2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #define _XOPEN_SOURCE 600
22 #include <sys/types.h>
24 #include <uuid/uuid.h>
29 #include "transaction.h"
30 #include "print-tree.h"
35 struct btrfs_device *dev;
39 static inline int nr_parity_stripes(struct map_lookup *map)
41 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
43 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
49 static inline int nr_data_stripes(struct map_lookup *map)
51 return map->num_stripes - nr_parity_stripes(map);
54 #define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
56 static LIST_HEAD(fs_uuids);
58 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
61 struct btrfs_device *dev;
62 struct list_head *cur;
64 list_for_each(cur, head) {
65 dev = list_entry(cur, struct btrfs_device, dev_list);
66 if (dev->devid == devid &&
67 !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
74 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
76 struct list_head *cur;
77 struct btrfs_fs_devices *fs_devices;
79 list_for_each(cur, &fs_uuids) {
80 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
81 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
87 static int device_list_add(const char *path,
88 struct btrfs_super_block *disk_super,
89 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
91 struct btrfs_device *device;
92 struct btrfs_fs_devices *fs_devices;
93 u64 found_transid = btrfs_super_generation(disk_super);
95 fs_devices = find_fsid(disk_super->fsid);
97 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
100 INIT_LIST_HEAD(&fs_devices->devices);
101 list_add(&fs_devices->list, &fs_uuids);
102 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
103 fs_devices->latest_devid = devid;
104 fs_devices->latest_trans = found_transid;
105 fs_devices->lowest_devid = (u64)-1;
108 device = __find_device(&fs_devices->devices, devid,
109 disk_super->dev_item.uuid);
112 device = kzalloc(sizeof(*device), GFP_NOFS);
114 /* we can safely leave the fs_devices entry around */
118 device->devid = devid;
119 memcpy(device->uuid, disk_super->dev_item.uuid,
121 device->name = kstrdup(path, GFP_NOFS);
126 device->label = kstrdup(disk_super->label, GFP_NOFS);
127 if (!device->label) {
132 device->total_devs = btrfs_super_num_devices(disk_super);
133 device->super_bytes_used = btrfs_super_bytes_used(disk_super);
134 device->total_bytes =
135 btrfs_stack_device_total_bytes(&disk_super->dev_item);
137 btrfs_stack_device_bytes_used(&disk_super->dev_item);
138 list_add(&device->dev_list, &fs_devices->devices);
139 device->fs_devices = fs_devices;
140 } else if (!device->name || strcmp(device->name, path)) {
141 char *name = strdup(path);
149 if (found_transid > fs_devices->latest_trans) {
150 fs_devices->latest_devid = devid;
151 fs_devices->latest_trans = found_transid;
153 if (fs_devices->lowest_devid > devid) {
154 fs_devices->lowest_devid = devid;
156 *fs_devices_ret = fs_devices;
160 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
162 struct btrfs_fs_devices *seed_devices;
163 struct list_head *cur;
164 struct btrfs_device *device;
166 list_for_each(cur, &fs_devices->devices) {
167 device = list_entry(cur, struct btrfs_device, dev_list);
168 if (device->fd != -1) {
170 if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED))
171 fprintf(stderr, "Warning, could not drop caches\n");
175 device->writeable = 0;
178 seed_devices = fs_devices->seed;
179 fs_devices->seed = NULL;
181 fs_devices = seed_devices;
188 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
191 struct list_head *head = &fs_devices->devices;
192 struct list_head *cur;
193 struct btrfs_device *device;
196 list_for_each(cur, head) {
197 device = list_entry(cur, struct btrfs_device, dev_list);
199 printk("no name for device %llu, skip it now\n", device->devid);
203 fd = open(device->name, flags);
209 if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED))
210 fprintf(stderr, "Warning, could not drop caches\n");
212 if (device->devid == fs_devices->latest_devid)
213 fs_devices->latest_bdev = fd;
214 if (device->devid == fs_devices->lowest_devid)
215 fs_devices->lowest_bdev = fd;
218 device->writeable = 1;
222 btrfs_close_devices(fs_devices);
226 int btrfs_scan_one_device(int fd, const char *path,
227 struct btrfs_fs_devices **fs_devices_ret,
228 u64 *total_devs, u64 super_offset)
230 struct btrfs_super_block *disk_super;
240 disk_super = (struct btrfs_super_block *)buf;
241 ret = btrfs_read_dev_super(fd, disk_super, super_offset);
246 devid = btrfs_stack_device_id(&disk_super->dev_item);
247 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
250 *total_devs = btrfs_super_num_devices(disk_super);
252 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
261 * this uses a pretty simple search, the expectation is that it is
262 * called very infrequently and that a given device has a small number
265 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
266 struct btrfs_device *device,
267 struct btrfs_path *path,
268 u64 num_bytes, u64 *start)
270 struct btrfs_key key;
271 struct btrfs_root *root = device->dev_root;
272 struct btrfs_dev_extent *dev_extent = NULL;
275 u64 search_start = root->fs_info->alloc_start;
276 u64 search_end = device->total_bytes;
280 struct extent_buffer *l;
285 /* FIXME use last free of some kind */
287 /* we don't want to overwrite the superblock on the drive,
288 * so we make sure to start at an offset of at least 1MB
290 search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
292 if (search_start >= search_end) {
297 key.objectid = device->devid;
298 key.offset = search_start;
299 key.type = BTRFS_DEV_EXTENT_KEY;
300 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
303 ret = btrfs_previous_item(root, path, 0, key.type);
307 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
310 slot = path->slots[0];
311 if (slot >= btrfs_header_nritems(l)) {
312 ret = btrfs_next_leaf(root, path);
319 if (search_start >= search_end) {
323 *start = search_start;
327 *start = last_byte > search_start ?
328 last_byte : search_start;
329 if (search_end <= *start) {
335 btrfs_item_key_to_cpu(l, &key, slot);
337 if (key.objectid < device->devid)
340 if (key.objectid > device->devid)
343 if (key.offset >= search_start && key.offset > last_byte &&
345 if (last_byte < search_start)
346 last_byte = search_start;
347 hole_size = key.offset - last_byte;
348 if (key.offset > last_byte &&
349 hole_size >= num_bytes) {
354 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
359 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
360 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
366 /* we have to make sure we didn't find an extent that has already
367 * been allocated by the map tree or the original allocation
369 btrfs_release_path(path);
370 BUG_ON(*start < search_start);
372 if (*start + num_bytes > search_end) {
376 /* check for pending inserts here */
380 btrfs_release_path(path);
384 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
385 struct btrfs_device *device,
386 u64 chunk_tree, u64 chunk_objectid,
388 u64 num_bytes, u64 *start)
391 struct btrfs_path *path;
392 struct btrfs_root *root = device->dev_root;
393 struct btrfs_dev_extent *extent;
394 struct extent_buffer *leaf;
395 struct btrfs_key key;
397 path = btrfs_alloc_path();
401 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
406 key.objectid = device->devid;
408 key.type = BTRFS_DEV_EXTENT_KEY;
409 ret = btrfs_insert_empty_item(trans, root, path, &key,
413 leaf = path->nodes[0];
414 extent = btrfs_item_ptr(leaf, path->slots[0],
415 struct btrfs_dev_extent);
416 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
417 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
418 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
420 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
421 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
424 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
425 btrfs_mark_buffer_dirty(leaf);
427 btrfs_free_path(path);
431 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
433 struct btrfs_path *path;
435 struct btrfs_key key;
436 struct btrfs_chunk *chunk;
437 struct btrfs_key found_key;
439 path = btrfs_alloc_path();
442 key.objectid = objectid;
443 key.offset = (u64)-1;
444 key.type = BTRFS_CHUNK_ITEM_KEY;
446 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
452 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
456 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
458 if (found_key.objectid != objectid)
461 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
463 *offset = found_key.offset +
464 btrfs_chunk_length(path->nodes[0], chunk);
469 btrfs_free_path(path);
473 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
477 struct btrfs_key key;
478 struct btrfs_key found_key;
480 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
481 key.type = BTRFS_DEV_ITEM_KEY;
482 key.offset = (u64)-1;
484 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
490 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
495 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
497 *objectid = found_key.offset + 1;
501 btrfs_release_path(path);
506 * the device information is stored in the chunk root
507 * the btrfs_device struct should be fully filled in
509 int btrfs_add_device(struct btrfs_trans_handle *trans,
510 struct btrfs_root *root,
511 struct btrfs_device *device)
514 struct btrfs_path *path;
515 struct btrfs_dev_item *dev_item;
516 struct extent_buffer *leaf;
517 struct btrfs_key key;
521 root = root->fs_info->chunk_root;
523 path = btrfs_alloc_path();
527 ret = find_next_devid(root, path, &free_devid);
531 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
532 key.type = BTRFS_DEV_ITEM_KEY;
533 key.offset = free_devid;
535 ret = btrfs_insert_empty_item(trans, root, path, &key,
540 leaf = path->nodes[0];
541 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
543 device->devid = free_devid;
544 btrfs_set_device_id(leaf, dev_item, device->devid);
545 btrfs_set_device_generation(leaf, dev_item, 0);
546 btrfs_set_device_type(leaf, dev_item, device->type);
547 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
548 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
549 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
550 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
551 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
552 btrfs_set_device_group(leaf, dev_item, 0);
553 btrfs_set_device_seek_speed(leaf, dev_item, 0);
554 btrfs_set_device_bandwidth(leaf, dev_item, 0);
555 btrfs_set_device_start_offset(leaf, dev_item, 0);
557 ptr = (unsigned long)btrfs_device_uuid(dev_item);
558 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
559 ptr = (unsigned long)btrfs_device_fsid(dev_item);
560 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
561 btrfs_mark_buffer_dirty(leaf);
565 btrfs_free_path(path);
569 int btrfs_update_device(struct btrfs_trans_handle *trans,
570 struct btrfs_device *device)
573 struct btrfs_path *path;
574 struct btrfs_root *root;
575 struct btrfs_dev_item *dev_item;
576 struct extent_buffer *leaf;
577 struct btrfs_key key;
579 root = device->dev_root->fs_info->chunk_root;
581 path = btrfs_alloc_path();
585 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
586 key.type = BTRFS_DEV_ITEM_KEY;
587 key.offset = device->devid;
589 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
598 leaf = path->nodes[0];
599 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
601 btrfs_set_device_id(leaf, dev_item, device->devid);
602 btrfs_set_device_type(leaf, dev_item, device->type);
603 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
604 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
605 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
606 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
607 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
608 btrfs_mark_buffer_dirty(leaf);
611 btrfs_free_path(path);
615 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
616 struct btrfs_root *root,
617 struct btrfs_key *key,
618 struct btrfs_chunk *chunk, int item_size)
620 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
621 struct btrfs_disk_key disk_key;
625 array_size = btrfs_super_sys_array_size(super_copy);
626 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
629 ptr = super_copy->sys_chunk_array + array_size;
630 btrfs_cpu_key_to_disk(&disk_key, key);
631 memcpy(ptr, &disk_key, sizeof(disk_key));
632 ptr += sizeof(disk_key);
633 memcpy(ptr, chunk, item_size);
634 item_size += sizeof(disk_key);
635 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
639 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
642 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
644 else if (type & BTRFS_BLOCK_GROUP_RAID10)
645 return calc_size * (num_stripes / sub_stripes);
646 else if (type & BTRFS_BLOCK_GROUP_RAID5)
647 return calc_size * (num_stripes - 1);
648 else if (type & BTRFS_BLOCK_GROUP_RAID6)
649 return calc_size * (num_stripes - 2);
651 return calc_size * num_stripes;
655 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
657 /* TODO, add a way to store the preferred stripe size */
658 return BTRFS_STRIPE_LEN;
662 * btrfs_device_avail_bytes - count bytes available for alloc_chunk
664 * It is not equal to "device->total_bytes - device->bytes_used".
665 * We do not allocate any chunk in 1M at beginning of device, and not
666 * allowed to allocate any chunk before alloc_start if it is specified.
667 * So search holes from max(1M, alloc_start) to device->total_bytes.
669 static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans,
670 struct btrfs_device *device,
673 struct btrfs_path *path;
674 struct btrfs_root *root = device->dev_root;
675 struct btrfs_key key;
676 struct btrfs_dev_extent *dev_extent = NULL;
677 struct extent_buffer *l;
678 u64 search_start = root->fs_info->alloc_start;
679 u64 search_end = device->total_bytes;
685 search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
687 path = btrfs_alloc_path();
691 key.objectid = device->devid;
692 key.offset = root->fs_info->alloc_start;
693 key.type = BTRFS_DEV_EXTENT_KEY;
696 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
699 ret = btrfs_previous_item(root, path, 0, key.type);
705 slot = path->slots[0];
706 if (slot >= btrfs_header_nritems(l)) {
707 ret = btrfs_next_leaf(root, path);
714 btrfs_item_key_to_cpu(l, &key, slot);
716 if (key.objectid < device->devid)
718 if (key.objectid > device->devid)
720 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
722 if (key.offset > search_end)
724 if (key.offset > search_start)
725 free_bytes += key.offset - search_start;
727 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
728 extent_end = key.offset + btrfs_dev_extent_length(l,
730 if (extent_end > search_start)
731 search_start = extent_end;
732 if (search_start > search_end)
739 if (search_start < search_end)
740 free_bytes += search_end - search_start;
742 *avail_bytes = free_bytes;
745 btrfs_free_path(path);
749 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
750 struct btrfs_root *extent_root, u64 *start,
751 u64 *num_bytes, u64 type)
754 struct btrfs_fs_info *info = extent_root->fs_info;
755 struct btrfs_root *chunk_root = info->chunk_root;
756 struct btrfs_stripe *stripes;
757 struct btrfs_device *device = NULL;
758 struct btrfs_chunk *chunk;
759 struct list_head private_devs;
760 struct list_head *dev_list = &info->fs_devices->devices;
761 struct list_head *cur;
762 struct map_lookup *map;
763 int min_stripe_size = 1 * 1024 * 1024;
764 u64 calc_size = 8 * 1024 * 1024;
766 u64 max_chunk_size = 4 * calc_size;
776 int stripe_len = BTRFS_STRIPE_LEN;
777 struct btrfs_key key;
780 if (list_empty(dev_list)) {
784 if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
785 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
786 BTRFS_BLOCK_GROUP_RAID10 |
787 BTRFS_BLOCK_GROUP_DUP)) {
788 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
789 calc_size = 8 * 1024 * 1024;
790 max_chunk_size = calc_size * 2;
791 min_stripe_size = 1 * 1024 * 1024;
792 } else if (type & BTRFS_BLOCK_GROUP_DATA) {
793 calc_size = 1024 * 1024 * 1024;
794 max_chunk_size = 10 * calc_size;
795 min_stripe_size = 64 * 1024 * 1024;
796 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
797 calc_size = 1024 * 1024 * 1024;
798 max_chunk_size = 4 * calc_size;
799 min_stripe_size = 32 * 1024 * 1024;
802 if (type & BTRFS_BLOCK_GROUP_RAID1) {
803 num_stripes = min_t(u64, 2,
804 btrfs_super_num_devices(info->super_copy));
809 if (type & BTRFS_BLOCK_GROUP_DUP) {
813 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
814 num_stripes = btrfs_super_num_devices(info->super_copy);
817 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
818 num_stripes = btrfs_super_num_devices(info->super_copy);
821 num_stripes &= ~(u32)1;
825 if (type & (BTRFS_BLOCK_GROUP_RAID5)) {
826 num_stripes = btrfs_super_num_devices(info->super_copy);
830 stripe_len = find_raid56_stripe_len(num_stripes - 1,
831 btrfs_super_stripesize(info->super_copy));
833 if (type & (BTRFS_BLOCK_GROUP_RAID6)) {
834 num_stripes = btrfs_super_num_devices(info->super_copy);
838 stripe_len = find_raid56_stripe_len(num_stripes - 2,
839 btrfs_super_stripesize(info->super_copy));
842 /* we don't want a chunk larger than 10% of the FS */
843 percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1);
844 max_chunk_size = min(percent_max, max_chunk_size);
847 if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
849 calc_size = max_chunk_size;
850 calc_size /= num_stripes;
851 calc_size /= stripe_len;
852 calc_size *= stripe_len;
854 /* we don't want tiny stripes */
855 calc_size = max_t(u64, calc_size, min_stripe_size);
857 calc_size /= stripe_len;
858 calc_size *= stripe_len;
859 INIT_LIST_HEAD(&private_devs);
860 cur = dev_list->next;
863 if (type & BTRFS_BLOCK_GROUP_DUP)
864 min_free = calc_size * 2;
866 min_free = calc_size;
868 /* build a private list of devices we will allocate from */
869 while(index < num_stripes) {
870 device = list_entry(cur, struct btrfs_device, dev_list);
871 ret = btrfs_device_avail_bytes(trans, device, &avail);
875 if (avail >= min_free) {
876 list_move_tail(&device->dev_list, &private_devs);
878 if (type & BTRFS_BLOCK_GROUP_DUP)
880 } else if (avail > max_avail)
885 if (index < num_stripes) {
886 list_splice(&private_devs, dev_list);
887 if (index >= min_stripes) {
889 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
890 num_stripes /= sub_stripes;
891 num_stripes *= sub_stripes;
896 if (!looped && max_avail > 0) {
898 calc_size = max_avail;
903 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
907 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
908 key.type = BTRFS_CHUNK_ITEM_KEY;
911 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
915 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
921 stripes = &chunk->stripe;
922 *num_bytes = chunk_bytes_by_type(type, calc_size,
923 num_stripes, sub_stripes);
925 while(index < num_stripes) {
926 struct btrfs_stripe *stripe;
927 BUG_ON(list_empty(&private_devs));
928 cur = private_devs.next;
929 device = list_entry(cur, struct btrfs_device, dev_list);
931 /* loop over this device again if we're doing a dup group */
932 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
933 (index == num_stripes - 1))
934 list_move_tail(&device->dev_list, dev_list);
936 ret = btrfs_alloc_dev_extent(trans, device,
937 info->chunk_root->root_key.objectid,
938 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
939 calc_size, &dev_offset);
942 device->bytes_used += calc_size;
943 ret = btrfs_update_device(trans, device);
946 map->stripes[index].dev = device;
947 map->stripes[index].physical = dev_offset;
948 stripe = stripes + index;
949 btrfs_set_stack_stripe_devid(stripe, device->devid);
950 btrfs_set_stack_stripe_offset(stripe, dev_offset);
951 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
954 BUG_ON(!list_empty(&private_devs));
956 /* key was set above */
957 btrfs_set_stack_chunk_length(chunk, *num_bytes);
958 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
959 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
960 btrfs_set_stack_chunk_type(chunk, type);
961 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
962 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
963 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
964 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
965 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
966 map->sector_size = extent_root->sectorsize;
967 map->stripe_len = stripe_len;
968 map->io_align = stripe_len;
969 map->io_width = stripe_len;
971 map->num_stripes = num_stripes;
972 map->sub_stripes = sub_stripes;
974 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
975 btrfs_chunk_item_size(num_stripes));
977 *start = key.offset;;
979 map->ce.start = key.offset;
980 map->ce.size = *num_bytes;
982 ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
985 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
986 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
987 chunk, btrfs_chunk_item_size(num_stripes));
995 int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
996 struct btrfs_root *extent_root, u64 *start,
997 u64 num_bytes, u64 type)
1000 struct btrfs_fs_info *info = extent_root->fs_info;
1001 struct btrfs_root *chunk_root = info->chunk_root;
1002 struct btrfs_stripe *stripes;
1003 struct btrfs_device *device = NULL;
1004 struct btrfs_chunk *chunk;
1005 struct list_head *dev_list = &info->fs_devices->devices;
1006 struct list_head *cur;
1007 struct map_lookup *map;
1008 u64 calc_size = 8 * 1024 * 1024;
1009 int num_stripes = 1;
1010 int sub_stripes = 0;
1013 int stripe_len = BTRFS_STRIPE_LEN;
1014 struct btrfs_key key;
1016 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1017 key.type = BTRFS_CHUNK_ITEM_KEY;
1018 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1023 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1027 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1033 stripes = &chunk->stripe;
1034 calc_size = num_bytes;
1037 cur = dev_list->next;
1038 device = list_entry(cur, struct btrfs_device, dev_list);
1040 while (index < num_stripes) {
1041 struct btrfs_stripe *stripe;
1043 ret = btrfs_alloc_dev_extent(trans, device,
1044 info->chunk_root->root_key.objectid,
1045 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1046 calc_size, &dev_offset);
1049 device->bytes_used += calc_size;
1050 ret = btrfs_update_device(trans, device);
1053 map->stripes[index].dev = device;
1054 map->stripes[index].physical = dev_offset;
1055 stripe = stripes + index;
1056 btrfs_set_stack_stripe_devid(stripe, device->devid);
1057 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1058 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1062 /* key was set above */
1063 btrfs_set_stack_chunk_length(chunk, num_bytes);
1064 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1065 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1066 btrfs_set_stack_chunk_type(chunk, type);
1067 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1068 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1069 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1070 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1071 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1072 map->sector_size = extent_root->sectorsize;
1073 map->stripe_len = stripe_len;
1074 map->io_align = stripe_len;
1075 map->io_width = stripe_len;
1077 map->num_stripes = num_stripes;
1078 map->sub_stripes = sub_stripes;
1080 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1081 btrfs_chunk_item_size(num_stripes));
1083 *start = key.offset;
1085 map->ce.start = key.offset;
1086 map->ce.size = num_bytes;
1088 ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1095 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1097 struct cache_extent *ce;
1098 struct map_lookup *map;
1101 ce = search_cache_extent(&map_tree->cache_tree, logical);
1103 BUG_ON(ce->start > logical || ce->start + ce->size < logical);
1104 map = container_of(ce, struct map_lookup, ce);
1106 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1107 ret = map->num_stripes;
1108 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1109 ret = map->sub_stripes;
1110 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
1112 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1119 int btrfs_next_metadata(struct btrfs_mapping_tree *map_tree, u64 *logical,
1122 struct cache_extent *ce;
1123 struct map_lookup *map;
1125 ce = search_cache_extent(&map_tree->cache_tree, *logical);
1128 ce = next_cache_extent(ce);
1132 map = container_of(ce, struct map_lookup, ce);
1133 if (map->type & BTRFS_BLOCK_GROUP_METADATA) {
1134 *logical = ce->start;
1143 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
1144 u64 chunk_start, u64 physical, u64 devid,
1145 u64 **logical, int *naddrs, int *stripe_len)
1147 struct cache_extent *ce;
1148 struct map_lookup *map;
1156 ce = search_cache_extent(&map_tree->cache_tree, chunk_start);
1158 map = container_of(ce, struct map_lookup, ce);
1161 rmap_len = map->stripe_len;
1162 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1163 length = ce->size / (map->num_stripes / map->sub_stripes);
1164 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1165 length = ce->size / map->num_stripes;
1166 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1167 BTRFS_BLOCK_GROUP_RAID6)) {
1168 length = ce->size / nr_data_stripes(map);
1169 rmap_len = map->stripe_len * nr_data_stripes(map);
1172 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1174 for (i = 0; i < map->num_stripes; i++) {
1175 if (devid && map->stripes[i].dev->devid != devid)
1177 if (map->stripes[i].physical > physical ||
1178 map->stripes[i].physical + length <= physical)
1181 stripe_nr = (physical - map->stripes[i].physical) /
1184 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1185 stripe_nr = (stripe_nr * map->num_stripes + i) /
1187 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1188 stripe_nr = stripe_nr * map->num_stripes + i;
1189 } /* else if RAID[56], multiply by nr_data_stripes().
1190 * Alternatively, just use rmap_len below instead of
1191 * map->stripe_len */
1193 bytenr = ce->start + stripe_nr * rmap_len;
1194 for (j = 0; j < nr; j++) {
1195 if (buf[j] == bytenr)
1204 *stripe_len = rmap_len;
1209 static inline int parity_smaller(u64 a, u64 b)
1214 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
1215 static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
1217 struct btrfs_bio_stripe s;
1224 for (i = 0; i < bbio->num_stripes - 1; i++) {
1225 if (parity_smaller(raid_map[i], raid_map[i+1])) {
1226 s = bbio->stripes[i];
1228 bbio->stripes[i] = bbio->stripes[i+1];
1229 raid_map[i] = raid_map[i+1];
1230 bbio->stripes[i+1] = s;
1238 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1239 u64 logical, u64 *length,
1240 struct btrfs_multi_bio **multi_ret, int mirror_num,
1243 return __btrfs_map_block(map_tree, rw, logical, length, NULL,
1244 multi_ret, mirror_num, raid_map_ret);
1247 int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1248 u64 logical, u64 *length, u64 *type,
1249 struct btrfs_multi_bio **multi_ret, int mirror_num,
1252 struct cache_extent *ce;
1253 struct map_lookup *map;
1257 u64 *raid_map = NULL;
1258 int stripes_allocated = 8;
1259 int stripes_required = 1;
1262 struct btrfs_multi_bio *multi = NULL;
1264 if (multi_ret && rw == READ) {
1265 stripes_allocated = 1;
1268 ce = search_cache_extent(&map_tree->cache_tree, logical);
1273 if (ce->start > logical || ce->start + ce->size < logical) {
1279 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1284 map = container_of(ce, struct map_lookup, ce);
1285 offset = logical - ce->start;
1288 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1289 BTRFS_BLOCK_GROUP_DUP)) {
1290 stripes_required = map->num_stripes;
1291 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1292 stripes_required = map->sub_stripes;
1295 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
1296 && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
1297 /* RAID[56] write or recovery. Return all stripes */
1298 stripes_required = map->num_stripes;
1300 /* Only allocate the map if we've already got a large enough multi_ret */
1301 if (stripes_allocated >= stripes_required) {
1302 raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1310 /* if our multi bio struct is too small, back off and try again */
1311 if (multi_ret && stripes_allocated < stripes_required) {
1312 stripes_allocated = stripes_required;
1319 * stripe_nr counts the total number of stripes we have to stride
1320 * to get to this block
1322 stripe_nr = stripe_nr / map->stripe_len;
1324 stripe_offset = stripe_nr * map->stripe_len;
1325 BUG_ON(offset < stripe_offset);
1327 /* stripe_offset is the offset of this block in its stripe*/
1328 stripe_offset = offset - stripe_offset;
1330 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1331 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
1332 BTRFS_BLOCK_GROUP_RAID10 |
1333 BTRFS_BLOCK_GROUP_DUP)) {
1334 /* we limit the length of each bio to what fits in a stripe */
1335 *length = min_t(u64, ce->size - offset,
1336 map->stripe_len - stripe_offset);
1338 *length = ce->size - offset;
1344 multi->num_stripes = 1;
1346 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1348 multi->num_stripes = map->num_stripes;
1349 else if (mirror_num)
1350 stripe_index = mirror_num - 1;
1352 stripe_index = stripe_nr % map->num_stripes;
1353 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1354 int factor = map->num_stripes / map->sub_stripes;
1356 stripe_index = stripe_nr % factor;
1357 stripe_index *= map->sub_stripes;
1360 multi->num_stripes = map->sub_stripes;
1361 else if (mirror_num)
1362 stripe_index += mirror_num - 1;
1364 stripe_nr = stripe_nr / factor;
1365 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1367 multi->num_stripes = map->num_stripes;
1368 else if (mirror_num)
1369 stripe_index = mirror_num - 1;
1370 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1371 BTRFS_BLOCK_GROUP_RAID6)) {
1376 u64 raid56_full_stripe_start;
1377 u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
1380 * align the start of our data stripe in the logical
1383 raid56_full_stripe_start = offset / full_stripe_len;
1384 raid56_full_stripe_start *= full_stripe_len;
1386 /* get the data stripe number */
1387 stripe_nr = raid56_full_stripe_start / map->stripe_len;
1388 stripe_nr = stripe_nr / nr_data_stripes(map);
1390 /* Work out the disk rotation on this stripe-set */
1391 rot = stripe_nr % map->num_stripes;
1393 /* Fill in the logical address of each stripe */
1394 tmp = stripe_nr * nr_data_stripes(map);
1396 for (i = 0; i < nr_data_stripes(map); i++)
1397 raid_map[(i+rot) % map->num_stripes] =
1398 ce->start + (tmp + i) * map->stripe_len;
1400 raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
1401 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1402 raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
1404 *length = map->stripe_len;
1407 multi->num_stripes = map->num_stripes;
1409 stripe_index = stripe_nr % nr_data_stripes(map);
1410 stripe_nr = stripe_nr / nr_data_stripes(map);
1413 * Mirror #0 or #1 means the original data block.
1414 * Mirror #2 is RAID5 parity block.
1415 * Mirror #3 is RAID6 Q block.
1418 stripe_index = nr_data_stripes(map) + mirror_num - 2;
1420 /* We distribute the parity blocks across stripes */
1421 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
1425 * after this do_div call, stripe_nr is the number of stripes
1426 * on this device we have to walk to find the data, and
1427 * stripe_index is the number of our device in the stripe array
1429 stripe_index = stripe_nr % map->num_stripes;
1430 stripe_nr = stripe_nr / map->num_stripes;
1432 BUG_ON(stripe_index >= map->num_stripes);
1434 for (i = 0; i < multi->num_stripes; i++) {
1435 multi->stripes[i].physical =
1436 map->stripes[stripe_index].physical + stripe_offset +
1437 stripe_nr * map->stripe_len;
1438 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1447 sort_parity_stripes(multi, raid_map);
1448 *raid_map_ret = raid_map;
1454 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1457 struct btrfs_device *device;
1458 struct btrfs_fs_devices *cur_devices;
1460 cur_devices = root->fs_info->fs_devices;
1461 while (cur_devices) {
1463 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1464 device = __find_device(&cur_devices->devices,
1469 cur_devices = cur_devices->seed;
1474 struct btrfs_device *
1475 btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
1476 u64 devid, int instance)
1478 struct list_head *head = &fs_devices->devices;
1479 struct btrfs_device *dev;
1482 list_for_each_entry(dev, head, dev_list) {
1483 if (dev->devid == devid && num_found++ == instance)
1489 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
1491 struct cache_extent *ce;
1492 struct map_lookup *map;
1493 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1498 * During chunk recovering, we may fail to find block group's
1499 * corresponding chunk, we will rebuild it later
1501 ce = search_cache_extent(&map_tree->cache_tree, chunk_offset);
1502 if (!root->fs_info->is_chunk_recover)
1507 map = container_of(ce, struct map_lookup, ce);
1508 for (i = 0; i < map->num_stripes; i++) {
1509 if (!map->stripes[i].dev->writeable) {
1518 static struct btrfs_device *fill_missing_device(u64 devid)
1520 struct btrfs_device *device;
1522 device = kzalloc(sizeof(*device), GFP_NOFS);
1523 device->devid = devid;
1528 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1529 struct extent_buffer *leaf,
1530 struct btrfs_chunk *chunk)
1532 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1533 struct map_lookup *map;
1534 struct cache_extent *ce;
1538 u8 uuid[BTRFS_UUID_SIZE];
1543 logical = key->offset;
1544 length = btrfs_chunk_length(leaf, chunk);
1546 ce = search_cache_extent(&map_tree->cache_tree, logical);
1548 /* already mapped? */
1549 if (ce && ce->start <= logical && ce->start + ce->size > logical) {
1553 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1554 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1558 map->ce.start = logical;
1559 map->ce.size = length;
1560 map->num_stripes = num_stripes;
1561 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1562 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1563 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1564 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1565 map->type = btrfs_chunk_type(leaf, chunk);
1566 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1568 for (i = 0; i < num_stripes; i++) {
1569 map->stripes[i].physical =
1570 btrfs_stripe_offset_nr(leaf, chunk, i);
1571 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1572 read_extent_buffer(leaf, uuid, (unsigned long)
1573 btrfs_stripe_dev_uuid_nr(chunk, i),
1575 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
1577 if (!map->stripes[i].dev) {
1578 map->stripes[i].dev = fill_missing_device(devid);
1579 printf("warning, device %llu is missing\n",
1580 (unsigned long long)devid);
1584 ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
1590 static int fill_device_from_item(struct extent_buffer *leaf,
1591 struct btrfs_dev_item *dev_item,
1592 struct btrfs_device *device)
1596 device->devid = btrfs_device_id(leaf, dev_item);
1597 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1598 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1599 device->type = btrfs_device_type(leaf, dev_item);
1600 device->io_align = btrfs_device_io_align(leaf, dev_item);
1601 device->io_width = btrfs_device_io_width(leaf, dev_item);
1602 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1604 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1605 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1610 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
1612 struct btrfs_fs_devices *fs_devices;
1615 fs_devices = root->fs_info->fs_devices->seed;
1616 while (fs_devices) {
1617 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1621 fs_devices = fs_devices->seed;
1624 fs_devices = find_fsid(fsid);
1630 ret = btrfs_open_devices(fs_devices, O_RDONLY);
1634 fs_devices->seed = root->fs_info->fs_devices->seed;
1635 root->fs_info->fs_devices->seed = fs_devices;
1640 static int read_one_dev(struct btrfs_root *root,
1641 struct extent_buffer *leaf,
1642 struct btrfs_dev_item *dev_item)
1644 struct btrfs_device *device;
1647 u8 fs_uuid[BTRFS_UUID_SIZE];
1648 u8 dev_uuid[BTRFS_UUID_SIZE];
1650 devid = btrfs_device_id(leaf, dev_item);
1651 read_extent_buffer(leaf, dev_uuid,
1652 (unsigned long)btrfs_device_uuid(dev_item),
1654 read_extent_buffer(leaf, fs_uuid,
1655 (unsigned long)btrfs_device_fsid(dev_item),
1658 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
1659 ret = open_seed_devices(root, fs_uuid);
1664 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1666 printk("warning devid %llu not found already\n",
1667 (unsigned long long)devid);
1668 device = kzalloc(sizeof(*device), GFP_NOFS);
1672 list_add(&device->dev_list,
1673 &root->fs_info->fs_devices->devices);
1676 fill_device_from_item(leaf, dev_item, device);
1677 device->dev_root = root->fs_info->dev_root;
1681 int btrfs_read_sys_array(struct btrfs_root *root)
1683 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1684 struct extent_buffer *sb;
1685 struct btrfs_disk_key *disk_key;
1686 struct btrfs_chunk *chunk;
1687 struct btrfs_key key;
1694 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
1695 BTRFS_SUPER_INFO_SIZE);
1698 btrfs_set_buffer_uptodate(sb);
1699 write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
1700 array_end = ((u8 *)super_copy->sys_chunk_array) +
1701 btrfs_super_sys_array_size(super_copy);
1704 * we do this loop twice, once for the device items and
1705 * once for all of the chunks. This way there are device
1706 * structs filled in for every chunk
1708 ptr = super_copy->sys_chunk_array;
1710 while (ptr < array_end) {
1711 disk_key = (struct btrfs_disk_key *)ptr;
1712 btrfs_disk_key_to_cpu(&key, disk_key);
1714 len = sizeof(*disk_key);
1717 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1718 chunk = (struct btrfs_chunk *)(ptr - (u8 *)super_copy);
1719 ret = read_one_chunk(root, &key, sb, chunk);
1722 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1723 len = btrfs_chunk_item_size(num_stripes);
1729 free_extent_buffer(sb);
1733 int btrfs_read_chunk_tree(struct btrfs_root *root)
1735 struct btrfs_path *path;
1736 struct extent_buffer *leaf;
1737 struct btrfs_key key;
1738 struct btrfs_key found_key;
1742 root = root->fs_info->chunk_root;
1744 path = btrfs_alloc_path();
1749 * Read all device items, and then all the chunk items. All
1750 * device items are found before any chunk item (their object id
1751 * is smaller than the lowest possible object id for a chunk
1752 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
1754 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1757 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1761 leaf = path->nodes[0];
1762 slot = path->slots[0];
1763 if (slot >= btrfs_header_nritems(leaf)) {
1764 ret = btrfs_next_leaf(root, path);
1771 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1772 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1773 struct btrfs_dev_item *dev_item;
1774 dev_item = btrfs_item_ptr(leaf, slot,
1775 struct btrfs_dev_item);
1776 ret = read_one_dev(root, leaf, dev_item);
1778 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1779 struct btrfs_chunk *chunk;
1780 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1781 ret = read_one_chunk(root, &found_key, leaf, chunk);
1789 btrfs_free_path(path);
1793 struct list_head *btrfs_scanned_uuids(void)
1798 static int rmw_eb(struct btrfs_fs_info *info,
1799 struct extent_buffer *eb, struct extent_buffer *orig_eb)
1802 unsigned long orig_off = 0;
1803 unsigned long dest_off = 0;
1804 unsigned long copy_len = eb->len;
1806 ret = read_whole_eb(info, eb, 0);
1810 if (eb->start + eb->len <= orig_eb->start ||
1811 eb->start >= orig_eb->start + orig_eb->len)
1814 * | ----- orig_eb ------- |
1815 * | ----- stripe ------- |
1816 * | ----- orig_eb ------- |
1817 * | ----- orig_eb ------- |
1819 if (eb->start > orig_eb->start)
1820 orig_off = eb->start - orig_eb->start;
1821 if (orig_eb->start > eb->start)
1822 dest_off = orig_eb->start - eb->start;
1824 if (copy_len > orig_eb->len - orig_off)
1825 copy_len = orig_eb->len - orig_off;
1826 if (copy_len > eb->len - dest_off)
1827 copy_len = eb->len - dest_off;
1829 memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len);
1833 static void split_eb_for_raid56(struct btrfs_fs_info *info,
1834 struct extent_buffer *orig_eb,
1835 struct extent_buffer **ebs,
1836 u64 stripe_len, u64 *raid_map,
1839 struct extent_buffer *eb;
1840 u64 start = orig_eb->start;
1845 for (i = 0; i < num_stripes; i++) {
1846 if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
1849 eb = malloc(sizeof(struct extent_buffer) + stripe_len);
1852 memset(eb, 0, sizeof(struct extent_buffer) + stripe_len);
1854 eb->start = raid_map[i];
1855 eb->len = stripe_len;
1859 eb->dev_bytenr = (u64)-1;
1861 this_eb_start = raid_map[i];
1863 if (start > this_eb_start ||
1864 start + orig_eb->len < this_eb_start + stripe_len) {
1865 ret = rmw_eb(info, eb, orig_eb);
1868 memcpy(eb->data, orig_eb->data + eb->start - start, stripe_len);
1874 int write_raid56_with_parity(struct btrfs_fs_info *info,
1875 struct extent_buffer *eb,
1876 struct btrfs_multi_bio *multi,
1877 u64 stripe_len, u64 *raid_map)
1879 struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL;
1883 int alloc_size = eb->len;
1885 ebs = kmalloc(sizeof(*ebs) * multi->num_stripes, GFP_NOFS);
1888 if (stripe_len > alloc_size)
1889 alloc_size = stripe_len;
1891 split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map,
1892 multi->num_stripes);
1894 for (i = 0; i < multi->num_stripes; i++) {
1895 struct extent_buffer *new_eb;
1896 if (raid_map[i] < BTRFS_RAID5_P_STRIPE) {
1897 ebs[i]->dev_bytenr = multi->stripes[i].physical;
1898 ebs[i]->fd = multi->stripes[i].dev->fd;
1899 multi->stripes[i].dev->total_ios++;
1900 BUG_ON(ebs[i]->start != raid_map[i]);
1903 new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_NOFS);
1905 new_eb->dev_bytenr = multi->stripes[i].physical;
1906 new_eb->fd = multi->stripes[i].dev->fd;
1907 multi->stripes[i].dev->total_ios++;
1908 new_eb->len = stripe_len;
1910 if (raid_map[i] == BTRFS_RAID5_P_STRIPE)
1912 else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE)
1918 pointers = kmalloc(sizeof(*pointers) * multi->num_stripes,
1922 ebs[multi->num_stripes - 2] = p_eb;
1923 ebs[multi->num_stripes - 1] = q_eb;
1925 for (i = 0; i < multi->num_stripes; i++)
1926 pointers[i] = ebs[i]->data;
1928 raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers);
1931 ebs[multi->num_stripes - 1] = p_eb;
1932 memcpy(p_eb->data, ebs[0]->data, stripe_len);
1933 for (j = 1; j < multi->num_stripes - 1; j++) {
1934 for (i = 0; i < stripe_len; i += sizeof(unsigned long)) {
1935 *(unsigned long *)(p_eb->data + i) ^=
1936 *(unsigned long *)(ebs[j]->data + i);
1941 for (i = 0; i < multi->num_stripes; i++) {
1942 ret = write_extent_to_disk(ebs[i]);