ArmNN  NotReleased
src/armnnCaffeParser/CaffeSupport.md
Go to the documentation of this file.
1 #Caffe layers supported by the Arm NN SDK
2 This reference guide provides a list of Caffe layers the Arm NN SDK currently supports.
3 
4 Although some other neural networks might work, Arm tests the Arm NN SDK with Caffe implementations of the following neural networks:
5 
6 - AlexNet.
7 - Cifar10.
8 - Inception-BN.
9 - Resnet_50, Resnet_101 and Resnet_152.
10 - VGG_CNN_S, VGG_16 and VGG_19.
11 - Yolov1_tiny.
12 - Lenet.
13 - MobileNetv1.
14 
15 The Arm NN SDK supports the following machine learning layers for Caffe networks:
16 
17 
18 - BatchNorm, in inference mode.
19 - Convolution, excluding the Dilation Size, Weight Filler, Bias Filler, Engine, Force nd_im2col, and Axis parameters.
20 
21  Caffe doesn't support depthwise convolution, the equivalent layer is implemented through the notion of groups. ArmNN supports groups this way:
22  - when group=1, it is a normal conv2d
23  - when group=#input_channels, we can replace it by a depthwise convolution
24  - when group>1 && group<#input_channels, we need to split the input into the given number of groups, apply a separate convolution and then merge the results
25 - Concat, along the channel dimension only.
26 - Dropout, in inference mode.
27 - Eltwise, excluding the coeff parameter.
28 - Inner Product, excluding the Weight Filler, Bias Filler, Engine, and Axis parameters.
29 - Input.
30 - LRN, excluding the Engine parameter.
31 - Pooling, excluding the Stochastic Pooling and Engine parameters.
32 - ReLU.
33 - Scale.
34 - Softmax, excluding the Axis and Engine parameters.
35 - Split.
36 
37 More machine learning layers will be supported in future releases.