*> \brief \b ZGBRFSX
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGBRFSX + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB,
* LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND,
* BERR, N_ERR_BNDS, ERR_BNDS_NORM,
* ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS, EQUED
* INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS,
* $ NPARAMS, N_ERR_BNDS
* DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
* $ X( LDX , * ),WORK( * )
* DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ),
* $ ERR_BNDS_NORM( NRHS, * ),
* $ ERR_BNDS_COMP( NRHS, * ), RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGBRFSX improves the computed solution to a system of linear
*> equations and provides error bounds and backward error estimates
*> for the solution. In addition to normwise error bound, the code
*> provides maximum componentwise error bound if possible. See
*> comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
*> error bounds.
*>
*> The original system of linear equations may have been equilibrated
*> before calling this routine, as described by arguments EQUED, R
*> and C below. In this case, the solution and error bounds returned
*> are for the original unequilibrated system.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> Some optional parameters are bundled in the PARAMS array. These
*> settings determine how refinement is performed, but often the
*> defaults are acceptable. If the defaults are acceptable, users
*> can pass NPARAMS = 0 which prevents the source code from accessing
*> the PARAMS argument.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the form of the system of equations:
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] EQUED
*> \verbatim
*> EQUED is CHARACTER*1
*> Specifies the form of equilibration that was done to A
*> before calling this routine. This is needed to compute
*> the solution and error bounds correctly.
*> = 'N': No equilibration
*> = 'R': Row equilibration, i.e., A has been premultiplied by
*> diag(R).
*> = 'C': Column equilibration, i.e., A has been postmultiplied
*> by diag(C).
*> = 'B': Both row and column equilibration, i.e., A has been
*> replaced by diag(R) * A * diag(C).
*> The right hand side B has been changed accordingly.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> The number of subdiagonals within the band of A. KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> The number of superdiagonals within the band of A. KU >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*> AB is COMPLEX*16 array, dimension (LDAB,N)
*> The original band matrix A, stored in rows 1 to KL+KU+1.
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KL+KU+1.
*> \endverbatim
*>
*> \param[in] AFB
*> \verbatim
*> AFB is COMPLEX*16 array, dimension (LDAFB,N)
*> Details of the LU factorization of the band matrix A, as
*> computed by DGBTRF. U is stored as an upper triangular band
*> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
*> the multipliers used during the factorization are stored in
*> rows KL+KU+2 to 2*KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDAFB
*> \verbatim
*> LDAFB is INTEGER
*> The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices from DGETRF; for 1<=i<=N, row i of the
*> matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in,out] R
*> \verbatim
*> R is DOUBLE PRECISION array, dimension (N)
*> The row scale factors for A. If EQUED = 'R' or 'B', A is
*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
*> is not accessed. R is an input argument if FACT = 'F';
*> otherwise, R is an output argument. If FACT = 'F' and
*> EQUED = 'R' or 'B', each element of R must be positive.
*> If R is output, each element of R is a power of the radix.
*> If R is input, each element of R should be a power of the radix
*> to ensure a reliable solution and error estimates. Scaling by
*> powers of the radix does not cause rounding errors unless the
*> result underflows or overflows. Rounding errors during scaling
*> lead to refining with a matrix that is not equivalent to the
*> input matrix, producing error estimates that may not be
*> reliable.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is DOUBLE PRECISION array, dimension (N)
*> The column scale factors for A. If EQUED = 'C' or 'B', A is
*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
*> is not accessed. C is an input argument if FACT = 'F';
*> otherwise, C is an output argument. If FACT = 'F' and
*> EQUED = 'C' or 'B', each element of C must be positive.
*> If C is output, each element of C is a power of the radix.
*> If C is input, each element of C should be a power of the radix
*> to ensure a reliable solution and error estimates. Scaling by
*> powers of the radix does not cause rounding errors unless the
*> result underflows or overflows. Rounding errors during scaling
*> lead to refining with a matrix that is not equivalent to the
*> input matrix, producing error estimates that may not be
*> reliable.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
*> The right hand side matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (LDX,NRHS)
*> On entry, the solution matrix X, as computed by DGETRS.
*> On exit, the improved solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is DOUBLE PRECISION
*> Reciprocal scaled condition number. This is an estimate of the
*> reciprocal Skeel condition number of the matrix A after
*> equilibration (if done). If this is less than the machine
*> precision (in particular, if it is zero), the matrix is singular
*> to working precision. Note that the error may still be small even
*> if this number is very small and the matrix appears ill-
*> conditioned.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*> BERR is DOUBLE PRECISION array, dimension (NRHS)
*> Componentwise relative backward error. This is the
*> componentwise relative backward error of each solution vector X(j)
*> (i.e., the smallest relative change in any element of A or B that
*> makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[in] N_ERR_BNDS
*> \verbatim
*> N_ERR_BNDS is INTEGER
*> Number of error bounds to return for each right hand side
*> and each type (normwise or componentwise). See ERR_BNDS_NORM and
*> ERR_BNDS_COMP below.
*> \endverbatim
*>
*> \param[out] ERR_BNDS_NORM
*> \verbatim
*> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
*> estimate is "guaranteed". These reciprocal condition
*> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
*>
*> \param[out] ERR_BNDS_COMP
*> \verbatim
*> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
*> estimate is "guaranteed". These reciprocal condition
*> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*> appropriately scaled matrix Z.
*> Let Z = S*(A*diag(x)), where x is the solution for the
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
*>
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is DOUBLE PRECISION array, dimension NPARAMS
*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
*> = 0.0 : No refinement is performed, and no error bounds are
*> computed.
*> = 1.0 : Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
*> Aggressive: Set to 100 to permit convergence using approximate
*> factorizations or factorizations other than LU. If
*> the factorization uses a technique other than
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
*> is true, 0.0 is false.
*> Default: 1.0 (attempt componentwise convergence)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: Successful exit. The solution to every right-hand side is
*> guaranteed.
*> < 0: If INFO = -i, the i-th argument had an illegal value
*> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
*> has been completed, but the factor U is exactly singular, so
*> the solution and error bounds could not be computed. RCOND = 0
*> is returned.
*> = N+J: The solution corresponding to the Jth right-hand side is
*> not guaranteed. The solutions corresponding to other right-
*> hand sides K with K > J may not be guaranteed as well, but
*> only the first such right-hand side is reported. If a small
*> componentwise error is not requested (PARAMS(3) = 0.0) then
*> the Jth right-hand side is the first with a normwise error
*> bound that is not guaranteed (the smallest J such
*> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
*> the Jth right-hand side is the first with either a normwise or
*> componentwise error bound that is not guaranteed (the smallest
*> J such that either ERR_BNDS_NORM(J,1) = 0.0 or
*> ERR_BNDS_COMP(J,1) = 0.0). See the definition of
*> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
*> about all of the right-hand sides check ERR_BNDS_NORM or
*> ERR_BNDS_COMP.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup complex16GBcomputational
*
* =====================================================================
SUBROUTINE ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB,
$ LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND,
$ BERR, N_ERR_BNDS, ERR_BNDS_NORM,
$ ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
$ INFO )
*
* -- LAPACK computational routine (version 3.6.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* .. Scalar Arguments ..
CHARACTER TRANS, EQUED
INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS,
$ NPARAMS, N_ERR_BNDS
DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
$ X( LDX , * ),WORK( * )
DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ),
$ ERR_BNDS_NORM( NRHS, * ),
$ ERR_BNDS_COMP( NRHS, * ), RWORK( * )
* ..
*
* ==================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION ITREF_DEFAULT, ITHRESH_DEFAULT
DOUBLE PRECISION COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
DOUBLE PRECISION DZTHRESH_DEFAULT
PARAMETER ( ITREF_DEFAULT = 1.0D+0 )
PARAMETER ( ITHRESH_DEFAULT = 10.0D+0 )
PARAMETER ( COMPONENTWISE_DEFAULT = 1.0D+0 )
PARAMETER ( RTHRESH_DEFAULT = 0.5D+0 )
PARAMETER ( DZTHRESH_DEFAULT = 0.25D+0 )
INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
$ LA_LINRX_CWISE_I
PARAMETER ( LA_LINRX_ITREF_I = 1,
$ LA_LINRX_ITHRESH_I = 2 )
PARAMETER ( LA_LINRX_CWISE_I = 3 )
INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
$ LA_LINRX_RCOND_I
PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
PARAMETER ( LA_LINRX_RCOND_I = 3 )
* ..
* .. Local Scalars ..
CHARACTER(1) NORM
LOGICAL ROWEQU, COLEQU, NOTRAN, IGNORE_CWISE
INTEGER J, TRANS_TYPE, PREC_TYPE, REF_TYPE, N_NORMS,
$ ITHRESH
DOUBLE PRECISION ANORM, RCOND_TMP, ILLRCOND_THRESH, ERR_LBND,
$ CWISE_WRONG, RTHRESH, UNSTABLE_THRESH
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGBCON, ZLA_GBRFSX_EXTENDED
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, SQRT, TRANSFER
* ..
* .. External Functions ..
EXTERNAL LSAME, ILAPREC
EXTERNAL DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C
DOUBLE PRECISION DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C
LOGICAL LSAME
INTEGER ILATRANS, ILAPREC
* ..
* .. Executable Statements ..
*
* Check the input parameters.
*
INFO = 0
TRANS_TYPE = ILATRANS( TRANS )
REF_TYPE = INT( ITREF_DEFAULT )
IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
ELSE
REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
END IF
END IF
*
* Set default parameters.
*
ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
ITHRESH = INT( ITHRESH_DEFAULT )
RTHRESH = RTHRESH_DEFAULT
UNSTABLE_THRESH = DZTHRESH_DEFAULT
IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
*
IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
ELSE
ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
END IF
END IF
IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
IF ( IGNORE_CWISE ) THEN
PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
ELSE
PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
END IF
ELSE
IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
END IF
END IF
IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
N_NORMS = 0
ELSE IF ( IGNORE_CWISE ) THEN
N_NORMS = 1
ELSE
N_NORMS = 2
END IF
*
NOTRAN = LSAME( TRANS, 'N' )
ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
*
* Test input parameters.
*
IF( TRANS_TYPE.EQ.-1 ) THEN
INFO = -1
ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND.
$ .NOT.LSAME( EQUED, 'N' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( KL.LT.0 ) THEN
INFO = -4
ELSE IF( KU.LT.0 ) THEN
INFO = -5
ELSE IF( NRHS.LT.0 ) THEN
INFO = -6
ELSE IF( LDAB.LT.KL+KU+1 ) THEN
INFO = -8
ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
INFO = -10
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -13
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -15
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGBRFSX', -INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
RCOND = 1.0D+0
DO J = 1, NRHS
BERR( J ) = 0.0D+0
IF ( N_ERR_BNDS .GE. 1 ) THEN
ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
END IF
IF ( N_ERR_BNDS .GE. 2 ) THEN
ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
END IF
IF ( N_ERR_BNDS .GE. 3 ) THEN
ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
END IF
END DO
RETURN
END IF
*
* Default to failure.
*
RCOND = 0.0D+0
DO J = 1, NRHS
BERR( J ) = 1.0D+0
IF ( N_ERR_BNDS .GE. 1 ) THEN
ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
END IF
IF ( N_ERR_BNDS .GE. 2 ) THEN
ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
END IF
IF ( N_ERR_BNDS .GE. 3 ) THEN
ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
END IF
END DO
*
* Compute the norm of A and the reciprocal of the condition
* number of A.
*
IF( NOTRAN ) THEN
NORM = 'I'
ELSE
NORM = '1'
END IF
ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
$ WORK, RWORK, INFO )
*
* Perform refinement on each right-hand side
*
IF ( REF_TYPE .NE. 0 .AND. INFO .EQ. 0 ) THEN
PREC_TYPE = ILAPREC( 'E' )
IF ( NOTRAN ) THEN
CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
$ NRHS, AB, LDAB, AFB, LDAFB, IPIV, COLEQU, C, B,
$ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
$ ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
$ TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
$ RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
$ INFO )
ELSE
CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
$ NRHS, AB, LDAB, AFB, LDAFB, IPIV, ROWEQU, R, B,
$ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
$ ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
$ TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
$ RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
$ INFO )
END IF
END IF
ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
*
* Compute scaled normwise condition number cond(A*C).
*
IF ( COLEQU .AND. NOTRAN ) THEN
RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
$ LDAFB, IPIV, C, .TRUE., INFO, WORK, RWORK )
ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN
RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
$ LDAFB, IPIV, R, .TRUE., INFO, WORK, RWORK )
ELSE
RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
$ LDAFB, IPIV, C, .FALSE., INFO, WORK, RWORK )
END IF
DO J = 1, NRHS
*
* Cap the error at 1.0.
*
IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
$ .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0)
$ ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
*
* Threshold the error (see LAWN).
*
IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
IF ( INFO .LE. N ) INFO = N + J
ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
$ THEN
ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
END IF
*
* Save the condition number.
*
IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
END IF
END DO
END IF
IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2) THEN
*
* Compute componentwise condition number cond(A*diag(Y(:,J))) for
* each right-hand side using the current solution as an estimate of
* the true solution. If the componentwise error estimate is too
* large, then the solution is a lousy estimate of truth and the
* estimated RCOND may be too optimistic. To avoid misleading users,
* the inverse condition number is set to 0.0 when the estimated
* cwise error is at least CWISE_WRONG.
*
CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
DO J = 1, NRHS
IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
$ THEN
RCOND_TMP = ZLA_GBRCOND_X( TRANS, N, KL, KU, AB, LDAB,
$ AFB, LDAFB, IPIV, X( 1, J ), INFO, WORK, RWORK )
ELSE
RCOND_TMP = 0.0D+0
END IF
*
* Cap the error at 1.0.
*
IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
$ .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
$ ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
*
* Threshold the error (see LAWN).
*
IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
$ .AND. INFO.LT.N + J ) INFO = N + J
ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
$ .LT. ERR_LBND ) THEN
ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
END IF
*
* Save the condition number.
*
IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
END IF
END DO
END IF
*
RETURN
*
* End of ZGBRFSX
*
END