2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #define _XOPEN_SOURCE 600
22 #include <sys/types.h>
24 #include <uuid/uuid.h>
29 #include "transaction.h"
30 #include "print-tree.h"
35 struct btrfs_device *dev;
39 static inline int nr_parity_stripes(struct map_lookup *map)
41 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
43 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
49 static inline int nr_data_stripes(struct map_lookup *map)
51 return map->num_stripes - nr_parity_stripes(map);
54 #define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
56 static LIST_HEAD(fs_uuids);
58 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
61 struct btrfs_device *dev;
62 struct list_head *cur;
64 list_for_each(cur, head) {
65 dev = list_entry(cur, struct btrfs_device, dev_list);
66 if (dev->devid == devid &&
67 !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
74 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
76 struct list_head *cur;
77 struct btrfs_fs_devices *fs_devices;
79 list_for_each(cur, &fs_uuids) {
80 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
81 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
87 static int device_list_add(const char *path,
88 struct btrfs_super_block *disk_super,
89 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
91 struct btrfs_device *device;
92 struct btrfs_fs_devices *fs_devices;
93 u64 found_transid = btrfs_super_generation(disk_super);
95 fs_devices = find_fsid(disk_super->fsid);
97 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
100 INIT_LIST_HEAD(&fs_devices->devices);
101 list_add(&fs_devices->list, &fs_uuids);
102 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
103 fs_devices->latest_devid = devid;
104 fs_devices->latest_trans = found_transid;
105 fs_devices->lowest_devid = (u64)-1;
108 device = __find_device(&fs_devices->devices, devid,
109 disk_super->dev_item.uuid);
112 device = kzalloc(sizeof(*device), GFP_NOFS);
114 /* we can safely leave the fs_devices entry around */
118 device->devid = devid;
119 memcpy(device->uuid, disk_super->dev_item.uuid,
121 device->name = kstrdup(path, GFP_NOFS);
126 device->label = kstrdup(disk_super->label, GFP_NOFS);
127 if (!device->label) {
132 device->total_devs = btrfs_super_num_devices(disk_super);
133 device->super_bytes_used = btrfs_super_bytes_used(disk_super);
134 device->total_bytes =
135 btrfs_stack_device_total_bytes(&disk_super->dev_item);
137 btrfs_stack_device_bytes_used(&disk_super->dev_item);
138 list_add(&device->dev_list, &fs_devices->devices);
139 device->fs_devices = fs_devices;
140 } else if (!device->name || strcmp(device->name, path)) {
141 char *name = strdup(path);
149 if (found_transid > fs_devices->latest_trans) {
150 fs_devices->latest_devid = devid;
151 fs_devices->latest_trans = found_transid;
153 if (fs_devices->lowest_devid > devid) {
154 fs_devices->lowest_devid = devid;
156 *fs_devices_ret = fs_devices;
160 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
162 struct btrfs_fs_devices *seed_devices;
163 struct btrfs_device *device;
166 while (!list_empty(&fs_devices->devices)) {
167 device = list_entry(fs_devices->devices.next,
168 struct btrfs_device, dev_list);
169 if (device->fd != -1) {
171 if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED))
172 fprintf(stderr, "Warning, could not drop caches\n");
176 device->writeable = 0;
177 list_del(&device->dev_list);
178 /* free the memory */
184 seed_devices = fs_devices->seed;
185 fs_devices->seed = NULL;
187 fs_devices = seed_devices;
195 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
198 struct list_head *head = &fs_devices->devices;
199 struct list_head *cur;
200 struct btrfs_device *device;
203 list_for_each(cur, head) {
204 device = list_entry(cur, struct btrfs_device, dev_list);
206 printk("no name for device %llu, skip it now\n", device->devid);
210 fd = open(device->name, flags);
216 if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED))
217 fprintf(stderr, "Warning, could not drop caches\n");
219 if (device->devid == fs_devices->latest_devid)
220 fs_devices->latest_bdev = fd;
221 if (device->devid == fs_devices->lowest_devid)
222 fs_devices->lowest_bdev = fd;
225 device->writeable = 1;
229 btrfs_close_devices(fs_devices);
233 int btrfs_scan_one_device(int fd, const char *path,
234 struct btrfs_fs_devices **fs_devices_ret,
235 u64 *total_devs, u64 super_offset)
237 struct btrfs_super_block *disk_super;
247 disk_super = (struct btrfs_super_block *)buf;
248 ret = btrfs_read_dev_super(fd, disk_super, super_offset);
253 devid = btrfs_stack_device_id(&disk_super->dev_item);
254 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
257 *total_devs = btrfs_super_num_devices(disk_super);
259 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
268 * this uses a pretty simple search, the expectation is that it is
269 * called very infrequently and that a given device has a small number
272 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
273 struct btrfs_device *device,
274 struct btrfs_path *path,
275 u64 num_bytes, u64 *start)
277 struct btrfs_key key;
278 struct btrfs_root *root = device->dev_root;
279 struct btrfs_dev_extent *dev_extent = NULL;
282 u64 search_start = root->fs_info->alloc_start;
283 u64 search_end = device->total_bytes;
287 struct extent_buffer *l;
292 /* FIXME use last free of some kind */
294 /* we don't want to overwrite the superblock on the drive,
295 * so we make sure to start at an offset of at least 1MB
297 search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
299 if (search_start >= search_end) {
304 key.objectid = device->devid;
305 key.offset = search_start;
306 key.type = BTRFS_DEV_EXTENT_KEY;
307 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
310 ret = btrfs_previous_item(root, path, 0, key.type);
314 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
317 slot = path->slots[0];
318 if (slot >= btrfs_header_nritems(l)) {
319 ret = btrfs_next_leaf(root, path);
326 if (search_start >= search_end) {
330 *start = search_start;
334 *start = last_byte > search_start ?
335 last_byte : search_start;
336 if (search_end <= *start) {
342 btrfs_item_key_to_cpu(l, &key, slot);
344 if (key.objectid < device->devid)
347 if (key.objectid > device->devid)
350 if (key.offset >= search_start && key.offset > last_byte &&
352 if (last_byte < search_start)
353 last_byte = search_start;
354 hole_size = key.offset - last_byte;
355 if (key.offset > last_byte &&
356 hole_size >= num_bytes) {
361 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
366 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
367 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
373 /* we have to make sure we didn't find an extent that has already
374 * been allocated by the map tree or the original allocation
376 btrfs_release_path(path);
377 BUG_ON(*start < search_start);
379 if (*start + num_bytes > search_end) {
383 /* check for pending inserts here */
387 btrfs_release_path(path);
391 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
392 struct btrfs_device *device,
393 u64 chunk_tree, u64 chunk_objectid,
395 u64 num_bytes, u64 *start)
398 struct btrfs_path *path;
399 struct btrfs_root *root = device->dev_root;
400 struct btrfs_dev_extent *extent;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
404 path = btrfs_alloc_path();
408 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
413 key.objectid = device->devid;
415 key.type = BTRFS_DEV_EXTENT_KEY;
416 ret = btrfs_insert_empty_item(trans, root, path, &key,
420 leaf = path->nodes[0];
421 extent = btrfs_item_ptr(leaf, path->slots[0],
422 struct btrfs_dev_extent);
423 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
424 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
425 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
427 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
428 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
431 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
432 btrfs_mark_buffer_dirty(leaf);
434 btrfs_free_path(path);
438 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
440 struct btrfs_path *path;
442 struct btrfs_key key;
443 struct btrfs_chunk *chunk;
444 struct btrfs_key found_key;
446 path = btrfs_alloc_path();
449 key.objectid = objectid;
450 key.offset = (u64)-1;
451 key.type = BTRFS_CHUNK_ITEM_KEY;
453 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
459 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
463 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
465 if (found_key.objectid != objectid)
468 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
470 *offset = found_key.offset +
471 btrfs_chunk_length(path->nodes[0], chunk);
476 btrfs_free_path(path);
480 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
484 struct btrfs_key key;
485 struct btrfs_key found_key;
487 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
488 key.type = BTRFS_DEV_ITEM_KEY;
489 key.offset = (u64)-1;
491 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
497 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
502 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
504 *objectid = found_key.offset + 1;
508 btrfs_release_path(path);
513 * the device information is stored in the chunk root
514 * the btrfs_device struct should be fully filled in
516 int btrfs_add_device(struct btrfs_trans_handle *trans,
517 struct btrfs_root *root,
518 struct btrfs_device *device)
521 struct btrfs_path *path;
522 struct btrfs_dev_item *dev_item;
523 struct extent_buffer *leaf;
524 struct btrfs_key key;
528 root = root->fs_info->chunk_root;
530 path = btrfs_alloc_path();
534 ret = find_next_devid(root, path, &free_devid);
538 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
539 key.type = BTRFS_DEV_ITEM_KEY;
540 key.offset = free_devid;
542 ret = btrfs_insert_empty_item(trans, root, path, &key,
547 leaf = path->nodes[0];
548 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
550 device->devid = free_devid;
551 btrfs_set_device_id(leaf, dev_item, device->devid);
552 btrfs_set_device_generation(leaf, dev_item, 0);
553 btrfs_set_device_type(leaf, dev_item, device->type);
554 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
555 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
556 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
557 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
558 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
559 btrfs_set_device_group(leaf, dev_item, 0);
560 btrfs_set_device_seek_speed(leaf, dev_item, 0);
561 btrfs_set_device_bandwidth(leaf, dev_item, 0);
562 btrfs_set_device_start_offset(leaf, dev_item, 0);
564 ptr = (unsigned long)btrfs_device_uuid(dev_item);
565 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
566 ptr = (unsigned long)btrfs_device_fsid(dev_item);
567 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
568 btrfs_mark_buffer_dirty(leaf);
572 btrfs_free_path(path);
576 int btrfs_update_device(struct btrfs_trans_handle *trans,
577 struct btrfs_device *device)
580 struct btrfs_path *path;
581 struct btrfs_root *root;
582 struct btrfs_dev_item *dev_item;
583 struct extent_buffer *leaf;
584 struct btrfs_key key;
586 root = device->dev_root->fs_info->chunk_root;
588 path = btrfs_alloc_path();
592 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
593 key.type = BTRFS_DEV_ITEM_KEY;
594 key.offset = device->devid;
596 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
605 leaf = path->nodes[0];
606 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
608 btrfs_set_device_id(leaf, dev_item, device->devid);
609 btrfs_set_device_type(leaf, dev_item, device->type);
610 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
611 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
612 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
613 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
614 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
615 btrfs_mark_buffer_dirty(leaf);
618 btrfs_free_path(path);
622 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
623 struct btrfs_root *root,
624 struct btrfs_key *key,
625 struct btrfs_chunk *chunk, int item_size)
627 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
628 struct btrfs_disk_key disk_key;
632 array_size = btrfs_super_sys_array_size(super_copy);
633 if (array_size + item_size + sizeof(disk_key)
634 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
637 ptr = super_copy->sys_chunk_array + array_size;
638 btrfs_cpu_key_to_disk(&disk_key, key);
639 memcpy(ptr, &disk_key, sizeof(disk_key));
640 ptr += sizeof(disk_key);
641 memcpy(ptr, chunk, item_size);
642 item_size += sizeof(disk_key);
643 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
647 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
650 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
652 else if (type & BTRFS_BLOCK_GROUP_RAID10)
653 return calc_size * (num_stripes / sub_stripes);
654 else if (type & BTRFS_BLOCK_GROUP_RAID5)
655 return calc_size * (num_stripes - 1);
656 else if (type & BTRFS_BLOCK_GROUP_RAID6)
657 return calc_size * (num_stripes - 2);
659 return calc_size * num_stripes;
663 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
665 /* TODO, add a way to store the preferred stripe size */
666 return BTRFS_STRIPE_LEN;
670 * btrfs_device_avail_bytes - count bytes available for alloc_chunk
672 * It is not equal to "device->total_bytes - device->bytes_used".
673 * We do not allocate any chunk in 1M at beginning of device, and not
674 * allowed to allocate any chunk before alloc_start if it is specified.
675 * So search holes from max(1M, alloc_start) to device->total_bytes.
677 static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans,
678 struct btrfs_device *device,
681 struct btrfs_path *path;
682 struct btrfs_root *root = device->dev_root;
683 struct btrfs_key key;
684 struct btrfs_dev_extent *dev_extent = NULL;
685 struct extent_buffer *l;
686 u64 search_start = root->fs_info->alloc_start;
687 u64 search_end = device->total_bytes;
693 search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
695 path = btrfs_alloc_path();
699 key.objectid = device->devid;
700 key.offset = root->fs_info->alloc_start;
701 key.type = BTRFS_DEV_EXTENT_KEY;
704 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
707 ret = btrfs_previous_item(root, path, 0, key.type);
713 slot = path->slots[0];
714 if (slot >= btrfs_header_nritems(l)) {
715 ret = btrfs_next_leaf(root, path);
722 btrfs_item_key_to_cpu(l, &key, slot);
724 if (key.objectid < device->devid)
726 if (key.objectid > device->devid)
728 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
730 if (key.offset > search_end)
732 if (key.offset > search_start)
733 free_bytes += key.offset - search_start;
735 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
736 extent_end = key.offset + btrfs_dev_extent_length(l,
738 if (extent_end > search_start)
739 search_start = extent_end;
740 if (search_start > search_end)
747 if (search_start < search_end)
748 free_bytes += search_end - search_start;
750 *avail_bytes = free_bytes;
753 btrfs_free_path(path);
757 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
758 - sizeof(struct btrfs_item) \
759 - sizeof(struct btrfs_chunk)) \
760 / sizeof(struct btrfs_stripe) + 1)
762 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
763 - 2 * sizeof(struct btrfs_disk_key) \
764 - 2 * sizeof(struct btrfs_chunk)) \
765 / sizeof(struct btrfs_stripe) + 1)
767 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
768 struct btrfs_root *extent_root, u64 *start,
769 u64 *num_bytes, u64 type)
772 struct btrfs_fs_info *info = extent_root->fs_info;
773 struct btrfs_root *chunk_root = info->chunk_root;
774 struct btrfs_stripe *stripes;
775 struct btrfs_device *device = NULL;
776 struct btrfs_chunk *chunk;
777 struct list_head private_devs;
778 struct list_head *dev_list = &info->fs_devices->devices;
779 struct list_head *cur;
780 struct map_lookup *map;
781 int min_stripe_size = 1 * 1024 * 1024;
782 u64 calc_size = 8 * 1024 * 1024;
784 u64 max_chunk_size = 4 * calc_size;
795 int stripe_len = BTRFS_STRIPE_LEN;
796 struct btrfs_key key;
799 if (list_empty(dev_list)) {
803 if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
804 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
805 BTRFS_BLOCK_GROUP_RAID10 |
806 BTRFS_BLOCK_GROUP_DUP)) {
807 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
808 calc_size = 8 * 1024 * 1024;
809 max_chunk_size = calc_size * 2;
810 min_stripe_size = 1 * 1024 * 1024;
811 max_stripes = BTRFS_MAX_DEVS_SYS_CHUNK;
812 } else if (type & BTRFS_BLOCK_GROUP_DATA) {
813 calc_size = 1024 * 1024 * 1024;
814 max_chunk_size = 10 * calc_size;
815 min_stripe_size = 64 * 1024 * 1024;
816 max_stripes = BTRFS_MAX_DEVS(chunk_root);
817 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
818 calc_size = 1024 * 1024 * 1024;
819 max_chunk_size = 4 * calc_size;
820 min_stripe_size = 32 * 1024 * 1024;
821 max_stripes = BTRFS_MAX_DEVS(chunk_root);
824 if (type & BTRFS_BLOCK_GROUP_RAID1) {
825 num_stripes = min_t(u64, 2,
826 btrfs_super_num_devices(info->super_copy));
831 if (type & BTRFS_BLOCK_GROUP_DUP) {
835 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
836 num_stripes = btrfs_super_num_devices(info->super_copy);
837 if (num_stripes > max_stripes)
838 num_stripes = max_stripes;
841 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
842 num_stripes = btrfs_super_num_devices(info->super_copy);
843 if (num_stripes > max_stripes)
844 num_stripes = max_stripes;
847 num_stripes &= ~(u32)1;
851 if (type & (BTRFS_BLOCK_GROUP_RAID5)) {
852 num_stripes = btrfs_super_num_devices(info->super_copy);
853 if (num_stripes > max_stripes)
854 num_stripes = max_stripes;
858 stripe_len = find_raid56_stripe_len(num_stripes - 1,
859 btrfs_super_stripesize(info->super_copy));
861 if (type & (BTRFS_BLOCK_GROUP_RAID6)) {
862 num_stripes = btrfs_super_num_devices(info->super_copy);
863 if (num_stripes > max_stripes)
864 num_stripes = max_stripes;
868 stripe_len = find_raid56_stripe_len(num_stripes - 2,
869 btrfs_super_stripesize(info->super_copy));
872 /* we don't want a chunk larger than 10% of the FS */
873 percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1);
874 max_chunk_size = min(percent_max, max_chunk_size);
877 if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
879 calc_size = max_chunk_size;
880 calc_size /= num_stripes;
881 calc_size /= stripe_len;
882 calc_size *= stripe_len;
884 /* we don't want tiny stripes */
885 calc_size = max_t(u64, calc_size, min_stripe_size);
887 calc_size /= stripe_len;
888 calc_size *= stripe_len;
889 INIT_LIST_HEAD(&private_devs);
890 cur = dev_list->next;
893 if (type & BTRFS_BLOCK_GROUP_DUP)
894 min_free = calc_size * 2;
896 min_free = calc_size;
898 /* build a private list of devices we will allocate from */
899 while(index < num_stripes) {
900 device = list_entry(cur, struct btrfs_device, dev_list);
901 ret = btrfs_device_avail_bytes(trans, device, &avail);
905 if (avail >= min_free) {
906 list_move_tail(&device->dev_list, &private_devs);
908 if (type & BTRFS_BLOCK_GROUP_DUP)
910 } else if (avail > max_avail)
915 if (index < num_stripes) {
916 list_splice(&private_devs, dev_list);
917 if (index >= min_stripes) {
919 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
920 num_stripes /= sub_stripes;
921 num_stripes *= sub_stripes;
926 if (!looped && max_avail > 0) {
928 calc_size = max_avail;
933 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
937 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
938 key.type = BTRFS_CHUNK_ITEM_KEY;
941 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
945 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
951 stripes = &chunk->stripe;
952 *num_bytes = chunk_bytes_by_type(type, calc_size,
953 num_stripes, sub_stripes);
955 while(index < num_stripes) {
956 struct btrfs_stripe *stripe;
957 BUG_ON(list_empty(&private_devs));
958 cur = private_devs.next;
959 device = list_entry(cur, struct btrfs_device, dev_list);
961 /* loop over this device again if we're doing a dup group */
962 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
963 (index == num_stripes - 1))
964 list_move_tail(&device->dev_list, dev_list);
966 ret = btrfs_alloc_dev_extent(trans, device,
967 info->chunk_root->root_key.objectid,
968 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
969 calc_size, &dev_offset);
972 device->bytes_used += calc_size;
973 ret = btrfs_update_device(trans, device);
976 map->stripes[index].dev = device;
977 map->stripes[index].physical = dev_offset;
978 stripe = stripes + index;
979 btrfs_set_stack_stripe_devid(stripe, device->devid);
980 btrfs_set_stack_stripe_offset(stripe, dev_offset);
981 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
984 BUG_ON(!list_empty(&private_devs));
986 /* key was set above */
987 btrfs_set_stack_chunk_length(chunk, *num_bytes);
988 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
989 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
990 btrfs_set_stack_chunk_type(chunk, type);
991 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
992 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
993 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
994 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
995 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
996 map->sector_size = extent_root->sectorsize;
997 map->stripe_len = stripe_len;
998 map->io_align = stripe_len;
999 map->io_width = stripe_len;
1001 map->num_stripes = num_stripes;
1002 map->sub_stripes = sub_stripes;
1004 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1005 btrfs_chunk_item_size(num_stripes));
1007 *start = key.offset;;
1009 map->ce.start = key.offset;
1010 map->ce.size = *num_bytes;
1012 ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1015 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1016 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1017 chunk, btrfs_chunk_item_size(num_stripes));
1025 int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
1026 struct btrfs_root *extent_root, u64 *start,
1027 u64 num_bytes, u64 type)
1030 struct btrfs_fs_info *info = extent_root->fs_info;
1031 struct btrfs_root *chunk_root = info->chunk_root;
1032 struct btrfs_stripe *stripes;
1033 struct btrfs_device *device = NULL;
1034 struct btrfs_chunk *chunk;
1035 struct list_head *dev_list = &info->fs_devices->devices;
1036 struct list_head *cur;
1037 struct map_lookup *map;
1038 u64 calc_size = 8 * 1024 * 1024;
1039 int num_stripes = 1;
1040 int sub_stripes = 0;
1043 int stripe_len = BTRFS_STRIPE_LEN;
1044 struct btrfs_key key;
1046 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1047 key.type = BTRFS_CHUNK_ITEM_KEY;
1048 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1053 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1057 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1063 stripes = &chunk->stripe;
1064 calc_size = num_bytes;
1067 cur = dev_list->next;
1068 device = list_entry(cur, struct btrfs_device, dev_list);
1070 while (index < num_stripes) {
1071 struct btrfs_stripe *stripe;
1073 ret = btrfs_alloc_dev_extent(trans, device,
1074 info->chunk_root->root_key.objectid,
1075 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1076 calc_size, &dev_offset);
1079 device->bytes_used += calc_size;
1080 ret = btrfs_update_device(trans, device);
1083 map->stripes[index].dev = device;
1084 map->stripes[index].physical = dev_offset;
1085 stripe = stripes + index;
1086 btrfs_set_stack_stripe_devid(stripe, device->devid);
1087 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1088 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1092 /* key was set above */
1093 btrfs_set_stack_chunk_length(chunk, num_bytes);
1094 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1095 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1096 btrfs_set_stack_chunk_type(chunk, type);
1097 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1098 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1099 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1100 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1101 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1102 map->sector_size = extent_root->sectorsize;
1103 map->stripe_len = stripe_len;
1104 map->io_align = stripe_len;
1105 map->io_width = stripe_len;
1107 map->num_stripes = num_stripes;
1108 map->sub_stripes = sub_stripes;
1110 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1111 btrfs_chunk_item_size(num_stripes));
1113 *start = key.offset;
1115 map->ce.start = key.offset;
1116 map->ce.size = num_bytes;
1118 ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1125 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1127 struct cache_extent *ce;
1128 struct map_lookup *map;
1131 ce = search_cache_extent(&map_tree->cache_tree, logical);
1133 BUG_ON(ce->start > logical || ce->start + ce->size < logical);
1134 map = container_of(ce, struct map_lookup, ce);
1136 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1137 ret = map->num_stripes;
1138 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1139 ret = map->sub_stripes;
1140 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
1142 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1149 int btrfs_next_metadata(struct btrfs_mapping_tree *map_tree, u64 *logical,
1152 struct cache_extent *ce;
1153 struct map_lookup *map;
1155 ce = search_cache_extent(&map_tree->cache_tree, *logical);
1158 ce = next_cache_extent(ce);
1162 map = container_of(ce, struct map_lookup, ce);
1163 if (map->type & BTRFS_BLOCK_GROUP_METADATA) {
1164 *logical = ce->start;
1173 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
1174 u64 chunk_start, u64 physical, u64 devid,
1175 u64 **logical, int *naddrs, int *stripe_len)
1177 struct cache_extent *ce;
1178 struct map_lookup *map;
1186 ce = search_cache_extent(&map_tree->cache_tree, chunk_start);
1188 map = container_of(ce, struct map_lookup, ce);
1191 rmap_len = map->stripe_len;
1192 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1193 length = ce->size / (map->num_stripes / map->sub_stripes);
1194 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1195 length = ce->size / map->num_stripes;
1196 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1197 BTRFS_BLOCK_GROUP_RAID6)) {
1198 length = ce->size / nr_data_stripes(map);
1199 rmap_len = map->stripe_len * nr_data_stripes(map);
1202 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1204 for (i = 0; i < map->num_stripes; i++) {
1205 if (devid && map->stripes[i].dev->devid != devid)
1207 if (map->stripes[i].physical > physical ||
1208 map->stripes[i].physical + length <= physical)
1211 stripe_nr = (physical - map->stripes[i].physical) /
1214 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1215 stripe_nr = (stripe_nr * map->num_stripes + i) /
1217 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1218 stripe_nr = stripe_nr * map->num_stripes + i;
1219 } /* else if RAID[56], multiply by nr_data_stripes().
1220 * Alternatively, just use rmap_len below instead of
1221 * map->stripe_len */
1223 bytenr = ce->start + stripe_nr * rmap_len;
1224 for (j = 0; j < nr; j++) {
1225 if (buf[j] == bytenr)
1234 *stripe_len = rmap_len;
1239 static inline int parity_smaller(u64 a, u64 b)
1244 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
1245 static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
1247 struct btrfs_bio_stripe s;
1254 for (i = 0; i < bbio->num_stripes - 1; i++) {
1255 if (parity_smaller(raid_map[i], raid_map[i+1])) {
1256 s = bbio->stripes[i];
1258 bbio->stripes[i] = bbio->stripes[i+1];
1259 raid_map[i] = raid_map[i+1];
1260 bbio->stripes[i+1] = s;
1268 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1269 u64 logical, u64 *length,
1270 struct btrfs_multi_bio **multi_ret, int mirror_num,
1273 return __btrfs_map_block(map_tree, rw, logical, length, NULL,
1274 multi_ret, mirror_num, raid_map_ret);
1277 int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1278 u64 logical, u64 *length, u64 *type,
1279 struct btrfs_multi_bio **multi_ret, int mirror_num,
1282 struct cache_extent *ce;
1283 struct map_lookup *map;
1287 u64 *raid_map = NULL;
1288 int stripes_allocated = 8;
1289 int stripes_required = 1;
1292 struct btrfs_multi_bio *multi = NULL;
1294 if (multi_ret && rw == READ) {
1295 stripes_allocated = 1;
1298 ce = search_cache_extent(&map_tree->cache_tree, logical);
1303 if (ce->start > logical || ce->start + ce->size < logical) {
1309 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1314 map = container_of(ce, struct map_lookup, ce);
1315 offset = logical - ce->start;
1318 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1319 BTRFS_BLOCK_GROUP_DUP)) {
1320 stripes_required = map->num_stripes;
1321 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1322 stripes_required = map->sub_stripes;
1325 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
1326 && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
1327 /* RAID[56] write or recovery. Return all stripes */
1328 stripes_required = map->num_stripes;
1330 /* Only allocate the map if we've already got a large enough multi_ret */
1331 if (stripes_allocated >= stripes_required) {
1332 raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1340 /* if our multi bio struct is too small, back off and try again */
1341 if (multi_ret && stripes_allocated < stripes_required) {
1342 stripes_allocated = stripes_required;
1349 * stripe_nr counts the total number of stripes we have to stride
1350 * to get to this block
1352 stripe_nr = stripe_nr / map->stripe_len;
1354 stripe_offset = stripe_nr * map->stripe_len;
1355 BUG_ON(offset < stripe_offset);
1357 /* stripe_offset is the offset of this block in its stripe*/
1358 stripe_offset = offset - stripe_offset;
1360 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1361 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
1362 BTRFS_BLOCK_GROUP_RAID10 |
1363 BTRFS_BLOCK_GROUP_DUP)) {
1364 /* we limit the length of each bio to what fits in a stripe */
1365 *length = min_t(u64, ce->size - offset,
1366 map->stripe_len - stripe_offset);
1368 *length = ce->size - offset;
1374 multi->num_stripes = 1;
1376 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1378 multi->num_stripes = map->num_stripes;
1379 else if (mirror_num)
1380 stripe_index = mirror_num - 1;
1382 stripe_index = stripe_nr % map->num_stripes;
1383 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1384 int factor = map->num_stripes / map->sub_stripes;
1386 stripe_index = stripe_nr % factor;
1387 stripe_index *= map->sub_stripes;
1390 multi->num_stripes = map->sub_stripes;
1391 else if (mirror_num)
1392 stripe_index += mirror_num - 1;
1394 stripe_nr = stripe_nr / factor;
1395 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1397 multi->num_stripes = map->num_stripes;
1398 else if (mirror_num)
1399 stripe_index = mirror_num - 1;
1400 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1401 BTRFS_BLOCK_GROUP_RAID6)) {
1406 u64 raid56_full_stripe_start;
1407 u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
1410 * align the start of our data stripe in the logical
1413 raid56_full_stripe_start = offset / full_stripe_len;
1414 raid56_full_stripe_start *= full_stripe_len;
1416 /* get the data stripe number */
1417 stripe_nr = raid56_full_stripe_start / map->stripe_len;
1418 stripe_nr = stripe_nr / nr_data_stripes(map);
1420 /* Work out the disk rotation on this stripe-set */
1421 rot = stripe_nr % map->num_stripes;
1423 /* Fill in the logical address of each stripe */
1424 tmp = stripe_nr * nr_data_stripes(map);
1426 for (i = 0; i < nr_data_stripes(map); i++)
1427 raid_map[(i+rot) % map->num_stripes] =
1428 ce->start + (tmp + i) * map->stripe_len;
1430 raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
1431 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1432 raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
1434 *length = map->stripe_len;
1437 multi->num_stripes = map->num_stripes;
1439 stripe_index = stripe_nr % nr_data_stripes(map);
1440 stripe_nr = stripe_nr / nr_data_stripes(map);
1443 * Mirror #0 or #1 means the original data block.
1444 * Mirror #2 is RAID5 parity block.
1445 * Mirror #3 is RAID6 Q block.
1448 stripe_index = nr_data_stripes(map) + mirror_num - 2;
1450 /* We distribute the parity blocks across stripes */
1451 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
1455 * after this do_div call, stripe_nr is the number of stripes
1456 * on this device we have to walk to find the data, and
1457 * stripe_index is the number of our device in the stripe array
1459 stripe_index = stripe_nr % map->num_stripes;
1460 stripe_nr = stripe_nr / map->num_stripes;
1462 BUG_ON(stripe_index >= map->num_stripes);
1464 for (i = 0; i < multi->num_stripes; i++) {
1465 multi->stripes[i].physical =
1466 map->stripes[stripe_index].physical + stripe_offset +
1467 stripe_nr * map->stripe_len;
1468 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1477 sort_parity_stripes(multi, raid_map);
1478 *raid_map_ret = raid_map;
1484 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1487 struct btrfs_device *device;
1488 struct btrfs_fs_devices *cur_devices;
1490 cur_devices = root->fs_info->fs_devices;
1491 while (cur_devices) {
1493 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1494 device = __find_device(&cur_devices->devices,
1499 cur_devices = cur_devices->seed;
1504 struct btrfs_device *
1505 btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
1506 u64 devid, int instance)
1508 struct list_head *head = &fs_devices->devices;
1509 struct btrfs_device *dev;
1512 list_for_each_entry(dev, head, dev_list) {
1513 if (dev->devid == devid && num_found++ == instance)
1519 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
1521 struct cache_extent *ce;
1522 struct map_lookup *map;
1523 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1528 * During chunk recovering, we may fail to find block group's
1529 * corresponding chunk, we will rebuild it later
1531 ce = search_cache_extent(&map_tree->cache_tree, chunk_offset);
1532 if (!root->fs_info->is_chunk_recover)
1537 map = container_of(ce, struct map_lookup, ce);
1538 for (i = 0; i < map->num_stripes; i++) {
1539 if (!map->stripes[i].dev->writeable) {
1548 static struct btrfs_device *fill_missing_device(u64 devid)
1550 struct btrfs_device *device;
1552 device = kzalloc(sizeof(*device), GFP_NOFS);
1553 device->devid = devid;
1558 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1559 struct extent_buffer *leaf,
1560 struct btrfs_chunk *chunk)
1562 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1563 struct map_lookup *map;
1564 struct cache_extent *ce;
1568 u8 uuid[BTRFS_UUID_SIZE];
1573 logical = key->offset;
1574 length = btrfs_chunk_length(leaf, chunk);
1576 ce = search_cache_extent(&map_tree->cache_tree, logical);
1578 /* already mapped? */
1579 if (ce && ce->start <= logical && ce->start + ce->size > logical) {
1583 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1584 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1588 map->ce.start = logical;
1589 map->ce.size = length;
1590 map->num_stripes = num_stripes;
1591 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1592 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1593 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1594 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1595 map->type = btrfs_chunk_type(leaf, chunk);
1596 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1598 for (i = 0; i < num_stripes; i++) {
1599 map->stripes[i].physical =
1600 btrfs_stripe_offset_nr(leaf, chunk, i);
1601 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1602 read_extent_buffer(leaf, uuid, (unsigned long)
1603 btrfs_stripe_dev_uuid_nr(chunk, i),
1605 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
1607 if (!map->stripes[i].dev) {
1608 map->stripes[i].dev = fill_missing_device(devid);
1609 printf("warning, device %llu is missing\n",
1610 (unsigned long long)devid);
1614 ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
1620 static int fill_device_from_item(struct extent_buffer *leaf,
1621 struct btrfs_dev_item *dev_item,
1622 struct btrfs_device *device)
1626 device->devid = btrfs_device_id(leaf, dev_item);
1627 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1628 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1629 device->type = btrfs_device_type(leaf, dev_item);
1630 device->io_align = btrfs_device_io_align(leaf, dev_item);
1631 device->io_width = btrfs_device_io_width(leaf, dev_item);
1632 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1634 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1635 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1640 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
1642 struct btrfs_fs_devices *fs_devices;
1645 fs_devices = root->fs_info->fs_devices->seed;
1646 while (fs_devices) {
1647 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1651 fs_devices = fs_devices->seed;
1654 fs_devices = find_fsid(fsid);
1660 ret = btrfs_open_devices(fs_devices, O_RDONLY);
1664 fs_devices->seed = root->fs_info->fs_devices->seed;
1665 root->fs_info->fs_devices->seed = fs_devices;
1670 static int read_one_dev(struct btrfs_root *root,
1671 struct extent_buffer *leaf,
1672 struct btrfs_dev_item *dev_item)
1674 struct btrfs_device *device;
1677 u8 fs_uuid[BTRFS_UUID_SIZE];
1678 u8 dev_uuid[BTRFS_UUID_SIZE];
1680 devid = btrfs_device_id(leaf, dev_item);
1681 read_extent_buffer(leaf, dev_uuid,
1682 (unsigned long)btrfs_device_uuid(dev_item),
1684 read_extent_buffer(leaf, fs_uuid,
1685 (unsigned long)btrfs_device_fsid(dev_item),
1688 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
1689 ret = open_seed_devices(root, fs_uuid);
1694 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1696 printk("warning devid %llu not found already\n",
1697 (unsigned long long)devid);
1698 device = kzalloc(sizeof(*device), GFP_NOFS);
1702 list_add(&device->dev_list,
1703 &root->fs_info->fs_devices->devices);
1706 fill_device_from_item(leaf, dev_item, device);
1707 device->dev_root = root->fs_info->dev_root;
1711 int btrfs_read_sys_array(struct btrfs_root *root)
1713 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1714 struct extent_buffer *sb;
1715 struct btrfs_disk_key *disk_key;
1716 struct btrfs_chunk *chunk;
1717 struct btrfs_key key;
1724 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
1725 BTRFS_SUPER_INFO_SIZE);
1728 btrfs_set_buffer_uptodate(sb);
1729 write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
1730 array_end = ((u8 *)super_copy->sys_chunk_array) +
1731 btrfs_super_sys_array_size(super_copy);
1734 * we do this loop twice, once for the device items and
1735 * once for all of the chunks. This way there are device
1736 * structs filled in for every chunk
1738 ptr = super_copy->sys_chunk_array;
1740 while (ptr < array_end) {
1741 disk_key = (struct btrfs_disk_key *)ptr;
1742 btrfs_disk_key_to_cpu(&key, disk_key);
1744 len = sizeof(*disk_key);
1747 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1748 chunk = (struct btrfs_chunk *)(ptr - (u8 *)super_copy);
1749 ret = read_one_chunk(root, &key, sb, chunk);
1752 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1753 len = btrfs_chunk_item_size(num_stripes);
1759 free_extent_buffer(sb);
1763 int btrfs_read_chunk_tree(struct btrfs_root *root)
1765 struct btrfs_path *path;
1766 struct extent_buffer *leaf;
1767 struct btrfs_key key;
1768 struct btrfs_key found_key;
1772 root = root->fs_info->chunk_root;
1774 path = btrfs_alloc_path();
1779 * Read all device items, and then all the chunk items. All
1780 * device items are found before any chunk item (their object id
1781 * is smaller than the lowest possible object id for a chunk
1782 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
1784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1791 leaf = path->nodes[0];
1792 slot = path->slots[0];
1793 if (slot >= btrfs_header_nritems(leaf)) {
1794 ret = btrfs_next_leaf(root, path);
1801 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1802 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1803 struct btrfs_dev_item *dev_item;
1804 dev_item = btrfs_item_ptr(leaf, slot,
1805 struct btrfs_dev_item);
1806 ret = read_one_dev(root, leaf, dev_item);
1808 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1809 struct btrfs_chunk *chunk;
1810 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1811 ret = read_one_chunk(root, &found_key, leaf, chunk);
1819 btrfs_free_path(path);
1823 struct list_head *btrfs_scanned_uuids(void)
1828 static int rmw_eb(struct btrfs_fs_info *info,
1829 struct extent_buffer *eb, struct extent_buffer *orig_eb)
1832 unsigned long orig_off = 0;
1833 unsigned long dest_off = 0;
1834 unsigned long copy_len = eb->len;
1836 ret = read_whole_eb(info, eb, 0);
1840 if (eb->start + eb->len <= orig_eb->start ||
1841 eb->start >= orig_eb->start + orig_eb->len)
1844 * | ----- orig_eb ------- |
1845 * | ----- stripe ------- |
1846 * | ----- orig_eb ------- |
1847 * | ----- orig_eb ------- |
1849 if (eb->start > orig_eb->start)
1850 orig_off = eb->start - orig_eb->start;
1851 if (orig_eb->start > eb->start)
1852 dest_off = orig_eb->start - eb->start;
1854 if (copy_len > orig_eb->len - orig_off)
1855 copy_len = orig_eb->len - orig_off;
1856 if (copy_len > eb->len - dest_off)
1857 copy_len = eb->len - dest_off;
1859 memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len);
1863 static void split_eb_for_raid56(struct btrfs_fs_info *info,
1864 struct extent_buffer *orig_eb,
1865 struct extent_buffer **ebs,
1866 u64 stripe_len, u64 *raid_map,
1869 struct extent_buffer *eb;
1870 u64 start = orig_eb->start;
1875 for (i = 0; i < num_stripes; i++) {
1876 if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
1879 eb = malloc(sizeof(struct extent_buffer) + stripe_len);
1882 memset(eb, 0, sizeof(struct extent_buffer) + stripe_len);
1884 eb->start = raid_map[i];
1885 eb->len = stripe_len;
1889 eb->dev_bytenr = (u64)-1;
1891 this_eb_start = raid_map[i];
1893 if (start > this_eb_start ||
1894 start + orig_eb->len < this_eb_start + stripe_len) {
1895 ret = rmw_eb(info, eb, orig_eb);
1898 memcpy(eb->data, orig_eb->data + eb->start - start, stripe_len);
1904 int write_raid56_with_parity(struct btrfs_fs_info *info,
1905 struct extent_buffer *eb,
1906 struct btrfs_multi_bio *multi,
1907 u64 stripe_len, u64 *raid_map)
1909 struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL;
1913 int alloc_size = eb->len;
1915 ebs = kmalloc(sizeof(*ebs) * multi->num_stripes, GFP_NOFS);
1918 if (stripe_len > alloc_size)
1919 alloc_size = stripe_len;
1921 split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map,
1922 multi->num_stripes);
1924 for (i = 0; i < multi->num_stripes; i++) {
1925 struct extent_buffer *new_eb;
1926 if (raid_map[i] < BTRFS_RAID5_P_STRIPE) {
1927 ebs[i]->dev_bytenr = multi->stripes[i].physical;
1928 ebs[i]->fd = multi->stripes[i].dev->fd;
1929 multi->stripes[i].dev->total_ios++;
1930 BUG_ON(ebs[i]->start != raid_map[i]);
1933 new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_NOFS);
1935 new_eb->dev_bytenr = multi->stripes[i].physical;
1936 new_eb->fd = multi->stripes[i].dev->fd;
1937 multi->stripes[i].dev->total_ios++;
1938 new_eb->len = stripe_len;
1940 if (raid_map[i] == BTRFS_RAID5_P_STRIPE)
1942 else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE)
1948 pointers = kmalloc(sizeof(*pointers) * multi->num_stripes,
1952 ebs[multi->num_stripes - 2] = p_eb;
1953 ebs[multi->num_stripes - 1] = q_eb;
1955 for (i = 0; i < multi->num_stripes; i++)
1956 pointers[i] = ebs[i]->data;
1958 raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers);
1961 ebs[multi->num_stripes - 1] = p_eb;
1962 memcpy(p_eb->data, ebs[0]->data, stripe_len);
1963 for (j = 1; j < multi->num_stripes - 1; j++) {
1964 for (i = 0; i < stripe_len; i += sizeof(unsigned long)) {
1965 *(unsigned long *)(p_eb->data + i) ^=
1966 *(unsigned long *)(ebs[j]->data + i);
1971 for (i = 0; i < multi->num_stripes; i++) {
1972 ret = write_extent_to_disk(ebs[i]);