* * Definition: * =========== * * SUBROUTINE CGELQ( M, N, A, LDA, WORK1, LWORK1, WORK2, LWORK2, * INFO) * * .. Scalar Arguments .. * INTEGER INFO, LDA, M, N, LWORK1, LWORK2 * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), WORK1( * ), WORK2( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGELQ computes an LQ factorization of an M-by-N matrix A, *> using ZLASWLQ when A is short and wide *> (N sufficiently greater than M), and otherwise ZGELQT: *> A = L * Q . *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> On entry, the M-by-N matrix A. *> On exit, the elements on and below the diagonal of the array *> contain the M-by-min(M,N) lower trapezoidal matrix L *> (L is lower triangular if M <= N); *> the elements above the diagonal are the rows of *> blocked V representing Q (see Further Details). *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[out] WORK1 *> \verbatim *> WORK1 is COMPLEX*16 array, dimension (MAX(1,LWORK1)) *> WORK1 contains part of the data structure used to store Q. *> WORK1(1): algorithm type = 1, to indicate output from *> ZLASWLQ or ZGELQT *> WORK1(2): optimum size of WORK1 *> WORK1(3): minimum size of WORK1 *> WORK1(4): horizontal block size *> WORK1(5): vertical block size *> WORK1(6:LWORK1): data structure needed for Q, computed by *> ZLASWLQ or ZGELQT *> \endverbatim *> *> \param[in] LWORK1 *> \verbatim *> LWORK1 is INTEGER *> The dimension of the array WORK1. *> If LWORK1 = -1, then a query is assumed. In this case the *> routine calculates the optimal size of WORK1 and *> returns this value in WORK1(2), and calculates the minimum *> size of WORK1 and returns this value in WORK1(3). *> No error message related to LWORK1 is issued by XERBLA when *> LWORK1 = -1. *> \endverbatim *> *> \param[out] WORK2 *> \verbatim *> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK2)) *> *> \endverbatim *> \param[in] LWORK2 *> \verbatim *> LWORK2 is INTEGER *> The dimension of the array WORK2. *> If LWORK2 = -1, then a query is assumed. In this case the *> routine calculates the optimal size of WORK2 and *> returns this value in WORK2(1), and calculates the minimum *> size of WORK2 and returns this value in WORK2(2). *> No error message related to LWORK2 is issued by XERBLA when *> LWORK2 = -1. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \par Further Details: * ===================== *> *> \verbatim *> Depending on the matrix dimensions M and N, and row and column *> block sizes MB and NB returned by ILAENV, GELQ will use either *> LASWLQ(if the matrix is short-and-wide) or GELQT to compute *> the LQ decomposition. *> The output of LASWLQ or GELQT representing Q is stored in A and in *> array WORK1(6:LWORK1) for later use. *> WORK1(2:5) contains the matrix dimensions M,N and block sizes MB, NB *> which are needed to interpret A and WORK1(6:LWORK1) for later use. *> WORK1(1)=1 indicates that the code needed to take WORK1(2:5) and *> decide whether LASWLQ or GELQT was used is the same as used below in *> GELQ. For a detailed description of A and WORK1(6:LWORK1), see *> Further Details in LASWLQ or GELQT. *> \endverbatim *> * ===================================================================== SUBROUTINE ZGELQ( M, N, A, LDA, WORK1, LWORK1, WORK2, LWORK2, $ INFO) * * -- LAPACK computational routine (version 3.5.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * November 2013 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N, LWORK1, LWORK2 * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), WORK1( * ), WORK2( * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. LOGICAL LQUERY, LMINWS INTEGER MB, NB, I, II, KK, MINLW1, NBLCKS * .. * .. EXTERNAL FUNCTIONS .. LOGICAL LSAME EXTERNAL LSAME * .. EXTERNAL SUBROUTINES .. EXTERNAL ZGELQT, ZLASWLQ, XERBLA * .. INTRINSIC FUNCTIONS .. INTRINSIC MAX, MIN, MOD * .. * .. EXTERNAL FUNCTIONS .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. EXECUTABLE STATEMENTS .. * * TEST THE INPUT ARGUMENTS * INFO = 0 * LQUERY = ( LWORK1.EQ.-1 .OR. LWORK2.EQ.-1 ) * * Determine the block size * IF ( MIN(M,N).GT.0 ) THEN MB = ILAENV( 1, 'ZGELQ ', ' ', M, N, 1, -1) NB = ILAENV( 1, 'ZGELQ ', ' ', M, N, 2, -1) ELSE MB = 1 NB = N END IF IF( MB.GT.MIN(M,N).OR.MB.LT.1) MB = 1 IF( NB.GT.N.OR.NB.LE.M) NB = N MINLW1 = M + 5 IF ((NB.GT.M).AND.(N.GT.M)) THEN IF(MOD(N-M, NB-M).EQ.0) THEN NBLCKS = (N-M)/(NB-M) ELSE NBLCKS = (N-M)/(NB-M) + 1 END IF ELSE NBLCKS = 1 END IF * * Determine if the workspace size satisfies minimum size * LMINWS = .FALSE. IF((LWORK1.LT.MAX(1,MB*M*NBLCKS+5) $ .OR.(LWORK2.LT.MB*M)).AND.(LWORK2.GE.M).AND.(LWORK1.GE.M+5) $ .AND.(.NOT.LQUERY)) THEN IF (LWORK1.LT.MAX(1,MB*M*NBLCKS+5)) THEN LMINWS = .TRUE. MB = 1 END IF IF (LWORK1.LT.MAX(1,M*NBLCKS+5)) THEN LMINWS = .TRUE. NB = N END IF IF (LWORK2.LT.MB*M) THEN LMINWS = .TRUE. MB = 1 END IF END IF * IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 ELSE IF( LWORK1.LT.MAX( 1, MB*M*NBLCKS+5 ) $ .AND.(.NOT.LQUERY).AND. (.NOT.LMINWS)) THEN INFO = -6 ELSE IF( (LWORK2.LT.MAX(1,M*MB)).AND.(.NOT.LQUERY) $ .AND.(.NOT.LMINWS) ) THEN INFO = -8 END IF * IF( INFO.EQ.0) THEN WORK1(1) = 1 WORK1(2) = MB*M*NBLCKS+5 WORK1(3) = MINLW1 WORK1(4) = MB WORK1(5) = NB WORK2(1) = MB * M WORK2(2) = M END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGELQ', -INFO ) RETURN ELSE IF (LQUERY) THEN RETURN END IF * * Quick return if possible * IF( MIN(M,N).EQ.0 ) THEN RETURN END IF * * The LQ Decomposition * IF((N.LE.M).OR.(NB.LE.M).OR.(NB.GE.N)) THEN CALL ZGELQT( M, N, MB, A, LDA, WORK1(6), MB, WORK2, INFO) ELSE CALL ZLASWLQ( M, N, MB, NB, A, LDA, WORK1(6), MB, WORK2, $ LWORK2, INFO) END IF RETURN * * End of ZGELQ * END