#version 450 #extension GL_EXT_shader_explicit_arithmetic_types: enable #extension GL_EXT_shader_explicit_arithmetic_types_int8: require #extension GL_EXT_shader_explicit_arithmetic_types_int16: require #extension GL_EXT_shader_explicit_arithmetic_types_int32: require #extension GL_EXT_shader_explicit_arithmetic_types_int64: require #extension GL_EXT_shader_explicit_arithmetic_types_float16: require #extension GL_EXT_shader_explicit_arithmetic_types_float32: require #extension GL_EXT_shader_explicit_arithmetic_types_float64: require void main() { } // Single float literals void literal() { const float32_t f32c = 0.000001f; const f32vec2 f32cv = f32vec2(-0.25F, 0.03f); f32vec2 f32v; f32v.x = f32c; f32v += f32cv; } // Block memory layout struct S { float32_t x; f32vec2 y; f32vec3 z; }; layout(column_major, std140) uniform B1 { float32_t a; f32vec2 b; f32vec3 c; float32_t d[2]; f32mat2x3 e; f32mat2x3 f[2]; S g; S h[2]; }; // Specialization constant layout(constant_id = 100) const float16_t sf16 = 0.125hf; layout(constant_id = 101) const float32_t sf = 0.25; layout(constant_id = 102) const float64_t sd = 0.5lf; const float f16_to_f = float(sf16); const double f16_to_d = float(sf16); const float16_t f_to_f16 = float16_t(sf); const float16_t d_to_f16 = float16_t(sd); void operators() { float32_t f32; f32vec2 f32v; f32mat2x2 f32m; bool b; // Arithmetic f32v += f32v; f32v -= f32v; f32v *= f32v; f32v /= f32v; f32v++; f32v--; ++f32m; --f32m; f32v = -f32v; f32m = -f32m; f32 = f32v.x + f32v.y; f32 = f32v.x - f32v.y; f32 = f32v.x * f32v.y; f32 = f32v.x / f32v.y; // Relational b = (f32v.x != f32); b = (f32v.y == f32); b = (f32v.x > f32); b = (f32v.y < f32); b = (f32v.x >= f32); b = (f32v.y <= f32); // Vector/matrix operations f32v = f32v * f32; f32m = f32m * f32; f32v = f32m * f32v; f32v = f32v * f32m; f32m = f32m * f32m; } void typeCast() { bvec3 bv; f32vec3 f32v; f64vec3 f64v; i8vec3 i8v; u8vec3 u8v; i16vec3 i16v; u16vec3 u16v; i32vec3 i32v; u32vec3 u32v; i64vec3 i64v; u64vec3 u64v; f16vec3 f16v; f64v = f32v; // float32_t -> float64_t f32v = f32vec3(bv); // bool -> float32 bv = bvec3(f32v); // float32 -> bool f32v = f32vec3(f64v); // double -> float32 f64v = f64vec3(f32v); // float32 -> double f32v = f32vec3(f16v); // float16 -> float32 f16v = f16vec3(f32v); // float32 -> float16 i8v = i8vec3(f32v); // float32 -> int8 i16v = i16vec3(f32v); // float32 -> int16 i32v = i32vec3(f32v); // float32 -> int32 i64v = i64vec3(f32v); // float32 -> int64 u8v = u8vec3(f32v); // float32 -> uint8 u16v = u16vec3(f32v); // float32 -> uint16 u32v = u32vec3(f32v); // float32 -> uint32 u64v = u64vec3(f32v); // float32 -> uint64 } void builtinAngleTrigFuncs() { f32vec4 f32v1, f32v2; f32v2 = radians(f32v1); f32v2 = degrees(f32v1); f32v2 = sin(f32v1); f32v2 = cos(f32v1); f32v2 = tan(f32v1); f32v2 = asin(f32v1); f32v2 = acos(f32v1); f32v2 = atan(f32v1, f32v2); f32v2 = atan(f32v1); f32v2 = sinh(f32v1); f32v2 = cosh(f32v1); f32v2 = tanh(f32v1); f32v2 = asinh(f32v1); f32v2 = acosh(f32v1); f32v2 = atanh(f32v1); } void builtinExpFuncs() { f32vec2 f32v1, f32v2; f32v2 = pow(f32v1, f32v2); f32v2 = exp(f32v1); f32v2 = log(f32v1); f32v2 = exp2(f32v1); f32v2 = log2(f32v1); f32v2 = sqrt(f32v1); f32v2 = inversesqrt(f32v1); } void builtinCommonFuncs() { f32vec3 f32v1, f32v2, f32v3; float32_t f32; bool b; bvec3 bv; ivec3 iv; f32v2 = abs(f32v1); f32v2 = sign(f32v1); f32v2 = floor(f32v1); f32v2 = trunc(f32v1); f32v2 = round(f32v1); f32v2 = roundEven(f32v1); f32v2 = ceil(f32v1); f32v2 = fract(f32v1); f32v2 = mod(f32v1, f32v2); f32v2 = mod(f32v1, f32); f32v3 = modf(f32v1, f32v2); f32v3 = min(f32v1, f32v2); f32v3 = min(f32v1, f32); f32v3 = max(f32v1, f32v2); f32v3 = max(f32v1, f32); f32v3 = clamp(f32v1, f32, f32v2.x); f32v3 = clamp(f32v1, f32v2, f32vec3(f32)); f32v3 = mix(f32v1, f32v2, f32); f32v3 = mix(f32v1, f32v2, f32v3); f32v3 = mix(f32v1, f32v2, bv); f32v3 = step(f32v1, f32v2); f32v3 = step(f32, f32v3); f32v3 = smoothstep(f32v1, f32v2, f32v3); f32v3 = smoothstep(f32, f32v1.x, f32v2); b = isnan(f32); bv = isinf(f32v1); f32v3 = fma(f32v1, f32v2, f32v3); f32v2 = frexp(f32v1, iv); f32v2 = ldexp(f32v1, iv); } void builtinGeometryFuncs() { float32_t f32; f32vec3 f32v1, f32v2, f32v3; f32 = length(f32v1); f32 = distance(f32v1, f32v2); f32 = dot(f32v1, f32v2); f32v3 = cross(f32v1, f32v2); f32v2 = normalize(f32v1); f32v3 = faceforward(f32v1, f32v2, f32v3); f32v3 = reflect(f32v1, f32v2); f32v3 = refract(f32v1, f32v2, f32); } void builtinMatrixFuncs() { f32mat2x3 f32m1, f32m2, f32m3; f32mat3x2 f32m4; f32mat3 f32m5; f32mat4 f32m6, f32m7; f32vec3 f32v1; f32vec2 f32v2; float32_t f32; f32m3 = matrixCompMult(f32m1, f32m2); f32m1 = outerProduct(f32v1, f32v2); f32m4 = transpose(f32m1); f32 = determinant(f32m5); f32m6 = inverse(f32m7); } void builtinVecRelFuncs() { f32vec3 f32v1, f32v2; bvec3 bv; bv = lessThan(f32v1, f32v2); bv = lessThanEqual(f32v1, f32v2); bv = greaterThan(f32v1, f32v2); bv = greaterThanEqual(f32v1, f32v2); bv = equal(f32v1, f32v2); bv = notEqual(f32v1, f32v2); } in f32vec3 if32v; void builtinFragProcFuncs() { f32vec3 f32v; // Derivative f32v.x = dFdx(if32v.x); f32v.y = dFdy(if32v.y); f32v.xy = dFdxFine(if32v.xy); f32v.xy = dFdyFine(if32v.xy); f32v = dFdxCoarse(if32v); f32v = dFdxCoarse(if32v); f32v.x = fwidth(if32v.x); f32v.xy = fwidthFine(if32v.xy); f32v = fwidthCoarse(if32v); // Interpolation f32v.x = interpolateAtCentroid(if32v.x); f32v.xy = interpolateAtSample(if32v.xy, 1); f32v = interpolateAtOffset(if32v, f32vec2(0.5f)); }