2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #define _XOPEN_SOURCE 600
22 #include <sys/types.h>
24 #include <uuid/uuid.h>
29 #include "transaction.h"
30 #include "print-tree.h"
34 struct btrfs_device *dev;
38 static inline int nr_parity_stripes(struct map_lookup *map)
40 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
42 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
48 static inline int nr_data_stripes(struct map_lookup *map)
50 return map->num_stripes - nr_parity_stripes(map);
53 #define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
55 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
56 (sizeof(struct btrfs_bio_stripe) * (n)))
58 static LIST_HEAD(fs_uuids);
60 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
63 struct btrfs_device *dev;
64 struct list_head *cur;
66 list_for_each(cur, head) {
67 dev = list_entry(cur, struct btrfs_device, dev_list);
68 if (dev->devid == devid &&
69 !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
76 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
78 struct list_head *cur;
79 struct btrfs_fs_devices *fs_devices;
81 list_for_each(cur, &fs_uuids) {
82 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
83 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
89 static int device_list_add(const char *path,
90 struct btrfs_super_block *disk_super,
91 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
93 struct btrfs_device *device;
94 struct btrfs_fs_devices *fs_devices;
95 u64 found_transid = btrfs_super_generation(disk_super);
97 fs_devices = find_fsid(disk_super->fsid);
99 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
102 INIT_LIST_HEAD(&fs_devices->devices);
103 list_add(&fs_devices->list, &fs_uuids);
104 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
105 fs_devices->latest_devid = devid;
106 fs_devices->latest_trans = found_transid;
107 fs_devices->lowest_devid = (u64)-1;
110 device = __find_device(&fs_devices->devices, devid,
111 disk_super->dev_item.uuid);
114 device = kzalloc(sizeof(*device), GFP_NOFS);
116 /* we can safely leave the fs_devices entry around */
119 device->devid = devid;
120 memcpy(device->uuid, disk_super->dev_item.uuid,
122 device->name = kstrdup(path, GFP_NOFS);
127 device->label = kstrdup(disk_super->label, GFP_NOFS);
128 device->total_devs = btrfs_super_num_devices(disk_super);
129 device->super_bytes_used = btrfs_super_bytes_used(disk_super);
130 device->total_bytes =
131 btrfs_stack_device_total_bytes(&disk_super->dev_item);
133 btrfs_stack_device_bytes_used(&disk_super->dev_item);
134 list_add(&device->dev_list, &fs_devices->devices);
135 device->fs_devices = fs_devices;
136 } else if (!device->name || strcmp(device->name, path)) {
137 char *name = strdup(path);
145 if (found_transid > fs_devices->latest_trans) {
146 fs_devices->latest_devid = devid;
147 fs_devices->latest_trans = found_transid;
149 if (fs_devices->lowest_devid > devid) {
150 fs_devices->lowest_devid = devid;
152 *fs_devices_ret = fs_devices;
156 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
158 struct btrfs_fs_devices *seed_devices;
159 struct list_head *cur;
160 struct btrfs_device *device;
162 list_for_each(cur, &fs_devices->devices) {
163 device = list_entry(cur, struct btrfs_device, dev_list);
166 device->writeable = 0;
169 seed_devices = fs_devices->seed;
170 fs_devices->seed = NULL;
172 fs_devices = seed_devices;
179 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
182 struct list_head *head = &fs_devices->devices;
183 struct list_head *cur;
184 struct btrfs_device *device;
187 list_for_each(cur, head) {
188 device = list_entry(cur, struct btrfs_device, dev_list);
190 fd = open(device->name, flags);
196 posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED);
198 if (device->devid == fs_devices->latest_devid)
199 fs_devices->latest_bdev = fd;
200 if (device->devid == fs_devices->lowest_devid)
201 fs_devices->lowest_bdev = fd;
204 device->writeable = 1;
208 btrfs_close_devices(fs_devices);
212 int btrfs_scan_one_device(int fd, const char *path,
213 struct btrfs_fs_devices **fs_devices_ret,
214 u64 *total_devs, u64 super_offset)
216 struct btrfs_super_block *disk_super;
227 disk_super = (struct btrfs_super_block *)buf;
228 ret = btrfs_read_dev_super(fd, disk_super, super_offset);
233 devid = le64_to_cpu(disk_super->dev_item.devid);
234 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
237 *total_devs = btrfs_super_num_devices(disk_super);
238 uuid_unparse(disk_super->fsid, uuidbuf);
240 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
249 * this uses a pretty simple search, the expectation is that it is
250 * called very infrequently and that a given device has a small number
253 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
254 struct btrfs_device *device,
255 struct btrfs_path *path,
256 u64 num_bytes, u64 *start)
258 struct btrfs_key key;
259 struct btrfs_root *root = device->dev_root;
260 struct btrfs_dev_extent *dev_extent = NULL;
263 u64 search_start = 0;
264 u64 search_end = device->total_bytes;
268 struct extent_buffer *l;
273 /* FIXME use last free of some kind */
275 /* we don't want to overwrite the superblock on the drive,
276 * so we make sure to start at an offset of at least 1MB
278 search_start = max((u64)1024 * 1024, search_start);
280 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
281 search_start = max(root->fs_info->alloc_start, search_start);
283 key.objectid = device->devid;
284 key.offset = search_start;
285 key.type = BTRFS_DEV_EXTENT_KEY;
286 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
289 ret = btrfs_previous_item(root, path, 0, key.type);
293 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
296 slot = path->slots[0];
297 if (slot >= btrfs_header_nritems(l)) {
298 ret = btrfs_next_leaf(root, path);
305 if (search_start >= search_end) {
309 *start = search_start;
313 *start = last_byte > search_start ?
314 last_byte : search_start;
315 if (search_end <= *start) {
321 btrfs_item_key_to_cpu(l, &key, slot);
323 if (key.objectid < device->devid)
326 if (key.objectid > device->devid)
329 if (key.offset >= search_start && key.offset > last_byte &&
331 if (last_byte < search_start)
332 last_byte = search_start;
333 hole_size = key.offset - last_byte;
334 if (key.offset > last_byte &&
335 hole_size >= num_bytes) {
340 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
345 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
346 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
352 /* we have to make sure we didn't find an extent that has already
353 * been allocated by the map tree or the original allocation
355 btrfs_release_path(root, path);
356 BUG_ON(*start < search_start);
358 if (*start + num_bytes > search_end) {
362 /* check for pending inserts here */
366 btrfs_release_path(root, path);
370 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
371 struct btrfs_device *device,
372 u64 chunk_tree, u64 chunk_objectid,
374 u64 num_bytes, u64 *start)
377 struct btrfs_path *path;
378 struct btrfs_root *root = device->dev_root;
379 struct btrfs_dev_extent *extent;
380 struct extent_buffer *leaf;
381 struct btrfs_key key;
383 path = btrfs_alloc_path();
387 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
392 key.objectid = device->devid;
394 key.type = BTRFS_DEV_EXTENT_KEY;
395 ret = btrfs_insert_empty_item(trans, root, path, &key,
399 leaf = path->nodes[0];
400 extent = btrfs_item_ptr(leaf, path->slots[0],
401 struct btrfs_dev_extent);
402 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
403 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
404 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
406 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
407 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
410 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
411 btrfs_mark_buffer_dirty(leaf);
413 btrfs_free_path(path);
417 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
419 struct btrfs_path *path;
421 struct btrfs_key key;
422 struct btrfs_chunk *chunk;
423 struct btrfs_key found_key;
425 path = btrfs_alloc_path();
428 key.objectid = objectid;
429 key.offset = (u64)-1;
430 key.type = BTRFS_CHUNK_ITEM_KEY;
432 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
438 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
442 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
444 if (found_key.objectid != objectid)
447 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
449 *offset = found_key.offset +
450 btrfs_chunk_length(path->nodes[0], chunk);
455 btrfs_free_path(path);
459 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
463 struct btrfs_key key;
464 struct btrfs_key found_key;
466 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
467 key.type = BTRFS_DEV_ITEM_KEY;
468 key.offset = (u64)-1;
470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
476 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
481 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
483 *objectid = found_key.offset + 1;
487 btrfs_release_path(root, path);
492 * the device information is stored in the chunk root
493 * the btrfs_device struct should be fully filled in
495 int btrfs_add_device(struct btrfs_trans_handle *trans,
496 struct btrfs_root *root,
497 struct btrfs_device *device)
500 struct btrfs_path *path;
501 struct btrfs_dev_item *dev_item;
502 struct extent_buffer *leaf;
503 struct btrfs_key key;
507 root = root->fs_info->chunk_root;
509 path = btrfs_alloc_path();
513 ret = find_next_devid(root, path, &free_devid);
517 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
518 key.type = BTRFS_DEV_ITEM_KEY;
519 key.offset = free_devid;
521 ret = btrfs_insert_empty_item(trans, root, path, &key,
526 leaf = path->nodes[0];
527 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
529 device->devid = free_devid;
530 btrfs_set_device_id(leaf, dev_item, device->devid);
531 btrfs_set_device_generation(leaf, dev_item, 0);
532 btrfs_set_device_type(leaf, dev_item, device->type);
533 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
534 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
535 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
536 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
537 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
538 btrfs_set_device_group(leaf, dev_item, 0);
539 btrfs_set_device_seek_speed(leaf, dev_item, 0);
540 btrfs_set_device_bandwidth(leaf, dev_item, 0);
541 btrfs_set_device_start_offset(leaf, dev_item, 0);
543 ptr = (unsigned long)btrfs_device_uuid(dev_item);
544 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
545 ptr = (unsigned long)btrfs_device_fsid(dev_item);
546 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
547 btrfs_mark_buffer_dirty(leaf);
551 btrfs_free_path(path);
555 int btrfs_update_device(struct btrfs_trans_handle *trans,
556 struct btrfs_device *device)
559 struct btrfs_path *path;
560 struct btrfs_root *root;
561 struct btrfs_dev_item *dev_item;
562 struct extent_buffer *leaf;
563 struct btrfs_key key;
565 root = device->dev_root->fs_info->chunk_root;
567 path = btrfs_alloc_path();
571 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
572 key.type = BTRFS_DEV_ITEM_KEY;
573 key.offset = device->devid;
575 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
584 leaf = path->nodes[0];
585 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
587 btrfs_set_device_id(leaf, dev_item, device->devid);
588 btrfs_set_device_type(leaf, dev_item, device->type);
589 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
590 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
591 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
592 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
593 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
594 btrfs_mark_buffer_dirty(leaf);
597 btrfs_free_path(path);
601 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
602 struct btrfs_root *root,
603 struct btrfs_key *key,
604 struct btrfs_chunk *chunk, int item_size)
606 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
607 struct btrfs_disk_key disk_key;
611 array_size = btrfs_super_sys_array_size(super_copy);
612 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
615 ptr = super_copy->sys_chunk_array + array_size;
616 btrfs_cpu_key_to_disk(&disk_key, key);
617 memcpy(ptr, &disk_key, sizeof(disk_key));
618 ptr += sizeof(disk_key);
619 memcpy(ptr, chunk, item_size);
620 item_size += sizeof(disk_key);
621 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
625 static u64 div_factor(u64 num, int factor)
633 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
636 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
638 else if (type & BTRFS_BLOCK_GROUP_RAID10)
639 return calc_size * (num_stripes / sub_stripes);
640 else if (type & BTRFS_BLOCK_GROUP_RAID5)
641 return calc_size * (num_stripes - 1);
642 else if (type & BTRFS_BLOCK_GROUP_RAID6)
643 return calc_size * (num_stripes - 2);
645 return calc_size * num_stripes;
649 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
651 /* TODO, add a way to store the preferred stripe size */
655 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
656 struct btrfs_root *extent_root, u64 *start,
657 u64 *num_bytes, u64 type)
660 struct btrfs_fs_info *info = extent_root->fs_info;
661 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
662 struct btrfs_stripe *stripes;
663 struct btrfs_device *device = NULL;
664 struct btrfs_chunk *chunk;
665 struct list_head private_devs;
666 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
667 struct list_head *cur;
668 struct map_lookup *map;
669 int min_stripe_size = 1 * 1024 * 1024;
670 u64 calc_size = 8 * 1024 * 1024;
672 u64 max_chunk_size = 4 * calc_size;
682 int stripe_len = 64 * 1024;
683 struct btrfs_key key;
686 if (list_empty(dev_list)) {
690 if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
691 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
692 BTRFS_BLOCK_GROUP_RAID10 |
693 BTRFS_BLOCK_GROUP_DUP)) {
694 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
695 calc_size = 8 * 1024 * 1024;
696 max_chunk_size = calc_size * 2;
697 min_stripe_size = 1 * 1024 * 1024;
698 } else if (type & BTRFS_BLOCK_GROUP_DATA) {
699 calc_size = 1024 * 1024 * 1024;
700 max_chunk_size = 10 * calc_size;
701 min_stripe_size = 64 * 1024 * 1024;
702 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
703 calc_size = 1024 * 1024 * 1024;
704 max_chunk_size = 4 * calc_size;
705 min_stripe_size = 32 * 1024 * 1024;
708 if (type & BTRFS_BLOCK_GROUP_RAID1) {
709 num_stripes = min_t(u64, 2,
710 btrfs_super_num_devices(&info->super_copy));
715 if (type & BTRFS_BLOCK_GROUP_DUP) {
719 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
720 num_stripes = btrfs_super_num_devices(&info->super_copy);
723 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
724 num_stripes = btrfs_super_num_devices(&info->super_copy);
727 num_stripes &= ~(u32)1;
731 if (type & (BTRFS_BLOCK_GROUP_RAID5)) {
732 num_stripes = btrfs_super_num_devices(&info->super_copy);
736 stripe_len = find_raid56_stripe_len(num_stripes - 1,
737 btrfs_super_stripesize(&info->super_copy));
739 if (type & (BTRFS_BLOCK_GROUP_RAID6)) {
740 num_stripes = btrfs_super_num_devices(&info->super_copy);
744 stripe_len = find_raid56_stripe_len(num_stripes - 2,
745 btrfs_super_stripesize(&info->super_copy));
748 /* we don't want a chunk larger than 10% of the FS */
749 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
750 max_chunk_size = min(percent_max, max_chunk_size);
753 if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
755 calc_size = max_chunk_size;
756 calc_size /= num_stripes;
757 calc_size /= stripe_len;
758 calc_size *= stripe_len;
760 /* we don't want tiny stripes */
761 calc_size = max_t(u64, calc_size, min_stripe_size);
763 calc_size /= stripe_len;
764 calc_size *= stripe_len;
765 INIT_LIST_HEAD(&private_devs);
766 cur = dev_list->next;
769 if (type & BTRFS_BLOCK_GROUP_DUP)
770 min_free = calc_size * 2;
772 min_free = calc_size;
774 /* build a private list of devices we will allocate from */
775 while(index < num_stripes) {
776 device = list_entry(cur, struct btrfs_device, dev_list);
777 avail = device->total_bytes - device->bytes_used;
779 if (avail >= min_free) {
780 list_move_tail(&device->dev_list, &private_devs);
782 if (type & BTRFS_BLOCK_GROUP_DUP)
784 } else if (avail > max_avail)
789 if (index < num_stripes) {
790 list_splice(&private_devs, dev_list);
791 if (index >= min_stripes) {
793 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
794 num_stripes /= sub_stripes;
795 num_stripes *= sub_stripes;
800 if (!looped && max_avail > 0) {
802 calc_size = max_avail;
807 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
811 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
812 key.type = BTRFS_CHUNK_ITEM_KEY;
815 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
819 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
825 stripes = &chunk->stripe;
826 *num_bytes = chunk_bytes_by_type(type, calc_size,
827 num_stripes, sub_stripes);
829 while(index < num_stripes) {
830 struct btrfs_stripe *stripe;
831 BUG_ON(list_empty(&private_devs));
832 cur = private_devs.next;
833 device = list_entry(cur, struct btrfs_device, dev_list);
835 /* loop over this device again if we're doing a dup group */
836 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
837 (index == num_stripes - 1))
838 list_move_tail(&device->dev_list, dev_list);
840 ret = btrfs_alloc_dev_extent(trans, device,
841 info->chunk_root->root_key.objectid,
842 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
843 calc_size, &dev_offset);
846 device->bytes_used += calc_size;
847 ret = btrfs_update_device(trans, device);
850 map->stripes[index].dev = device;
851 map->stripes[index].physical = dev_offset;
852 stripe = stripes + index;
853 btrfs_set_stack_stripe_devid(stripe, device->devid);
854 btrfs_set_stack_stripe_offset(stripe, dev_offset);
855 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
858 BUG_ON(!list_empty(&private_devs));
860 /* key was set above */
861 btrfs_set_stack_chunk_length(chunk, *num_bytes);
862 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
863 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
864 btrfs_set_stack_chunk_type(chunk, type);
865 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
866 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
867 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
868 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
869 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
870 map->sector_size = extent_root->sectorsize;
871 map->stripe_len = stripe_len;
872 map->io_align = stripe_len;
873 map->io_width = stripe_len;
875 map->num_stripes = num_stripes;
876 map->sub_stripes = sub_stripes;
878 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
879 btrfs_chunk_item_size(num_stripes));
881 *start = key.offset;;
883 map->ce.start = key.offset;
884 map->ce.size = *num_bytes;
886 ret = insert_existing_cache_extent(
887 &extent_root->fs_info->mapping_tree.cache_tree,
891 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
892 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
893 chunk, btrfs_chunk_item_size(num_stripes));
901 int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
902 struct btrfs_root *extent_root, u64 *start,
903 u64 num_bytes, u64 type)
906 struct btrfs_fs_info *info = extent_root->fs_info;
907 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
908 struct btrfs_stripe *stripes;
909 struct btrfs_device *device = NULL;
910 struct btrfs_chunk *chunk;
911 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
912 struct list_head *cur;
913 struct map_lookup *map;
914 u64 calc_size = 8 * 1024 * 1024;
919 int stripe_len = 64 * 1024;
920 struct btrfs_key key;
922 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
923 key.type = BTRFS_CHUNK_ITEM_KEY;
924 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
929 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
933 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
939 stripes = &chunk->stripe;
940 calc_size = num_bytes;
943 cur = dev_list->next;
944 device = list_entry(cur, struct btrfs_device, dev_list);
946 while (index < num_stripes) {
947 struct btrfs_stripe *stripe;
949 ret = btrfs_alloc_dev_extent(trans, device,
950 info->chunk_root->root_key.objectid,
951 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
952 calc_size, &dev_offset);
955 device->bytes_used += calc_size;
956 ret = btrfs_update_device(trans, device);
959 map->stripes[index].dev = device;
960 map->stripes[index].physical = dev_offset;
961 stripe = stripes + index;
962 btrfs_set_stack_stripe_devid(stripe, device->devid);
963 btrfs_set_stack_stripe_offset(stripe, dev_offset);
964 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
968 /* key was set above */
969 btrfs_set_stack_chunk_length(chunk, num_bytes);
970 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
971 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
972 btrfs_set_stack_chunk_type(chunk, type);
973 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
974 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
975 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
976 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
977 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
978 map->sector_size = extent_root->sectorsize;
979 map->stripe_len = stripe_len;
980 map->io_align = stripe_len;
981 map->io_width = stripe_len;
983 map->num_stripes = num_stripes;
984 map->sub_stripes = sub_stripes;
986 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
987 btrfs_chunk_item_size(num_stripes));
991 map->ce.start = key.offset;
992 map->ce.size = num_bytes;
994 ret = insert_existing_cache_extent(
995 &extent_root->fs_info->mapping_tree.cache_tree,
1003 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
1005 cache_tree_init(&tree->cache_tree);
1008 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1010 struct cache_extent *ce;
1011 struct map_lookup *map;
1014 ce = find_first_cache_extent(&map_tree->cache_tree, logical);
1016 BUG_ON(ce->start > logical || ce->start + ce->size < logical);
1017 map = container_of(ce, struct map_lookup, ce);
1019 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1020 ret = map->num_stripes;
1021 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1022 ret = map->sub_stripes;
1023 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
1025 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1032 int btrfs_next_metadata(struct btrfs_mapping_tree *map_tree, u64 *logical,
1035 struct cache_extent *ce;
1036 struct map_lookup *map;
1038 ce = find_first_cache_extent(&map_tree->cache_tree, *logical);
1041 ce = next_cache_extent(ce);
1045 map = container_of(ce, struct map_lookup, ce);
1046 if (map->type & BTRFS_BLOCK_GROUP_METADATA) {
1047 *logical = ce->start;
1056 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
1057 u64 chunk_start, u64 physical, u64 devid,
1058 u64 **logical, int *naddrs, int *stripe_len)
1060 struct cache_extent *ce;
1061 struct map_lookup *map;
1069 ce = find_first_cache_extent(&map_tree->cache_tree, chunk_start);
1071 map = container_of(ce, struct map_lookup, ce);
1074 rmap_len = map->stripe_len;
1075 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1076 length = ce->size / (map->num_stripes / map->sub_stripes);
1077 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1078 length = ce->size / map->num_stripes;
1079 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1080 BTRFS_BLOCK_GROUP_RAID6)) {
1081 length = ce->size / nr_data_stripes(map);
1082 rmap_len = map->stripe_len * nr_data_stripes(map);
1085 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1087 for (i = 0; i < map->num_stripes; i++) {
1088 if (devid && map->stripes[i].dev->devid != devid)
1090 if (map->stripes[i].physical > physical ||
1091 map->stripes[i].physical + length <= physical)
1094 stripe_nr = (physical - map->stripes[i].physical) /
1097 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1098 stripe_nr = (stripe_nr * map->num_stripes + i) /
1100 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1101 stripe_nr = stripe_nr * map->num_stripes + i;
1102 } /* else if RAID[56], multiply by nr_data_stripes().
1103 * Alternatively, just use rmap_len below instead of
1104 * map->stripe_len */
1106 bytenr = ce->start + stripe_nr * rmap_len;
1107 for (j = 0; j < nr; j++) {
1108 if (buf[j] == bytenr)
1117 *stripe_len = rmap_len;
1122 static inline int parity_smaller(u64 a, u64 b)
1127 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
1128 static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
1130 struct btrfs_bio_stripe s;
1137 for (i = 0; i < bbio->num_stripes - 1; i++) {
1138 if (parity_smaller(raid_map[i], raid_map[i+1])) {
1139 s = bbio->stripes[i];
1141 bbio->stripes[i] = bbio->stripes[i+1];
1142 raid_map[i] = raid_map[i+1];
1143 bbio->stripes[i+1] = s;
1151 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1152 u64 logical, u64 *length,
1153 struct btrfs_multi_bio **multi_ret, int mirror_num,
1156 return __btrfs_map_block(map_tree, rw, logical, length, NULL,
1157 multi_ret, mirror_num, raid_map_ret);
1160 int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1161 u64 logical, u64 *length, u64 *type,
1162 struct btrfs_multi_bio **multi_ret, int mirror_num,
1165 struct cache_extent *ce;
1166 struct map_lookup *map;
1170 u64 *raid_map = NULL;
1171 int stripes_allocated = 8;
1172 int stripes_required = 1;
1175 struct btrfs_multi_bio *multi = NULL;
1177 if (multi_ret && rw == READ) {
1178 stripes_allocated = 1;
1181 ce = find_first_cache_extent(&map_tree->cache_tree, logical);
1187 if (ce->start > logical || ce->start + ce->size < logical) {
1194 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1199 map = container_of(ce, struct map_lookup, ce);
1200 offset = logical - ce->start;
1203 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1204 BTRFS_BLOCK_GROUP_DUP)) {
1205 stripes_required = map->num_stripes;
1206 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1207 stripes_required = map->sub_stripes;
1210 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
1211 && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
1212 /* RAID[56] write or recovery. Return all stripes */
1213 stripes_required = map->num_stripes;
1215 /* Only allocate the map if we've already got a large enough multi_ret */
1216 if (stripes_allocated >= stripes_required) {
1217 raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1225 /* if our multi bio struct is too small, back off and try again */
1226 if (multi_ret && stripes_allocated < stripes_required) {
1227 stripes_allocated = stripes_required;
1234 * stripe_nr counts the total number of stripes we have to stride
1235 * to get to this block
1237 stripe_nr = stripe_nr / map->stripe_len;
1239 stripe_offset = stripe_nr * map->stripe_len;
1240 BUG_ON(offset < stripe_offset);
1242 /* stripe_offset is the offset of this block in its stripe*/
1243 stripe_offset = offset - stripe_offset;
1245 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1246 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
1247 BTRFS_BLOCK_GROUP_RAID10 |
1248 BTRFS_BLOCK_GROUP_DUP)) {
1249 /* we limit the length of each bio to what fits in a stripe */
1250 *length = min_t(u64, ce->size - offset,
1251 map->stripe_len - stripe_offset);
1253 *length = ce->size - offset;
1259 multi->num_stripes = 1;
1261 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1263 multi->num_stripes = map->num_stripes;
1264 else if (mirror_num)
1265 stripe_index = mirror_num - 1;
1267 stripe_index = stripe_nr % map->num_stripes;
1268 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1269 int factor = map->num_stripes / map->sub_stripes;
1271 stripe_index = stripe_nr % factor;
1272 stripe_index *= map->sub_stripes;
1275 multi->num_stripes = map->sub_stripes;
1276 else if (mirror_num)
1277 stripe_index += mirror_num - 1;
1279 stripe_nr = stripe_nr / factor;
1280 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1282 multi->num_stripes = map->num_stripes;
1283 else if (mirror_num)
1284 stripe_index = mirror_num - 1;
1285 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1286 BTRFS_BLOCK_GROUP_RAID6)) {
1291 u64 raid56_full_stripe_start;
1292 u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
1295 * align the start of our data stripe in the logical
1298 raid56_full_stripe_start = offset / full_stripe_len;
1299 raid56_full_stripe_start *= full_stripe_len;
1301 /* get the data stripe number */
1302 stripe_nr = raid56_full_stripe_start / map->stripe_len;
1303 stripe_nr = stripe_nr / nr_data_stripes(map);
1305 /* Work out the disk rotation on this stripe-set */
1306 rot = stripe_nr % map->num_stripes;
1308 /* Fill in the logical address of each stripe */
1309 tmp = stripe_nr * nr_data_stripes(map);
1311 for (i = 0; i < nr_data_stripes(map); i++)
1312 raid_map[(i+rot) % map->num_stripes] =
1313 ce->start + (tmp + i) * map->stripe_len;
1315 raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
1316 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1317 raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
1319 *length = map->stripe_len;
1322 multi->num_stripes = map->num_stripes;
1324 stripe_index = stripe_nr % nr_data_stripes(map);
1325 stripe_nr = stripe_nr / nr_data_stripes(map);
1328 * Mirror #0 or #1 means the original data block.
1329 * Mirror #2 is RAID5 parity block.
1330 * Mirror #3 is RAID6 Q block.
1333 stripe_index = nr_data_stripes(map) + mirror_num - 2;
1335 /* We distribute the parity blocks across stripes */
1336 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
1340 * after this do_div call, stripe_nr is the number of stripes
1341 * on this device we have to walk to find the data, and
1342 * stripe_index is the number of our device in the stripe array
1344 stripe_index = stripe_nr % map->num_stripes;
1345 stripe_nr = stripe_nr / map->num_stripes;
1347 BUG_ON(stripe_index >= map->num_stripes);
1349 for (i = 0; i < multi->num_stripes; i++) {
1350 multi->stripes[i].physical =
1351 map->stripes[stripe_index].physical + stripe_offset +
1352 stripe_nr * map->stripe_len;
1353 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1362 sort_parity_stripes(multi, raid_map);
1363 *raid_map_ret = raid_map;
1369 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1372 struct btrfs_device *device;
1373 struct btrfs_fs_devices *cur_devices;
1375 cur_devices = root->fs_info->fs_devices;
1376 while (cur_devices) {
1378 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1379 device = __find_device(&cur_devices->devices,
1384 cur_devices = cur_devices->seed;
1389 struct btrfs_device *btrfs_find_device_by_devid(struct btrfs_root *root,
1390 u64 devid, int instance)
1392 struct list_head *head = &root->fs_info->fs_devices->devices;
1393 struct btrfs_device *dev;
1394 struct list_head *cur;
1397 list_for_each(cur, head) {
1398 dev = list_entry(cur, struct btrfs_device, dev_list);
1399 if (dev->devid == devid && num_found++ == instance)
1405 int btrfs_bootstrap_super_map(struct btrfs_mapping_tree *map_tree,
1406 struct btrfs_fs_devices *fs_devices)
1408 struct map_lookup *map;
1409 u64 logical = BTRFS_SUPER_INFO_OFFSET;
1410 u64 length = BTRFS_SUPER_INFO_SIZE;
1411 int num_stripes = 0;
1412 int sub_stripes = 0;
1415 struct list_head *cur;
1417 list_for_each(cur, &fs_devices->devices) {
1420 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1424 map->ce.start = logical;
1425 map->ce.size = length;
1426 map->num_stripes = num_stripes;
1427 map->sub_stripes = sub_stripes;
1428 map->io_width = length;
1429 map->io_align = length;
1430 map->sector_size = length;
1431 map->stripe_len = length;
1432 map->type = BTRFS_BLOCK_GROUP_RAID1;
1435 list_for_each(cur, &fs_devices->devices) {
1436 struct btrfs_device *device = list_entry(cur,
1437 struct btrfs_device,
1439 map->stripes[i].physical = logical;
1440 map->stripes[i].dev = device;
1443 ret = insert_existing_cache_extent(&map_tree->cache_tree, &map->ce);
1444 if (ret == -EEXIST) {
1445 struct cache_extent *old;
1446 struct map_lookup *old_map;
1447 old = find_cache_extent(&map_tree->cache_tree, logical, length);
1448 old_map = container_of(old, struct map_lookup, ce);
1449 remove_cache_extent(&map_tree->cache_tree, old);
1451 ret = insert_existing_cache_extent(&map_tree->cache_tree,
1458 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
1460 struct cache_extent *ce;
1461 struct map_lookup *map;
1462 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1466 ce = find_first_cache_extent(&map_tree->cache_tree, chunk_offset);
1469 map = container_of(ce, struct map_lookup, ce);
1470 for (i = 0; i < map->num_stripes; i++) {
1471 if (!map->stripes[i].dev->writeable) {
1480 static struct btrfs_device *fill_missing_device(u64 devid)
1482 struct btrfs_device *device;
1484 device = kzalloc(sizeof(*device), GFP_NOFS);
1485 device->devid = devid;
1490 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1491 struct extent_buffer *leaf,
1492 struct btrfs_chunk *chunk)
1494 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1495 struct map_lookup *map;
1496 struct cache_extent *ce;
1500 u8 uuid[BTRFS_UUID_SIZE];
1505 logical = key->offset;
1506 length = btrfs_chunk_length(leaf, chunk);
1508 ce = find_first_cache_extent(&map_tree->cache_tree, logical);
1510 /* already mapped? */
1511 if (ce && ce->start <= logical && ce->start + ce->size > logical) {
1515 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1516 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1520 map->ce.start = logical;
1521 map->ce.size = length;
1522 map->num_stripes = num_stripes;
1523 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1524 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1525 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1526 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1527 map->type = btrfs_chunk_type(leaf, chunk);
1528 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1530 for (i = 0; i < num_stripes; i++) {
1531 map->stripes[i].physical =
1532 btrfs_stripe_offset_nr(leaf, chunk, i);
1533 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1534 read_extent_buffer(leaf, uuid, (unsigned long)
1535 btrfs_stripe_dev_uuid_nr(chunk, i),
1537 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
1539 if (!map->stripes[i].dev) {
1540 map->stripes[i].dev = fill_missing_device(devid);
1541 printf("warning, device %llu is missing\n",
1542 (unsigned long long)devid);
1546 ret = insert_existing_cache_extent(&map_tree->cache_tree, &map->ce);
1552 static int fill_device_from_item(struct extent_buffer *leaf,
1553 struct btrfs_dev_item *dev_item,
1554 struct btrfs_device *device)
1558 device->devid = btrfs_device_id(leaf, dev_item);
1559 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1560 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1561 device->type = btrfs_device_type(leaf, dev_item);
1562 device->io_align = btrfs_device_io_align(leaf, dev_item);
1563 device->io_width = btrfs_device_io_width(leaf, dev_item);
1564 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1566 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1567 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1572 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
1574 struct btrfs_fs_devices *fs_devices;
1577 fs_devices = root->fs_info->fs_devices->seed;
1578 while (fs_devices) {
1579 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1583 fs_devices = fs_devices->seed;
1586 fs_devices = find_fsid(fsid);
1592 ret = btrfs_open_devices(fs_devices, O_RDONLY);
1596 fs_devices->seed = root->fs_info->fs_devices->seed;
1597 root->fs_info->fs_devices->seed = fs_devices;
1602 static int read_one_dev(struct btrfs_root *root,
1603 struct extent_buffer *leaf,
1604 struct btrfs_dev_item *dev_item)
1606 struct btrfs_device *device;
1609 u8 fs_uuid[BTRFS_UUID_SIZE];
1610 u8 dev_uuid[BTRFS_UUID_SIZE];
1612 devid = btrfs_device_id(leaf, dev_item);
1613 read_extent_buffer(leaf, dev_uuid,
1614 (unsigned long)btrfs_device_uuid(dev_item),
1616 read_extent_buffer(leaf, fs_uuid,
1617 (unsigned long)btrfs_device_fsid(dev_item),
1620 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
1621 ret = open_seed_devices(root, fs_uuid);
1626 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1628 printk("warning devid %llu not found already\n",
1629 (unsigned long long)devid);
1630 device = kmalloc(sizeof(*device), GFP_NOFS);
1633 device->total_ios = 0;
1634 list_add(&device->dev_list,
1635 &root->fs_info->fs_devices->devices);
1638 fill_device_from_item(leaf, dev_item, device);
1639 device->dev_root = root->fs_info->dev_root;
1643 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1645 struct btrfs_dev_item *dev_item;
1647 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1649 return read_one_dev(root, buf, dev_item);
1652 int btrfs_read_sys_array(struct btrfs_root *root)
1654 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1655 struct extent_buffer *sb;
1656 struct btrfs_disk_key *disk_key;
1657 struct btrfs_chunk *chunk;
1658 struct btrfs_key key;
1663 unsigned long sb_ptr;
1667 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
1668 BTRFS_SUPER_INFO_SIZE);
1671 btrfs_set_buffer_uptodate(sb);
1672 write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
1673 array_size = btrfs_super_sys_array_size(super_copy);
1676 * we do this loop twice, once for the device items and
1677 * once for all of the chunks. This way there are device
1678 * structs filled in for every chunk
1680 ptr = super_copy->sys_chunk_array;
1681 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1684 while (cur < array_size) {
1685 disk_key = (struct btrfs_disk_key *)ptr;
1686 btrfs_disk_key_to_cpu(&key, disk_key);
1688 len = sizeof(*disk_key);
1693 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1694 chunk = (struct btrfs_chunk *)sb_ptr;
1695 ret = read_one_chunk(root, &key, sb, chunk);
1698 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1699 len = btrfs_chunk_item_size(num_stripes);
1707 free_extent_buffer(sb);
1711 int btrfs_read_chunk_tree(struct btrfs_root *root)
1713 struct btrfs_path *path;
1714 struct extent_buffer *leaf;
1715 struct btrfs_key key;
1716 struct btrfs_key found_key;
1720 root = root->fs_info->chunk_root;
1722 path = btrfs_alloc_path();
1726 /* first we search for all of the device items, and then we
1727 * read in all of the chunk items. This way we can create chunk
1728 * mappings that reference all of the devices that are afound
1730 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1734 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1736 leaf = path->nodes[0];
1737 slot = path->slots[0];
1738 if (slot >= btrfs_header_nritems(leaf)) {
1739 ret = btrfs_next_leaf(root, path);
1746 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1747 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1748 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1750 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1751 struct btrfs_dev_item *dev_item;
1752 dev_item = btrfs_item_ptr(leaf, slot,
1753 struct btrfs_dev_item);
1754 ret = read_one_dev(root, leaf, dev_item);
1757 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1758 struct btrfs_chunk *chunk;
1759 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1760 ret = read_one_chunk(root, &found_key, leaf, chunk);
1765 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1767 btrfs_release_path(root, path);
1773 btrfs_free_path(path);
1777 struct list_head *btrfs_scanned_uuids(void)