39 using Boost3dArray = boost::multi_array<float, 3>;
41 const std::vector<float>& output = boost::get<std::vector<float>>(this->
GetOutputs()[0]);
44 constexpr Boost3dArray::index gridSize = 7;
45 constexpr Boost3dArray::index numClasses = 20;
46 constexpr Boost3dArray::index numScales = 2;
48 const float* outputPtr = output.data();
51 Boost3dArray classProbabilities(boost::extents[gridSize][gridSize][numClasses]);
52 for (Boost3dArray::index y = 0; y < gridSize; ++y)
54 for (Boost3dArray::index x = 0; x < gridSize; ++x)
56 for (Boost3dArray::index c = 0; c < numClasses; ++c)
58 classProbabilities[y][x][c] = *outputPtr++;
64 Boost3dArray scales(boost::extents[gridSize][gridSize][numScales]);
65 for (Boost3dArray::index y = 0; y < gridSize; ++y)
67 for (Boost3dArray::index x = 0; x < gridSize; ++x)
69 for (Boost3dArray::index s = 0; s < numScales; ++s)
71 scales[y][x][s] = *outputPtr++;
77 constexpr
float imageWidthAsFloat =
static_cast<float>(
YoloImageWidth);
78 constexpr
float imageHeightAsFloat =
static_cast<float>(
YoloImageHeight);
80 boost::multi_array<float, 4> boxes(boost::extents[gridSize][gridSize][numScales][4]);
81 for (Boost3dArray::index y = 0; y < gridSize; ++y)
83 for (Boost3dArray::index x = 0; x < gridSize; ++x)
85 for (Boost3dArray::index s = 0; s < numScales; ++s)
87 float bx = *outputPtr++;
88 float by = *outputPtr++;
89 float bw = *outputPtr++;
90 float bh = *outputPtr++;
92 boxes[y][x][s][0] = ((bx +
static_cast<float>(x)) / 7.0f) * imageWidthAsFloat;
93 boxes[y][x][s][1] = ((by +
static_cast<float>(y)) / 7.0f) * imageHeightAsFloat;
94 boxes[y][x][s][2] = bw * bw *
static_cast<float>(imageWidthAsFloat);
95 boxes[y][x][s][3] = bh * bh *
static_cast<float>(imageHeightAsFloat);
101 std::vector<YoloDetectedObject> detectedObjects;
102 detectedObjects.reserve(gridSize * gridSize * numScales * numClasses);
104 for (Boost3dArray::index y = 0; y < gridSize; ++y)
106 for (Boost3dArray::index x = 0; x < gridSize; ++x)
108 for (Boost3dArray::index s = 0; s < numScales; ++s)
110 for (Boost3dArray::index c = 0; c < numClasses; ++c)
113 const float confidence = classProbabilities[y][x][c] * scales[y][x][s];
117 box.
m_X = boxes[y][x][s][0];
118 box.
m_Y = boxes[y][x][s][1];
119 box.
m_W = boxes[y][x][s][2];
120 box.
m_H = boxes[y][x][s][3];
122 detectedObjects.emplace_back(c, box, confidence);
129 std::sort(detectedObjects.begin(), detectedObjects.end(),
138 auto outputIt = detectedObjects.begin();
139 auto outputEnd = detectedObjects.end();
143 if (outputIt == outputEnd)
146 return TestCaseResult::Abort;
150 if (detectedObject.
m_Class != expectedDetection.m_Class)
153 " is incorrect: Expected (" << expectedDetection.m_Class <<
")" <<
154 " but predicted (" << detectedObject.
m_Class <<
")";
155 return TestCaseResult::Failed;
158 if (!m_FloatComparer(detectedObject.
m_Box.
m_X, expectedDetection.m_Box.m_X) ||
159 !m_FloatComparer(detectedObject.
m_Box.
m_Y, expectedDetection.m_Box.m_Y) ||
160 !m_FloatComparer(detectedObject.
m_Box.
m_W, expectedDetection.m_Box.m_W) ||
161 !m_FloatComparer(detectedObject.
m_Box.
m_H, expectedDetection.m_Box.m_H) ||
162 !m_FloatComparer(detectedObject.
m_Confidence, expectedDetection.m_Confidence))
166 return TestCaseResult::Failed;
172 return TestCaseResult::Ok;
constexpr unsigned int YoloImageHeight
const std::vector< TContainer > & GetOutputs() const
#define ARMNN_LOG(severity)
void IgnoreUnused(Ts &&...)
unsigned int GetTestCaseId() const
constexpr size_t YoloOutputSize
constexpr unsigned int YoloImageWidth