Check

Null Check before Calling APIs over Handle

Free all Allocated memory:

- Any memory allocated by Test Case Must be freed after using it.

- If any API call specifies to do free operation by caller (through free API or any release

API call), then it Must get freed by test case.

Free Memory before returning from test case

storage_get_directory API call
provide allocated string value.

This need to be free by test case

Free Allocated string

40/59

No Specific Device Binary or Reference App Dependency

No Specific Device Binary Dependency:

- Test Case Must Not be specific to any particular device binary.

- Test Case Must be developed in the way that it should remain valid for all the device

binaries of specific device category (mobile / wearable / tv / common_iot).

- Test Case Must be developed by considering all cases since test results might be

different by HW dependency.

No Reference App Dependency:

- There is no conformity that reference application (like gallery) would be existing in

the target device, so there Must Not be any test case in the TCT which should be

dependent over the Reference Application..

- If test case needs dependency over any sample application (like to test API which

launch application), then it Must use its own sample tpk package. The sample tpk

package Must be uninstalled and removed after test case execution.

41/59

TC Execution Guide

42/59

Install TCT-MGR Tool

Prerequisite

- Python

- Java (1.6 and above version)

Download Tool

- Public Git Path (review.tizen.org) : test/tct/native/api

- Branch : tizen_3.0

- api/tool/NativeTCT_3.0.tar.gz

Install tct-mgr on host device

- Extract NativeTCT_3.0.tar.gz

- sudo python tct-setup.py

Install TCT backend runner on target/emulator

- sudo python /opt/tct/tizen_native_3.0/scripts/tct-config-device.py

43/59

Run TCs

You can run TCs using Core-TCT

- You will find your module has been added under “UnitTestCases” category

- To run a test-suite, select a module and click “Run” button

$ tct-mgr

Reports Tab Plan Tab

44/59

Simple guide to execute only failed TCs

1. Install TCT Binary (using steps as mentioned in earlier slide ‘Build & Install TCs’).

2. Copy TCT result over host folder location: /opt/tct/tizen_native_3.0/manager/result

3. Run TCT-Manager tool (select tizen_3.0) and go to Reports.

4. Press failed TC execution button of the TCT result which you had copied in previous step. This
will execute only failed TCs which is reported in TCT result.

This execute only failed test cases

45/59

Get dlog information during execution

1. Dlog is printed in result file during execution.

Dlog link in result file.

Can be checked with TC name.

46/59

Switching between multi-users for TCT execution

Edit TCT_CONFIG file (/opt/tools/TCT_CONFIG) at host system to switch among multi-users for TCT execution.

Description for TCT_CONFIG file

1) During Execution, the TCT-Manager tool copies ‘/opt/tools/TCT_CONFIG’ file at host system to target device location (‘/tmp/TCT_CONFIG’).

2) The test cases are executed based on the key value pair mentioned in TCT_CONFIG file.

DEVICE_SUITE_TARGET_30 : ‘tct’ install directory. If tct zip package has ‘res’ folder then it gets copied at this location. If ‘res’ contains tpk files then it gets installed.

DEVICE_USER_30 : User directory name. Needed by specific modules only.

DEVICE_STORAGE_30 : Internal storage directory location. This location is same which “storage_foreach_device_supported” API provides for “STORAGE_TYPE_INTERNAL”.

DEVICE_EXECUTION_MODE_30 : pkgcmd (to install tpk) and app_launcher (to launch tct binary) commands execution mode.

TCT_CONFIG for execution
using ‘owner’ as user.

To switch to different user, replace ‘owner’ with another ‘user’ name in this file.

For example, for TCT execution with user name ‘tct’, TCT_CONFIG should be changed as mention below. TCT_CONFIG for execution
using ‘tct’ as user name.

47/59

※ Appendix – known issue 01

You should install below Python packages.

$ sudo apt-get install rpm2cpio

$ sudo apt-get install tree

$ sudo apt-get install timeout

$ sudo apt-get install python-pip

$ sudo apt-get install python-support

$ sudo apt-get install python-requests

$ sudo apt-get install python-setuptools

48/59

※ Appendix – Multi-Target Execution

1. Connect Several devices to 1 Host PC.

- All devices should be flashed with same tizen binary.

2. Generate Plan (Only at first time)

- Run tct-mgr and select the packages what you want to run. Click 'Run' button and create new plan.

3. Set preconditions

- $ sudo /opt/tct/tizen_native_3.0/scripts/tct-config-device.py --deviceid={devid} (Need to be done for each device)

- Set TC_Config.txt (Need to be done for each device) : $ sdb pull /tmp/TC_Config.txt

- Set precondition in TC_Config.txt and Push to target : $ sdb push /tmp/TC_Config.txt

4. Run tct-shell command.

- $ sudo tct-shell -p {plan file} --tizen-version tizen_native_3.0 --distribute --disable --log DEBUG (Only one time needed)

※ --output {path} : If you want to give result path, set with this command.

Default result path : /opt/tct/tizen_native_3.0/shell/result

Ex) sudo tct-shell –p Full_mobile_plan.xml --tizen-version tizen_native_3.0 --distribute --disable --log DEBUG --output ~/Desktop

49/59

Coverage Measurement Guide

50/59

Prerequisite

TCT Information

1) UTC in TCT

A. Public Git Path : test/tct/native/api

B. Branch : tizen_3.0

C. Directory : tct/src/utc/[package_name]

TBT Information

1) TBT

A. Public Git Path : test/tct/native/behavior

B. Branch : tizen_3.0_mobile

C. Directory : behavior/tbtcoreapp/

51/59

Coverage Measurement using Gcov (1/4)

Building Framework Packages (for gcno data) and Configuring Target

1) Modify CMakefile.txt or packaging/*.spec or Makefile.am of CAPI Pkg to enable gcov instrumentation

A. Modification in CMakefile.txt file

i. SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${EXTRA_CFLAGS} -fPIC -Wall -Werror -fprofile-arcs -ftest-coverage")

B. Modification in spec file

i. export CXXFLAGS = “-fprofile-arcs -ftest-coverage”

ii. export LDFLAGS = “-lgcov”

C. Modification in Makefile.am file (example of cairo pkg)

i. AM_CPPFLAGS = -I$(srcdir) $(CAIRO_CFLAGS) \

 -fprofile-arcs \

 -ftest-coverage

ii. AM_LDFLAGS = $(CAIRO_LDFLAGS) \

 -lgcov

2) Build CAPI Pkg

A. home] gbs build -A armv7l --include-all

3) Install Pkg to Target and Find gcov data file(source_file_name.gcno) in local build root

A. Install gcov enabled pkg to Target

i. Location : /GBS-ROOT/local/repos/armv7l/RPMS/[pkg_name].rpm

B. Find gcov data file in local build root

i. /GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0/home/abuild/rpmbuild/BUILD/[capi-pkg-name-version]/CMakeFiles/[capi-pkg-

name].dir/src/[source_file_name].gcno

52/59

Coverage Measurement using Gcov (2/4)

Executing Test Cases (to generate gcda data)

i) Build and install TCT Package

A. Build UTC

i. home] sudo ./tcbuild build utc [pkg-name] <arch_type> <device_type>

 RPM Build location : GBS-ROOT-TCT-<device_type>/local/repos/device/< arch_type >/RPMS/

 You can find core-[pkg-name]-tests-0.1-0.armv7l.rpm

B. Install UTC RPMs for Coverage

i. home] sudo ./tcbuild install_coverage utc [pkg-name] <arch_type> <device_type>

 This will generate tct binary packages for Coverage

ii) Run TC using TCT-Manager

A. Run TCT-Manager tool.

B. Select ‘Tizen Ver’ field as “tizen_native_3.0” in TCT-Manager. This will display the package in category under “UnitTestCases”.

C. Select the package and Execute test cases.

Note:

On executing the test cases inside the package for multiple times, the coverage data will keep appending to the gcda file on each run.

So, its better to remove “/tmp/home/abuild/rpmbuild/BUILD/[pkg-name]” folder location inside target before starting fresh Execution.

1) Code Coverage For TCT (using TCT-Manager)

53/59

Coverage Measurement using Gcov (3/4)

Executing Test Cases (to generate gcda data) continued…

2) Code Coverage For TBT (If you need TBT coverage then do this else skip this)

3) After TCT/TBT execution, check gcda data file on target

gcda files Location : /tmp/home/abuild/rpmbuild/BUILD/[pkg-name]/xxx/xxx/src/[source_file_name].gcda
(gcda file location can vary slightly inside “/tmp/home/abuild/rpmbuild/BUILD”, depending on the platform source code folder hierarchy

i) Modify TBT source code to add support for coverage

A. Set gcda file location using ‘setenv’ function at the start of the main function

B. Add ‘ui_app_exit()’ API call inside ‘_app_destroy_cb’ function of your module’s view file. This will cause application to exit when you

come out of that module on pressing ‘back button’. This is important because application should exit gracefully to create gcda data.

You can use ‘ui_app_exit’ at any other suitable location also as per your need.

ii) Build and Run TBT (tbtcoreapp) using tizen sdk as Tizen Native Application.

iii) Do Manual Test cases of your module and then Exit the application (using point B as mention above). gcda will be generated on application exit.

‘ui_app_exit’ inside ‘_app_destroy_cb’
of tbt-runtimeinfo-view.c

54/59

Coverage Measurement using Gcov (4/4)

Extracting gcov line coverage data

1) Pull gcov data to local build root

A. In target : sh-4.1#] cp /tmp/home/abuild/rpmbuild/BUILD/pkg-name/xxx/xxx/src/*.gcda /tmp

B. In GBS-ROOT directory

i. /GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0/home/abuild/rpmbuild/BUILD/[capi-pkg-name-version]/CMakeFiles/[capi-pkg-

name].dir/src/] sdb pull /tmp/*.gcda

ii. Matching .gcda file location according to .gcno file location

2) Extracting Coverage Data

A. Install lcov in scratch box

 i. Go to ~/GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0 directory

 ii. xxx] Copy attached ‘lcov-1.11-1.noarch.rpm’ to this location

 or sudo wget http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm

 iii. xxx] sudo chroot ~/GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0

 iv. xxx] rpm -ivh --force --nodeps lcov-1.11-1.noarch.rpm

 v. xxx] cd /home/abuild/xxx/xxx/xxx/CmakeFiles/

 vi. xxx] lcov -c -d capi-xxx-xxx.dir/ -o capi-xxx-xxx.info

 vii. xxx] genhtml capi-xxx-xxx.info -o out

 viii. open index.html in out directory

55/59

Coverage Measurement For Daemon Process (1/4)

Configuring Target (1/2)

1) Modify CMakefile.txt or packaging/*.spec or Makefile.am of Daemon Pkg to enable gcov instrumentation

A. Modification in CMakefile.txt file

i. SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${EXTRA_CFLAGS} -fPIC -Wall -Werror -fprofile-arcs -ftest-coverage")

B. Modification in spec file

i. export CXXFLAGS = “-fprofile-arcs -ftest-coverage”

ii. export LDFLAGS = “-lgcov”

C. Modification in Makefile.am file (example of cairo pkg)

i. AM_CPPFLAGS = -I$(srcdir) $(CAIRO_CFLAGS) \

 -fprofile-arcs \

 -ftest-coverage

ii. AM_LDFLAGS = $(CAIRO_LDFLAGS) \

 -lgcov

2) Modify daemon source files

A. Modification in main function of daemon process: Set the gcda file path location to ‘/tmp’ directory inside target.

B. Modification in daemon source files API functions to dump the coverage to gcda file : Use “__gcov_flush();” API call.

 Note:

‘__gcov_flush’ will dump past coverage data accumulated till this call. So, its good idea to use ‘__gcov_flush’ at common or multiple hit locations

so that coverage data will get dumping regularly to gcda file.

56/59

Coverage Measurement For Daemon Process (2/4)

3) Build Daemon Pkg

A. home] gbs build -A armv7l --include-all

4) Install Pkg to Target and Find gcov data file (source_file_name.gcno) in local build root

A. Install gcov enabled pkg to Target

i. Location : /GBS-ROOT/local/repos/armv7l/RPMS/[pkg_name].rpm

B. Find gcov data file in local build root

i. /GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0/home/abuild/rpmbuild/BUILD/[daemon-pkg-name-

version]/daemon/CMakeFiles/[daemon-pkg-name].dir/src/[source_file_name].gcno

Note:

gcno file locations can vary slightly depending on the platform folder hierarchy.

It’s good idea to use ‘find . –name “*.gcno”’ command to track the correct location for all the gcno files.

Configuring Target (2/2)

57/59

Coverage Measurement For Daemon Process (3/4)

Executing TC in Target using TCT-Manager

1) Build and install TC Package

A. Build UTC

i. home] sudo ./tcbuild build utc [pkg-name] <arch_type> <device_type>

 RPM Build location : GBS-ROOT-TCT-<device_type>/local/repos/device/< arch_type >/RPMS/

 You can find core-[pkg-name]-tests-0.1-0.armv7l.rpm

B. Install UTC RPMs for Coverage

home] sudo ./tcbuild install_coverage utc [pkg-name] <arch_type> <device_type> (if tct coverage also needed)

Or,

home] sudo ./tcbuild install utc [pkg-name] <arch_type> <device_type> (if tct coverage not needed)

2) Run TC using TCT-Manager

A. Run TCT-Manager tool.

B. Select ‘Tizen Ver’ field as “tizen_native_3.0” in TCT-Manager. This will display the package in category under “UnitTestCases”.

C. Select the package and Execute test cases.

3) Check gcov data file on target (after the package gets executed in TCT-Manager)

 A. gcda files Location : /tmp/home/abuild/rpmbuild/BUILD/[pkg-name]/daemon/xxx/xxx/src/[source_file_name].gcda

Note:

1. To find the daemon coverage by test case execution, its good to first forcefully terminate the daemon process (use kill command) and then

deletes the gcda files for daemon (inside “/tmp/home/abuild/rpmbuild/BUILD/”). This will remove past accumulated daemon coverage data.

2. gcda file location can vary slightly inside “/tmp/home/abuild/rpmbuild/BUILD”, depending on the platform folder hierarchy.

58/59

Coverage Measurement For Daemon Process (4/4)

Extracting gcov line coverage data

1) Pull gcov data to local build root

A. In target : sh-4.1#] cp /tmp/home/abuild/rpmbuild/BUILD/pkg-name/daemon/xxx/xxx/src/*.gcda /tmp

B. In GBS-ROOT directory

i. /GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0/home/abuild/rpmbuild/BUILD/[daemon-pkg-name-

version]/daemon/CMakeFiles/[daemon-pkg-name].dir/src/] sdb pull /tmp/*.gcda

ii. Matching .gcda file location according to .gcno file location

2) Extracting Coverage Data

A. Install lcov in scratch box

 i. Go to ~/GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0 directory

 ii. xxx] sudo wget http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm

 iii. xxx] sudo chroot ~/GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0

 iv. xxx] rpm -ivh --force --nodeps lcov-1.11.-1.noarch.rpm

 v. xxx] cd /home/abuild/xxx/xxx/xxx/CmakeFiles/

 vi. xxx] lcov -c -d capi-xxx-xxx.dir/ -o capi-xxx-xxx.info

 vii. xxx] genhtml capi-xxx-xxx.info -o out

 viii. open index.html in out directory

http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm

59/59

Excluding Coverage from HTML (1/2)

Which cases?

How can I do?

- Please refer next page

Excluding Data

Type Description

Logs If you want to remove log lines from coverage data, you can remove it

Not used function If you want to remove not used functions that is not included APIs scope, you can remove it

Not supported feature If target don’t have feature, So, APIs can not running in target, you can remove related code

Not called Callback In some cases, if you can’t make H/W callback or system callback, you can remove it

System Error Codes for environmental errors such as SMACK, Memory Leak, CPU, Low battery can be removed

60/59

Excluding Coverage from HTML (2/2)

Excluding Coverage from HTML report

- Excluding file from HTML

• If you want to remove some files in coverage report data, please try the following OR please try as below

- remove file.gcno, file.gcda, file.o files before runing lcov command

- “lcov --remove capi-media-audio-io.info audio_io.c” command also remove file from coverage data but not updated on html

- Excluding some lines from HTML

• If you want to remove some lines from file, please try as follow

- add “//LCOV_EXCL_LINE”comment at the end of lines (ex. LOGE(“test \n”); //LCOV_EXCL_LINE)

- Excluding some block of codes from HTML

• If you want to remove some block of codes from file, please try as follow

- add “//LCOV_EXCL_START”comment at the start or block and add “//LCOV_EXCL_STOP” comment at the end of block

- Excluding LOG related line from C/CPP file

• Add following codes in C/CPP file

Excluding LOG

Excluding Block

61/59

Analysis of gcov raw data (1/2)

General report of gcov data

- index.html in out directory (result of 5 page)

• Summarize the function and line coverage for all source files in tizen package

- Generates coverage data according to source folder hierarchy of tizen package

- Click “src” in html then, you can find all coverage data of source code (c/cpp)

- src directory

• Function coverage information for each files in src directory of tizen package

- Click file named html then, you can find all function coverage data of file(c/cpp)

< index.html >

< file_name_func.html >

< out directory >

< src directory >

62/59

Analysis of gcov raw data (2/2)

Coverage data

- If you click some file in html, you can find following coverage information

• index.html  “source directory”  “file_name.c/cpp”

• To improve coverage rate, you should consider orange color line only

macros is not included in coverage

Line number
(c/cpp file)

Call count

covered line

uncovered line

ignore line

Target to
improvement

63/59

Merging Coverage : Framework And Daemon Process

Approach to Merge Framework and Daemon Process Coverage Data

Follow steps (i) to (v) as mentioned above and then do followings:

1) Generate different coverage.info file for framework and daemon process (this step differs from step (vi) mentioned above)

A. lcov -c -d capi-xxx-xxx.dir/ -o capi-xxx-xxx.info (generate info file for framework)

B. lcov -c -d daemon-xxx-xxx.dir/ -o daemon-xxx-xxx.info (generate info file for daemon process)

2) Merge .info files to generate common Coverage Report (this step differs from step (vii) mentioned above)

A. genhtml capi-xxx-xxx.info daemon-xxx-xxx.info -o out

B. open index.html in out directory and find merged coverage report.

General Approach to Extract Coverage Report for single module

 i. Go to ~/GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0 directory

 ii. xxx] sudo wget http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm

 iii. xxx] sudo chroot ~/GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0

 iv. xxx] rpm -ivh --force --nodeps lcov-1.11.-1.noarch.rpm

 v. xxx] cd /home/abuild/xxx/xxx/xxx/CmakeFiles/

 vi. xxx] lcov -c -d capi-xxx-xxx.dir/ -o capi-xxx-xxx.info (this step will be different for merged approach)

 vii. xxx] genhtml capi-xxx-xxx.info -o out (this step will be different for merged approach)

 viii. open index.html in out directory

Note:

‘genhtml’ command can read multiple info files one by one and generate common coverage report after processing all the .info files.

If you want to generate common coverage report for multiple modules, then you can use this merging approach to get single coverage report.

http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm

64/59

Merging Coverage : Mobile, Wearable and TV Coverage

Approach to Merge Coverage Data from different device types.

1) Follow steps (i) to (vi) as mentioned above to generate different coverage.info files using their respective (gcda+gcno) data

A. lcov -c -d capi-xxx-xxx.dir/ -o capi-xxx-xxx_mobile.info (mobile info file)

B. lcov -c -d capi-xxx-xxx.dir/ -o capi-xxx-xxx_wearable.info (wearable info file)

C. lcov -c -d capi-xxx-xxx.dir/ -o capi-xxx-xxx_tv.info (tv info file)

2) Merge .info files to generate merged coverage report

A. genhtml capi-xxx-xxx_mobile.info capi-xxx-xxx_wearable.info capi-xxx-xxx_tv.info -o out

B. open index.html in out directory and find merged coverage report.

General Approach to Generate Coverage Report for single module

 i. Go to ~/GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0 directory

 ii. xxx] sudo wget http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm

 iii. xxx] sudo chroot ~/GBS-ROOT/local/BUILD-ROOTS/scratch.armv7l.0

 iv. xxx] rpm -ivh --force --nodeps lcov-1.11.-1.noarch.rpm

 v. xxx] cd /home/abuild/xxx/xxx/xxx/CmakeFiles/

 vi. xxx] lcov -c -d capi-xxx-xxx.dir/ -o capi-xxx-xxx.info

 vii. xxx] genhtml capi-xxx-xxx.info -o out (this step will be different for merged approach)

 viii. open index.html in out directory

Note:

‘genhtml’ command can read multiple info files one by one and generate merged coverage report after processing all the .info files.

The coverage data keeps appending to the coverage report during each .info file processing, which generates merged coverage report finally.

If the source files for different device type (mobile wearable and tv, which you intend to merge) are same then you can merge the

coverage from different device types to generate merged coverage report.

http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm
http://downloads.sourceforge.net/ltp/lcov-1.11-1.noarch.rpm

65/59

GDB Debugging for TCT Guide

66/59

TCT Test Case Execution Under GDB Debugging (1/3)

Install gdb and dependent rpm binaries over target device

1) Download following rpm packages from http://download.tizen.org/snapshots/tizen/mobile/latest/repos/<target>/packages/armv7l/:

A. gdb-<version>.armv7l

B. gdb-devel-<version>.armv7l

C. gdb-docs-<version>.armv7l

D. gdb-server-<version>.armv7l

E. libgthread-<version>.armv7l

F. libpthread-stubs-<version>.armv7l

G. libpython-<version>.armv7l

H. python-<version>.armv7l

I. python-gobject-<version>.armv7l

2) Copy and Install the rpm packages to target device

A. Copy the rpm packages inside device at location : /home/owner/content/

B. Install the rpm binaries (rpm -ivh --force --nodeps <rpm path location>)

Note:

This is one time process to install gdb over the target device.

Once gdb gets installed, then don’t follow this pre-requisite process.

67/59

TCT Test Case Execution Under GDB Debugging (2/3)

1) Build TCT package

home] sudo ./tcbuild build <itc/ctc/utc> [pkg-name] <arch_type> <device_type>

 RPM Build location : GBS-ROOT-TCT-<device_type>/local/repos/device/< arch_type >/RPMS/

 For example, sudo ./tcbuild build itc runtime-info armv7l mobile (if debugging for itc/runtime-info)

 This will generate 3 rpm build binaries, native-runtime-info-itc-0.1-0.armv7l.rpm, native-runtime-info-itc-debuginfo-0.1-0.armv7l.rpm

 and native-runtime-info-itc-debugsource-0.1-0.armv7l.rpm

2) Install TCT package over target device

Copy all the three tct rpm packages inside device at location : /home/owner/content/

 Install these rpm binaries over device (rpm -ivh --force --nodeps <rpm path location>)

3) Provide smack access and execute label permission to tct binary (to be done in root account mode)

tpk-backend --preload -y <pkg-name> (for example, tpk-backend --preload -y native-runtime-info-itc)

 Change execute smack label permission of tct binary to “User::App::<app_id>”

 (for example chsmack -e "User::App::native.runtime-info-itc" /usr/apps/native-runtime-info-itc/bin/tct-runtime-info-native)

Build and Install TCT RPM Packages over Target Device

68/59

TCT Test Case Execution Under GDB Debugging (3/3)

1) Login to target device under ‘owner’ mode.

sdb shell -> su - owner

2) Run gdb with tct binary package (/usr/apps/<package-name>/bin/<executable name>)

1. Running gdb with executable

2. Put breakpoint before running executable

3. Run executable by specifying testcase name: “r testcase_name <testcase to debug>”

Breakpoint Control

4. Put more breakpoints during execution if required
5. Continue Execution

Breakpoint
Control

Some useful gdb command:
1. ‘r’ : Run binary
2. ‘b’ : Put breakpoint
3. ‘c’ : Continue Execution
4. ‘n’ : Next Line Execution
5. ‘s’ : Step Into Function
6. ‘p’ : Print value

69/59

GDB Debugging With TCT Core Dump File (1/3)

Install gdb and dependent rpm binaries over target device

1) Download following rpm packages from http://download.tizen.org/snapshots/tizen/mobile/latest/repos/<target>/packages/armv7l/:

A. gdb-<version>.armv7l

B. gdb-devel-<version>.armv7l

C. gdb-docs-<version>.armv7l

D. gdb-server-<version>.armv7l

E. libgthread-<version>.armv7l

F. libpthread-stubs-<version>.armv7l

G. libpython-<version>.armv7l

H. python-<version>.armv7l

I. python-gobject-<version>.armv7l

2) Copy and Install the rpm packages to target device

A. Copy the rpm packages inside device at location : /home/owner/content/

B. Install the rpm binaries (rpm -ivh --force --nodeps <rpm path location>)

Note:

This is one time process to install gdb over the target device.

If gdb is already installed on the device, then don’t follow this pre-requisite process.

70/59

GDB Debugging With TCT Core Dump File (2/3)

1) Build TCT package

home] sudo ./tcbuild build <itc/ctc/utc> [pkg-name] <arch_type> <device_type>

 RPM Build location : GBS-ROOT-TCT-<device_type>/local/repos/device/< arch_type >/RPMS/

 For example, sudo ./tcbuild build ctc audio-io armv7l mobile (for ctc/audio-io)

 This will generate 3 rpm build binaries, native-audio-io-ctc-0.1-0.armv7l.rpm, native-audio-io-ctc-debuginfo-0.1-0.armv7l.rpm and

 native-audio-io-ctc-debugsource-0.1-0.armv7l.rpm

2) Install TCT package over target device

Copy all the three tct rpm packages inside device at location : /home/owner/content/

 Install these rpm binaries over device (rpm -ivh --force --nodeps <rpm path location>)

Build and Install TCT RPM Packages over Target Device

Note:

Build and Installation should be done only for the tct package which had generated the Core Dump file.

71/59

GDB Debugging With TCT Core Dump File (3/3)

2) Run gdb with launchpad-loader (/usr/bin/launchpad-loader) and core dump file

1) Login to target device in ‘root’ mode.

1. Running gdb with launchpad-loader and core dump file

2. Run backtrace command (‘bt’) to display the
entire stack frame when the crash happened

Stack frames at
the time of crash

3. Go to particular frame

4. See the source code of the frame using ‘list’ command

5. Print variables values or use ‘info locals’ command to display the values of all local variables, when crash had occurred

72/59

Thank you

