btrfs-progs: "device ready" accepts just one device
[platform/upstream/btrfs-progs.git] / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <sys/types.h>
21 #include <sys/stat.h>
22 #include <uuid/uuid.h>
23 #include <fcntl.h>
24 #include <unistd.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "print-tree.h"
29 #include "volumes.h"
30 #include "utils.h"
31
32 struct stripe {
33         struct btrfs_device *dev;
34         u64 physical;
35 };
36
37 static inline int nr_parity_stripes(struct map_lookup *map)
38 {
39         if (map->type & BTRFS_BLOCK_GROUP_RAID5)
40                 return 1;
41         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
42                 return 2;
43         else
44                 return 0;
45 }
46
47 static inline int nr_data_stripes(struct map_lookup *map)
48 {
49         return map->num_stripes - nr_parity_stripes(map);
50 }
51
52 #define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
53
54 static LIST_HEAD(fs_uuids);
55
56 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
57                                           u8 *uuid)
58 {
59         struct btrfs_device *dev;
60         struct list_head *cur;
61
62         list_for_each(cur, head) {
63                 dev = list_entry(cur, struct btrfs_device, dev_list);
64                 if (dev->devid == devid &&
65                     !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
66                         return dev;
67                 }
68         }
69         return NULL;
70 }
71
72 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
73 {
74         struct list_head *cur;
75         struct btrfs_fs_devices *fs_devices;
76
77         list_for_each(cur, &fs_uuids) {
78                 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
79                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
80                         return fs_devices;
81         }
82         return NULL;
83 }
84
85 static int device_list_add(const char *path,
86                            struct btrfs_super_block *disk_super,
87                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
88 {
89         struct btrfs_device *device;
90         struct btrfs_fs_devices *fs_devices;
91         u64 found_transid = btrfs_super_generation(disk_super);
92
93         fs_devices = find_fsid(disk_super->fsid);
94         if (!fs_devices) {
95                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
96                 if (!fs_devices)
97                         return -ENOMEM;
98                 INIT_LIST_HEAD(&fs_devices->devices);
99                 list_add(&fs_devices->list, &fs_uuids);
100                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
101                 fs_devices->latest_devid = devid;
102                 fs_devices->latest_trans = found_transid;
103                 fs_devices->lowest_devid = (u64)-1;
104                 device = NULL;
105         } else {
106                 device = __find_device(&fs_devices->devices, devid,
107                                        disk_super->dev_item.uuid);
108         }
109         if (!device) {
110                 device = kzalloc(sizeof(*device), GFP_NOFS);
111                 if (!device) {
112                         /* we can safely leave the fs_devices entry around */
113                         return -ENOMEM;
114                 }
115                 device->fd = -1;
116                 device->devid = devid;
117                 device->generation = found_transid;
118                 memcpy(device->uuid, disk_super->dev_item.uuid,
119                        BTRFS_UUID_SIZE);
120                 device->name = kstrdup(path, GFP_NOFS);
121                 if (!device->name) {
122                         kfree(device);
123                         return -ENOMEM;
124                 }
125                 device->label = kstrdup(disk_super->label, GFP_NOFS);
126                 if (!device->label) {
127                         kfree(device->name);
128                         kfree(device);
129                         return -ENOMEM;
130                 }
131                 device->total_devs = btrfs_super_num_devices(disk_super);
132                 device->super_bytes_used = btrfs_super_bytes_used(disk_super);
133                 device->total_bytes =
134                         btrfs_stack_device_total_bytes(&disk_super->dev_item);
135                 device->bytes_used =
136                         btrfs_stack_device_bytes_used(&disk_super->dev_item);
137                 list_add(&device->dev_list, &fs_devices->devices);
138                 device->fs_devices = fs_devices;
139         } else if (!device->name || strcmp(device->name, path)) {
140                 char *name = strdup(path);
141                 if (!name)
142                         return -ENOMEM;
143                 kfree(device->name);
144                 device->name = name;
145         }
146
147
148         if (found_transid > fs_devices->latest_trans) {
149                 fs_devices->latest_devid = devid;
150                 fs_devices->latest_trans = found_transid;
151         }
152         if (fs_devices->lowest_devid > devid) {
153                 fs_devices->lowest_devid = devid;
154         }
155         *fs_devices_ret = fs_devices;
156         return 0;
157 }
158
159 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
160 {
161         struct btrfs_fs_devices *seed_devices;
162         struct btrfs_device *device;
163
164 again:
165         while (!list_empty(&fs_devices->devices)) {
166                 device = list_entry(fs_devices->devices.next,
167                                     struct btrfs_device, dev_list);
168                 if (device->fd != -1) {
169                         fsync(device->fd);
170                         if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED))
171                                 fprintf(stderr, "Warning, could not drop caches\n");
172                         close(device->fd);
173                         device->fd = -1;
174                 }
175                 device->writeable = 0;
176                 list_del(&device->dev_list);
177                 /* free the memory */
178                 free(device->name);
179                 free(device->label);
180                 free(device);
181         }
182
183         seed_devices = fs_devices->seed;
184         fs_devices->seed = NULL;
185         if (seed_devices) {
186                 struct btrfs_fs_devices *orig;
187
188                 orig = fs_devices;
189                 fs_devices = seed_devices;
190                 list_del(&orig->list);
191                 free(orig);
192                 goto again;
193         } else {
194                 list_del(&fs_devices->list);
195                 free(fs_devices);
196         }
197
198         return 0;
199 }
200
201 void btrfs_close_all_devices(void)
202 {
203         struct btrfs_fs_devices *fs_devices;
204
205         while (!list_empty(&fs_uuids)) {
206                 fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
207                                         list);
208                 btrfs_close_devices(fs_devices);
209         }
210 }
211
212 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
213 {
214         int fd;
215         struct list_head *head = &fs_devices->devices;
216         struct list_head *cur;
217         struct btrfs_device *device;
218         int ret;
219
220         list_for_each(cur, head) {
221                 device = list_entry(cur, struct btrfs_device, dev_list);
222                 if (!device->name) {
223                         printk("no name for device %llu, skip it now\n", device->devid);
224                         continue;
225                 }
226
227                 fd = open(device->name, flags);
228                 if (fd < 0) {
229                         ret = -errno;
230                         goto fail;
231                 }
232
233                 if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED))
234                         fprintf(stderr, "Warning, could not drop caches\n");
235
236                 if (device->devid == fs_devices->latest_devid)
237                         fs_devices->latest_bdev = fd;
238                 if (device->devid == fs_devices->lowest_devid)
239                         fs_devices->lowest_bdev = fd;
240                 device->fd = fd;
241                 if (flags & O_RDWR)
242                         device->writeable = 1;
243         }
244         return 0;
245 fail:
246         btrfs_close_devices(fs_devices);
247         return ret;
248 }
249
250 int btrfs_scan_one_device(int fd, const char *path,
251                           struct btrfs_fs_devices **fs_devices_ret,
252                           u64 *total_devs, u64 super_offset, int super_recover)
253 {
254         struct btrfs_super_block *disk_super;
255         char buf[BTRFS_SUPER_INFO_SIZE];
256         int ret;
257         u64 devid;
258
259         disk_super = (struct btrfs_super_block *)buf;
260         ret = btrfs_read_dev_super(fd, disk_super, super_offset, super_recover);
261         if (ret < 0)
262                 return -EIO;
263         devid = btrfs_stack_device_id(&disk_super->dev_item);
264         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
265                 *total_devs = 1;
266         else
267                 *total_devs = btrfs_super_num_devices(disk_super);
268
269         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
270
271         return ret;
272 }
273
274 /*
275  * this uses a pretty simple search, the expectation is that it is
276  * called very infrequently and that a given device has a small number
277  * of extents
278  */
279 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
280                                 struct btrfs_device *device,
281                                 struct btrfs_path *path,
282                                 u64 num_bytes, u64 *start)
283 {
284         struct btrfs_key key;
285         struct btrfs_root *root = device->dev_root;
286         struct btrfs_dev_extent *dev_extent = NULL;
287         u64 hole_size = 0;
288         u64 last_byte = 0;
289         u64 search_start = root->fs_info->alloc_start;
290         u64 search_end = device->total_bytes;
291         int ret;
292         int slot = 0;
293         int start_found;
294         struct extent_buffer *l;
295
296         start_found = 0;
297         path->reada = 2;
298
299         /* FIXME use last free of some kind */
300
301         /* we don't want to overwrite the superblock on the drive,
302          * so we make sure to start at an offset of at least 1MB
303          */
304         search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
305
306         if (search_start >= search_end) {
307                 ret = -ENOSPC;
308                 goto error;
309         }
310
311         key.objectid = device->devid;
312         key.offset = search_start;
313         key.type = BTRFS_DEV_EXTENT_KEY;
314         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
315         if (ret < 0)
316                 goto error;
317         ret = btrfs_previous_item(root, path, 0, key.type);
318         if (ret < 0)
319                 goto error;
320         l = path->nodes[0];
321         btrfs_item_key_to_cpu(l, &key, path->slots[0]);
322         while (1) {
323                 l = path->nodes[0];
324                 slot = path->slots[0];
325                 if (slot >= btrfs_header_nritems(l)) {
326                         ret = btrfs_next_leaf(root, path);
327                         if (ret == 0)
328                                 continue;
329                         if (ret < 0)
330                                 goto error;
331 no_more_items:
332                         if (!start_found) {
333                                 if (search_start >= search_end) {
334                                         ret = -ENOSPC;
335                                         goto error;
336                                 }
337                                 *start = search_start;
338                                 start_found = 1;
339                                 goto check_pending;
340                         }
341                         *start = last_byte > search_start ?
342                                 last_byte : search_start;
343                         if (search_end <= *start) {
344                                 ret = -ENOSPC;
345                                 goto error;
346                         }
347                         goto check_pending;
348                 }
349                 btrfs_item_key_to_cpu(l, &key, slot);
350
351                 if (key.objectid < device->devid)
352                         goto next;
353
354                 if (key.objectid > device->devid)
355                         goto no_more_items;
356
357                 if (key.offset >= search_start && key.offset > last_byte &&
358                     start_found) {
359                         if (last_byte < search_start)
360                                 last_byte = search_start;
361                         hole_size = key.offset - last_byte;
362                         if (key.offset > last_byte &&
363                             hole_size >= num_bytes) {
364                                 *start = last_byte;
365                                 goto check_pending;
366                         }
367                 }
368                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
369                         goto next;
370                 }
371
372                 start_found = 1;
373                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
374                 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
375 next:
376                 path->slots[0]++;
377                 cond_resched();
378         }
379 check_pending:
380         /* we have to make sure we didn't find an extent that has already
381          * been allocated by the map tree or the original allocation
382          */
383         btrfs_release_path(path);
384         BUG_ON(*start < search_start);
385
386         if (*start + num_bytes > search_end) {
387                 ret = -ENOSPC;
388                 goto error;
389         }
390         /* check for pending inserts here */
391         return 0;
392
393 error:
394         btrfs_release_path(path);
395         return ret;
396 }
397
398 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
399                                   struct btrfs_device *device,
400                                   u64 chunk_tree, u64 chunk_objectid,
401                                   u64 chunk_offset,
402                                   u64 num_bytes, u64 *start)
403 {
404         int ret;
405         struct btrfs_path *path;
406         struct btrfs_root *root = device->dev_root;
407         struct btrfs_dev_extent *extent;
408         struct extent_buffer *leaf;
409         struct btrfs_key key;
410
411         path = btrfs_alloc_path();
412         if (!path)
413                 return -ENOMEM;
414
415         ret = find_free_dev_extent(trans, device, path, num_bytes, start);
416         if (ret) {
417                 goto err;
418         }
419
420         key.objectid = device->devid;
421         key.offset = *start;
422         key.type = BTRFS_DEV_EXTENT_KEY;
423         ret = btrfs_insert_empty_item(trans, root, path, &key,
424                                       sizeof(*extent));
425         BUG_ON(ret);
426
427         leaf = path->nodes[0];
428         extent = btrfs_item_ptr(leaf, path->slots[0],
429                                 struct btrfs_dev_extent);
430         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
431         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
432         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
433
434         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
435                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
436                     BTRFS_UUID_SIZE);
437
438         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
439         btrfs_mark_buffer_dirty(leaf);
440 err:
441         btrfs_free_path(path);
442         return ret;
443 }
444
445 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
446 {
447         struct btrfs_path *path;
448         int ret;
449         struct btrfs_key key;
450         struct btrfs_chunk *chunk;
451         struct btrfs_key found_key;
452
453         path = btrfs_alloc_path();
454         BUG_ON(!path);
455
456         key.objectid = objectid;
457         key.offset = (u64)-1;
458         key.type = BTRFS_CHUNK_ITEM_KEY;
459
460         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
461         if (ret < 0)
462                 goto error;
463
464         BUG_ON(ret == 0);
465
466         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
467         if (ret) {
468                 *offset = 0;
469         } else {
470                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
471                                       path->slots[0]);
472                 if (found_key.objectid != objectid)
473                         *offset = 0;
474                 else {
475                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
476                                                struct btrfs_chunk);
477                         *offset = found_key.offset +
478                                 btrfs_chunk_length(path->nodes[0], chunk);
479                 }
480         }
481         ret = 0;
482 error:
483         btrfs_free_path(path);
484         return ret;
485 }
486
487 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
488                            u64 *objectid)
489 {
490         int ret;
491         struct btrfs_key key;
492         struct btrfs_key found_key;
493
494         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
495         key.type = BTRFS_DEV_ITEM_KEY;
496         key.offset = (u64)-1;
497
498         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
499         if (ret < 0)
500                 goto error;
501
502         BUG_ON(ret == 0);
503
504         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
505                                   BTRFS_DEV_ITEM_KEY);
506         if (ret) {
507                 *objectid = 1;
508         } else {
509                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
510                                       path->slots[0]);
511                 *objectid = found_key.offset + 1;
512         }
513         ret = 0;
514 error:
515         btrfs_release_path(path);
516         return ret;
517 }
518
519 /*
520  * the device information is stored in the chunk root
521  * the btrfs_device struct should be fully filled in
522  */
523 int btrfs_add_device(struct btrfs_trans_handle *trans,
524                      struct btrfs_root *root,
525                      struct btrfs_device *device)
526 {
527         int ret;
528         struct btrfs_path *path;
529         struct btrfs_dev_item *dev_item;
530         struct extent_buffer *leaf;
531         struct btrfs_key key;
532         unsigned long ptr;
533         u64 free_devid = 0;
534
535         root = root->fs_info->chunk_root;
536
537         path = btrfs_alloc_path();
538         if (!path)
539                 return -ENOMEM;
540
541         ret = find_next_devid(root, path, &free_devid);
542         if (ret)
543                 goto out;
544
545         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
546         key.type = BTRFS_DEV_ITEM_KEY;
547         key.offset = free_devid;
548
549         ret = btrfs_insert_empty_item(trans, root, path, &key,
550                                       sizeof(*dev_item));
551         if (ret)
552                 goto out;
553
554         leaf = path->nodes[0];
555         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
556
557         device->devid = free_devid;
558         btrfs_set_device_id(leaf, dev_item, device->devid);
559         btrfs_set_device_generation(leaf, dev_item, 0);
560         btrfs_set_device_type(leaf, dev_item, device->type);
561         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
562         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
563         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
564         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
565         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
566         btrfs_set_device_group(leaf, dev_item, 0);
567         btrfs_set_device_seek_speed(leaf, dev_item, 0);
568         btrfs_set_device_bandwidth(leaf, dev_item, 0);
569         btrfs_set_device_start_offset(leaf, dev_item, 0);
570
571         ptr = (unsigned long)btrfs_device_uuid(dev_item);
572         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
573         ptr = (unsigned long)btrfs_device_fsid(dev_item);
574         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
575         btrfs_mark_buffer_dirty(leaf);
576         ret = 0;
577
578 out:
579         btrfs_free_path(path);
580         return ret;
581 }
582
583 int btrfs_update_device(struct btrfs_trans_handle *trans,
584                         struct btrfs_device *device)
585 {
586         int ret;
587         struct btrfs_path *path;
588         struct btrfs_root *root;
589         struct btrfs_dev_item *dev_item;
590         struct extent_buffer *leaf;
591         struct btrfs_key key;
592
593         root = device->dev_root->fs_info->chunk_root;
594
595         path = btrfs_alloc_path();
596         if (!path)
597                 return -ENOMEM;
598
599         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
600         key.type = BTRFS_DEV_ITEM_KEY;
601         key.offset = device->devid;
602
603         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
604         if (ret < 0)
605                 goto out;
606
607         if (ret > 0) {
608                 ret = -ENOENT;
609                 goto out;
610         }
611
612         leaf = path->nodes[0];
613         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
614
615         btrfs_set_device_id(leaf, dev_item, device->devid);
616         btrfs_set_device_type(leaf, dev_item, device->type);
617         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
618         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
619         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
620         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
621         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
622         btrfs_mark_buffer_dirty(leaf);
623
624 out:
625         btrfs_free_path(path);
626         return ret;
627 }
628
629 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
630                            struct btrfs_root *root,
631                            struct btrfs_key *key,
632                            struct btrfs_chunk *chunk, int item_size)
633 {
634         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
635         struct btrfs_disk_key disk_key;
636         u32 array_size;
637         u8 *ptr;
638
639         array_size = btrfs_super_sys_array_size(super_copy);
640         if (array_size + item_size + sizeof(disk_key)
641                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
642                 return -EFBIG;
643
644         ptr = super_copy->sys_chunk_array + array_size;
645         btrfs_cpu_key_to_disk(&disk_key, key);
646         memcpy(ptr, &disk_key, sizeof(disk_key));
647         ptr += sizeof(disk_key);
648         memcpy(ptr, chunk, item_size);
649         item_size += sizeof(disk_key);
650         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
651         return 0;
652 }
653
654 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
655                                int sub_stripes)
656 {
657         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
658                 return calc_size;
659         else if (type & BTRFS_BLOCK_GROUP_RAID10)
660                 return calc_size * (num_stripes / sub_stripes);
661         else if (type & BTRFS_BLOCK_GROUP_RAID5)
662                 return calc_size * (num_stripes - 1);
663         else if (type & BTRFS_BLOCK_GROUP_RAID6)
664                 return calc_size * (num_stripes - 2);
665         else
666                 return calc_size * num_stripes;
667 }
668
669
670 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
671 {
672         /* TODO, add a way to store the preferred stripe size */
673         return BTRFS_STRIPE_LEN;
674 }
675
676 /*
677  * btrfs_device_avail_bytes - count bytes available for alloc_chunk
678  *
679  * It is not equal to "device->total_bytes - device->bytes_used".
680  * We do not allocate any chunk in 1M at beginning of device, and not
681  * allowed to allocate any chunk before alloc_start if it is specified.
682  * So search holes from max(1M, alloc_start) to device->total_bytes.
683  */
684 static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans,
685                                     struct btrfs_device *device,
686                                     u64 *avail_bytes)
687 {
688         struct btrfs_path *path;
689         struct btrfs_root *root = device->dev_root;
690         struct btrfs_key key;
691         struct btrfs_dev_extent *dev_extent = NULL;
692         struct extent_buffer *l;
693         u64 search_start = root->fs_info->alloc_start;
694         u64 search_end = device->total_bytes;
695         u64 extent_end = 0;
696         u64 free_bytes = 0;
697         int ret;
698         int slot = 0;
699
700         search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
701
702         path = btrfs_alloc_path();
703         if (!path)
704                 return -ENOMEM;
705
706         key.objectid = device->devid;
707         key.offset = root->fs_info->alloc_start;
708         key.type = BTRFS_DEV_EXTENT_KEY;
709
710         path->reada = 2;
711         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
712         if (ret < 0)
713                 goto error;
714         ret = btrfs_previous_item(root, path, 0, key.type);
715         if (ret < 0)
716                 goto error;
717
718         while (1) {
719                 l = path->nodes[0];
720                 slot = path->slots[0];
721                 if (slot >= btrfs_header_nritems(l)) {
722                         ret = btrfs_next_leaf(root, path);
723                         if (ret == 0)
724                                 continue;
725                         if (ret < 0)
726                                 goto error;
727                         break;
728                 }
729                 btrfs_item_key_to_cpu(l, &key, slot);
730
731                 if (key.objectid < device->devid)
732                         goto next;
733                 if (key.objectid > device->devid)
734                         break;
735                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
736                         goto next;
737                 if (key.offset > search_end)
738                         break;
739                 if (key.offset > search_start)
740                         free_bytes += key.offset - search_start;
741
742                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
743                 extent_end = key.offset + btrfs_dev_extent_length(l,
744                                                                   dev_extent);
745                 if (extent_end > search_start)
746                         search_start = extent_end;
747                 if (search_start > search_end)
748                         break;
749 next:
750                 path->slots[0]++;
751                 cond_resched();
752         }
753
754         if (search_start < search_end)
755                 free_bytes += search_end - search_start;
756
757         *avail_bytes = free_bytes;
758         ret = 0;
759 error:
760         btrfs_free_path(path);
761         return ret;
762 }
763
764 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
765                         - sizeof(struct btrfs_item)             \
766                         - sizeof(struct btrfs_chunk))           \
767                         / sizeof(struct btrfs_stripe) + 1)
768
769 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
770                                 - 2 * sizeof(struct btrfs_disk_key)     \
771                                 - 2 * sizeof(struct btrfs_chunk))       \
772                                 / sizeof(struct btrfs_stripe) + 1)
773
774 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
775                       struct btrfs_root *extent_root, u64 *start,
776                       u64 *num_bytes, u64 type)
777 {
778         u64 dev_offset;
779         struct btrfs_fs_info *info = extent_root->fs_info;
780         struct btrfs_root *chunk_root = info->chunk_root;
781         struct btrfs_stripe *stripes;
782         struct btrfs_device *device = NULL;
783         struct btrfs_chunk *chunk;
784         struct list_head private_devs;
785         struct list_head *dev_list = &info->fs_devices->devices;
786         struct list_head *cur;
787         struct map_lookup *map;
788         int min_stripe_size = 1 * 1024 * 1024;
789         u64 calc_size = 8 * 1024 * 1024;
790         u64 min_free;
791         u64 max_chunk_size = 4 * calc_size;
792         u64 avail = 0;
793         u64 max_avail = 0;
794         u64 percent_max;
795         int num_stripes = 1;
796         int max_stripes = 0;
797         int min_stripes = 1;
798         int sub_stripes = 0;
799         int looped = 0;
800         int ret;
801         int index;
802         int stripe_len = BTRFS_STRIPE_LEN;
803         struct btrfs_key key;
804         u64 offset;
805
806         if (list_empty(dev_list)) {
807                 return -ENOSPC;
808         }
809
810         if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
811                     BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
812                     BTRFS_BLOCK_GROUP_RAID10 |
813                     BTRFS_BLOCK_GROUP_DUP)) {
814                 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
815                         calc_size = 8 * 1024 * 1024;
816                         max_chunk_size = calc_size * 2;
817                         min_stripe_size = 1 * 1024 * 1024;
818                         max_stripes = BTRFS_MAX_DEVS_SYS_CHUNK;
819                 } else if (type & BTRFS_BLOCK_GROUP_DATA) {
820                         calc_size = 1024 * 1024 * 1024;
821                         max_chunk_size = 10 * calc_size;
822                         min_stripe_size = 64 * 1024 * 1024;
823                         max_stripes = BTRFS_MAX_DEVS(chunk_root);
824                 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
825                         calc_size = 1024 * 1024 * 1024;
826                         max_chunk_size = 4 * calc_size;
827                         min_stripe_size = 32 * 1024 * 1024;
828                         max_stripes = BTRFS_MAX_DEVS(chunk_root);
829                 }
830         }
831         if (type & BTRFS_BLOCK_GROUP_RAID1) {
832                 num_stripes = min_t(u64, 2,
833                                   btrfs_super_num_devices(info->super_copy));
834                 if (num_stripes < 2)
835                         return -ENOSPC;
836                 min_stripes = 2;
837         }
838         if (type & BTRFS_BLOCK_GROUP_DUP) {
839                 num_stripes = 2;
840                 min_stripes = 2;
841         }
842         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
843                 num_stripes = btrfs_super_num_devices(info->super_copy);
844                 if (num_stripes > max_stripes)
845                         num_stripes = max_stripes;
846                 min_stripes = 2;
847         }
848         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
849                 num_stripes = btrfs_super_num_devices(info->super_copy);
850                 if (num_stripes > max_stripes)
851                         num_stripes = max_stripes;
852                 if (num_stripes < 4)
853                         return -ENOSPC;
854                 num_stripes &= ~(u32)1;
855                 sub_stripes = 2;
856                 min_stripes = 4;
857         }
858         if (type & (BTRFS_BLOCK_GROUP_RAID5)) {
859                 num_stripes = btrfs_super_num_devices(info->super_copy);
860                 if (num_stripes > max_stripes)
861                         num_stripes = max_stripes;
862                 if (num_stripes < 2)
863                         return -ENOSPC;
864                 min_stripes = 2;
865                 stripe_len = find_raid56_stripe_len(num_stripes - 1,
866                                     btrfs_super_stripesize(info->super_copy));
867         }
868         if (type & (BTRFS_BLOCK_GROUP_RAID6)) {
869                 num_stripes = btrfs_super_num_devices(info->super_copy);
870                 if (num_stripes > max_stripes)
871                         num_stripes = max_stripes;
872                 if (num_stripes < 3)
873                         return -ENOSPC;
874                 min_stripes = 3;
875                 stripe_len = find_raid56_stripe_len(num_stripes - 2,
876                                     btrfs_super_stripesize(info->super_copy));
877         }
878
879         /* we don't want a chunk larger than 10% of the FS */
880         percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1);
881         max_chunk_size = min(percent_max, max_chunk_size);
882
883 again:
884         if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
885             max_chunk_size) {
886                 calc_size = max_chunk_size;
887                 calc_size /= num_stripes;
888                 calc_size /= stripe_len;
889                 calc_size *= stripe_len;
890         }
891         /* we don't want tiny stripes */
892         calc_size = max_t(u64, calc_size, min_stripe_size);
893
894         calc_size /= stripe_len;
895         calc_size *= stripe_len;
896         INIT_LIST_HEAD(&private_devs);
897         cur = dev_list->next;
898         index = 0;
899
900         if (type & BTRFS_BLOCK_GROUP_DUP)
901                 min_free = calc_size * 2;
902         else
903                 min_free = calc_size;
904
905         /* build a private list of devices we will allocate from */
906         while(index < num_stripes) {
907                 device = list_entry(cur, struct btrfs_device, dev_list);
908                 ret = btrfs_device_avail_bytes(trans, device, &avail);
909                 if (ret)
910                         return ret;
911                 cur = cur->next;
912                 if (avail >= min_free) {
913                         list_move_tail(&device->dev_list, &private_devs);
914                         index++;
915                         if (type & BTRFS_BLOCK_GROUP_DUP)
916                                 index++;
917                 } else if (avail > max_avail)
918                         max_avail = avail;
919                 if (cur == dev_list)
920                         break;
921         }
922         if (index < num_stripes) {
923                 list_splice(&private_devs, dev_list);
924                 if (index >= min_stripes) {
925                         num_stripes = index;
926                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
927                                 num_stripes /= sub_stripes;
928                                 num_stripes *= sub_stripes;
929                         }
930                         looped = 1;
931                         goto again;
932                 }
933                 if (!looped && max_avail > 0) {
934                         looped = 1;
935                         calc_size = max_avail;
936                         goto again;
937                 }
938                 return -ENOSPC;
939         }
940         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
941                               &offset);
942         if (ret)
943                 return ret;
944         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
945         key.type = BTRFS_CHUNK_ITEM_KEY;
946         key.offset = offset;
947
948         chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
949         if (!chunk)
950                 return -ENOMEM;
951
952         map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
953         if (!map) {
954                 kfree(chunk);
955                 return -ENOMEM;
956         }
957
958         stripes = &chunk->stripe;
959         *num_bytes = chunk_bytes_by_type(type, calc_size,
960                                          num_stripes, sub_stripes);
961         index = 0;
962         while(index < num_stripes) {
963                 struct btrfs_stripe *stripe;
964                 BUG_ON(list_empty(&private_devs));
965                 cur = private_devs.next;
966                 device = list_entry(cur, struct btrfs_device, dev_list);
967
968                 /* loop over this device again if we're doing a dup group */
969                 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
970                     (index == num_stripes - 1))
971                         list_move_tail(&device->dev_list, dev_list);
972
973                 ret = btrfs_alloc_dev_extent(trans, device,
974                              info->chunk_root->root_key.objectid,
975                              BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
976                              calc_size, &dev_offset);
977                 BUG_ON(ret);
978
979                 device->bytes_used += calc_size;
980                 ret = btrfs_update_device(trans, device);
981                 BUG_ON(ret);
982
983                 map->stripes[index].dev = device;
984                 map->stripes[index].physical = dev_offset;
985                 stripe = stripes + index;
986                 btrfs_set_stack_stripe_devid(stripe, device->devid);
987                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
988                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
989                 index++;
990         }
991         BUG_ON(!list_empty(&private_devs));
992
993         /* key was set above */
994         btrfs_set_stack_chunk_length(chunk, *num_bytes);
995         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
996         btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
997         btrfs_set_stack_chunk_type(chunk, type);
998         btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
999         btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1000         btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1001         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1002         btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1003         map->sector_size = extent_root->sectorsize;
1004         map->stripe_len = stripe_len;
1005         map->io_align = stripe_len;
1006         map->io_width = stripe_len;
1007         map->type = type;
1008         map->num_stripes = num_stripes;
1009         map->sub_stripes = sub_stripes;
1010
1011         ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1012                                 btrfs_chunk_item_size(num_stripes));
1013         BUG_ON(ret);
1014         *start = key.offset;;
1015
1016         map->ce.start = key.offset;
1017         map->ce.size = *num_bytes;
1018
1019         ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1020         BUG_ON(ret);
1021
1022         if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1023                 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1024                                     chunk, btrfs_chunk_item_size(num_stripes));
1025                 BUG_ON(ret);
1026         }
1027
1028         kfree(chunk);
1029         return ret;
1030 }
1031
1032 int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
1033                            struct btrfs_root *extent_root, u64 *start,
1034                            u64 num_bytes, u64 type)
1035 {
1036         u64 dev_offset;
1037         struct btrfs_fs_info *info = extent_root->fs_info;
1038         struct btrfs_root *chunk_root = info->chunk_root;
1039         struct btrfs_stripe *stripes;
1040         struct btrfs_device *device = NULL;
1041         struct btrfs_chunk *chunk;
1042         struct list_head *dev_list = &info->fs_devices->devices;
1043         struct list_head *cur;
1044         struct map_lookup *map;
1045         u64 calc_size = 8 * 1024 * 1024;
1046         int num_stripes = 1;
1047         int sub_stripes = 0;
1048         int ret;
1049         int index;
1050         int stripe_len = BTRFS_STRIPE_LEN;
1051         struct btrfs_key key;
1052
1053         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1054         key.type = BTRFS_CHUNK_ITEM_KEY;
1055         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1056                               &key.offset);
1057         if (ret)
1058                 return ret;
1059
1060         chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1061         if (!chunk)
1062                 return -ENOMEM;
1063
1064         map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1065         if (!map) {
1066                 kfree(chunk);
1067                 return -ENOMEM;
1068         }
1069
1070         stripes = &chunk->stripe;
1071         calc_size = num_bytes;
1072
1073         index = 0;
1074         cur = dev_list->next;
1075         device = list_entry(cur, struct btrfs_device, dev_list);
1076
1077         while (index < num_stripes) {
1078                 struct btrfs_stripe *stripe;
1079
1080                 ret = btrfs_alloc_dev_extent(trans, device,
1081                              info->chunk_root->root_key.objectid,
1082                              BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1083                              calc_size, &dev_offset);
1084                 BUG_ON(ret);
1085
1086                 device->bytes_used += calc_size;
1087                 ret = btrfs_update_device(trans, device);
1088                 BUG_ON(ret);
1089
1090                 map->stripes[index].dev = device;
1091                 map->stripes[index].physical = dev_offset;
1092                 stripe = stripes + index;
1093                 btrfs_set_stack_stripe_devid(stripe, device->devid);
1094                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1095                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1096                 index++;
1097         }
1098
1099         /* key was set above */
1100         btrfs_set_stack_chunk_length(chunk, num_bytes);
1101         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1102         btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1103         btrfs_set_stack_chunk_type(chunk, type);
1104         btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1105         btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1106         btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1107         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1108         btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1109         map->sector_size = extent_root->sectorsize;
1110         map->stripe_len = stripe_len;
1111         map->io_align = stripe_len;
1112         map->io_width = stripe_len;
1113         map->type = type;
1114         map->num_stripes = num_stripes;
1115         map->sub_stripes = sub_stripes;
1116
1117         ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1118                                 btrfs_chunk_item_size(num_stripes));
1119         BUG_ON(ret);
1120         *start = key.offset;
1121
1122         map->ce.start = key.offset;
1123         map->ce.size = num_bytes;
1124
1125         ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1126         BUG_ON(ret);
1127
1128         kfree(chunk);
1129         return ret;
1130 }
1131
1132 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1133 {
1134         struct cache_extent *ce;
1135         struct map_lookup *map;
1136         int ret;
1137
1138         ce = search_cache_extent(&map_tree->cache_tree, logical);
1139         if (!ce) {
1140                 fprintf(stderr, "No mapping for %llu-%llu\n",
1141                         (unsigned long long)logical,
1142                         (unsigned long long)logical+len);
1143                 return 1;
1144         }
1145         if (ce->start > logical || ce->start + ce->size < logical) {
1146                 fprintf(stderr, "Invalid mapping for %llu-%llu, got "
1147                         "%llu-%llu\n", (unsigned long long)logical,
1148                         (unsigned long long)logical+len,
1149                         (unsigned long long)ce->start,
1150                         (unsigned long long)ce->start + ce->size);
1151                 return 1;
1152         }
1153         map = container_of(ce, struct map_lookup, ce);
1154
1155         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1156                 ret = map->num_stripes;
1157         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1158                 ret = map->sub_stripes;
1159         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
1160                 ret = 2;
1161         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1162                 ret = 3;
1163         else
1164                 ret = 1;
1165         return ret;
1166 }
1167
1168 int btrfs_next_bg(struct btrfs_mapping_tree *map_tree, u64 *logical,
1169                      u64 *size, u64 type)
1170 {
1171         struct cache_extent *ce;
1172         struct map_lookup *map;
1173         u64 cur = *logical;
1174
1175         ce = search_cache_extent(&map_tree->cache_tree, cur);
1176
1177         while (ce) {
1178                 /*
1179                  * only jump to next bg if our cur is not 0
1180                  * As the initial logical for btrfs_next_bg() is 0, and
1181                  * if we jump to next bg, we skipped a valid bg.
1182                  */
1183                 if (cur) {
1184                         ce = next_cache_extent(ce);
1185                         if (!ce)
1186                                 return -ENOENT;
1187                 }
1188
1189                 cur = ce->start;
1190                 map = container_of(ce, struct map_lookup, ce);
1191                 if (map->type & type) {
1192                         *logical = ce->start;
1193                         *size = ce->size;
1194                         return 0;
1195                 }
1196         }
1197
1198         return -ENOENT;
1199 }
1200
1201 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
1202                      u64 chunk_start, u64 physical, u64 devid,
1203                      u64 **logical, int *naddrs, int *stripe_len)
1204 {
1205         struct cache_extent *ce;
1206         struct map_lookup *map;
1207         u64 *buf;
1208         u64 bytenr;
1209         u64 length;
1210         u64 stripe_nr;
1211         u64 rmap_len;
1212         int i, j, nr = 0;
1213
1214         ce = search_cache_extent(&map_tree->cache_tree, chunk_start);
1215         BUG_ON(!ce);
1216         map = container_of(ce, struct map_lookup, ce);
1217
1218         length = ce->size;
1219         rmap_len = map->stripe_len;
1220         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1221                 length = ce->size / (map->num_stripes / map->sub_stripes);
1222         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1223                 length = ce->size / map->num_stripes;
1224         else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1225                               BTRFS_BLOCK_GROUP_RAID6)) {
1226                 length = ce->size / nr_data_stripes(map);
1227                 rmap_len = map->stripe_len * nr_data_stripes(map);
1228         }
1229
1230         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1231
1232         for (i = 0; i < map->num_stripes; i++) {
1233                 if (devid && map->stripes[i].dev->devid != devid)
1234                         continue;
1235                 if (map->stripes[i].physical > physical ||
1236                     map->stripes[i].physical + length <= physical)
1237                         continue;
1238
1239                 stripe_nr = (physical - map->stripes[i].physical) /
1240                             map->stripe_len;
1241
1242                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1243                         stripe_nr = (stripe_nr * map->num_stripes + i) /
1244                                     map->sub_stripes;
1245                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1246                         stripe_nr = stripe_nr * map->num_stripes + i;
1247                 } /* else if RAID[56], multiply by nr_data_stripes().
1248                    * Alternatively, just use rmap_len below instead of
1249                    * map->stripe_len */
1250
1251                 bytenr = ce->start + stripe_nr * rmap_len;
1252                 for (j = 0; j < nr; j++) {
1253                         if (buf[j] == bytenr)
1254                                 break;
1255                 }
1256                 if (j == nr)
1257                         buf[nr++] = bytenr;
1258         }
1259
1260         *logical = buf;
1261         *naddrs = nr;
1262         *stripe_len = rmap_len;
1263
1264         return 0;
1265 }
1266
1267 static inline int parity_smaller(u64 a, u64 b)
1268 {
1269         return a > b;
1270 }
1271
1272 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
1273 static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
1274 {
1275         struct btrfs_bio_stripe s;
1276         int i;
1277         u64 l;
1278         int again = 1;
1279
1280         while (again) {
1281                 again = 0;
1282                 for (i = 0; i < bbio->num_stripes - 1; i++) {
1283                         if (parity_smaller(raid_map[i], raid_map[i+1])) {
1284                                 s = bbio->stripes[i];
1285                                 l = raid_map[i];
1286                                 bbio->stripes[i] = bbio->stripes[i+1];
1287                                 raid_map[i] = raid_map[i+1];
1288                                 bbio->stripes[i+1] = s;
1289                                 raid_map[i+1] = l;
1290                                 again = 1;
1291                         }
1292                 }
1293         }
1294 }
1295
1296 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1297                     u64 logical, u64 *length,
1298                     struct btrfs_multi_bio **multi_ret, int mirror_num,
1299                     u64 **raid_map_ret)
1300 {
1301         return __btrfs_map_block(map_tree, rw, logical, length, NULL,
1302                                  multi_ret, mirror_num, raid_map_ret);
1303 }
1304
1305 int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1306                     u64 logical, u64 *length, u64 *type,
1307                     struct btrfs_multi_bio **multi_ret, int mirror_num,
1308                     u64 **raid_map_ret)
1309 {
1310         struct cache_extent *ce;
1311         struct map_lookup *map;
1312         u64 offset;
1313         u64 stripe_offset;
1314         u64 stripe_nr;
1315         u64 *raid_map = NULL;
1316         int stripes_allocated = 8;
1317         int stripes_required = 1;
1318         int stripe_index;
1319         int i;
1320         struct btrfs_multi_bio *multi = NULL;
1321
1322         if (multi_ret && rw == READ) {
1323                 stripes_allocated = 1;
1324         }
1325 again:
1326         ce = search_cache_extent(&map_tree->cache_tree, logical);
1327         if (!ce) {
1328                 kfree(multi);
1329                 *length = (u64)-1;
1330                 return -ENOENT;
1331         }
1332         if (ce->start > logical) {
1333                 kfree(multi);
1334                 *length = ce->start - logical;
1335                 return -ENOENT;
1336         }
1337
1338         if (multi_ret) {
1339                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1340                                 GFP_NOFS);
1341                 if (!multi)
1342                         return -ENOMEM;
1343         }
1344         map = container_of(ce, struct map_lookup, ce);
1345         offset = logical - ce->start;
1346
1347         if (rw == WRITE) {
1348                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1349                                  BTRFS_BLOCK_GROUP_DUP)) {
1350                         stripes_required = map->num_stripes;
1351                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1352                         stripes_required = map->sub_stripes;
1353                 }
1354         }
1355         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
1356             && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
1357                     /* RAID[56] write or recovery. Return all stripes */
1358                     stripes_required = map->num_stripes;
1359
1360                     /* Only allocate the map if we've already got a large enough multi_ret */
1361                     if (stripes_allocated >= stripes_required) {
1362                             raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1363                             if (!raid_map) {
1364                                     kfree(multi);
1365                                     return -ENOMEM;
1366                             }
1367                     }
1368         }
1369
1370         /* if our multi bio struct is too small, back off and try again */
1371         if (multi_ret && stripes_allocated < stripes_required) {
1372                 stripes_allocated = stripes_required;
1373                 kfree(multi);
1374                 multi = NULL;
1375                 goto again;
1376         }
1377         stripe_nr = offset;
1378         /*
1379          * stripe_nr counts the total number of stripes we have to stride
1380          * to get to this block
1381          */
1382         stripe_nr = stripe_nr / map->stripe_len;
1383
1384         stripe_offset = stripe_nr * map->stripe_len;
1385         BUG_ON(offset < stripe_offset);
1386
1387         /* stripe_offset is the offset of this block in its stripe*/
1388         stripe_offset = offset - stripe_offset;
1389
1390         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1391                          BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
1392                          BTRFS_BLOCK_GROUP_RAID10 |
1393                          BTRFS_BLOCK_GROUP_DUP)) {
1394                 /* we limit the length of each bio to what fits in a stripe */
1395                 *length = min_t(u64, ce->size - offset,
1396                               map->stripe_len - stripe_offset);
1397         } else {
1398                 *length = ce->size - offset;
1399         }
1400
1401         if (!multi_ret)
1402                 goto out;
1403
1404         multi->num_stripes = 1;
1405         stripe_index = 0;
1406         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1407                 if (rw == WRITE)
1408                         multi->num_stripes = map->num_stripes;
1409                 else if (mirror_num)
1410                         stripe_index = mirror_num - 1;
1411                 else
1412                         stripe_index = stripe_nr % map->num_stripes;
1413         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1414                 int factor = map->num_stripes / map->sub_stripes;
1415
1416                 stripe_index = stripe_nr % factor;
1417                 stripe_index *= map->sub_stripes;
1418
1419                 if (rw == WRITE)
1420                         multi->num_stripes = map->sub_stripes;
1421                 else if (mirror_num)
1422                         stripe_index += mirror_num - 1;
1423
1424                 stripe_nr = stripe_nr / factor;
1425         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1426                 if (rw == WRITE)
1427                         multi->num_stripes = map->num_stripes;
1428                 else if (mirror_num)
1429                         stripe_index = mirror_num - 1;
1430         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1431                                 BTRFS_BLOCK_GROUP_RAID6)) {
1432
1433                 if (raid_map) {
1434                         int rot;
1435                         u64 tmp;
1436                         u64 raid56_full_stripe_start;
1437                         u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
1438
1439                         /*
1440                          * align the start of our data stripe in the logical
1441                          * address space
1442                          */
1443                         raid56_full_stripe_start = offset / full_stripe_len;
1444                         raid56_full_stripe_start *= full_stripe_len;
1445
1446                         /* get the data stripe number */
1447                         stripe_nr = raid56_full_stripe_start / map->stripe_len;
1448                         stripe_nr = stripe_nr / nr_data_stripes(map);
1449
1450                         /* Work out the disk rotation on this stripe-set */
1451                         rot = stripe_nr % map->num_stripes;
1452
1453                         /* Fill in the logical address of each stripe */
1454                         tmp = stripe_nr * nr_data_stripes(map);
1455
1456                         for (i = 0; i < nr_data_stripes(map); i++)
1457                                 raid_map[(i+rot) % map->num_stripes] =
1458                                         ce->start + (tmp + i) * map->stripe_len;
1459
1460                         raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
1461                         if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1462                                 raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
1463
1464                         *length = map->stripe_len;
1465                         stripe_index = 0;
1466                         stripe_offset = 0;
1467                         multi->num_stripes = map->num_stripes;
1468                 } else {
1469                         stripe_index = stripe_nr % nr_data_stripes(map);
1470                         stripe_nr = stripe_nr / nr_data_stripes(map);
1471
1472                         /*
1473                          * Mirror #0 or #1 means the original data block.
1474                          * Mirror #2 is RAID5 parity block.
1475                          * Mirror #3 is RAID6 Q block.
1476                          */
1477                         if (mirror_num > 1)
1478                                 stripe_index = nr_data_stripes(map) + mirror_num - 2;
1479
1480                         /* We distribute the parity blocks across stripes */
1481                         stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
1482                 }
1483         } else {
1484                 /*
1485                  * after this do_div call, stripe_nr is the number of stripes
1486                  * on this device we have to walk to find the data, and
1487                  * stripe_index is the number of our device in the stripe array
1488                  */
1489                 stripe_index = stripe_nr % map->num_stripes;
1490                 stripe_nr = stripe_nr / map->num_stripes;
1491         }
1492         BUG_ON(stripe_index >= map->num_stripes);
1493
1494         for (i = 0; i < multi->num_stripes; i++) {
1495                 multi->stripes[i].physical =
1496                         map->stripes[stripe_index].physical + stripe_offset +
1497                         stripe_nr * map->stripe_len;
1498                 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1499                 stripe_index++;
1500         }
1501         *multi_ret = multi;
1502
1503         if (type)
1504                 *type = map->type;
1505
1506         if (raid_map) {
1507                 sort_parity_stripes(multi, raid_map);
1508                 *raid_map_ret = raid_map;
1509         }
1510 out:
1511         return 0;
1512 }
1513
1514 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1515                                        u8 *uuid, u8 *fsid)
1516 {
1517         struct btrfs_device *device;
1518         struct btrfs_fs_devices *cur_devices;
1519
1520         cur_devices = root->fs_info->fs_devices;
1521         while (cur_devices) {
1522                 if (!fsid ||
1523                     (!memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE) ||
1524                      root->fs_info->ignore_fsid_mismatch)) {
1525                         device = __find_device(&cur_devices->devices,
1526                                                devid, uuid);
1527                         if (device)
1528                                 return device;
1529                 }
1530                 cur_devices = cur_devices->seed;
1531         }
1532         return NULL;
1533 }
1534
1535 struct btrfs_device *
1536 btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
1537                            u64 devid, int instance)
1538 {
1539         struct list_head *head = &fs_devices->devices;
1540         struct btrfs_device *dev;
1541         int num_found = 0;
1542
1543         list_for_each_entry(dev, head, dev_list) {
1544                 if (dev->devid == devid && num_found++ == instance)
1545                         return dev;
1546         }
1547         return NULL;
1548 }
1549
1550 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
1551 {
1552         struct cache_extent *ce;
1553         struct map_lookup *map;
1554         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1555         int readonly = 0;
1556         int i;
1557
1558         /*
1559          * During chunk recovering, we may fail to find block group's
1560          * corresponding chunk, we will rebuild it later
1561          */
1562         ce = search_cache_extent(&map_tree->cache_tree, chunk_offset);
1563         if (!root->fs_info->is_chunk_recover)
1564                 BUG_ON(!ce);
1565         else
1566                 return 0;
1567
1568         map = container_of(ce, struct map_lookup, ce);
1569         for (i = 0; i < map->num_stripes; i++) {
1570                 if (!map->stripes[i].dev->writeable) {
1571                         readonly = 1;
1572                         break;
1573                 }
1574         }
1575
1576         return readonly;
1577 }
1578
1579 static struct btrfs_device *fill_missing_device(u64 devid)
1580 {
1581         struct btrfs_device *device;
1582
1583         device = kzalloc(sizeof(*device), GFP_NOFS);
1584         device->devid = devid;
1585         device->fd = -1;
1586         return device;
1587 }
1588
1589 /*
1590  * Slot is used to verfy the chunk item is valid
1591  *
1592  * For sys chunk in superblock, pass -1 to indicate sys chunk.
1593  */
1594 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1595                           struct extent_buffer *leaf,
1596                           struct btrfs_chunk *chunk, int slot)
1597 {
1598         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1599         struct map_lookup *map;
1600         struct cache_extent *ce;
1601         u64 logical;
1602         u64 length;
1603         u64 stripe_len;
1604         u64 devid;
1605         u8 uuid[BTRFS_UUID_SIZE];
1606         int num_stripes;
1607         int ret;
1608         int i;
1609
1610         logical = key->offset;
1611         length = btrfs_chunk_length(leaf, chunk);
1612         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1613         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1614         /* Validation check */
1615         if (!num_stripes) {
1616                 error("invalid chunk num_stripes: %u", num_stripes);
1617                 return -EIO;
1618         }
1619         if (!IS_ALIGNED(logical, root->sectorsize)) {
1620                 error("invalid chunk logical %llu", logical);
1621                 return -EIO;
1622         }
1623         if (!length || !IS_ALIGNED(length, root->sectorsize)) {
1624                 error("invalid chunk length %llu", length);
1625                 return -EIO;
1626         }
1627         if (!is_power_of_2(stripe_len)) {
1628                 error("invalid chunk stripe length: %llu", stripe_len);
1629                 return -EIO;
1630         }
1631         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
1632             btrfs_chunk_type(leaf, chunk)) {
1633                 error("unrecognized chunk type: %llu",
1634                       ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
1635                         BTRFS_BLOCK_GROUP_PROFILE_MASK) &
1636                       btrfs_chunk_type(leaf, chunk));
1637                 return -EIO;
1638         }
1639
1640         ce = search_cache_extent(&map_tree->cache_tree, logical);
1641
1642         /* already mapped? */
1643         if (ce && ce->start <= logical && ce->start + ce->size > logical) {
1644                 return 0;
1645         }
1646
1647         map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1648         if (!map)
1649                 return -ENOMEM;
1650
1651         map->ce.start = logical;
1652         map->ce.size = length;
1653         map->num_stripes = num_stripes;
1654         map->io_width = btrfs_chunk_io_width(leaf, chunk);
1655         map->io_align = btrfs_chunk_io_align(leaf, chunk);
1656         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1657         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1658         map->type = btrfs_chunk_type(leaf, chunk);
1659         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1660
1661         /* Check on chunk item type */
1662         if (map->type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
1663                           BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
1664                 fprintf(stderr, "Unknown chunk type bits: %llu\n",
1665                         map->type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
1666                                       BTRFS_BLOCK_GROUP_PROFILE_MASK));
1667                 ret = -EIO;
1668                 goto out;
1669         }
1670
1671         /*
1672          * Btrfs_chunk contains at least one stripe, and for sys_chunk
1673          * it can't exceed the system chunk array size
1674          * For normal chunk, it should match its chunk item size.
1675          */
1676         if (num_stripes < 1 ||
1677             (slot == -1 && sizeof(struct btrfs_stripe) * num_stripes >
1678              BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) ||
1679             (slot >= 0 && sizeof(struct btrfs_stripe) * (num_stripes - 1) >
1680              btrfs_item_size_nr(leaf, slot))) {
1681                 fprintf(stderr, "Invalid num_stripes: %u\n",
1682                         num_stripes);
1683                 ret = -EIO;
1684                 goto out;
1685         }
1686
1687         /*
1688          * Device number check against profile
1689          */
1690         if ((map->type & BTRFS_BLOCK_GROUP_RAID10 && map->sub_stripes == 0) ||
1691             (map->type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
1692             (map->type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
1693             (map->type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
1694             (map->type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
1695             ((map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
1696              num_stripes != 1)) {
1697                 fprintf(stderr,
1698                         "Invalid num_stripes:sub_stripes %u:%u for profile %llu\n",
1699                         num_stripes, map->sub_stripes,
1700                         map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
1701                 ret = -EIO;
1702                 goto out;
1703         }
1704
1705         for (i = 0; i < num_stripes; i++) {
1706                 map->stripes[i].physical =
1707                         btrfs_stripe_offset_nr(leaf, chunk, i);
1708                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1709                 read_extent_buffer(leaf, uuid, (unsigned long)
1710                                    btrfs_stripe_dev_uuid_nr(chunk, i),
1711                                    BTRFS_UUID_SIZE);
1712                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
1713                                                         NULL);
1714                 if (!map->stripes[i].dev) {
1715                         map->stripes[i].dev = fill_missing_device(devid);
1716                         printf("warning, device %llu is missing\n",
1717                                (unsigned long long)devid);
1718                 }
1719
1720         }
1721         ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
1722         BUG_ON(ret);
1723
1724         return 0;
1725 out:
1726         free(map);
1727         return ret;
1728 }
1729
1730 static int fill_device_from_item(struct extent_buffer *leaf,
1731                                  struct btrfs_dev_item *dev_item,
1732                                  struct btrfs_device *device)
1733 {
1734         unsigned long ptr;
1735
1736         device->devid = btrfs_device_id(leaf, dev_item);
1737         device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1738         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1739         device->type = btrfs_device_type(leaf, dev_item);
1740         device->io_align = btrfs_device_io_align(leaf, dev_item);
1741         device->io_width = btrfs_device_io_width(leaf, dev_item);
1742         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1743
1744         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1745         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1746
1747         return 0;
1748 }
1749
1750 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
1751 {
1752         struct btrfs_fs_devices *fs_devices;
1753         int ret;
1754
1755         fs_devices = root->fs_info->fs_devices->seed;
1756         while (fs_devices) {
1757                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1758                         ret = 0;
1759                         goto out;
1760                 }
1761                 fs_devices = fs_devices->seed;
1762         }
1763
1764         fs_devices = find_fsid(fsid);
1765         if (!fs_devices) {
1766                 /* missing all seed devices */
1767                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1768                 if (!fs_devices) {
1769                         ret = -ENOMEM;
1770                         goto out;
1771                 }
1772                 INIT_LIST_HEAD(&fs_devices->devices);
1773                 list_add(&fs_devices->list, &fs_uuids);
1774                 memcpy(fs_devices->fsid, fsid, BTRFS_FSID_SIZE);
1775         }
1776
1777         ret = btrfs_open_devices(fs_devices, O_RDONLY);
1778         if (ret)
1779                 goto out;
1780
1781         fs_devices->seed = root->fs_info->fs_devices->seed;
1782         root->fs_info->fs_devices->seed = fs_devices;
1783 out:
1784         return ret;
1785 }
1786
1787 static int read_one_dev(struct btrfs_root *root,
1788                         struct extent_buffer *leaf,
1789                         struct btrfs_dev_item *dev_item)
1790 {
1791         struct btrfs_device *device;
1792         u64 devid;
1793         int ret = 0;
1794         u8 fs_uuid[BTRFS_UUID_SIZE];
1795         u8 dev_uuid[BTRFS_UUID_SIZE];
1796
1797         devid = btrfs_device_id(leaf, dev_item);
1798         read_extent_buffer(leaf, dev_uuid,
1799                            (unsigned long)btrfs_device_uuid(dev_item),
1800                            BTRFS_UUID_SIZE);
1801         read_extent_buffer(leaf, fs_uuid,
1802                            (unsigned long)btrfs_device_fsid(dev_item),
1803                            BTRFS_UUID_SIZE);
1804
1805         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
1806                 ret = open_seed_devices(root, fs_uuid);
1807                 if (ret)
1808                         return ret;
1809         }
1810
1811         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1812         if (!device) {
1813                 device = kzalloc(sizeof(*device), GFP_NOFS);
1814                 if (!device)
1815                         return -ENOMEM;
1816                 device->fd = -1;
1817                 list_add(&device->dev_list,
1818                          &root->fs_info->fs_devices->devices);
1819         }
1820
1821         fill_device_from_item(leaf, dev_item, device);
1822         device->dev_root = root->fs_info->dev_root;
1823         return ret;
1824 }
1825
1826 int btrfs_read_sys_array(struct btrfs_root *root)
1827 {
1828         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1829         struct extent_buffer *sb;
1830         struct btrfs_disk_key *disk_key;
1831         struct btrfs_chunk *chunk;
1832         u8 *array_ptr;
1833         unsigned long sb_array_offset;
1834         int ret = 0;
1835         u32 num_stripes;
1836         u32 array_size;
1837         u32 len = 0;
1838         u32 cur_offset;
1839         struct btrfs_key key;
1840
1841         sb = btrfs_find_create_tree_block(root->fs_info,
1842                                           BTRFS_SUPER_INFO_OFFSET,
1843                                           BTRFS_SUPER_INFO_SIZE);
1844         if (!sb)
1845                 return -ENOMEM;
1846         btrfs_set_buffer_uptodate(sb);
1847         write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
1848         array_size = btrfs_super_sys_array_size(super_copy);
1849
1850         array_ptr = super_copy->sys_chunk_array;
1851         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
1852         cur_offset = 0;
1853
1854         while (cur_offset < array_size) {
1855                 disk_key = (struct btrfs_disk_key *)array_ptr;
1856                 len = sizeof(*disk_key);
1857                 if (cur_offset + len > array_size)
1858                         goto out_short_read;
1859
1860                 btrfs_disk_key_to_cpu(&key, disk_key);
1861
1862                 array_ptr += len;
1863                 sb_array_offset += len;
1864                 cur_offset += len;
1865
1866                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1867                         chunk = (struct btrfs_chunk *)sb_array_offset;
1868                         /*
1869                          * At least one btrfs_chunk with one stripe must be
1870                          * present, exact stripe count check comes afterwards
1871                          */
1872                         len = btrfs_chunk_item_size(1);
1873                         if (cur_offset + len > array_size)
1874                                 goto out_short_read;
1875
1876                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1877                         if (!num_stripes) {
1878                                 printk(
1879             "ERROR: invalid number of stripes %u in sys_array at offset %u\n",
1880                                         num_stripes, cur_offset);
1881                                 ret = -EIO;
1882                                 break;
1883                         }
1884
1885                         len = btrfs_chunk_item_size(num_stripes);
1886                         if (cur_offset + len > array_size)
1887                                 goto out_short_read;
1888
1889                         ret = read_one_chunk(root, &key, sb, chunk, -1);
1890                         if (ret)
1891                                 break;
1892                 } else {
1893                         printk(
1894                 "ERROR: unexpected item type %u in sys_array at offset %u\n",
1895                                 (u32)key.type, cur_offset);
1896                         ret = -EIO;
1897                         break;
1898                 }
1899                 array_ptr += len;
1900                 sb_array_offset += len;
1901                 cur_offset += len;
1902         }
1903         free_extent_buffer(sb);
1904         return ret;
1905
1906 out_short_read:
1907         printk("ERROR: sys_array too short to read %u bytes at offset %u\n",
1908                         len, cur_offset);
1909         free_extent_buffer(sb);
1910         return -EIO;
1911 }
1912
1913 int btrfs_read_chunk_tree(struct btrfs_root *root)
1914 {
1915         struct btrfs_path *path;
1916         struct extent_buffer *leaf;
1917         struct btrfs_key key;
1918         struct btrfs_key found_key;
1919         int ret;
1920         int slot;
1921
1922         root = root->fs_info->chunk_root;
1923
1924         path = btrfs_alloc_path();
1925         if (!path)
1926                 return -ENOMEM;
1927
1928         /*
1929          * Read all device items, and then all the chunk items. All
1930          * device items are found before any chunk item (their object id
1931          * is smaller than the lowest possible object id for a chunk
1932          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
1933          */
1934         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1935         key.offset = 0;
1936         key.type = 0;
1937         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1938         if (ret < 0)
1939                 goto error;
1940         while(1) {
1941                 leaf = path->nodes[0];
1942                 slot = path->slots[0];
1943                 if (slot >= btrfs_header_nritems(leaf)) {
1944                         ret = btrfs_next_leaf(root, path);
1945                         if (ret == 0)
1946                                 continue;
1947                         if (ret < 0)
1948                                 goto error;
1949                         break;
1950                 }
1951                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1952                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1953                         struct btrfs_dev_item *dev_item;
1954                         dev_item = btrfs_item_ptr(leaf, slot,
1955                                                   struct btrfs_dev_item);
1956                         ret = read_one_dev(root, leaf, dev_item);
1957                         BUG_ON(ret);
1958                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1959                         struct btrfs_chunk *chunk;
1960                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1961                         ret = read_one_chunk(root, &found_key, leaf, chunk,
1962                                              slot);
1963                         BUG_ON(ret);
1964                 }
1965                 path->slots[0]++;
1966         }
1967
1968         ret = 0;
1969 error:
1970         btrfs_free_path(path);
1971         return ret;
1972 }
1973
1974 struct list_head *btrfs_scanned_uuids(void)
1975 {
1976         return &fs_uuids;
1977 }
1978
1979 static int rmw_eb(struct btrfs_fs_info *info,
1980                   struct extent_buffer *eb, struct extent_buffer *orig_eb)
1981 {
1982         int ret;
1983         unsigned long orig_off = 0;
1984         unsigned long dest_off = 0;
1985         unsigned long copy_len = eb->len;
1986
1987         ret = read_whole_eb(info, eb, 0);
1988         if (ret)
1989                 return ret;
1990
1991         if (eb->start + eb->len <= orig_eb->start ||
1992             eb->start >= orig_eb->start + orig_eb->len)
1993                 return 0;
1994         /*
1995          * | ----- orig_eb ------- |
1996          *         | ----- stripe -------  |
1997          *         | ----- orig_eb ------- |
1998          *              | ----- orig_eb ------- |
1999          */
2000         if (eb->start > orig_eb->start)
2001                 orig_off = eb->start - orig_eb->start;
2002         if (orig_eb->start > eb->start)
2003                 dest_off = orig_eb->start - eb->start;
2004
2005         if (copy_len > orig_eb->len - orig_off)
2006                 copy_len = orig_eb->len - orig_off;
2007         if (copy_len > eb->len - dest_off)
2008                 copy_len = eb->len - dest_off;
2009
2010         memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len);
2011         return 0;
2012 }
2013
2014 static void split_eb_for_raid56(struct btrfs_fs_info *info,
2015                                 struct extent_buffer *orig_eb,
2016                                struct extent_buffer **ebs,
2017                                u64 stripe_len, u64 *raid_map,
2018                                int num_stripes)
2019 {
2020         struct extent_buffer *eb;
2021         u64 start = orig_eb->start;
2022         u64 this_eb_start;
2023         int i;
2024         int ret;
2025
2026         for (i = 0; i < num_stripes; i++) {
2027                 if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
2028                         break;
2029
2030                 eb = calloc(1, sizeof(struct extent_buffer) + stripe_len);
2031                 if (!eb)
2032                         BUG();
2033
2034                 eb->start = raid_map[i];
2035                 eb->len = stripe_len;
2036                 eb->refs = 1;
2037                 eb->flags = 0;
2038                 eb->fd = -1;
2039                 eb->dev_bytenr = (u64)-1;
2040
2041                 this_eb_start = raid_map[i];
2042
2043                 if (start > this_eb_start ||
2044                     start + orig_eb->len < this_eb_start + stripe_len) {
2045                         ret = rmw_eb(info, eb, orig_eb);
2046                         BUG_ON(ret);
2047                 } else {
2048                         memcpy(eb->data, orig_eb->data + eb->start - start, stripe_len);
2049                 }
2050                 ebs[i] = eb;
2051         }
2052 }
2053
2054 int write_raid56_with_parity(struct btrfs_fs_info *info,
2055                              struct extent_buffer *eb,
2056                              struct btrfs_multi_bio *multi,
2057                              u64 stripe_len, u64 *raid_map)
2058 {
2059         struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL;
2060         int i;
2061         int j;
2062         int ret;
2063         int alloc_size = eb->len;
2064
2065         ebs = kmalloc(sizeof(*ebs) * multi->num_stripes, GFP_NOFS);
2066         BUG_ON(!ebs);
2067
2068         if (stripe_len > alloc_size)
2069                 alloc_size = stripe_len;
2070
2071         split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map,
2072                             multi->num_stripes);
2073
2074         for (i = 0; i < multi->num_stripes; i++) {
2075                 struct extent_buffer *new_eb;
2076                 if (raid_map[i] < BTRFS_RAID5_P_STRIPE) {
2077                         ebs[i]->dev_bytenr = multi->stripes[i].physical;
2078                         ebs[i]->fd = multi->stripes[i].dev->fd;
2079                         multi->stripes[i].dev->total_ios++;
2080                         BUG_ON(ebs[i]->start != raid_map[i]);
2081                         continue;
2082                 }
2083                 new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_NOFS);
2084                 BUG_ON(!new_eb);
2085                 new_eb->dev_bytenr = multi->stripes[i].physical;
2086                 new_eb->fd = multi->stripes[i].dev->fd;
2087                 multi->stripes[i].dev->total_ios++;
2088                 new_eb->len = stripe_len;
2089
2090                 if (raid_map[i] == BTRFS_RAID5_P_STRIPE)
2091                         p_eb = new_eb;
2092                 else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE)
2093                         q_eb = new_eb;
2094         }
2095         if (q_eb) {
2096                 void **pointers;
2097
2098                 pointers = kmalloc(sizeof(*pointers) * multi->num_stripes,
2099                                    GFP_NOFS);
2100                 BUG_ON(!pointers);
2101
2102                 ebs[multi->num_stripes - 2] = p_eb;
2103                 ebs[multi->num_stripes - 1] = q_eb;
2104
2105                 for (i = 0; i < multi->num_stripes; i++)
2106                         pointers[i] = ebs[i]->data;
2107
2108                 raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers);
2109                 kfree(pointers);
2110         } else {
2111                 ebs[multi->num_stripes - 1] = p_eb;
2112                 memcpy(p_eb->data, ebs[0]->data, stripe_len);
2113                 for (j = 1; j < multi->num_stripes - 1; j++) {
2114                         for (i = 0; i < stripe_len; i += sizeof(unsigned long)) {
2115                                 *(unsigned long *)(p_eb->data + i) ^=
2116                                         *(unsigned long *)(ebs[j]->data + i);
2117                         }
2118                 }
2119         }
2120
2121         for (i = 0; i < multi->num_stripes; i++) {
2122                 ret = write_extent_to_disk(ebs[i]);
2123                 BUG_ON(ret);
2124                 if (ebs[i] != eb)
2125                         kfree(ebs[i]);
2126         }
2127
2128         kfree(ebs);
2129
2130         return 0;
2131 }