btrfs-progs: fix wrong max system array size check in user space
[platform/upstream/btrfs-progs.git] / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #define _XOPEN_SOURCE 600
19 #define __USE_XOPEN2K
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <uuid/uuid.h>
25 #include <fcntl.h>
26 #include <unistd.h>
27 #include "ctree.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
32 #include "math.h"
33
34 struct stripe {
35         struct btrfs_device *dev;
36         u64 physical;
37 };
38
39 static inline int nr_parity_stripes(struct map_lookup *map)
40 {
41         if (map->type & BTRFS_BLOCK_GROUP_RAID5)
42                 return 1;
43         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
44                 return 2;
45         else
46                 return 0;
47 }
48
49 static inline int nr_data_stripes(struct map_lookup *map)
50 {
51         return map->num_stripes - nr_parity_stripes(map);
52 }
53
54 #define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
55
56 static LIST_HEAD(fs_uuids);
57
58 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
59                                           u8 *uuid)
60 {
61         struct btrfs_device *dev;
62         struct list_head *cur;
63
64         list_for_each(cur, head) {
65                 dev = list_entry(cur, struct btrfs_device, dev_list);
66                 if (dev->devid == devid &&
67                     !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
68                         return dev;
69                 }
70         }
71         return NULL;
72 }
73
74 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
75 {
76         struct list_head *cur;
77         struct btrfs_fs_devices *fs_devices;
78
79         list_for_each(cur, &fs_uuids) {
80                 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
81                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
82                         return fs_devices;
83         }
84         return NULL;
85 }
86
87 static int device_list_add(const char *path,
88                            struct btrfs_super_block *disk_super,
89                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
90 {
91         struct btrfs_device *device;
92         struct btrfs_fs_devices *fs_devices;
93         u64 found_transid = btrfs_super_generation(disk_super);
94
95         fs_devices = find_fsid(disk_super->fsid);
96         if (!fs_devices) {
97                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
98                 if (!fs_devices)
99                         return -ENOMEM;
100                 INIT_LIST_HEAD(&fs_devices->devices);
101                 list_add(&fs_devices->list, &fs_uuids);
102                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
103                 fs_devices->latest_devid = devid;
104                 fs_devices->latest_trans = found_transid;
105                 fs_devices->lowest_devid = (u64)-1;
106                 device = NULL;
107         } else {
108                 device = __find_device(&fs_devices->devices, devid,
109                                        disk_super->dev_item.uuid);
110         }
111         if (!device) {
112                 device = kzalloc(sizeof(*device), GFP_NOFS);
113                 if (!device) {
114                         /* we can safely leave the fs_devices entry around */
115                         return -ENOMEM;
116                 }
117                 device->fd = -1;
118                 device->devid = devid;
119                 memcpy(device->uuid, disk_super->dev_item.uuid,
120                        BTRFS_UUID_SIZE);
121                 device->name = kstrdup(path, GFP_NOFS);
122                 if (!device->name) {
123                         kfree(device);
124                         return -ENOMEM;
125                 }
126                 device->label = kstrdup(disk_super->label, GFP_NOFS);
127                 if (!device->label) {
128                         kfree(device->name);
129                         kfree(device);
130                         return -ENOMEM;
131                 }
132                 device->total_devs = btrfs_super_num_devices(disk_super);
133                 device->super_bytes_used = btrfs_super_bytes_used(disk_super);
134                 device->total_bytes =
135                         btrfs_stack_device_total_bytes(&disk_super->dev_item);
136                 device->bytes_used =
137                         btrfs_stack_device_bytes_used(&disk_super->dev_item);
138                 list_add(&device->dev_list, &fs_devices->devices);
139                 device->fs_devices = fs_devices;
140         } else if (!device->name || strcmp(device->name, path)) {
141                 char *name = strdup(path);
142                 if (!name)
143                         return -ENOMEM;
144                 kfree(device->name);
145                 device->name = name;
146         }
147
148
149         if (found_transid > fs_devices->latest_trans) {
150                 fs_devices->latest_devid = devid;
151                 fs_devices->latest_trans = found_transid;
152         }
153         if (fs_devices->lowest_devid > devid) {
154                 fs_devices->lowest_devid = devid;
155         }
156         *fs_devices_ret = fs_devices;
157         return 0;
158 }
159
160 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
161 {
162         struct btrfs_fs_devices *seed_devices;
163         struct btrfs_device *device;
164
165 again:
166         while (!list_empty(&fs_devices->devices)) {
167                 device = list_entry(fs_devices->devices.next,
168                                     struct btrfs_device, dev_list);
169                 if (device->fd != -1) {
170                         fsync(device->fd);
171                         if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED))
172                                 fprintf(stderr, "Warning, could not drop caches\n");
173                         close(device->fd);
174                         device->fd = -1;
175                 }
176                 device->writeable = 0;
177                 list_del(&device->dev_list);
178                 /* free the memory */
179                 free(device->name);
180                 free(device->label);
181                 free(device);
182         }
183
184         seed_devices = fs_devices->seed;
185         fs_devices->seed = NULL;
186         if (seed_devices) {
187                 fs_devices = seed_devices;
188                 goto again;
189         }
190
191         free(fs_devices);
192         return 0;
193 }
194
195 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
196 {
197         int fd;
198         struct list_head *head = &fs_devices->devices;
199         struct list_head *cur;
200         struct btrfs_device *device;
201         int ret;
202
203         list_for_each(cur, head) {
204                 device = list_entry(cur, struct btrfs_device, dev_list);
205                 if (!device->name) {
206                         printk("no name for device %llu, skip it now\n", device->devid);
207                         continue;
208                 }
209
210                 fd = open(device->name, flags);
211                 if (fd < 0) {
212                         ret = -errno;
213                         goto fail;
214                 }
215
216                 if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED))
217                         fprintf(stderr, "Warning, could not drop caches\n");
218
219                 if (device->devid == fs_devices->latest_devid)
220                         fs_devices->latest_bdev = fd;
221                 if (device->devid == fs_devices->lowest_devid)
222                         fs_devices->lowest_bdev = fd;
223                 device->fd = fd;
224                 if (flags & O_RDWR)
225                         device->writeable = 1;
226         }
227         return 0;
228 fail:
229         btrfs_close_devices(fs_devices);
230         return ret;
231 }
232
233 int btrfs_scan_one_device(int fd, const char *path,
234                           struct btrfs_fs_devices **fs_devices_ret,
235                           u64 *total_devs, u64 super_offset)
236 {
237         struct btrfs_super_block *disk_super;
238         char *buf;
239         int ret;
240         u64 devid;
241
242         buf = malloc(4096);
243         if (!buf) {
244                 ret = -ENOMEM;
245                 goto error;
246         }
247         disk_super = (struct btrfs_super_block *)buf;
248         ret = btrfs_read_dev_super(fd, disk_super, super_offset);
249         if (ret < 0) {
250                 ret = -EIO;
251                 goto error_brelse;
252         }
253         devid = btrfs_stack_device_id(&disk_super->dev_item);
254         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
255                 *total_devs = 1;
256         else
257                 *total_devs = btrfs_super_num_devices(disk_super);
258
259         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
260
261 error_brelse:
262         free(buf);
263 error:
264         return ret;
265 }
266
267 /*
268  * this uses a pretty simple search, the expectation is that it is
269  * called very infrequently and that a given device has a small number
270  * of extents
271  */
272 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
273                                 struct btrfs_device *device,
274                                 struct btrfs_path *path,
275                                 u64 num_bytes, u64 *start)
276 {
277         struct btrfs_key key;
278         struct btrfs_root *root = device->dev_root;
279         struct btrfs_dev_extent *dev_extent = NULL;
280         u64 hole_size = 0;
281         u64 last_byte = 0;
282         u64 search_start = root->fs_info->alloc_start;
283         u64 search_end = device->total_bytes;
284         int ret;
285         int slot = 0;
286         int start_found;
287         struct extent_buffer *l;
288
289         start_found = 0;
290         path->reada = 2;
291
292         /* FIXME use last free of some kind */
293
294         /* we don't want to overwrite the superblock on the drive,
295          * so we make sure to start at an offset of at least 1MB
296          */
297         search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
298
299         if (search_start >= search_end) {
300                 ret = -ENOSPC;
301                 goto error;
302         }
303
304         key.objectid = device->devid;
305         key.offset = search_start;
306         key.type = BTRFS_DEV_EXTENT_KEY;
307         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
308         if (ret < 0)
309                 goto error;
310         ret = btrfs_previous_item(root, path, 0, key.type);
311         if (ret < 0)
312                 goto error;
313         l = path->nodes[0];
314         btrfs_item_key_to_cpu(l, &key, path->slots[0]);
315         while (1) {
316                 l = path->nodes[0];
317                 slot = path->slots[0];
318                 if (slot >= btrfs_header_nritems(l)) {
319                         ret = btrfs_next_leaf(root, path);
320                         if (ret == 0)
321                                 continue;
322                         if (ret < 0)
323                                 goto error;
324 no_more_items:
325                         if (!start_found) {
326                                 if (search_start >= search_end) {
327                                         ret = -ENOSPC;
328                                         goto error;
329                                 }
330                                 *start = search_start;
331                                 start_found = 1;
332                                 goto check_pending;
333                         }
334                         *start = last_byte > search_start ?
335                                 last_byte : search_start;
336                         if (search_end <= *start) {
337                                 ret = -ENOSPC;
338                                 goto error;
339                         }
340                         goto check_pending;
341                 }
342                 btrfs_item_key_to_cpu(l, &key, slot);
343
344                 if (key.objectid < device->devid)
345                         goto next;
346
347                 if (key.objectid > device->devid)
348                         goto no_more_items;
349
350                 if (key.offset >= search_start && key.offset > last_byte &&
351                     start_found) {
352                         if (last_byte < search_start)
353                                 last_byte = search_start;
354                         hole_size = key.offset - last_byte;
355                         if (key.offset > last_byte &&
356                             hole_size >= num_bytes) {
357                                 *start = last_byte;
358                                 goto check_pending;
359                         }
360                 }
361                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
362                         goto next;
363                 }
364
365                 start_found = 1;
366                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
367                 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
368 next:
369                 path->slots[0]++;
370                 cond_resched();
371         }
372 check_pending:
373         /* we have to make sure we didn't find an extent that has already
374          * been allocated by the map tree or the original allocation
375          */
376         btrfs_release_path(path);
377         BUG_ON(*start < search_start);
378
379         if (*start + num_bytes > search_end) {
380                 ret = -ENOSPC;
381                 goto error;
382         }
383         /* check for pending inserts here */
384         return 0;
385
386 error:
387         btrfs_release_path(path);
388         return ret;
389 }
390
391 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
392                                   struct btrfs_device *device,
393                                   u64 chunk_tree, u64 chunk_objectid,
394                                   u64 chunk_offset,
395                                   u64 num_bytes, u64 *start)
396 {
397         int ret;
398         struct btrfs_path *path;
399         struct btrfs_root *root = device->dev_root;
400         struct btrfs_dev_extent *extent;
401         struct extent_buffer *leaf;
402         struct btrfs_key key;
403
404         path = btrfs_alloc_path();
405         if (!path)
406                 return -ENOMEM;
407
408         ret = find_free_dev_extent(trans, device, path, num_bytes, start);
409         if (ret) {
410                 goto err;
411         }
412
413         key.objectid = device->devid;
414         key.offset = *start;
415         key.type = BTRFS_DEV_EXTENT_KEY;
416         ret = btrfs_insert_empty_item(trans, root, path, &key,
417                                       sizeof(*extent));
418         BUG_ON(ret);
419
420         leaf = path->nodes[0];
421         extent = btrfs_item_ptr(leaf, path->slots[0],
422                                 struct btrfs_dev_extent);
423         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
424         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
425         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
426
427         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
428                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
429                     BTRFS_UUID_SIZE);
430
431         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
432         btrfs_mark_buffer_dirty(leaf);
433 err:
434         btrfs_free_path(path);
435         return ret;
436 }
437
438 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
439 {
440         struct btrfs_path *path;
441         int ret;
442         struct btrfs_key key;
443         struct btrfs_chunk *chunk;
444         struct btrfs_key found_key;
445
446         path = btrfs_alloc_path();
447         BUG_ON(!path);
448
449         key.objectid = objectid;
450         key.offset = (u64)-1;
451         key.type = BTRFS_CHUNK_ITEM_KEY;
452
453         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
454         if (ret < 0)
455                 goto error;
456
457         BUG_ON(ret == 0);
458
459         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
460         if (ret) {
461                 *offset = 0;
462         } else {
463                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
464                                       path->slots[0]);
465                 if (found_key.objectid != objectid)
466                         *offset = 0;
467                 else {
468                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
469                                                struct btrfs_chunk);
470                         *offset = found_key.offset +
471                                 btrfs_chunk_length(path->nodes[0], chunk);
472                 }
473         }
474         ret = 0;
475 error:
476         btrfs_free_path(path);
477         return ret;
478 }
479
480 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
481                            u64 *objectid)
482 {
483         int ret;
484         struct btrfs_key key;
485         struct btrfs_key found_key;
486
487         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
488         key.type = BTRFS_DEV_ITEM_KEY;
489         key.offset = (u64)-1;
490
491         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
492         if (ret < 0)
493                 goto error;
494
495         BUG_ON(ret == 0);
496
497         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
498                                   BTRFS_DEV_ITEM_KEY);
499         if (ret) {
500                 *objectid = 1;
501         } else {
502                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
503                                       path->slots[0]);
504                 *objectid = found_key.offset + 1;
505         }
506         ret = 0;
507 error:
508         btrfs_release_path(path);
509         return ret;
510 }
511
512 /*
513  * the device information is stored in the chunk root
514  * the btrfs_device struct should be fully filled in
515  */
516 int btrfs_add_device(struct btrfs_trans_handle *trans,
517                      struct btrfs_root *root,
518                      struct btrfs_device *device)
519 {
520         int ret;
521         struct btrfs_path *path;
522         struct btrfs_dev_item *dev_item;
523         struct extent_buffer *leaf;
524         struct btrfs_key key;
525         unsigned long ptr;
526         u64 free_devid = 0;
527
528         root = root->fs_info->chunk_root;
529
530         path = btrfs_alloc_path();
531         if (!path)
532                 return -ENOMEM;
533
534         ret = find_next_devid(root, path, &free_devid);
535         if (ret)
536                 goto out;
537
538         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
539         key.type = BTRFS_DEV_ITEM_KEY;
540         key.offset = free_devid;
541
542         ret = btrfs_insert_empty_item(trans, root, path, &key,
543                                       sizeof(*dev_item));
544         if (ret)
545                 goto out;
546
547         leaf = path->nodes[0];
548         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
549
550         device->devid = free_devid;
551         btrfs_set_device_id(leaf, dev_item, device->devid);
552         btrfs_set_device_generation(leaf, dev_item, 0);
553         btrfs_set_device_type(leaf, dev_item, device->type);
554         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
555         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
556         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
557         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
558         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
559         btrfs_set_device_group(leaf, dev_item, 0);
560         btrfs_set_device_seek_speed(leaf, dev_item, 0);
561         btrfs_set_device_bandwidth(leaf, dev_item, 0);
562         btrfs_set_device_start_offset(leaf, dev_item, 0);
563
564         ptr = (unsigned long)btrfs_device_uuid(dev_item);
565         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
566         ptr = (unsigned long)btrfs_device_fsid(dev_item);
567         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
568         btrfs_mark_buffer_dirty(leaf);
569         ret = 0;
570
571 out:
572         btrfs_free_path(path);
573         return ret;
574 }
575
576 int btrfs_update_device(struct btrfs_trans_handle *trans,
577                         struct btrfs_device *device)
578 {
579         int ret;
580         struct btrfs_path *path;
581         struct btrfs_root *root;
582         struct btrfs_dev_item *dev_item;
583         struct extent_buffer *leaf;
584         struct btrfs_key key;
585
586         root = device->dev_root->fs_info->chunk_root;
587
588         path = btrfs_alloc_path();
589         if (!path)
590                 return -ENOMEM;
591
592         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
593         key.type = BTRFS_DEV_ITEM_KEY;
594         key.offset = device->devid;
595
596         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
597         if (ret < 0)
598                 goto out;
599
600         if (ret > 0) {
601                 ret = -ENOENT;
602                 goto out;
603         }
604
605         leaf = path->nodes[0];
606         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
607
608         btrfs_set_device_id(leaf, dev_item, device->devid);
609         btrfs_set_device_type(leaf, dev_item, device->type);
610         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
611         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
612         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
613         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
614         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
615         btrfs_mark_buffer_dirty(leaf);
616
617 out:
618         btrfs_free_path(path);
619         return ret;
620 }
621
622 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
623                            struct btrfs_root *root,
624                            struct btrfs_key *key,
625                            struct btrfs_chunk *chunk, int item_size)
626 {
627         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
628         struct btrfs_disk_key disk_key;
629         u32 array_size;
630         u8 *ptr;
631
632         array_size = btrfs_super_sys_array_size(super_copy);
633         if (array_size + item_size + sizeof(disk_key)
634                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
635                 return -EFBIG;
636
637         ptr = super_copy->sys_chunk_array + array_size;
638         btrfs_cpu_key_to_disk(&disk_key, key);
639         memcpy(ptr, &disk_key, sizeof(disk_key));
640         ptr += sizeof(disk_key);
641         memcpy(ptr, chunk, item_size);
642         item_size += sizeof(disk_key);
643         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
644         return 0;
645 }
646
647 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
648                                int sub_stripes)
649 {
650         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
651                 return calc_size;
652         else if (type & BTRFS_BLOCK_GROUP_RAID10)
653                 return calc_size * (num_stripes / sub_stripes);
654         else if (type & BTRFS_BLOCK_GROUP_RAID5)
655                 return calc_size * (num_stripes - 1);
656         else if (type & BTRFS_BLOCK_GROUP_RAID6)
657                 return calc_size * (num_stripes - 2);
658         else
659                 return calc_size * num_stripes;
660 }
661
662
663 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
664 {
665         /* TODO, add a way to store the preferred stripe size */
666         return BTRFS_STRIPE_LEN;
667 }
668
669 /*
670  * btrfs_device_avail_bytes - count bytes available for alloc_chunk
671  *
672  * It is not equal to "device->total_bytes - device->bytes_used".
673  * We do not allocate any chunk in 1M at beginning of device, and not
674  * allowed to allocate any chunk before alloc_start if it is specified.
675  * So search holes from max(1M, alloc_start) to device->total_bytes.
676  */
677 static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans,
678                                     struct btrfs_device *device,
679                                     u64 *avail_bytes)
680 {
681         struct btrfs_path *path;
682         struct btrfs_root *root = device->dev_root;
683         struct btrfs_key key;
684         struct btrfs_dev_extent *dev_extent = NULL;
685         struct extent_buffer *l;
686         u64 search_start = root->fs_info->alloc_start;
687         u64 search_end = device->total_bytes;
688         u64 extent_end = 0;
689         u64 free_bytes = 0;
690         int ret;
691         int slot = 0;
692
693         search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
694
695         path = btrfs_alloc_path();
696         if (!path)
697                 return -ENOMEM;
698
699         key.objectid = device->devid;
700         key.offset = root->fs_info->alloc_start;
701         key.type = BTRFS_DEV_EXTENT_KEY;
702
703         path->reada = 2;
704         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
705         if (ret < 0)
706                 goto error;
707         ret = btrfs_previous_item(root, path, 0, key.type);
708         if (ret < 0)
709                 goto error;
710
711         while (1) {
712                 l = path->nodes[0];
713                 slot = path->slots[0];
714                 if (slot >= btrfs_header_nritems(l)) {
715                         ret = btrfs_next_leaf(root, path);
716                         if (ret == 0)
717                                 continue;
718                         if (ret < 0)
719                                 goto error;
720                         break;
721                 }
722                 btrfs_item_key_to_cpu(l, &key, slot);
723
724                 if (key.objectid < device->devid)
725                         goto next;
726                 if (key.objectid > device->devid)
727                         break;
728                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
729                         goto next;
730                 if (key.offset > search_end)
731                         break;
732                 if (key.offset > search_start)
733                         free_bytes += key.offset - search_start;
734
735                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
736                 extent_end = key.offset + btrfs_dev_extent_length(l,
737                                                                   dev_extent);
738                 if (extent_end > search_start)
739                         search_start = extent_end;
740                 if (search_start > search_end)
741                         break;
742 next:
743                 path->slots[0]++;
744                 cond_resched();
745         }
746
747         if (search_start < search_end)
748                 free_bytes += search_end - search_start;
749
750         *avail_bytes = free_bytes;
751         ret = 0;
752 error:
753         btrfs_free_path(path);
754         return ret;
755 }
756
757 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
758                       struct btrfs_root *extent_root, u64 *start,
759                       u64 *num_bytes, u64 type)
760 {
761         u64 dev_offset;
762         struct btrfs_fs_info *info = extent_root->fs_info;
763         struct btrfs_root *chunk_root = info->chunk_root;
764         struct btrfs_stripe *stripes;
765         struct btrfs_device *device = NULL;
766         struct btrfs_chunk *chunk;
767         struct list_head private_devs;
768         struct list_head *dev_list = &info->fs_devices->devices;
769         struct list_head *cur;
770         struct map_lookup *map;
771         int min_stripe_size = 1 * 1024 * 1024;
772         u64 calc_size = 8 * 1024 * 1024;
773         u64 min_free;
774         u64 max_chunk_size = 4 * calc_size;
775         u64 avail = 0;
776         u64 max_avail = 0;
777         u64 percent_max;
778         int num_stripes = 1;
779         int min_stripes = 1;
780         int sub_stripes = 0;
781         int looped = 0;
782         int ret;
783         int index;
784         int stripe_len = BTRFS_STRIPE_LEN;
785         struct btrfs_key key;
786         u64 offset;
787
788         if (list_empty(dev_list)) {
789                 return -ENOSPC;
790         }
791
792         if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
793                     BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
794                     BTRFS_BLOCK_GROUP_RAID10 |
795                     BTRFS_BLOCK_GROUP_DUP)) {
796                 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
797                         calc_size = 8 * 1024 * 1024;
798                         max_chunk_size = calc_size * 2;
799                         min_stripe_size = 1 * 1024 * 1024;
800                 } else if (type & BTRFS_BLOCK_GROUP_DATA) {
801                         calc_size = 1024 * 1024 * 1024;
802                         max_chunk_size = 10 * calc_size;
803                         min_stripe_size = 64 * 1024 * 1024;
804                 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
805                         calc_size = 1024 * 1024 * 1024;
806                         max_chunk_size = 4 * calc_size;
807                         min_stripe_size = 32 * 1024 * 1024;
808                 }
809         }
810         if (type & BTRFS_BLOCK_GROUP_RAID1) {
811                 num_stripes = min_t(u64, 2,
812                                   btrfs_super_num_devices(info->super_copy));
813                 if (num_stripes < 2)
814                         return -ENOSPC;
815                 min_stripes = 2;
816         }
817         if (type & BTRFS_BLOCK_GROUP_DUP) {
818                 num_stripes = 2;
819                 min_stripes = 2;
820         }
821         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
822                 num_stripes = btrfs_super_num_devices(info->super_copy);
823                 min_stripes = 2;
824         }
825         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
826                 num_stripes = btrfs_super_num_devices(info->super_copy);
827                 if (num_stripes < 4)
828                         return -ENOSPC;
829                 num_stripes &= ~(u32)1;
830                 sub_stripes = 2;
831                 min_stripes = 4;
832         }
833         if (type & (BTRFS_BLOCK_GROUP_RAID5)) {
834                 num_stripes = btrfs_super_num_devices(info->super_copy);
835                 if (num_stripes < 2)
836                         return -ENOSPC;
837                 min_stripes = 2;
838                 stripe_len = find_raid56_stripe_len(num_stripes - 1,
839                                     btrfs_super_stripesize(info->super_copy));
840         }
841         if (type & (BTRFS_BLOCK_GROUP_RAID6)) {
842                 num_stripes = btrfs_super_num_devices(info->super_copy);
843                 if (num_stripes < 3)
844                         return -ENOSPC;
845                 min_stripes = 3;
846                 stripe_len = find_raid56_stripe_len(num_stripes - 2,
847                                     btrfs_super_stripesize(info->super_copy));
848         }
849
850         /* we don't want a chunk larger than 10% of the FS */
851         percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1);
852         max_chunk_size = min(percent_max, max_chunk_size);
853
854 again:
855         if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
856             max_chunk_size) {
857                 calc_size = max_chunk_size;
858                 calc_size /= num_stripes;
859                 calc_size /= stripe_len;
860                 calc_size *= stripe_len;
861         }
862         /* we don't want tiny stripes */
863         calc_size = max_t(u64, calc_size, min_stripe_size);
864
865         calc_size /= stripe_len;
866         calc_size *= stripe_len;
867         INIT_LIST_HEAD(&private_devs);
868         cur = dev_list->next;
869         index = 0;
870
871         if (type & BTRFS_BLOCK_GROUP_DUP)
872                 min_free = calc_size * 2;
873         else
874                 min_free = calc_size;
875
876         /* build a private list of devices we will allocate from */
877         while(index < num_stripes) {
878                 device = list_entry(cur, struct btrfs_device, dev_list);
879                 ret = btrfs_device_avail_bytes(trans, device, &avail);
880                 if (ret)
881                         return ret;
882                 cur = cur->next;
883                 if (avail >= min_free) {
884                         list_move_tail(&device->dev_list, &private_devs);
885                         index++;
886                         if (type & BTRFS_BLOCK_GROUP_DUP)
887                                 index++;
888                 } else if (avail > max_avail)
889                         max_avail = avail;
890                 if (cur == dev_list)
891                         break;
892         }
893         if (index < num_stripes) {
894                 list_splice(&private_devs, dev_list);
895                 if (index >= min_stripes) {
896                         num_stripes = index;
897                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
898                                 num_stripes /= sub_stripes;
899                                 num_stripes *= sub_stripes;
900                         }
901                         looped = 1;
902                         goto again;
903                 }
904                 if (!looped && max_avail > 0) {
905                         looped = 1;
906                         calc_size = max_avail;
907                         goto again;
908                 }
909                 return -ENOSPC;
910         }
911         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
912                               &offset);
913         if (ret)
914                 return ret;
915         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
916         key.type = BTRFS_CHUNK_ITEM_KEY;
917         key.offset = offset;
918
919         chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
920         if (!chunk)
921                 return -ENOMEM;
922
923         map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
924         if (!map) {
925                 kfree(chunk);
926                 return -ENOMEM;
927         }
928
929         stripes = &chunk->stripe;
930         *num_bytes = chunk_bytes_by_type(type, calc_size,
931                                          num_stripes, sub_stripes);
932         index = 0;
933         while(index < num_stripes) {
934                 struct btrfs_stripe *stripe;
935                 BUG_ON(list_empty(&private_devs));
936                 cur = private_devs.next;
937                 device = list_entry(cur, struct btrfs_device, dev_list);
938
939                 /* loop over this device again if we're doing a dup group */
940                 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
941                     (index == num_stripes - 1))
942                         list_move_tail(&device->dev_list, dev_list);
943
944                 ret = btrfs_alloc_dev_extent(trans, device,
945                              info->chunk_root->root_key.objectid,
946                              BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
947                              calc_size, &dev_offset);
948                 BUG_ON(ret);
949
950                 device->bytes_used += calc_size;
951                 ret = btrfs_update_device(trans, device);
952                 BUG_ON(ret);
953
954                 map->stripes[index].dev = device;
955                 map->stripes[index].physical = dev_offset;
956                 stripe = stripes + index;
957                 btrfs_set_stack_stripe_devid(stripe, device->devid);
958                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
959                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
960                 index++;
961         }
962         BUG_ON(!list_empty(&private_devs));
963
964         /* key was set above */
965         btrfs_set_stack_chunk_length(chunk, *num_bytes);
966         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
967         btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
968         btrfs_set_stack_chunk_type(chunk, type);
969         btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
970         btrfs_set_stack_chunk_io_align(chunk, stripe_len);
971         btrfs_set_stack_chunk_io_width(chunk, stripe_len);
972         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
973         btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
974         map->sector_size = extent_root->sectorsize;
975         map->stripe_len = stripe_len;
976         map->io_align = stripe_len;
977         map->io_width = stripe_len;
978         map->type = type;
979         map->num_stripes = num_stripes;
980         map->sub_stripes = sub_stripes;
981
982         ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
983                                 btrfs_chunk_item_size(num_stripes));
984         BUG_ON(ret);
985         *start = key.offset;;
986
987         map->ce.start = key.offset;
988         map->ce.size = *num_bytes;
989
990         ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
991         BUG_ON(ret);
992
993         if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
994                 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
995                                     chunk, btrfs_chunk_item_size(num_stripes));
996                 BUG_ON(ret);
997         }
998
999         kfree(chunk);
1000         return ret;
1001 }
1002
1003 int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
1004                            struct btrfs_root *extent_root, u64 *start,
1005                            u64 num_bytes, u64 type)
1006 {
1007         u64 dev_offset;
1008         struct btrfs_fs_info *info = extent_root->fs_info;
1009         struct btrfs_root *chunk_root = info->chunk_root;
1010         struct btrfs_stripe *stripes;
1011         struct btrfs_device *device = NULL;
1012         struct btrfs_chunk *chunk;
1013         struct list_head *dev_list = &info->fs_devices->devices;
1014         struct list_head *cur;
1015         struct map_lookup *map;
1016         u64 calc_size = 8 * 1024 * 1024;
1017         int num_stripes = 1;
1018         int sub_stripes = 0;
1019         int ret;
1020         int index;
1021         int stripe_len = BTRFS_STRIPE_LEN;
1022         struct btrfs_key key;
1023
1024         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1025         key.type = BTRFS_CHUNK_ITEM_KEY;
1026         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1027                               &key.offset);
1028         if (ret)
1029                 return ret;
1030
1031         chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1032         if (!chunk)
1033                 return -ENOMEM;
1034
1035         map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1036         if (!map) {
1037                 kfree(chunk);
1038                 return -ENOMEM;
1039         }
1040
1041         stripes = &chunk->stripe;
1042         calc_size = num_bytes;
1043
1044         index = 0;
1045         cur = dev_list->next;
1046         device = list_entry(cur, struct btrfs_device, dev_list);
1047
1048         while (index < num_stripes) {
1049                 struct btrfs_stripe *stripe;
1050
1051                 ret = btrfs_alloc_dev_extent(trans, device,
1052                              info->chunk_root->root_key.objectid,
1053                              BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1054                              calc_size, &dev_offset);
1055                 BUG_ON(ret);
1056
1057                 device->bytes_used += calc_size;
1058                 ret = btrfs_update_device(trans, device);
1059                 BUG_ON(ret);
1060
1061                 map->stripes[index].dev = device;
1062                 map->stripes[index].physical = dev_offset;
1063                 stripe = stripes + index;
1064                 btrfs_set_stack_stripe_devid(stripe, device->devid);
1065                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1066                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1067                 index++;
1068         }
1069
1070         /* key was set above */
1071         btrfs_set_stack_chunk_length(chunk, num_bytes);
1072         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1073         btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1074         btrfs_set_stack_chunk_type(chunk, type);
1075         btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1076         btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1077         btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1078         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1079         btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1080         map->sector_size = extent_root->sectorsize;
1081         map->stripe_len = stripe_len;
1082         map->io_align = stripe_len;
1083         map->io_width = stripe_len;
1084         map->type = type;
1085         map->num_stripes = num_stripes;
1086         map->sub_stripes = sub_stripes;
1087
1088         ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1089                                 btrfs_chunk_item_size(num_stripes));
1090         BUG_ON(ret);
1091         *start = key.offset;
1092
1093         map->ce.start = key.offset;
1094         map->ce.size = num_bytes;
1095
1096         ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1097         BUG_ON(ret);
1098
1099         kfree(chunk);
1100         return ret;
1101 }
1102
1103 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1104 {
1105         struct cache_extent *ce;
1106         struct map_lookup *map;
1107         int ret;
1108
1109         ce = search_cache_extent(&map_tree->cache_tree, logical);
1110         BUG_ON(!ce);
1111         BUG_ON(ce->start > logical || ce->start + ce->size < logical);
1112         map = container_of(ce, struct map_lookup, ce);
1113
1114         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1115                 ret = map->num_stripes;
1116         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1117                 ret = map->sub_stripes;
1118         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
1119                 ret = 2;
1120         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1121                 ret = 3;
1122         else
1123                 ret = 1;
1124         return ret;
1125 }
1126
1127 int btrfs_next_metadata(struct btrfs_mapping_tree *map_tree, u64 *logical,
1128                         u64 *size)
1129 {
1130         struct cache_extent *ce;
1131         struct map_lookup *map;
1132
1133         ce = search_cache_extent(&map_tree->cache_tree, *logical);
1134
1135         while (ce) {
1136                 ce = next_cache_extent(ce);
1137                 if (!ce)
1138                         return -ENOENT;
1139
1140                 map = container_of(ce, struct map_lookup, ce);
1141                 if (map->type & BTRFS_BLOCK_GROUP_METADATA) {
1142                         *logical = ce->start;
1143                         *size = ce->size;
1144                         return 0;
1145                 }
1146         }
1147
1148         return -ENOENT;
1149 }
1150
1151 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
1152                      u64 chunk_start, u64 physical, u64 devid,
1153                      u64 **logical, int *naddrs, int *stripe_len)
1154 {
1155         struct cache_extent *ce;
1156         struct map_lookup *map;
1157         u64 *buf;
1158         u64 bytenr;
1159         u64 length;
1160         u64 stripe_nr;
1161         u64 rmap_len;
1162         int i, j, nr = 0;
1163
1164         ce = search_cache_extent(&map_tree->cache_tree, chunk_start);
1165         BUG_ON(!ce);
1166         map = container_of(ce, struct map_lookup, ce);
1167
1168         length = ce->size;
1169         rmap_len = map->stripe_len;
1170         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1171                 length = ce->size / (map->num_stripes / map->sub_stripes);
1172         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1173                 length = ce->size / map->num_stripes;
1174         else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1175                               BTRFS_BLOCK_GROUP_RAID6)) {
1176                 length = ce->size / nr_data_stripes(map);
1177                 rmap_len = map->stripe_len * nr_data_stripes(map);
1178         }
1179
1180         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1181
1182         for (i = 0; i < map->num_stripes; i++) {
1183                 if (devid && map->stripes[i].dev->devid != devid)
1184                         continue;
1185                 if (map->stripes[i].physical > physical ||
1186                     map->stripes[i].physical + length <= physical)
1187                         continue;
1188
1189                 stripe_nr = (physical - map->stripes[i].physical) /
1190                             map->stripe_len;
1191
1192                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1193                         stripe_nr = (stripe_nr * map->num_stripes + i) /
1194                                     map->sub_stripes;
1195                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1196                         stripe_nr = stripe_nr * map->num_stripes + i;
1197                 } /* else if RAID[56], multiply by nr_data_stripes().
1198                    * Alternatively, just use rmap_len below instead of
1199                    * map->stripe_len */
1200
1201                 bytenr = ce->start + stripe_nr * rmap_len;
1202                 for (j = 0; j < nr; j++) {
1203                         if (buf[j] == bytenr)
1204                                 break;
1205                 }
1206                 if (j == nr)
1207                         buf[nr++] = bytenr;
1208         }
1209
1210         *logical = buf;
1211         *naddrs = nr;
1212         *stripe_len = rmap_len;
1213
1214         return 0;
1215 }
1216
1217 static inline int parity_smaller(u64 a, u64 b)
1218 {
1219         return a > b;
1220 }
1221
1222 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
1223 static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
1224 {
1225         struct btrfs_bio_stripe s;
1226         int i;
1227         u64 l;
1228         int again = 1;
1229
1230         while (again) {
1231                 again = 0;
1232                 for (i = 0; i < bbio->num_stripes - 1; i++) {
1233                         if (parity_smaller(raid_map[i], raid_map[i+1])) {
1234                                 s = bbio->stripes[i];
1235                                 l = raid_map[i];
1236                                 bbio->stripes[i] = bbio->stripes[i+1];
1237                                 raid_map[i] = raid_map[i+1];
1238                                 bbio->stripes[i+1] = s;
1239                                 raid_map[i+1] = l;
1240                                 again = 1;
1241                         }
1242                 }
1243         }
1244 }
1245
1246 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1247                     u64 logical, u64 *length,
1248                     struct btrfs_multi_bio **multi_ret, int mirror_num,
1249                     u64 **raid_map_ret)
1250 {
1251         return __btrfs_map_block(map_tree, rw, logical, length, NULL,
1252                                  multi_ret, mirror_num, raid_map_ret);
1253 }
1254
1255 int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1256                     u64 logical, u64 *length, u64 *type,
1257                     struct btrfs_multi_bio **multi_ret, int mirror_num,
1258                     u64 **raid_map_ret)
1259 {
1260         struct cache_extent *ce;
1261         struct map_lookup *map;
1262         u64 offset;
1263         u64 stripe_offset;
1264         u64 stripe_nr;
1265         u64 *raid_map = NULL;
1266         int stripes_allocated = 8;
1267         int stripes_required = 1;
1268         int stripe_index;
1269         int i;
1270         struct btrfs_multi_bio *multi = NULL;
1271
1272         if (multi_ret && rw == READ) {
1273                 stripes_allocated = 1;
1274         }
1275 again:
1276         ce = search_cache_extent(&map_tree->cache_tree, logical);
1277         if (!ce) {
1278                 kfree(multi);
1279                 return -ENOENT;
1280         }
1281         if (ce->start > logical || ce->start + ce->size < logical) {
1282                 kfree(multi);
1283                 return -ENOENT;
1284         }
1285
1286         if (multi_ret) {
1287                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1288                                 GFP_NOFS);
1289                 if (!multi)
1290                         return -ENOMEM;
1291         }
1292         map = container_of(ce, struct map_lookup, ce);
1293         offset = logical - ce->start;
1294
1295         if (rw == WRITE) {
1296                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1297                                  BTRFS_BLOCK_GROUP_DUP)) {
1298                         stripes_required = map->num_stripes;
1299                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1300                         stripes_required = map->sub_stripes;
1301                 }
1302         }
1303         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
1304             && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
1305                     /* RAID[56] write or recovery. Return all stripes */
1306                     stripes_required = map->num_stripes;
1307
1308                     /* Only allocate the map if we've already got a large enough multi_ret */
1309                     if (stripes_allocated >= stripes_required) {
1310                             raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1311                             if (!raid_map) {
1312                                     kfree(multi);
1313                                     return -ENOMEM;
1314                             }
1315                     }
1316         }
1317
1318         /* if our multi bio struct is too small, back off and try again */
1319         if (multi_ret && stripes_allocated < stripes_required) {
1320                 stripes_allocated = stripes_required;
1321                 kfree(multi);
1322                 multi = NULL;
1323                 goto again;
1324         }
1325         stripe_nr = offset;
1326         /*
1327          * stripe_nr counts the total number of stripes we have to stride
1328          * to get to this block
1329          */
1330         stripe_nr = stripe_nr / map->stripe_len;
1331
1332         stripe_offset = stripe_nr * map->stripe_len;
1333         BUG_ON(offset < stripe_offset);
1334
1335         /* stripe_offset is the offset of this block in its stripe*/
1336         stripe_offset = offset - stripe_offset;
1337
1338         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1339                          BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
1340                          BTRFS_BLOCK_GROUP_RAID10 |
1341                          BTRFS_BLOCK_GROUP_DUP)) {
1342                 /* we limit the length of each bio to what fits in a stripe */
1343                 *length = min_t(u64, ce->size - offset,
1344                               map->stripe_len - stripe_offset);
1345         } else {
1346                 *length = ce->size - offset;
1347         }
1348
1349         if (!multi_ret)
1350                 goto out;
1351
1352         multi->num_stripes = 1;
1353         stripe_index = 0;
1354         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1355                 if (rw == WRITE)
1356                         multi->num_stripes = map->num_stripes;
1357                 else if (mirror_num)
1358                         stripe_index = mirror_num - 1;
1359                 else
1360                         stripe_index = stripe_nr % map->num_stripes;
1361         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1362                 int factor = map->num_stripes / map->sub_stripes;
1363
1364                 stripe_index = stripe_nr % factor;
1365                 stripe_index *= map->sub_stripes;
1366
1367                 if (rw == WRITE)
1368                         multi->num_stripes = map->sub_stripes;
1369                 else if (mirror_num)
1370                         stripe_index += mirror_num - 1;
1371
1372                 stripe_nr = stripe_nr / factor;
1373         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1374                 if (rw == WRITE)
1375                         multi->num_stripes = map->num_stripes;
1376                 else if (mirror_num)
1377                         stripe_index = mirror_num - 1;
1378         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1379                                 BTRFS_BLOCK_GROUP_RAID6)) {
1380
1381                 if (raid_map) {
1382                         int rot;
1383                         u64 tmp;
1384                         u64 raid56_full_stripe_start;
1385                         u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
1386
1387                         /*
1388                          * align the start of our data stripe in the logical
1389                          * address space
1390                          */
1391                         raid56_full_stripe_start = offset / full_stripe_len;
1392                         raid56_full_stripe_start *= full_stripe_len;
1393
1394                         /* get the data stripe number */
1395                         stripe_nr = raid56_full_stripe_start / map->stripe_len;
1396                         stripe_nr = stripe_nr / nr_data_stripes(map);
1397
1398                         /* Work out the disk rotation on this stripe-set */
1399                         rot = stripe_nr % map->num_stripes;
1400
1401                         /* Fill in the logical address of each stripe */
1402                         tmp = stripe_nr * nr_data_stripes(map);
1403
1404                         for (i = 0; i < nr_data_stripes(map); i++)
1405                                 raid_map[(i+rot) % map->num_stripes] =
1406                                         ce->start + (tmp + i) * map->stripe_len;
1407
1408                         raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
1409                         if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1410                                 raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
1411
1412                         *length = map->stripe_len;
1413                         stripe_index = 0;
1414                         stripe_offset = 0;
1415                         multi->num_stripes = map->num_stripes;
1416                 } else {
1417                         stripe_index = stripe_nr % nr_data_stripes(map);
1418                         stripe_nr = stripe_nr / nr_data_stripes(map);
1419
1420                         /*
1421                          * Mirror #0 or #1 means the original data block.
1422                          * Mirror #2 is RAID5 parity block.
1423                          * Mirror #3 is RAID6 Q block.
1424                          */
1425                         if (mirror_num > 1)
1426                                 stripe_index = nr_data_stripes(map) + mirror_num - 2;
1427
1428                         /* We distribute the parity blocks across stripes */
1429                         stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
1430                 }
1431         } else {
1432                 /*
1433                  * after this do_div call, stripe_nr is the number of stripes
1434                  * on this device we have to walk to find the data, and
1435                  * stripe_index is the number of our device in the stripe array
1436                  */
1437                 stripe_index = stripe_nr % map->num_stripes;
1438                 stripe_nr = stripe_nr / map->num_stripes;
1439         }
1440         BUG_ON(stripe_index >= map->num_stripes);
1441
1442         for (i = 0; i < multi->num_stripes; i++) {
1443                 multi->stripes[i].physical =
1444                         map->stripes[stripe_index].physical + stripe_offset +
1445                         stripe_nr * map->stripe_len;
1446                 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1447                 stripe_index++;
1448         }
1449         *multi_ret = multi;
1450
1451         if (type)
1452                 *type = map->type;
1453
1454         if (raid_map) {
1455                 sort_parity_stripes(multi, raid_map);
1456                 *raid_map_ret = raid_map;
1457         }
1458 out:
1459         return 0;
1460 }
1461
1462 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1463                                        u8 *uuid, u8 *fsid)
1464 {
1465         struct btrfs_device *device;
1466         struct btrfs_fs_devices *cur_devices;
1467
1468         cur_devices = root->fs_info->fs_devices;
1469         while (cur_devices) {
1470                 if (!fsid ||
1471                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1472                         device = __find_device(&cur_devices->devices,
1473                                                devid, uuid);
1474                         if (device)
1475                                 return device;
1476                 }
1477                 cur_devices = cur_devices->seed;
1478         }
1479         return NULL;
1480 }
1481
1482 struct btrfs_device *
1483 btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
1484                            u64 devid, int instance)
1485 {
1486         struct list_head *head = &fs_devices->devices;
1487         struct btrfs_device *dev;
1488         int num_found = 0;
1489
1490         list_for_each_entry(dev, head, dev_list) {
1491                 if (dev->devid == devid && num_found++ == instance)
1492                         return dev;
1493         }
1494         return NULL;
1495 }
1496
1497 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
1498 {
1499         struct cache_extent *ce;
1500         struct map_lookup *map;
1501         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1502         int readonly = 0;
1503         int i;
1504
1505         /*
1506          * During chunk recovering, we may fail to find block group's
1507          * corresponding chunk, we will rebuild it later
1508          */
1509         ce = search_cache_extent(&map_tree->cache_tree, chunk_offset);
1510         if (!root->fs_info->is_chunk_recover)
1511                 BUG_ON(!ce);
1512         else
1513                 return 0;
1514
1515         map = container_of(ce, struct map_lookup, ce);
1516         for (i = 0; i < map->num_stripes; i++) {
1517                 if (!map->stripes[i].dev->writeable) {
1518                         readonly = 1;
1519                         break;
1520                 }
1521         }
1522
1523         return readonly;
1524 }
1525
1526 static struct btrfs_device *fill_missing_device(u64 devid)
1527 {
1528         struct btrfs_device *device;
1529
1530         device = kzalloc(sizeof(*device), GFP_NOFS);
1531         device->devid = devid;
1532         device->fd = -1;
1533         return device;
1534 }
1535
1536 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1537                           struct extent_buffer *leaf,
1538                           struct btrfs_chunk *chunk)
1539 {
1540         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1541         struct map_lookup *map;
1542         struct cache_extent *ce;
1543         u64 logical;
1544         u64 length;
1545         u64 devid;
1546         u8 uuid[BTRFS_UUID_SIZE];
1547         int num_stripes;
1548         int ret;
1549         int i;
1550
1551         logical = key->offset;
1552         length = btrfs_chunk_length(leaf, chunk);
1553
1554         ce = search_cache_extent(&map_tree->cache_tree, logical);
1555
1556         /* already mapped? */
1557         if (ce && ce->start <= logical && ce->start + ce->size > logical) {
1558                 return 0;
1559         }
1560
1561         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1562         map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1563         if (!map)
1564                 return -ENOMEM;
1565
1566         map->ce.start = logical;
1567         map->ce.size = length;
1568         map->num_stripes = num_stripes;
1569         map->io_width = btrfs_chunk_io_width(leaf, chunk);
1570         map->io_align = btrfs_chunk_io_align(leaf, chunk);
1571         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1572         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1573         map->type = btrfs_chunk_type(leaf, chunk);
1574         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1575
1576         for (i = 0; i < num_stripes; i++) {
1577                 map->stripes[i].physical =
1578                         btrfs_stripe_offset_nr(leaf, chunk, i);
1579                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1580                 read_extent_buffer(leaf, uuid, (unsigned long)
1581                                    btrfs_stripe_dev_uuid_nr(chunk, i),
1582                                    BTRFS_UUID_SIZE);
1583                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
1584                                                         NULL);
1585                 if (!map->stripes[i].dev) {
1586                         map->stripes[i].dev = fill_missing_device(devid);
1587                         printf("warning, device %llu is missing\n",
1588                                (unsigned long long)devid);
1589                 }
1590
1591         }
1592         ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
1593         BUG_ON(ret);
1594
1595         return 0;
1596 }
1597
1598 static int fill_device_from_item(struct extent_buffer *leaf,
1599                                  struct btrfs_dev_item *dev_item,
1600                                  struct btrfs_device *device)
1601 {
1602         unsigned long ptr;
1603
1604         device->devid = btrfs_device_id(leaf, dev_item);
1605         device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1606         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1607         device->type = btrfs_device_type(leaf, dev_item);
1608         device->io_align = btrfs_device_io_align(leaf, dev_item);
1609         device->io_width = btrfs_device_io_width(leaf, dev_item);
1610         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1611
1612         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1613         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1614
1615         return 0;
1616 }
1617
1618 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
1619 {
1620         struct btrfs_fs_devices *fs_devices;
1621         int ret;
1622
1623         fs_devices = root->fs_info->fs_devices->seed;
1624         while (fs_devices) {
1625                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1626                         ret = 0;
1627                         goto out;
1628                 }
1629                 fs_devices = fs_devices->seed;
1630         }
1631
1632         fs_devices = find_fsid(fsid);
1633         if (!fs_devices) {
1634                 ret = -ENOENT;
1635                 goto out;
1636         }
1637
1638         ret = btrfs_open_devices(fs_devices, O_RDONLY);
1639         if (ret)
1640                 goto out;
1641
1642         fs_devices->seed = root->fs_info->fs_devices->seed;
1643         root->fs_info->fs_devices->seed = fs_devices;
1644 out:
1645         return ret;
1646 }
1647
1648 static int read_one_dev(struct btrfs_root *root,
1649                         struct extent_buffer *leaf,
1650                         struct btrfs_dev_item *dev_item)
1651 {
1652         struct btrfs_device *device;
1653         u64 devid;
1654         int ret = 0;
1655         u8 fs_uuid[BTRFS_UUID_SIZE];
1656         u8 dev_uuid[BTRFS_UUID_SIZE];
1657
1658         devid = btrfs_device_id(leaf, dev_item);
1659         read_extent_buffer(leaf, dev_uuid,
1660                            (unsigned long)btrfs_device_uuid(dev_item),
1661                            BTRFS_UUID_SIZE);
1662         read_extent_buffer(leaf, fs_uuid,
1663                            (unsigned long)btrfs_device_fsid(dev_item),
1664                            BTRFS_UUID_SIZE);
1665
1666         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
1667                 ret = open_seed_devices(root, fs_uuid);
1668                 if (ret)
1669                         return ret;
1670         }
1671
1672         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1673         if (!device) {
1674                 printk("warning devid %llu not found already\n",
1675                         (unsigned long long)devid);
1676                 device = kzalloc(sizeof(*device), GFP_NOFS);
1677                 if (!device)
1678                         return -ENOMEM;
1679                 device->fd = -1;
1680                 list_add(&device->dev_list,
1681                          &root->fs_info->fs_devices->devices);
1682         }
1683
1684         fill_device_from_item(leaf, dev_item, device);
1685         device->dev_root = root->fs_info->dev_root;
1686         return ret;
1687 }
1688
1689 int btrfs_read_sys_array(struct btrfs_root *root)
1690 {
1691         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1692         struct extent_buffer *sb;
1693         struct btrfs_disk_key *disk_key;
1694         struct btrfs_chunk *chunk;
1695         struct btrfs_key key;
1696         u32 num_stripes;
1697         u32 len = 0;
1698         u8 *ptr;
1699         u8 *array_end;
1700         int ret = 0;
1701
1702         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
1703                                           BTRFS_SUPER_INFO_SIZE);
1704         if (!sb)
1705                 return -ENOMEM;
1706         btrfs_set_buffer_uptodate(sb);
1707         write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
1708         array_end = ((u8 *)super_copy->sys_chunk_array) +
1709                     btrfs_super_sys_array_size(super_copy);
1710
1711         /*
1712          * we do this loop twice, once for the device items and
1713          * once for all of the chunks.  This way there are device
1714          * structs filled in for every chunk
1715          */
1716         ptr = super_copy->sys_chunk_array;
1717
1718         while (ptr < array_end) {
1719                 disk_key = (struct btrfs_disk_key *)ptr;
1720                 btrfs_disk_key_to_cpu(&key, disk_key);
1721
1722                 len = sizeof(*disk_key);
1723                 ptr += len;
1724
1725                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1726                         chunk = (struct btrfs_chunk *)(ptr - (u8 *)super_copy);
1727                         ret = read_one_chunk(root, &key, sb, chunk);
1728                         if (ret)
1729                                 break;
1730                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1731                         len = btrfs_chunk_item_size(num_stripes);
1732                 } else {
1733                         BUG();
1734                 }
1735                 ptr += len;
1736         }
1737         free_extent_buffer(sb);
1738         return ret;
1739 }
1740
1741 int btrfs_read_chunk_tree(struct btrfs_root *root)
1742 {
1743         struct btrfs_path *path;
1744         struct extent_buffer *leaf;
1745         struct btrfs_key key;
1746         struct btrfs_key found_key;
1747         int ret;
1748         int slot;
1749
1750         root = root->fs_info->chunk_root;
1751
1752         path = btrfs_alloc_path();
1753         if (!path)
1754                 return -ENOMEM;
1755
1756         /*
1757          * Read all device items, and then all the chunk items. All
1758          * device items are found before any chunk item (their object id
1759          * is smaller than the lowest possible object id for a chunk
1760          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
1761          */
1762         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1763         key.offset = 0;
1764         key.type = 0;
1765         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1766         if (ret < 0)
1767                 goto error;
1768         while(1) {
1769                 leaf = path->nodes[0];
1770                 slot = path->slots[0];
1771                 if (slot >= btrfs_header_nritems(leaf)) {
1772                         ret = btrfs_next_leaf(root, path);
1773                         if (ret == 0)
1774                                 continue;
1775                         if (ret < 0)
1776                                 goto error;
1777                         break;
1778                 }
1779                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1780                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1781                         struct btrfs_dev_item *dev_item;
1782                         dev_item = btrfs_item_ptr(leaf, slot,
1783                                                   struct btrfs_dev_item);
1784                         ret = read_one_dev(root, leaf, dev_item);
1785                         BUG_ON(ret);
1786                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1787                         struct btrfs_chunk *chunk;
1788                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1789                         ret = read_one_chunk(root, &found_key, leaf, chunk);
1790                         BUG_ON(ret);
1791                 }
1792                 path->slots[0]++;
1793         }
1794
1795         ret = 0;
1796 error:
1797         btrfs_free_path(path);
1798         return ret;
1799 }
1800
1801 struct list_head *btrfs_scanned_uuids(void)
1802 {
1803         return &fs_uuids;
1804 }
1805
1806 static int rmw_eb(struct btrfs_fs_info *info,
1807                   struct extent_buffer *eb, struct extent_buffer *orig_eb)
1808 {
1809         int ret;
1810         unsigned long orig_off = 0;
1811         unsigned long dest_off = 0;
1812         unsigned long copy_len = eb->len;
1813
1814         ret = read_whole_eb(info, eb, 0);
1815         if (ret)
1816                 return ret;
1817
1818         if (eb->start + eb->len <= orig_eb->start ||
1819             eb->start >= orig_eb->start + orig_eb->len)
1820                 return 0;
1821         /*
1822          * | ----- orig_eb ------- |
1823          *         | ----- stripe -------  |
1824          *         | ----- orig_eb ------- |
1825          *              | ----- orig_eb ------- |
1826          */
1827         if (eb->start > orig_eb->start)
1828                 orig_off = eb->start - orig_eb->start;
1829         if (orig_eb->start > eb->start)
1830                 dest_off = orig_eb->start - eb->start;
1831
1832         if (copy_len > orig_eb->len - orig_off)
1833                 copy_len = orig_eb->len - orig_off;
1834         if (copy_len > eb->len - dest_off)
1835                 copy_len = eb->len - dest_off;
1836
1837         memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len);
1838         return 0;
1839 }
1840
1841 static void split_eb_for_raid56(struct btrfs_fs_info *info,
1842                                 struct extent_buffer *orig_eb,
1843                                struct extent_buffer **ebs,
1844                                u64 stripe_len, u64 *raid_map,
1845                                int num_stripes)
1846 {
1847         struct extent_buffer *eb;
1848         u64 start = orig_eb->start;
1849         u64 this_eb_start;
1850         int i;
1851         int ret;
1852
1853         for (i = 0; i < num_stripes; i++) {
1854                 if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
1855                         break;
1856
1857                 eb = malloc(sizeof(struct extent_buffer) + stripe_len);
1858                 if (!eb)
1859                         BUG();
1860                 memset(eb, 0, sizeof(struct extent_buffer) + stripe_len);
1861
1862                 eb->start = raid_map[i];
1863                 eb->len = stripe_len;
1864                 eb->refs = 1;
1865                 eb->flags = 0;
1866                 eb->fd = -1;
1867                 eb->dev_bytenr = (u64)-1;
1868
1869                 this_eb_start = raid_map[i];
1870
1871                 if (start > this_eb_start ||
1872                     start + orig_eb->len < this_eb_start + stripe_len) {
1873                         ret = rmw_eb(info, eb, orig_eb);
1874                         BUG_ON(ret);
1875                 } else {
1876                         memcpy(eb->data, orig_eb->data + eb->start - start, stripe_len);
1877                 }
1878                 ebs[i] = eb;
1879         }
1880 }
1881
1882 int write_raid56_with_parity(struct btrfs_fs_info *info,
1883                              struct extent_buffer *eb,
1884                              struct btrfs_multi_bio *multi,
1885                              u64 stripe_len, u64 *raid_map)
1886 {
1887         struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL;
1888         int i;
1889         int j;
1890         int ret;
1891         int alloc_size = eb->len;
1892
1893         ebs = kmalloc(sizeof(*ebs) * multi->num_stripes, GFP_NOFS);
1894         BUG_ON(!ebs);
1895
1896         if (stripe_len > alloc_size)
1897                 alloc_size = stripe_len;
1898
1899         split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map,
1900                             multi->num_stripes);
1901
1902         for (i = 0; i < multi->num_stripes; i++) {
1903                 struct extent_buffer *new_eb;
1904                 if (raid_map[i] < BTRFS_RAID5_P_STRIPE) {
1905                         ebs[i]->dev_bytenr = multi->stripes[i].physical;
1906                         ebs[i]->fd = multi->stripes[i].dev->fd;
1907                         multi->stripes[i].dev->total_ios++;
1908                         BUG_ON(ebs[i]->start != raid_map[i]);
1909                         continue;
1910                 }
1911                 new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_NOFS);
1912                 BUG_ON(!new_eb);
1913                 new_eb->dev_bytenr = multi->stripes[i].physical;
1914                 new_eb->fd = multi->stripes[i].dev->fd;
1915                 multi->stripes[i].dev->total_ios++;
1916                 new_eb->len = stripe_len;
1917
1918                 if (raid_map[i] == BTRFS_RAID5_P_STRIPE)
1919                         p_eb = new_eb;
1920                 else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE)
1921                         q_eb = new_eb;
1922         }
1923         if (q_eb) {
1924                 void **pointers;
1925
1926                 pointers = kmalloc(sizeof(*pointers) * multi->num_stripes,
1927                                    GFP_NOFS);
1928                 BUG_ON(!pointers);
1929
1930                 ebs[multi->num_stripes - 2] = p_eb;
1931                 ebs[multi->num_stripes - 1] = q_eb;
1932
1933                 for (i = 0; i < multi->num_stripes; i++)
1934                         pointers[i] = ebs[i]->data;
1935
1936                 raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers);
1937                 kfree(pointers);
1938         } else {
1939                 ebs[multi->num_stripes - 1] = p_eb;
1940                 memcpy(p_eb->data, ebs[0]->data, stripe_len);
1941                 for (j = 1; j < multi->num_stripes - 1; j++) {
1942                         for (i = 0; i < stripe_len; i += sizeof(unsigned long)) {
1943                                 *(unsigned long *)(p_eb->data + i) ^=
1944                                         *(unsigned long *)(ebs[j]->data + i);
1945                         }
1946                 }
1947         }
1948
1949         for (i = 0; i < multi->num_stripes; i++) {
1950                 ret = write_extent_to_disk(ebs[i]);
1951                 BUG_ON(ret);
1952                 if (ebs[i] != eb)
1953                         kfree(ebs[i]);
1954         }
1955
1956         kfree(ebs);
1957
1958         return 0;
1959 }