btrfs-progs: Fix a memleak in btrfs_scan_one_device.
[platform/upstream/btrfs-progs.git] / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #define _XOPEN_SOURCE 600
19 #define __USE_XOPEN2K
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <uuid/uuid.h>
25 #include <fcntl.h>
26 #include <unistd.h>
27 #include "ctree.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
32 #include "math.h"
33
34 struct stripe {
35         struct btrfs_device *dev;
36         u64 physical;
37 };
38
39 static inline int nr_parity_stripes(struct map_lookup *map)
40 {
41         if (map->type & BTRFS_BLOCK_GROUP_RAID5)
42                 return 1;
43         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
44                 return 2;
45         else
46                 return 0;
47 }
48
49 static inline int nr_data_stripes(struct map_lookup *map)
50 {
51         return map->num_stripes - nr_parity_stripes(map);
52 }
53
54 #define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
55
56 static LIST_HEAD(fs_uuids);
57
58 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
59                                           u8 *uuid)
60 {
61         struct btrfs_device *dev;
62         struct list_head *cur;
63
64         list_for_each(cur, head) {
65                 dev = list_entry(cur, struct btrfs_device, dev_list);
66                 if (dev->devid == devid &&
67                     !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
68                         return dev;
69                 }
70         }
71         return NULL;
72 }
73
74 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
75 {
76         struct list_head *cur;
77         struct btrfs_fs_devices *fs_devices;
78
79         list_for_each(cur, &fs_uuids) {
80                 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
81                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
82                         return fs_devices;
83         }
84         return NULL;
85 }
86
87 static int device_list_add(const char *path,
88                            struct btrfs_super_block *disk_super,
89                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
90 {
91         struct btrfs_device *device;
92         struct btrfs_fs_devices *fs_devices;
93         u64 found_transid = btrfs_super_generation(disk_super);
94
95         fs_devices = find_fsid(disk_super->fsid);
96         if (!fs_devices) {
97                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
98                 if (!fs_devices)
99                         return -ENOMEM;
100                 INIT_LIST_HEAD(&fs_devices->devices);
101                 list_add(&fs_devices->list, &fs_uuids);
102                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
103                 fs_devices->latest_devid = devid;
104                 fs_devices->latest_trans = found_transid;
105                 fs_devices->lowest_devid = (u64)-1;
106                 device = NULL;
107         } else {
108                 device = __find_device(&fs_devices->devices, devid,
109                                        disk_super->dev_item.uuid);
110         }
111         if (!device) {
112                 device = kzalloc(sizeof(*device), GFP_NOFS);
113                 if (!device) {
114                         /* we can safely leave the fs_devices entry around */
115                         return -ENOMEM;
116                 }
117                 device->fd = -1;
118                 device->devid = devid;
119                 memcpy(device->uuid, disk_super->dev_item.uuid,
120                        BTRFS_UUID_SIZE);
121                 device->name = kstrdup(path, GFP_NOFS);
122                 if (!device->name) {
123                         kfree(device);
124                         return -ENOMEM;
125                 }
126                 device->label = kstrdup(disk_super->label, GFP_NOFS);
127                 if (!device->label) {
128                         kfree(device->name);
129                         kfree(device);
130                         return -ENOMEM;
131                 }
132                 device->total_devs = btrfs_super_num_devices(disk_super);
133                 device->super_bytes_used = btrfs_super_bytes_used(disk_super);
134                 device->total_bytes =
135                         btrfs_stack_device_total_bytes(&disk_super->dev_item);
136                 device->bytes_used =
137                         btrfs_stack_device_bytes_used(&disk_super->dev_item);
138                 list_add(&device->dev_list, &fs_devices->devices);
139                 device->fs_devices = fs_devices;
140         } else if (!device->name || strcmp(device->name, path)) {
141                 char *name = strdup(path);
142                 if (!name)
143                         return -ENOMEM;
144                 kfree(device->name);
145                 device->name = name;
146         }
147
148
149         if (found_transid > fs_devices->latest_trans) {
150                 fs_devices->latest_devid = devid;
151                 fs_devices->latest_trans = found_transid;
152         }
153         if (fs_devices->lowest_devid > devid) {
154                 fs_devices->lowest_devid = devid;
155         }
156         *fs_devices_ret = fs_devices;
157         return 0;
158 }
159
160 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
161 {
162         struct btrfs_fs_devices *seed_devices;
163         struct btrfs_device *device;
164
165 again:
166         while (!list_empty(&fs_devices->devices)) {
167                 device = list_entry(fs_devices->devices.next,
168                                     struct btrfs_device, dev_list);
169                 if (device->fd != -1) {
170                         fsync(device->fd);
171                         if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED))
172                                 fprintf(stderr, "Warning, could not drop caches\n");
173                         close(device->fd);
174                         device->fd = -1;
175                 }
176                 device->writeable = 0;
177                 list_del(&device->dev_list);
178                 /* free the memory */
179                 free(device->name);
180                 free(device->label);
181                 free(device);
182         }
183
184         seed_devices = fs_devices->seed;
185         fs_devices->seed = NULL;
186         if (seed_devices) {
187                 fs_devices = seed_devices;
188                 goto again;
189         }
190
191         free(fs_devices);
192         return 0;
193 }
194
195 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
196 {
197         int fd;
198         struct list_head *head = &fs_devices->devices;
199         struct list_head *cur;
200         struct btrfs_device *device;
201         int ret;
202
203         list_for_each(cur, head) {
204                 device = list_entry(cur, struct btrfs_device, dev_list);
205                 if (!device->name) {
206                         printk("no name for device %llu, skip it now\n", device->devid);
207                         continue;
208                 }
209
210                 fd = open(device->name, flags);
211                 if (fd < 0) {
212                         ret = -errno;
213                         goto fail;
214                 }
215
216                 if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED))
217                         fprintf(stderr, "Warning, could not drop caches\n");
218
219                 if (device->devid == fs_devices->latest_devid)
220                         fs_devices->latest_bdev = fd;
221                 if (device->devid == fs_devices->lowest_devid)
222                         fs_devices->lowest_bdev = fd;
223                 device->fd = fd;
224                 if (flags & O_RDWR)
225                         device->writeable = 1;
226         }
227         return 0;
228 fail:
229         btrfs_close_devices(fs_devices);
230         return ret;
231 }
232
233 int btrfs_scan_one_device(int fd, const char *path,
234                           struct btrfs_fs_devices **fs_devices_ret,
235                           u64 *total_devs, u64 super_offset)
236 {
237         struct btrfs_super_block *disk_super;
238         char *buf;
239         int ret;
240         u64 devid;
241
242         buf = malloc(4096);
243         if (!buf) {
244                 ret = -ENOMEM;
245                 goto error;
246         }
247         disk_super = (struct btrfs_super_block *)buf;
248         ret = btrfs_read_dev_super(fd, disk_super, super_offset);
249         if (ret < 0) {
250                 ret = -EIO;
251                 goto error_brelse;
252         }
253         devid = btrfs_stack_device_id(&disk_super->dev_item);
254         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
255                 *total_devs = 1;
256         else
257                 *total_devs = btrfs_super_num_devices(disk_super);
258
259         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
260
261 error_brelse:
262         free(buf);
263 error:
264         return ret;
265 }
266
267 /*
268  * this uses a pretty simple search, the expectation is that it is
269  * called very infrequently and that a given device has a small number
270  * of extents
271  */
272 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
273                                 struct btrfs_device *device,
274                                 struct btrfs_path *path,
275                                 u64 num_bytes, u64 *start)
276 {
277         struct btrfs_key key;
278         struct btrfs_root *root = device->dev_root;
279         struct btrfs_dev_extent *dev_extent = NULL;
280         u64 hole_size = 0;
281         u64 last_byte = 0;
282         u64 search_start = root->fs_info->alloc_start;
283         u64 search_end = device->total_bytes;
284         int ret;
285         int slot = 0;
286         int start_found;
287         struct extent_buffer *l;
288
289         start_found = 0;
290         path->reada = 2;
291
292         /* FIXME use last free of some kind */
293
294         /* we don't want to overwrite the superblock on the drive,
295          * so we make sure to start at an offset of at least 1MB
296          */
297         search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
298
299         if (search_start >= search_end) {
300                 ret = -ENOSPC;
301                 goto error;
302         }
303
304         key.objectid = device->devid;
305         key.offset = search_start;
306         key.type = BTRFS_DEV_EXTENT_KEY;
307         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
308         if (ret < 0)
309                 goto error;
310         ret = btrfs_previous_item(root, path, 0, key.type);
311         if (ret < 0)
312                 goto error;
313         l = path->nodes[0];
314         btrfs_item_key_to_cpu(l, &key, path->slots[0]);
315         while (1) {
316                 l = path->nodes[0];
317                 slot = path->slots[0];
318                 if (slot >= btrfs_header_nritems(l)) {
319                         ret = btrfs_next_leaf(root, path);
320                         if (ret == 0)
321                                 continue;
322                         if (ret < 0)
323                                 goto error;
324 no_more_items:
325                         if (!start_found) {
326                                 if (search_start >= search_end) {
327                                         ret = -ENOSPC;
328                                         goto error;
329                                 }
330                                 *start = search_start;
331                                 start_found = 1;
332                                 goto check_pending;
333                         }
334                         *start = last_byte > search_start ?
335                                 last_byte : search_start;
336                         if (search_end <= *start) {
337                                 ret = -ENOSPC;
338                                 goto error;
339                         }
340                         goto check_pending;
341                 }
342                 btrfs_item_key_to_cpu(l, &key, slot);
343
344                 if (key.objectid < device->devid)
345                         goto next;
346
347                 if (key.objectid > device->devid)
348                         goto no_more_items;
349
350                 if (key.offset >= search_start && key.offset > last_byte &&
351                     start_found) {
352                         if (last_byte < search_start)
353                                 last_byte = search_start;
354                         hole_size = key.offset - last_byte;
355                         if (key.offset > last_byte &&
356                             hole_size >= num_bytes) {
357                                 *start = last_byte;
358                                 goto check_pending;
359                         }
360                 }
361                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
362                         goto next;
363                 }
364
365                 start_found = 1;
366                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
367                 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
368 next:
369                 path->slots[0]++;
370                 cond_resched();
371         }
372 check_pending:
373         /* we have to make sure we didn't find an extent that has already
374          * been allocated by the map tree or the original allocation
375          */
376         btrfs_release_path(path);
377         BUG_ON(*start < search_start);
378
379         if (*start + num_bytes > search_end) {
380                 ret = -ENOSPC;
381                 goto error;
382         }
383         /* check for pending inserts here */
384         return 0;
385
386 error:
387         btrfs_release_path(path);
388         return ret;
389 }
390
391 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
392                                   struct btrfs_device *device,
393                                   u64 chunk_tree, u64 chunk_objectid,
394                                   u64 chunk_offset,
395                                   u64 num_bytes, u64 *start)
396 {
397         int ret;
398         struct btrfs_path *path;
399         struct btrfs_root *root = device->dev_root;
400         struct btrfs_dev_extent *extent;
401         struct extent_buffer *leaf;
402         struct btrfs_key key;
403
404         path = btrfs_alloc_path();
405         if (!path)
406                 return -ENOMEM;
407
408         ret = find_free_dev_extent(trans, device, path, num_bytes, start);
409         if (ret) {
410                 goto err;
411         }
412
413         key.objectid = device->devid;
414         key.offset = *start;
415         key.type = BTRFS_DEV_EXTENT_KEY;
416         ret = btrfs_insert_empty_item(trans, root, path, &key,
417                                       sizeof(*extent));
418         BUG_ON(ret);
419
420         leaf = path->nodes[0];
421         extent = btrfs_item_ptr(leaf, path->slots[0],
422                                 struct btrfs_dev_extent);
423         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
424         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
425         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
426
427         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
428                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
429                     BTRFS_UUID_SIZE);
430
431         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
432         btrfs_mark_buffer_dirty(leaf);
433 err:
434         btrfs_free_path(path);
435         return ret;
436 }
437
438 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
439 {
440         struct btrfs_path *path;
441         int ret;
442         struct btrfs_key key;
443         struct btrfs_chunk *chunk;
444         struct btrfs_key found_key;
445
446         path = btrfs_alloc_path();
447         BUG_ON(!path);
448
449         key.objectid = objectid;
450         key.offset = (u64)-1;
451         key.type = BTRFS_CHUNK_ITEM_KEY;
452
453         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
454         if (ret < 0)
455                 goto error;
456
457         BUG_ON(ret == 0);
458
459         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
460         if (ret) {
461                 *offset = 0;
462         } else {
463                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
464                                       path->slots[0]);
465                 if (found_key.objectid != objectid)
466                         *offset = 0;
467                 else {
468                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
469                                                struct btrfs_chunk);
470                         *offset = found_key.offset +
471                                 btrfs_chunk_length(path->nodes[0], chunk);
472                 }
473         }
474         ret = 0;
475 error:
476         btrfs_free_path(path);
477         return ret;
478 }
479
480 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
481                            u64 *objectid)
482 {
483         int ret;
484         struct btrfs_key key;
485         struct btrfs_key found_key;
486
487         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
488         key.type = BTRFS_DEV_ITEM_KEY;
489         key.offset = (u64)-1;
490
491         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
492         if (ret < 0)
493                 goto error;
494
495         BUG_ON(ret == 0);
496
497         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
498                                   BTRFS_DEV_ITEM_KEY);
499         if (ret) {
500                 *objectid = 1;
501         } else {
502                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
503                                       path->slots[0]);
504                 *objectid = found_key.offset + 1;
505         }
506         ret = 0;
507 error:
508         btrfs_release_path(path);
509         return ret;
510 }
511
512 /*
513  * the device information is stored in the chunk root
514  * the btrfs_device struct should be fully filled in
515  */
516 int btrfs_add_device(struct btrfs_trans_handle *trans,
517                      struct btrfs_root *root,
518                      struct btrfs_device *device)
519 {
520         int ret;
521         struct btrfs_path *path;
522         struct btrfs_dev_item *dev_item;
523         struct extent_buffer *leaf;
524         struct btrfs_key key;
525         unsigned long ptr;
526         u64 free_devid = 0;
527
528         root = root->fs_info->chunk_root;
529
530         path = btrfs_alloc_path();
531         if (!path)
532                 return -ENOMEM;
533
534         ret = find_next_devid(root, path, &free_devid);
535         if (ret)
536                 goto out;
537
538         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
539         key.type = BTRFS_DEV_ITEM_KEY;
540         key.offset = free_devid;
541
542         ret = btrfs_insert_empty_item(trans, root, path, &key,
543                                       sizeof(*dev_item));
544         if (ret)
545                 goto out;
546
547         leaf = path->nodes[0];
548         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
549
550         device->devid = free_devid;
551         btrfs_set_device_id(leaf, dev_item, device->devid);
552         btrfs_set_device_generation(leaf, dev_item, 0);
553         btrfs_set_device_type(leaf, dev_item, device->type);
554         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
555         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
556         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
557         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
558         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
559         btrfs_set_device_group(leaf, dev_item, 0);
560         btrfs_set_device_seek_speed(leaf, dev_item, 0);
561         btrfs_set_device_bandwidth(leaf, dev_item, 0);
562         btrfs_set_device_start_offset(leaf, dev_item, 0);
563
564         ptr = (unsigned long)btrfs_device_uuid(dev_item);
565         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
566         ptr = (unsigned long)btrfs_device_fsid(dev_item);
567         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
568         btrfs_mark_buffer_dirty(leaf);
569         ret = 0;
570
571 out:
572         btrfs_free_path(path);
573         return ret;
574 }
575
576 int btrfs_update_device(struct btrfs_trans_handle *trans,
577                         struct btrfs_device *device)
578 {
579         int ret;
580         struct btrfs_path *path;
581         struct btrfs_root *root;
582         struct btrfs_dev_item *dev_item;
583         struct extent_buffer *leaf;
584         struct btrfs_key key;
585
586         root = device->dev_root->fs_info->chunk_root;
587
588         path = btrfs_alloc_path();
589         if (!path)
590                 return -ENOMEM;
591
592         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
593         key.type = BTRFS_DEV_ITEM_KEY;
594         key.offset = device->devid;
595
596         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
597         if (ret < 0)
598                 goto out;
599
600         if (ret > 0) {
601                 ret = -ENOENT;
602                 goto out;
603         }
604
605         leaf = path->nodes[0];
606         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
607
608         btrfs_set_device_id(leaf, dev_item, device->devid);
609         btrfs_set_device_type(leaf, dev_item, device->type);
610         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
611         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
612         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
613         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
614         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
615         btrfs_mark_buffer_dirty(leaf);
616
617 out:
618         btrfs_free_path(path);
619         return ret;
620 }
621
622 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
623                            struct btrfs_root *root,
624                            struct btrfs_key *key,
625                            struct btrfs_chunk *chunk, int item_size)
626 {
627         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
628         struct btrfs_disk_key disk_key;
629         u32 array_size;
630         u8 *ptr;
631
632         array_size = btrfs_super_sys_array_size(super_copy);
633         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
634                 return -EFBIG;
635
636         ptr = super_copy->sys_chunk_array + array_size;
637         btrfs_cpu_key_to_disk(&disk_key, key);
638         memcpy(ptr, &disk_key, sizeof(disk_key));
639         ptr += sizeof(disk_key);
640         memcpy(ptr, chunk, item_size);
641         item_size += sizeof(disk_key);
642         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
643         return 0;
644 }
645
646 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
647                                int sub_stripes)
648 {
649         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
650                 return calc_size;
651         else if (type & BTRFS_BLOCK_GROUP_RAID10)
652                 return calc_size * (num_stripes / sub_stripes);
653         else if (type & BTRFS_BLOCK_GROUP_RAID5)
654                 return calc_size * (num_stripes - 1);
655         else if (type & BTRFS_BLOCK_GROUP_RAID6)
656                 return calc_size * (num_stripes - 2);
657         else
658                 return calc_size * num_stripes;
659 }
660
661
662 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
663 {
664         /* TODO, add a way to store the preferred stripe size */
665         return BTRFS_STRIPE_LEN;
666 }
667
668 /*
669  * btrfs_device_avail_bytes - count bytes available for alloc_chunk
670  *
671  * It is not equal to "device->total_bytes - device->bytes_used".
672  * We do not allocate any chunk in 1M at beginning of device, and not
673  * allowed to allocate any chunk before alloc_start if it is specified.
674  * So search holes from max(1M, alloc_start) to device->total_bytes.
675  */
676 static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans,
677                                     struct btrfs_device *device,
678                                     u64 *avail_bytes)
679 {
680         struct btrfs_path *path;
681         struct btrfs_root *root = device->dev_root;
682         struct btrfs_key key;
683         struct btrfs_dev_extent *dev_extent = NULL;
684         struct extent_buffer *l;
685         u64 search_start = root->fs_info->alloc_start;
686         u64 search_end = device->total_bytes;
687         u64 extent_end = 0;
688         u64 free_bytes = 0;
689         int ret;
690         int slot = 0;
691
692         search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
693
694         path = btrfs_alloc_path();
695         if (!path)
696                 return -ENOMEM;
697
698         key.objectid = device->devid;
699         key.offset = root->fs_info->alloc_start;
700         key.type = BTRFS_DEV_EXTENT_KEY;
701
702         path->reada = 2;
703         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
704         if (ret < 0)
705                 goto error;
706         ret = btrfs_previous_item(root, path, 0, key.type);
707         if (ret < 0)
708                 goto error;
709
710         while (1) {
711                 l = path->nodes[0];
712                 slot = path->slots[0];
713                 if (slot >= btrfs_header_nritems(l)) {
714                         ret = btrfs_next_leaf(root, path);
715                         if (ret == 0)
716                                 continue;
717                         if (ret < 0)
718                                 goto error;
719                         break;
720                 }
721                 btrfs_item_key_to_cpu(l, &key, slot);
722
723                 if (key.objectid < device->devid)
724                         goto next;
725                 if (key.objectid > device->devid)
726                         break;
727                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
728                         goto next;
729                 if (key.offset > search_end)
730                         break;
731                 if (key.offset > search_start)
732                         free_bytes += key.offset - search_start;
733
734                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
735                 extent_end = key.offset + btrfs_dev_extent_length(l,
736                                                                   dev_extent);
737                 if (extent_end > search_start)
738                         search_start = extent_end;
739                 if (search_start > search_end)
740                         break;
741 next:
742                 path->slots[0]++;
743                 cond_resched();
744         }
745
746         if (search_start < search_end)
747                 free_bytes += search_end - search_start;
748
749         *avail_bytes = free_bytes;
750         ret = 0;
751 error:
752         btrfs_free_path(path);
753         return ret;
754 }
755
756 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
757                       struct btrfs_root *extent_root, u64 *start,
758                       u64 *num_bytes, u64 type)
759 {
760         u64 dev_offset;
761         struct btrfs_fs_info *info = extent_root->fs_info;
762         struct btrfs_root *chunk_root = info->chunk_root;
763         struct btrfs_stripe *stripes;
764         struct btrfs_device *device = NULL;
765         struct btrfs_chunk *chunk;
766         struct list_head private_devs;
767         struct list_head *dev_list = &info->fs_devices->devices;
768         struct list_head *cur;
769         struct map_lookup *map;
770         int min_stripe_size = 1 * 1024 * 1024;
771         u64 calc_size = 8 * 1024 * 1024;
772         u64 min_free;
773         u64 max_chunk_size = 4 * calc_size;
774         u64 avail = 0;
775         u64 max_avail = 0;
776         u64 percent_max;
777         int num_stripes = 1;
778         int min_stripes = 1;
779         int sub_stripes = 0;
780         int looped = 0;
781         int ret;
782         int index;
783         int stripe_len = BTRFS_STRIPE_LEN;
784         struct btrfs_key key;
785         u64 offset;
786
787         if (list_empty(dev_list)) {
788                 return -ENOSPC;
789         }
790
791         if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
792                     BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
793                     BTRFS_BLOCK_GROUP_RAID10 |
794                     BTRFS_BLOCK_GROUP_DUP)) {
795                 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
796                         calc_size = 8 * 1024 * 1024;
797                         max_chunk_size = calc_size * 2;
798                         min_stripe_size = 1 * 1024 * 1024;
799                 } else if (type & BTRFS_BLOCK_GROUP_DATA) {
800                         calc_size = 1024 * 1024 * 1024;
801                         max_chunk_size = 10 * calc_size;
802                         min_stripe_size = 64 * 1024 * 1024;
803                 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
804                         calc_size = 1024 * 1024 * 1024;
805                         max_chunk_size = 4 * calc_size;
806                         min_stripe_size = 32 * 1024 * 1024;
807                 }
808         }
809         if (type & BTRFS_BLOCK_GROUP_RAID1) {
810                 num_stripes = min_t(u64, 2,
811                                   btrfs_super_num_devices(info->super_copy));
812                 if (num_stripes < 2)
813                         return -ENOSPC;
814                 min_stripes = 2;
815         }
816         if (type & BTRFS_BLOCK_GROUP_DUP) {
817                 num_stripes = 2;
818                 min_stripes = 2;
819         }
820         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
821                 num_stripes = btrfs_super_num_devices(info->super_copy);
822                 min_stripes = 2;
823         }
824         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
825                 num_stripes = btrfs_super_num_devices(info->super_copy);
826                 if (num_stripes < 4)
827                         return -ENOSPC;
828                 num_stripes &= ~(u32)1;
829                 sub_stripes = 2;
830                 min_stripes = 4;
831         }
832         if (type & (BTRFS_BLOCK_GROUP_RAID5)) {
833                 num_stripes = btrfs_super_num_devices(info->super_copy);
834                 if (num_stripes < 2)
835                         return -ENOSPC;
836                 min_stripes = 2;
837                 stripe_len = find_raid56_stripe_len(num_stripes - 1,
838                                     btrfs_super_stripesize(info->super_copy));
839         }
840         if (type & (BTRFS_BLOCK_GROUP_RAID6)) {
841                 num_stripes = btrfs_super_num_devices(info->super_copy);
842                 if (num_stripes < 3)
843                         return -ENOSPC;
844                 min_stripes = 3;
845                 stripe_len = find_raid56_stripe_len(num_stripes - 2,
846                                     btrfs_super_stripesize(info->super_copy));
847         }
848
849         /* we don't want a chunk larger than 10% of the FS */
850         percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1);
851         max_chunk_size = min(percent_max, max_chunk_size);
852
853 again:
854         if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
855             max_chunk_size) {
856                 calc_size = max_chunk_size;
857                 calc_size /= num_stripes;
858                 calc_size /= stripe_len;
859                 calc_size *= stripe_len;
860         }
861         /* we don't want tiny stripes */
862         calc_size = max_t(u64, calc_size, min_stripe_size);
863
864         calc_size /= stripe_len;
865         calc_size *= stripe_len;
866         INIT_LIST_HEAD(&private_devs);
867         cur = dev_list->next;
868         index = 0;
869
870         if (type & BTRFS_BLOCK_GROUP_DUP)
871                 min_free = calc_size * 2;
872         else
873                 min_free = calc_size;
874
875         /* build a private list of devices we will allocate from */
876         while(index < num_stripes) {
877                 device = list_entry(cur, struct btrfs_device, dev_list);
878                 ret = btrfs_device_avail_bytes(trans, device, &avail);
879                 if (ret)
880                         return ret;
881                 cur = cur->next;
882                 if (avail >= min_free) {
883                         list_move_tail(&device->dev_list, &private_devs);
884                         index++;
885                         if (type & BTRFS_BLOCK_GROUP_DUP)
886                                 index++;
887                 } else if (avail > max_avail)
888                         max_avail = avail;
889                 if (cur == dev_list)
890                         break;
891         }
892         if (index < num_stripes) {
893                 list_splice(&private_devs, dev_list);
894                 if (index >= min_stripes) {
895                         num_stripes = index;
896                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
897                                 num_stripes /= sub_stripes;
898                                 num_stripes *= sub_stripes;
899                         }
900                         looped = 1;
901                         goto again;
902                 }
903                 if (!looped && max_avail > 0) {
904                         looped = 1;
905                         calc_size = max_avail;
906                         goto again;
907                 }
908                 return -ENOSPC;
909         }
910         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
911                               &offset);
912         if (ret)
913                 return ret;
914         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
915         key.type = BTRFS_CHUNK_ITEM_KEY;
916         key.offset = offset;
917
918         chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
919         if (!chunk)
920                 return -ENOMEM;
921
922         map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
923         if (!map) {
924                 kfree(chunk);
925                 return -ENOMEM;
926         }
927
928         stripes = &chunk->stripe;
929         *num_bytes = chunk_bytes_by_type(type, calc_size,
930                                          num_stripes, sub_stripes);
931         index = 0;
932         while(index < num_stripes) {
933                 struct btrfs_stripe *stripe;
934                 BUG_ON(list_empty(&private_devs));
935                 cur = private_devs.next;
936                 device = list_entry(cur, struct btrfs_device, dev_list);
937
938                 /* loop over this device again if we're doing a dup group */
939                 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
940                     (index == num_stripes - 1))
941                         list_move_tail(&device->dev_list, dev_list);
942
943                 ret = btrfs_alloc_dev_extent(trans, device,
944                              info->chunk_root->root_key.objectid,
945                              BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
946                              calc_size, &dev_offset);
947                 BUG_ON(ret);
948
949                 device->bytes_used += calc_size;
950                 ret = btrfs_update_device(trans, device);
951                 BUG_ON(ret);
952
953                 map->stripes[index].dev = device;
954                 map->stripes[index].physical = dev_offset;
955                 stripe = stripes + index;
956                 btrfs_set_stack_stripe_devid(stripe, device->devid);
957                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
958                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
959                 index++;
960         }
961         BUG_ON(!list_empty(&private_devs));
962
963         /* key was set above */
964         btrfs_set_stack_chunk_length(chunk, *num_bytes);
965         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
966         btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
967         btrfs_set_stack_chunk_type(chunk, type);
968         btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
969         btrfs_set_stack_chunk_io_align(chunk, stripe_len);
970         btrfs_set_stack_chunk_io_width(chunk, stripe_len);
971         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
972         btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
973         map->sector_size = extent_root->sectorsize;
974         map->stripe_len = stripe_len;
975         map->io_align = stripe_len;
976         map->io_width = stripe_len;
977         map->type = type;
978         map->num_stripes = num_stripes;
979         map->sub_stripes = sub_stripes;
980
981         ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
982                                 btrfs_chunk_item_size(num_stripes));
983         BUG_ON(ret);
984         *start = key.offset;;
985
986         map->ce.start = key.offset;
987         map->ce.size = *num_bytes;
988
989         ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
990         BUG_ON(ret);
991
992         if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
993                 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
994                                     chunk, btrfs_chunk_item_size(num_stripes));
995                 BUG_ON(ret);
996         }
997
998         kfree(chunk);
999         return ret;
1000 }
1001
1002 int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
1003                            struct btrfs_root *extent_root, u64 *start,
1004                            u64 num_bytes, u64 type)
1005 {
1006         u64 dev_offset;
1007         struct btrfs_fs_info *info = extent_root->fs_info;
1008         struct btrfs_root *chunk_root = info->chunk_root;
1009         struct btrfs_stripe *stripes;
1010         struct btrfs_device *device = NULL;
1011         struct btrfs_chunk *chunk;
1012         struct list_head *dev_list = &info->fs_devices->devices;
1013         struct list_head *cur;
1014         struct map_lookup *map;
1015         u64 calc_size = 8 * 1024 * 1024;
1016         int num_stripes = 1;
1017         int sub_stripes = 0;
1018         int ret;
1019         int index;
1020         int stripe_len = BTRFS_STRIPE_LEN;
1021         struct btrfs_key key;
1022
1023         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1024         key.type = BTRFS_CHUNK_ITEM_KEY;
1025         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1026                               &key.offset);
1027         if (ret)
1028                 return ret;
1029
1030         chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1031         if (!chunk)
1032                 return -ENOMEM;
1033
1034         map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1035         if (!map) {
1036                 kfree(chunk);
1037                 return -ENOMEM;
1038         }
1039
1040         stripes = &chunk->stripe;
1041         calc_size = num_bytes;
1042
1043         index = 0;
1044         cur = dev_list->next;
1045         device = list_entry(cur, struct btrfs_device, dev_list);
1046
1047         while (index < num_stripes) {
1048                 struct btrfs_stripe *stripe;
1049
1050                 ret = btrfs_alloc_dev_extent(trans, device,
1051                              info->chunk_root->root_key.objectid,
1052                              BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1053                              calc_size, &dev_offset);
1054                 BUG_ON(ret);
1055
1056                 device->bytes_used += calc_size;
1057                 ret = btrfs_update_device(trans, device);
1058                 BUG_ON(ret);
1059
1060                 map->stripes[index].dev = device;
1061                 map->stripes[index].physical = dev_offset;
1062                 stripe = stripes + index;
1063                 btrfs_set_stack_stripe_devid(stripe, device->devid);
1064                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1065                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1066                 index++;
1067         }
1068
1069         /* key was set above */
1070         btrfs_set_stack_chunk_length(chunk, num_bytes);
1071         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1072         btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1073         btrfs_set_stack_chunk_type(chunk, type);
1074         btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1075         btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1076         btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1077         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1078         btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1079         map->sector_size = extent_root->sectorsize;
1080         map->stripe_len = stripe_len;
1081         map->io_align = stripe_len;
1082         map->io_width = stripe_len;
1083         map->type = type;
1084         map->num_stripes = num_stripes;
1085         map->sub_stripes = sub_stripes;
1086
1087         ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1088                                 btrfs_chunk_item_size(num_stripes));
1089         BUG_ON(ret);
1090         *start = key.offset;
1091
1092         map->ce.start = key.offset;
1093         map->ce.size = num_bytes;
1094
1095         ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1096         BUG_ON(ret);
1097
1098         kfree(chunk);
1099         return ret;
1100 }
1101
1102 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1103 {
1104         struct cache_extent *ce;
1105         struct map_lookup *map;
1106         int ret;
1107
1108         ce = search_cache_extent(&map_tree->cache_tree, logical);
1109         BUG_ON(!ce);
1110         BUG_ON(ce->start > logical || ce->start + ce->size < logical);
1111         map = container_of(ce, struct map_lookup, ce);
1112
1113         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1114                 ret = map->num_stripes;
1115         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1116                 ret = map->sub_stripes;
1117         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
1118                 ret = 2;
1119         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1120                 ret = 3;
1121         else
1122                 ret = 1;
1123         return ret;
1124 }
1125
1126 int btrfs_next_metadata(struct btrfs_mapping_tree *map_tree, u64 *logical,
1127                         u64 *size)
1128 {
1129         struct cache_extent *ce;
1130         struct map_lookup *map;
1131
1132         ce = search_cache_extent(&map_tree->cache_tree, *logical);
1133
1134         while (ce) {
1135                 ce = next_cache_extent(ce);
1136                 if (!ce)
1137                         return -ENOENT;
1138
1139                 map = container_of(ce, struct map_lookup, ce);
1140                 if (map->type & BTRFS_BLOCK_GROUP_METADATA) {
1141                         *logical = ce->start;
1142                         *size = ce->size;
1143                         return 0;
1144                 }
1145         }
1146
1147         return -ENOENT;
1148 }
1149
1150 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
1151                      u64 chunk_start, u64 physical, u64 devid,
1152                      u64 **logical, int *naddrs, int *stripe_len)
1153 {
1154         struct cache_extent *ce;
1155         struct map_lookup *map;
1156         u64 *buf;
1157         u64 bytenr;
1158         u64 length;
1159         u64 stripe_nr;
1160         u64 rmap_len;
1161         int i, j, nr = 0;
1162
1163         ce = search_cache_extent(&map_tree->cache_tree, chunk_start);
1164         BUG_ON(!ce);
1165         map = container_of(ce, struct map_lookup, ce);
1166
1167         length = ce->size;
1168         rmap_len = map->stripe_len;
1169         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1170                 length = ce->size / (map->num_stripes / map->sub_stripes);
1171         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1172                 length = ce->size / map->num_stripes;
1173         else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1174                               BTRFS_BLOCK_GROUP_RAID6)) {
1175                 length = ce->size / nr_data_stripes(map);
1176                 rmap_len = map->stripe_len * nr_data_stripes(map);
1177         }
1178
1179         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1180
1181         for (i = 0; i < map->num_stripes; i++) {
1182                 if (devid && map->stripes[i].dev->devid != devid)
1183                         continue;
1184                 if (map->stripes[i].physical > physical ||
1185                     map->stripes[i].physical + length <= physical)
1186                         continue;
1187
1188                 stripe_nr = (physical - map->stripes[i].physical) /
1189                             map->stripe_len;
1190
1191                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1192                         stripe_nr = (stripe_nr * map->num_stripes + i) /
1193                                     map->sub_stripes;
1194                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1195                         stripe_nr = stripe_nr * map->num_stripes + i;
1196                 } /* else if RAID[56], multiply by nr_data_stripes().
1197                    * Alternatively, just use rmap_len below instead of
1198                    * map->stripe_len */
1199
1200                 bytenr = ce->start + stripe_nr * rmap_len;
1201                 for (j = 0; j < nr; j++) {
1202                         if (buf[j] == bytenr)
1203                                 break;
1204                 }
1205                 if (j == nr)
1206                         buf[nr++] = bytenr;
1207         }
1208
1209         *logical = buf;
1210         *naddrs = nr;
1211         *stripe_len = rmap_len;
1212
1213         return 0;
1214 }
1215
1216 static inline int parity_smaller(u64 a, u64 b)
1217 {
1218         return a > b;
1219 }
1220
1221 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
1222 static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
1223 {
1224         struct btrfs_bio_stripe s;
1225         int i;
1226         u64 l;
1227         int again = 1;
1228
1229         while (again) {
1230                 again = 0;
1231                 for (i = 0; i < bbio->num_stripes - 1; i++) {
1232                         if (parity_smaller(raid_map[i], raid_map[i+1])) {
1233                                 s = bbio->stripes[i];
1234                                 l = raid_map[i];
1235                                 bbio->stripes[i] = bbio->stripes[i+1];
1236                                 raid_map[i] = raid_map[i+1];
1237                                 bbio->stripes[i+1] = s;
1238                                 raid_map[i+1] = l;
1239                                 again = 1;
1240                         }
1241                 }
1242         }
1243 }
1244
1245 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1246                     u64 logical, u64 *length,
1247                     struct btrfs_multi_bio **multi_ret, int mirror_num,
1248                     u64 **raid_map_ret)
1249 {
1250         return __btrfs_map_block(map_tree, rw, logical, length, NULL,
1251                                  multi_ret, mirror_num, raid_map_ret);
1252 }
1253
1254 int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1255                     u64 logical, u64 *length, u64 *type,
1256                     struct btrfs_multi_bio **multi_ret, int mirror_num,
1257                     u64 **raid_map_ret)
1258 {
1259         struct cache_extent *ce;
1260         struct map_lookup *map;
1261         u64 offset;
1262         u64 stripe_offset;
1263         u64 stripe_nr;
1264         u64 *raid_map = NULL;
1265         int stripes_allocated = 8;
1266         int stripes_required = 1;
1267         int stripe_index;
1268         int i;
1269         struct btrfs_multi_bio *multi = NULL;
1270
1271         if (multi_ret && rw == READ) {
1272                 stripes_allocated = 1;
1273         }
1274 again:
1275         ce = search_cache_extent(&map_tree->cache_tree, logical);
1276         if (!ce) {
1277                 kfree(multi);
1278                 return -ENOENT;
1279         }
1280         if (ce->start > logical || ce->start + ce->size < logical) {
1281                 kfree(multi);
1282                 return -ENOENT;
1283         }
1284
1285         if (multi_ret) {
1286                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1287                                 GFP_NOFS);
1288                 if (!multi)
1289                         return -ENOMEM;
1290         }
1291         map = container_of(ce, struct map_lookup, ce);
1292         offset = logical - ce->start;
1293
1294         if (rw == WRITE) {
1295                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1296                                  BTRFS_BLOCK_GROUP_DUP)) {
1297                         stripes_required = map->num_stripes;
1298                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1299                         stripes_required = map->sub_stripes;
1300                 }
1301         }
1302         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
1303             && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
1304                     /* RAID[56] write or recovery. Return all stripes */
1305                     stripes_required = map->num_stripes;
1306
1307                     /* Only allocate the map if we've already got a large enough multi_ret */
1308                     if (stripes_allocated >= stripes_required) {
1309                             raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1310                             if (!raid_map) {
1311                                     kfree(multi);
1312                                     return -ENOMEM;
1313                             }
1314                     }
1315         }
1316
1317         /* if our multi bio struct is too small, back off and try again */
1318         if (multi_ret && stripes_allocated < stripes_required) {
1319                 stripes_allocated = stripes_required;
1320                 kfree(multi);
1321                 multi = NULL;
1322                 goto again;
1323         }
1324         stripe_nr = offset;
1325         /*
1326          * stripe_nr counts the total number of stripes we have to stride
1327          * to get to this block
1328          */
1329         stripe_nr = stripe_nr / map->stripe_len;
1330
1331         stripe_offset = stripe_nr * map->stripe_len;
1332         BUG_ON(offset < stripe_offset);
1333
1334         /* stripe_offset is the offset of this block in its stripe*/
1335         stripe_offset = offset - stripe_offset;
1336
1337         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1338                          BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
1339                          BTRFS_BLOCK_GROUP_RAID10 |
1340                          BTRFS_BLOCK_GROUP_DUP)) {
1341                 /* we limit the length of each bio to what fits in a stripe */
1342                 *length = min_t(u64, ce->size - offset,
1343                               map->stripe_len - stripe_offset);
1344         } else {
1345                 *length = ce->size - offset;
1346         }
1347
1348         if (!multi_ret)
1349                 goto out;
1350
1351         multi->num_stripes = 1;
1352         stripe_index = 0;
1353         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1354                 if (rw == WRITE)
1355                         multi->num_stripes = map->num_stripes;
1356                 else if (mirror_num)
1357                         stripe_index = mirror_num - 1;
1358                 else
1359                         stripe_index = stripe_nr % map->num_stripes;
1360         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1361                 int factor = map->num_stripes / map->sub_stripes;
1362
1363                 stripe_index = stripe_nr % factor;
1364                 stripe_index *= map->sub_stripes;
1365
1366                 if (rw == WRITE)
1367                         multi->num_stripes = map->sub_stripes;
1368                 else if (mirror_num)
1369                         stripe_index += mirror_num - 1;
1370
1371                 stripe_nr = stripe_nr / factor;
1372         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1373                 if (rw == WRITE)
1374                         multi->num_stripes = map->num_stripes;
1375                 else if (mirror_num)
1376                         stripe_index = mirror_num - 1;
1377         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1378                                 BTRFS_BLOCK_GROUP_RAID6)) {
1379
1380                 if (raid_map) {
1381                         int rot;
1382                         u64 tmp;
1383                         u64 raid56_full_stripe_start;
1384                         u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
1385
1386                         /*
1387                          * align the start of our data stripe in the logical
1388                          * address space
1389                          */
1390                         raid56_full_stripe_start = offset / full_stripe_len;
1391                         raid56_full_stripe_start *= full_stripe_len;
1392
1393                         /* get the data stripe number */
1394                         stripe_nr = raid56_full_stripe_start / map->stripe_len;
1395                         stripe_nr = stripe_nr / nr_data_stripes(map);
1396
1397                         /* Work out the disk rotation on this stripe-set */
1398                         rot = stripe_nr % map->num_stripes;
1399
1400                         /* Fill in the logical address of each stripe */
1401                         tmp = stripe_nr * nr_data_stripes(map);
1402
1403                         for (i = 0; i < nr_data_stripes(map); i++)
1404                                 raid_map[(i+rot) % map->num_stripes] =
1405                                         ce->start + (tmp + i) * map->stripe_len;
1406
1407                         raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
1408                         if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1409                                 raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
1410
1411                         *length = map->stripe_len;
1412                         stripe_index = 0;
1413                         stripe_offset = 0;
1414                         multi->num_stripes = map->num_stripes;
1415                 } else {
1416                         stripe_index = stripe_nr % nr_data_stripes(map);
1417                         stripe_nr = stripe_nr / nr_data_stripes(map);
1418
1419                         /*
1420                          * Mirror #0 or #1 means the original data block.
1421                          * Mirror #2 is RAID5 parity block.
1422                          * Mirror #3 is RAID6 Q block.
1423                          */
1424                         if (mirror_num > 1)
1425                                 stripe_index = nr_data_stripes(map) + mirror_num - 2;
1426
1427                         /* We distribute the parity blocks across stripes */
1428                         stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
1429                 }
1430         } else {
1431                 /*
1432                  * after this do_div call, stripe_nr is the number of stripes
1433                  * on this device we have to walk to find the data, and
1434                  * stripe_index is the number of our device in the stripe array
1435                  */
1436                 stripe_index = stripe_nr % map->num_stripes;
1437                 stripe_nr = stripe_nr / map->num_stripes;
1438         }
1439         BUG_ON(stripe_index >= map->num_stripes);
1440
1441         for (i = 0; i < multi->num_stripes; i++) {
1442                 multi->stripes[i].physical =
1443                         map->stripes[stripe_index].physical + stripe_offset +
1444                         stripe_nr * map->stripe_len;
1445                 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1446                 stripe_index++;
1447         }
1448         *multi_ret = multi;
1449
1450         if (type)
1451                 *type = map->type;
1452
1453         if (raid_map) {
1454                 sort_parity_stripes(multi, raid_map);
1455                 *raid_map_ret = raid_map;
1456         }
1457 out:
1458         return 0;
1459 }
1460
1461 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1462                                        u8 *uuid, u8 *fsid)
1463 {
1464         struct btrfs_device *device;
1465         struct btrfs_fs_devices *cur_devices;
1466
1467         cur_devices = root->fs_info->fs_devices;
1468         while (cur_devices) {
1469                 if (!fsid ||
1470                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1471                         device = __find_device(&cur_devices->devices,
1472                                                devid, uuid);
1473                         if (device)
1474                                 return device;
1475                 }
1476                 cur_devices = cur_devices->seed;
1477         }
1478         return NULL;
1479 }
1480
1481 struct btrfs_device *
1482 btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
1483                            u64 devid, int instance)
1484 {
1485         struct list_head *head = &fs_devices->devices;
1486         struct btrfs_device *dev;
1487         int num_found = 0;
1488
1489         list_for_each_entry(dev, head, dev_list) {
1490                 if (dev->devid == devid && num_found++ == instance)
1491                         return dev;
1492         }
1493         return NULL;
1494 }
1495
1496 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
1497 {
1498         struct cache_extent *ce;
1499         struct map_lookup *map;
1500         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1501         int readonly = 0;
1502         int i;
1503
1504         /*
1505          * During chunk recovering, we may fail to find block group's
1506          * corresponding chunk, we will rebuild it later
1507          */
1508         ce = search_cache_extent(&map_tree->cache_tree, chunk_offset);
1509         if (!root->fs_info->is_chunk_recover)
1510                 BUG_ON(!ce);
1511         else
1512                 return 0;
1513
1514         map = container_of(ce, struct map_lookup, ce);
1515         for (i = 0; i < map->num_stripes; i++) {
1516                 if (!map->stripes[i].dev->writeable) {
1517                         readonly = 1;
1518                         break;
1519                 }
1520         }
1521
1522         return readonly;
1523 }
1524
1525 static struct btrfs_device *fill_missing_device(u64 devid)
1526 {
1527         struct btrfs_device *device;
1528
1529         device = kzalloc(sizeof(*device), GFP_NOFS);
1530         device->devid = devid;
1531         device->fd = -1;
1532         return device;
1533 }
1534
1535 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1536                           struct extent_buffer *leaf,
1537                           struct btrfs_chunk *chunk)
1538 {
1539         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1540         struct map_lookup *map;
1541         struct cache_extent *ce;
1542         u64 logical;
1543         u64 length;
1544         u64 devid;
1545         u8 uuid[BTRFS_UUID_SIZE];
1546         int num_stripes;
1547         int ret;
1548         int i;
1549
1550         logical = key->offset;
1551         length = btrfs_chunk_length(leaf, chunk);
1552
1553         ce = search_cache_extent(&map_tree->cache_tree, logical);
1554
1555         /* already mapped? */
1556         if (ce && ce->start <= logical && ce->start + ce->size > logical) {
1557                 return 0;
1558         }
1559
1560         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1561         map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1562         if (!map)
1563                 return -ENOMEM;
1564
1565         map->ce.start = logical;
1566         map->ce.size = length;
1567         map->num_stripes = num_stripes;
1568         map->io_width = btrfs_chunk_io_width(leaf, chunk);
1569         map->io_align = btrfs_chunk_io_align(leaf, chunk);
1570         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1571         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1572         map->type = btrfs_chunk_type(leaf, chunk);
1573         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1574
1575         for (i = 0; i < num_stripes; i++) {
1576                 map->stripes[i].physical =
1577                         btrfs_stripe_offset_nr(leaf, chunk, i);
1578                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1579                 read_extent_buffer(leaf, uuid, (unsigned long)
1580                                    btrfs_stripe_dev_uuid_nr(chunk, i),
1581                                    BTRFS_UUID_SIZE);
1582                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
1583                                                         NULL);
1584                 if (!map->stripes[i].dev) {
1585                         map->stripes[i].dev = fill_missing_device(devid);
1586                         printf("warning, device %llu is missing\n",
1587                                (unsigned long long)devid);
1588                 }
1589
1590         }
1591         ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
1592         BUG_ON(ret);
1593
1594         return 0;
1595 }
1596
1597 static int fill_device_from_item(struct extent_buffer *leaf,
1598                                  struct btrfs_dev_item *dev_item,
1599                                  struct btrfs_device *device)
1600 {
1601         unsigned long ptr;
1602
1603         device->devid = btrfs_device_id(leaf, dev_item);
1604         device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1605         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1606         device->type = btrfs_device_type(leaf, dev_item);
1607         device->io_align = btrfs_device_io_align(leaf, dev_item);
1608         device->io_width = btrfs_device_io_width(leaf, dev_item);
1609         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1610
1611         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1612         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1613
1614         return 0;
1615 }
1616
1617 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
1618 {
1619         struct btrfs_fs_devices *fs_devices;
1620         int ret;
1621
1622         fs_devices = root->fs_info->fs_devices->seed;
1623         while (fs_devices) {
1624                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1625                         ret = 0;
1626                         goto out;
1627                 }
1628                 fs_devices = fs_devices->seed;
1629         }
1630
1631         fs_devices = find_fsid(fsid);
1632         if (!fs_devices) {
1633                 ret = -ENOENT;
1634                 goto out;
1635         }
1636
1637         ret = btrfs_open_devices(fs_devices, O_RDONLY);
1638         if (ret)
1639                 goto out;
1640
1641         fs_devices->seed = root->fs_info->fs_devices->seed;
1642         root->fs_info->fs_devices->seed = fs_devices;
1643 out:
1644         return ret;
1645 }
1646
1647 static int read_one_dev(struct btrfs_root *root,
1648                         struct extent_buffer *leaf,
1649                         struct btrfs_dev_item *dev_item)
1650 {
1651         struct btrfs_device *device;
1652         u64 devid;
1653         int ret = 0;
1654         u8 fs_uuid[BTRFS_UUID_SIZE];
1655         u8 dev_uuid[BTRFS_UUID_SIZE];
1656
1657         devid = btrfs_device_id(leaf, dev_item);
1658         read_extent_buffer(leaf, dev_uuid,
1659                            (unsigned long)btrfs_device_uuid(dev_item),
1660                            BTRFS_UUID_SIZE);
1661         read_extent_buffer(leaf, fs_uuid,
1662                            (unsigned long)btrfs_device_fsid(dev_item),
1663                            BTRFS_UUID_SIZE);
1664
1665         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
1666                 ret = open_seed_devices(root, fs_uuid);
1667                 if (ret)
1668                         return ret;
1669         }
1670
1671         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1672         if (!device) {
1673                 printk("warning devid %llu not found already\n",
1674                         (unsigned long long)devid);
1675                 device = kzalloc(sizeof(*device), GFP_NOFS);
1676                 if (!device)
1677                         return -ENOMEM;
1678                 device->fd = -1;
1679                 list_add(&device->dev_list,
1680                          &root->fs_info->fs_devices->devices);
1681         }
1682
1683         fill_device_from_item(leaf, dev_item, device);
1684         device->dev_root = root->fs_info->dev_root;
1685         return ret;
1686 }
1687
1688 int btrfs_read_sys_array(struct btrfs_root *root)
1689 {
1690         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1691         struct extent_buffer *sb;
1692         struct btrfs_disk_key *disk_key;
1693         struct btrfs_chunk *chunk;
1694         struct btrfs_key key;
1695         u32 num_stripes;
1696         u32 len = 0;
1697         u8 *ptr;
1698         u8 *array_end;
1699         int ret = 0;
1700
1701         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
1702                                           BTRFS_SUPER_INFO_SIZE);
1703         if (!sb)
1704                 return -ENOMEM;
1705         btrfs_set_buffer_uptodate(sb);
1706         write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
1707         array_end = ((u8 *)super_copy->sys_chunk_array) +
1708                     btrfs_super_sys_array_size(super_copy);
1709
1710         /*
1711          * we do this loop twice, once for the device items and
1712          * once for all of the chunks.  This way there are device
1713          * structs filled in for every chunk
1714          */
1715         ptr = super_copy->sys_chunk_array;
1716
1717         while (ptr < array_end) {
1718                 disk_key = (struct btrfs_disk_key *)ptr;
1719                 btrfs_disk_key_to_cpu(&key, disk_key);
1720
1721                 len = sizeof(*disk_key);
1722                 ptr += len;
1723
1724                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1725                         chunk = (struct btrfs_chunk *)(ptr - (u8 *)super_copy);
1726                         ret = read_one_chunk(root, &key, sb, chunk);
1727                         if (ret)
1728                                 break;
1729                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1730                         len = btrfs_chunk_item_size(num_stripes);
1731                 } else {
1732                         BUG();
1733                 }
1734                 ptr += len;
1735         }
1736         free_extent_buffer(sb);
1737         return ret;
1738 }
1739
1740 int btrfs_read_chunk_tree(struct btrfs_root *root)
1741 {
1742         struct btrfs_path *path;
1743         struct extent_buffer *leaf;
1744         struct btrfs_key key;
1745         struct btrfs_key found_key;
1746         int ret;
1747         int slot;
1748
1749         root = root->fs_info->chunk_root;
1750
1751         path = btrfs_alloc_path();
1752         if (!path)
1753                 return -ENOMEM;
1754
1755         /*
1756          * Read all device items, and then all the chunk items. All
1757          * device items are found before any chunk item (their object id
1758          * is smaller than the lowest possible object id for a chunk
1759          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
1760          */
1761         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1762         key.offset = 0;
1763         key.type = 0;
1764         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1765         if (ret < 0)
1766                 goto error;
1767         while(1) {
1768                 leaf = path->nodes[0];
1769                 slot = path->slots[0];
1770                 if (slot >= btrfs_header_nritems(leaf)) {
1771                         ret = btrfs_next_leaf(root, path);
1772                         if (ret == 0)
1773                                 continue;
1774                         if (ret < 0)
1775                                 goto error;
1776                         break;
1777                 }
1778                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1779                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1780                         struct btrfs_dev_item *dev_item;
1781                         dev_item = btrfs_item_ptr(leaf, slot,
1782                                                   struct btrfs_dev_item);
1783                         ret = read_one_dev(root, leaf, dev_item);
1784                         BUG_ON(ret);
1785                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1786                         struct btrfs_chunk *chunk;
1787                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1788                         ret = read_one_chunk(root, &found_key, leaf, chunk);
1789                         BUG_ON(ret);
1790                 }
1791                 path->slots[0]++;
1792         }
1793
1794         ret = 0;
1795 error:
1796         btrfs_free_path(path);
1797         return ret;
1798 }
1799
1800 struct list_head *btrfs_scanned_uuids(void)
1801 {
1802         return &fs_uuids;
1803 }
1804
1805 static int rmw_eb(struct btrfs_fs_info *info,
1806                   struct extent_buffer *eb, struct extent_buffer *orig_eb)
1807 {
1808         int ret;
1809         unsigned long orig_off = 0;
1810         unsigned long dest_off = 0;
1811         unsigned long copy_len = eb->len;
1812
1813         ret = read_whole_eb(info, eb, 0);
1814         if (ret)
1815                 return ret;
1816
1817         if (eb->start + eb->len <= orig_eb->start ||
1818             eb->start >= orig_eb->start + orig_eb->len)
1819                 return 0;
1820         /*
1821          * | ----- orig_eb ------- |
1822          *         | ----- stripe -------  |
1823          *         | ----- orig_eb ------- |
1824          *              | ----- orig_eb ------- |
1825          */
1826         if (eb->start > orig_eb->start)
1827                 orig_off = eb->start - orig_eb->start;
1828         if (orig_eb->start > eb->start)
1829                 dest_off = orig_eb->start - eb->start;
1830
1831         if (copy_len > orig_eb->len - orig_off)
1832                 copy_len = orig_eb->len - orig_off;
1833         if (copy_len > eb->len - dest_off)
1834                 copy_len = eb->len - dest_off;
1835
1836         memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len);
1837         return 0;
1838 }
1839
1840 static void split_eb_for_raid56(struct btrfs_fs_info *info,
1841                                 struct extent_buffer *orig_eb,
1842                                struct extent_buffer **ebs,
1843                                u64 stripe_len, u64 *raid_map,
1844                                int num_stripes)
1845 {
1846         struct extent_buffer *eb;
1847         u64 start = orig_eb->start;
1848         u64 this_eb_start;
1849         int i;
1850         int ret;
1851
1852         for (i = 0; i < num_stripes; i++) {
1853                 if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
1854                         break;
1855
1856                 eb = malloc(sizeof(struct extent_buffer) + stripe_len);
1857                 if (!eb)
1858                         BUG();
1859                 memset(eb, 0, sizeof(struct extent_buffer) + stripe_len);
1860
1861                 eb->start = raid_map[i];
1862                 eb->len = stripe_len;
1863                 eb->refs = 1;
1864                 eb->flags = 0;
1865                 eb->fd = -1;
1866                 eb->dev_bytenr = (u64)-1;
1867
1868                 this_eb_start = raid_map[i];
1869
1870                 if (start > this_eb_start ||
1871                     start + orig_eb->len < this_eb_start + stripe_len) {
1872                         ret = rmw_eb(info, eb, orig_eb);
1873                         BUG_ON(ret);
1874                 } else {
1875                         memcpy(eb->data, orig_eb->data + eb->start - start, stripe_len);
1876                 }
1877                 ebs[i] = eb;
1878         }
1879 }
1880
1881 int write_raid56_with_parity(struct btrfs_fs_info *info,
1882                              struct extent_buffer *eb,
1883                              struct btrfs_multi_bio *multi,
1884                              u64 stripe_len, u64 *raid_map)
1885 {
1886         struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL;
1887         int i;
1888         int j;
1889         int ret;
1890         int alloc_size = eb->len;
1891
1892         ebs = kmalloc(sizeof(*ebs) * multi->num_stripes, GFP_NOFS);
1893         BUG_ON(!ebs);
1894
1895         if (stripe_len > alloc_size)
1896                 alloc_size = stripe_len;
1897
1898         split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map,
1899                             multi->num_stripes);
1900
1901         for (i = 0; i < multi->num_stripes; i++) {
1902                 struct extent_buffer *new_eb;
1903                 if (raid_map[i] < BTRFS_RAID5_P_STRIPE) {
1904                         ebs[i]->dev_bytenr = multi->stripes[i].physical;
1905                         ebs[i]->fd = multi->stripes[i].dev->fd;
1906                         multi->stripes[i].dev->total_ios++;
1907                         BUG_ON(ebs[i]->start != raid_map[i]);
1908                         continue;
1909                 }
1910                 new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_NOFS);
1911                 BUG_ON(!new_eb);
1912                 new_eb->dev_bytenr = multi->stripes[i].physical;
1913                 new_eb->fd = multi->stripes[i].dev->fd;
1914                 multi->stripes[i].dev->total_ios++;
1915                 new_eb->len = stripe_len;
1916
1917                 if (raid_map[i] == BTRFS_RAID5_P_STRIPE)
1918                         p_eb = new_eb;
1919                 else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE)
1920                         q_eb = new_eb;
1921         }
1922         if (q_eb) {
1923                 void **pointers;
1924
1925                 pointers = kmalloc(sizeof(*pointers) * multi->num_stripes,
1926                                    GFP_NOFS);
1927                 BUG_ON(!pointers);
1928
1929                 ebs[multi->num_stripes - 2] = p_eb;
1930                 ebs[multi->num_stripes - 1] = q_eb;
1931
1932                 for (i = 0; i < multi->num_stripes; i++)
1933                         pointers[i] = ebs[i]->data;
1934
1935                 raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers);
1936                 kfree(pointers);
1937         } else {
1938                 ebs[multi->num_stripes - 1] = p_eb;
1939                 memcpy(p_eb->data, ebs[0]->data, stripe_len);
1940                 for (j = 1; j < multi->num_stripes - 1; j++) {
1941                         for (i = 0; i < stripe_len; i += sizeof(unsigned long)) {
1942                                 *(unsigned long *)(p_eb->data + i) ^=
1943                                         *(unsigned long *)(ebs[j]->data + i);
1944                         }
1945                 }
1946         }
1947
1948         for (i = 0; i < multi->num_stripes; i++) {
1949                 ret = write_extent_to_disk(ebs[i]);
1950                 BUG_ON(ret);
1951                 if (ebs[i] != eb)
1952                         kfree(ebs[i]);
1953         }
1954
1955         kfree(ebs);
1956
1957         return 0;
1958 }