2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <sys/types.h>
22 #include <uuid/uuid.h>
27 #include "transaction.h"
28 #include "print-tree.h"
33 struct btrfs_device *dev;
37 static inline int nr_parity_stripes(struct map_lookup *map)
39 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
41 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
47 static inline int nr_data_stripes(struct map_lookup *map)
49 return map->num_stripes - nr_parity_stripes(map);
52 #define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
54 static LIST_HEAD(fs_uuids);
56 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
59 struct btrfs_device *dev;
60 struct list_head *cur;
62 list_for_each(cur, head) {
63 dev = list_entry(cur, struct btrfs_device, dev_list);
64 if (dev->devid == devid &&
65 !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
72 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
74 struct list_head *cur;
75 struct btrfs_fs_devices *fs_devices;
77 list_for_each(cur, &fs_uuids) {
78 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
79 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
85 static int device_list_add(const char *path,
86 struct btrfs_super_block *disk_super,
87 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
89 struct btrfs_device *device;
90 struct btrfs_fs_devices *fs_devices;
91 u64 found_transid = btrfs_super_generation(disk_super);
93 fs_devices = find_fsid(disk_super->fsid);
95 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
98 INIT_LIST_HEAD(&fs_devices->devices);
99 list_add(&fs_devices->list, &fs_uuids);
100 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
101 fs_devices->latest_devid = devid;
102 fs_devices->latest_trans = found_transid;
103 fs_devices->lowest_devid = (u64)-1;
106 device = __find_device(&fs_devices->devices, devid,
107 disk_super->dev_item.uuid);
110 device = kzalloc(sizeof(*device), GFP_NOFS);
112 /* we can safely leave the fs_devices entry around */
116 device->devid = devid;
117 device->generation = found_transid;
118 memcpy(device->uuid, disk_super->dev_item.uuid,
120 device->name = kstrdup(path, GFP_NOFS);
125 device->label = kstrdup(disk_super->label, GFP_NOFS);
126 if (!device->label) {
131 device->total_devs = btrfs_super_num_devices(disk_super);
132 device->super_bytes_used = btrfs_super_bytes_used(disk_super);
133 device->total_bytes =
134 btrfs_stack_device_total_bytes(&disk_super->dev_item);
136 btrfs_stack_device_bytes_used(&disk_super->dev_item);
137 list_add(&device->dev_list, &fs_devices->devices);
138 device->fs_devices = fs_devices;
139 } else if (!device->name || strcmp(device->name, path)) {
140 char *name = strdup(path);
148 if (found_transid > fs_devices->latest_trans) {
149 fs_devices->latest_devid = devid;
150 fs_devices->latest_trans = found_transid;
152 if (fs_devices->lowest_devid > devid) {
153 fs_devices->lowest_devid = devid;
155 *fs_devices_ret = fs_devices;
159 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
161 struct btrfs_fs_devices *seed_devices;
162 struct btrfs_device *device;
165 while (!list_empty(&fs_devices->devices)) {
166 device = list_entry(fs_devices->devices.next,
167 struct btrfs_device, dev_list);
168 if (device->fd != -1) {
170 if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED))
171 fprintf(stderr, "Warning, could not drop caches\n");
175 device->writeable = 0;
176 list_del(&device->dev_list);
177 /* free the memory */
183 seed_devices = fs_devices->seed;
184 fs_devices->seed = NULL;
186 struct btrfs_fs_devices *orig;
189 fs_devices = seed_devices;
190 list_del(&orig->list);
194 list_del(&fs_devices->list);
201 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
204 struct list_head *head = &fs_devices->devices;
205 struct list_head *cur;
206 struct btrfs_device *device;
209 list_for_each(cur, head) {
210 device = list_entry(cur, struct btrfs_device, dev_list);
212 printk("no name for device %llu, skip it now\n", device->devid);
216 fd = open(device->name, flags);
222 if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED))
223 fprintf(stderr, "Warning, could not drop caches\n");
225 if (device->devid == fs_devices->latest_devid)
226 fs_devices->latest_bdev = fd;
227 if (device->devid == fs_devices->lowest_devid)
228 fs_devices->lowest_bdev = fd;
231 device->writeable = 1;
235 btrfs_close_devices(fs_devices);
239 int btrfs_scan_one_device(int fd, const char *path,
240 struct btrfs_fs_devices **fs_devices_ret,
241 u64 *total_devs, u64 super_offset, int super_recover)
243 struct btrfs_super_block *disk_super;
253 disk_super = (struct btrfs_super_block *)buf;
254 ret = btrfs_read_dev_super(fd, disk_super, super_offset, super_recover);
259 devid = btrfs_stack_device_id(&disk_super->dev_item);
260 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
263 *total_devs = btrfs_super_num_devices(disk_super);
265 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
274 * this uses a pretty simple search, the expectation is that it is
275 * called very infrequently and that a given device has a small number
278 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
279 struct btrfs_device *device,
280 struct btrfs_path *path,
281 u64 num_bytes, u64 *start)
283 struct btrfs_key key;
284 struct btrfs_root *root = device->dev_root;
285 struct btrfs_dev_extent *dev_extent = NULL;
288 u64 search_start = root->fs_info->alloc_start;
289 u64 search_end = device->total_bytes;
293 struct extent_buffer *l;
298 /* FIXME use last free of some kind */
300 /* we don't want to overwrite the superblock on the drive,
301 * so we make sure to start at an offset of at least 1MB
303 search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
305 if (search_start >= search_end) {
310 key.objectid = device->devid;
311 key.offset = search_start;
312 key.type = BTRFS_DEV_EXTENT_KEY;
313 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
316 ret = btrfs_previous_item(root, path, 0, key.type);
320 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
323 slot = path->slots[0];
324 if (slot >= btrfs_header_nritems(l)) {
325 ret = btrfs_next_leaf(root, path);
332 if (search_start >= search_end) {
336 *start = search_start;
340 *start = last_byte > search_start ?
341 last_byte : search_start;
342 if (search_end <= *start) {
348 btrfs_item_key_to_cpu(l, &key, slot);
350 if (key.objectid < device->devid)
353 if (key.objectid > device->devid)
356 if (key.offset >= search_start && key.offset > last_byte &&
358 if (last_byte < search_start)
359 last_byte = search_start;
360 hole_size = key.offset - last_byte;
361 if (key.offset > last_byte &&
362 hole_size >= num_bytes) {
367 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
372 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
373 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
379 /* we have to make sure we didn't find an extent that has already
380 * been allocated by the map tree or the original allocation
382 btrfs_release_path(path);
383 BUG_ON(*start < search_start);
385 if (*start + num_bytes > search_end) {
389 /* check for pending inserts here */
393 btrfs_release_path(path);
397 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
398 struct btrfs_device *device,
399 u64 chunk_tree, u64 chunk_objectid,
401 u64 num_bytes, u64 *start)
404 struct btrfs_path *path;
405 struct btrfs_root *root = device->dev_root;
406 struct btrfs_dev_extent *extent;
407 struct extent_buffer *leaf;
408 struct btrfs_key key;
410 path = btrfs_alloc_path();
414 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
419 key.objectid = device->devid;
421 key.type = BTRFS_DEV_EXTENT_KEY;
422 ret = btrfs_insert_empty_item(trans, root, path, &key,
426 leaf = path->nodes[0];
427 extent = btrfs_item_ptr(leaf, path->slots[0],
428 struct btrfs_dev_extent);
429 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
430 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
431 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
433 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
434 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
437 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
438 btrfs_mark_buffer_dirty(leaf);
440 btrfs_free_path(path);
444 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
446 struct btrfs_path *path;
448 struct btrfs_key key;
449 struct btrfs_chunk *chunk;
450 struct btrfs_key found_key;
452 path = btrfs_alloc_path();
455 key.objectid = objectid;
456 key.offset = (u64)-1;
457 key.type = BTRFS_CHUNK_ITEM_KEY;
459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
465 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
469 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
471 if (found_key.objectid != objectid)
474 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
476 *offset = found_key.offset +
477 btrfs_chunk_length(path->nodes[0], chunk);
482 btrfs_free_path(path);
486 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
490 struct btrfs_key key;
491 struct btrfs_key found_key;
493 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
494 key.type = BTRFS_DEV_ITEM_KEY;
495 key.offset = (u64)-1;
497 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
503 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
508 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
510 *objectid = found_key.offset + 1;
514 btrfs_release_path(path);
519 * the device information is stored in the chunk root
520 * the btrfs_device struct should be fully filled in
522 int btrfs_add_device(struct btrfs_trans_handle *trans,
523 struct btrfs_root *root,
524 struct btrfs_device *device)
527 struct btrfs_path *path;
528 struct btrfs_dev_item *dev_item;
529 struct extent_buffer *leaf;
530 struct btrfs_key key;
534 root = root->fs_info->chunk_root;
536 path = btrfs_alloc_path();
540 ret = find_next_devid(root, path, &free_devid);
544 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
545 key.type = BTRFS_DEV_ITEM_KEY;
546 key.offset = free_devid;
548 ret = btrfs_insert_empty_item(trans, root, path, &key,
553 leaf = path->nodes[0];
554 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
556 device->devid = free_devid;
557 btrfs_set_device_id(leaf, dev_item, device->devid);
558 btrfs_set_device_generation(leaf, dev_item, 0);
559 btrfs_set_device_type(leaf, dev_item, device->type);
560 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
561 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
562 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
563 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
564 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
565 btrfs_set_device_group(leaf, dev_item, 0);
566 btrfs_set_device_seek_speed(leaf, dev_item, 0);
567 btrfs_set_device_bandwidth(leaf, dev_item, 0);
568 btrfs_set_device_start_offset(leaf, dev_item, 0);
570 ptr = (unsigned long)btrfs_device_uuid(dev_item);
571 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
572 ptr = (unsigned long)btrfs_device_fsid(dev_item);
573 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
574 btrfs_mark_buffer_dirty(leaf);
578 btrfs_free_path(path);
582 int btrfs_update_device(struct btrfs_trans_handle *trans,
583 struct btrfs_device *device)
586 struct btrfs_path *path;
587 struct btrfs_root *root;
588 struct btrfs_dev_item *dev_item;
589 struct extent_buffer *leaf;
590 struct btrfs_key key;
592 root = device->dev_root->fs_info->chunk_root;
594 path = btrfs_alloc_path();
598 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
599 key.type = BTRFS_DEV_ITEM_KEY;
600 key.offset = device->devid;
602 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
611 leaf = path->nodes[0];
612 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
614 btrfs_set_device_id(leaf, dev_item, device->devid);
615 btrfs_set_device_type(leaf, dev_item, device->type);
616 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
617 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
618 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
619 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
620 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
621 btrfs_mark_buffer_dirty(leaf);
624 btrfs_free_path(path);
628 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
629 struct btrfs_root *root,
630 struct btrfs_key *key,
631 struct btrfs_chunk *chunk, int item_size)
633 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
634 struct btrfs_disk_key disk_key;
638 array_size = btrfs_super_sys_array_size(super_copy);
639 if (array_size + item_size + sizeof(disk_key)
640 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
643 ptr = super_copy->sys_chunk_array + array_size;
644 btrfs_cpu_key_to_disk(&disk_key, key);
645 memcpy(ptr, &disk_key, sizeof(disk_key));
646 ptr += sizeof(disk_key);
647 memcpy(ptr, chunk, item_size);
648 item_size += sizeof(disk_key);
649 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
653 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
656 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
658 else if (type & BTRFS_BLOCK_GROUP_RAID10)
659 return calc_size * (num_stripes / sub_stripes);
660 else if (type & BTRFS_BLOCK_GROUP_RAID5)
661 return calc_size * (num_stripes - 1);
662 else if (type & BTRFS_BLOCK_GROUP_RAID6)
663 return calc_size * (num_stripes - 2);
665 return calc_size * num_stripes;
669 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
671 /* TODO, add a way to store the preferred stripe size */
672 return BTRFS_STRIPE_LEN;
676 * btrfs_device_avail_bytes - count bytes available for alloc_chunk
678 * It is not equal to "device->total_bytes - device->bytes_used".
679 * We do not allocate any chunk in 1M at beginning of device, and not
680 * allowed to allocate any chunk before alloc_start if it is specified.
681 * So search holes from max(1M, alloc_start) to device->total_bytes.
683 static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans,
684 struct btrfs_device *device,
687 struct btrfs_path *path;
688 struct btrfs_root *root = device->dev_root;
689 struct btrfs_key key;
690 struct btrfs_dev_extent *dev_extent = NULL;
691 struct extent_buffer *l;
692 u64 search_start = root->fs_info->alloc_start;
693 u64 search_end = device->total_bytes;
699 search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
701 path = btrfs_alloc_path();
705 key.objectid = device->devid;
706 key.offset = root->fs_info->alloc_start;
707 key.type = BTRFS_DEV_EXTENT_KEY;
710 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
713 ret = btrfs_previous_item(root, path, 0, key.type);
719 slot = path->slots[0];
720 if (slot >= btrfs_header_nritems(l)) {
721 ret = btrfs_next_leaf(root, path);
728 btrfs_item_key_to_cpu(l, &key, slot);
730 if (key.objectid < device->devid)
732 if (key.objectid > device->devid)
734 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
736 if (key.offset > search_end)
738 if (key.offset > search_start)
739 free_bytes += key.offset - search_start;
741 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
742 extent_end = key.offset + btrfs_dev_extent_length(l,
744 if (extent_end > search_start)
745 search_start = extent_end;
746 if (search_start > search_end)
753 if (search_start < search_end)
754 free_bytes += search_end - search_start;
756 *avail_bytes = free_bytes;
759 btrfs_free_path(path);
763 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
764 - sizeof(struct btrfs_item) \
765 - sizeof(struct btrfs_chunk)) \
766 / sizeof(struct btrfs_stripe) + 1)
768 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
769 - 2 * sizeof(struct btrfs_disk_key) \
770 - 2 * sizeof(struct btrfs_chunk)) \
771 / sizeof(struct btrfs_stripe) + 1)
773 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
774 struct btrfs_root *extent_root, u64 *start,
775 u64 *num_bytes, u64 type)
778 struct btrfs_fs_info *info = extent_root->fs_info;
779 struct btrfs_root *chunk_root = info->chunk_root;
780 struct btrfs_stripe *stripes;
781 struct btrfs_device *device = NULL;
782 struct btrfs_chunk *chunk;
783 struct list_head private_devs;
784 struct list_head *dev_list = &info->fs_devices->devices;
785 struct list_head *cur;
786 struct map_lookup *map;
787 int min_stripe_size = 1 * 1024 * 1024;
788 u64 calc_size = 8 * 1024 * 1024;
790 u64 max_chunk_size = 4 * calc_size;
801 int stripe_len = BTRFS_STRIPE_LEN;
802 struct btrfs_key key;
805 if (list_empty(dev_list)) {
809 if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
810 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
811 BTRFS_BLOCK_GROUP_RAID10 |
812 BTRFS_BLOCK_GROUP_DUP)) {
813 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
814 calc_size = 8 * 1024 * 1024;
815 max_chunk_size = calc_size * 2;
816 min_stripe_size = 1 * 1024 * 1024;
817 max_stripes = BTRFS_MAX_DEVS_SYS_CHUNK;
818 } else if (type & BTRFS_BLOCK_GROUP_DATA) {
819 calc_size = 1024 * 1024 * 1024;
820 max_chunk_size = 10 * calc_size;
821 min_stripe_size = 64 * 1024 * 1024;
822 max_stripes = BTRFS_MAX_DEVS(chunk_root);
823 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
824 calc_size = 1024 * 1024 * 1024;
825 max_chunk_size = 4 * calc_size;
826 min_stripe_size = 32 * 1024 * 1024;
827 max_stripes = BTRFS_MAX_DEVS(chunk_root);
830 if (type & BTRFS_BLOCK_GROUP_RAID1) {
831 num_stripes = min_t(u64, 2,
832 btrfs_super_num_devices(info->super_copy));
837 if (type & BTRFS_BLOCK_GROUP_DUP) {
841 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
842 num_stripes = btrfs_super_num_devices(info->super_copy);
843 if (num_stripes > max_stripes)
844 num_stripes = max_stripes;
847 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
848 num_stripes = btrfs_super_num_devices(info->super_copy);
849 if (num_stripes > max_stripes)
850 num_stripes = max_stripes;
853 num_stripes &= ~(u32)1;
857 if (type & (BTRFS_BLOCK_GROUP_RAID5)) {
858 num_stripes = btrfs_super_num_devices(info->super_copy);
859 if (num_stripes > max_stripes)
860 num_stripes = max_stripes;
864 stripe_len = find_raid56_stripe_len(num_stripes - 1,
865 btrfs_super_stripesize(info->super_copy));
867 if (type & (BTRFS_BLOCK_GROUP_RAID6)) {
868 num_stripes = btrfs_super_num_devices(info->super_copy);
869 if (num_stripes > max_stripes)
870 num_stripes = max_stripes;
874 stripe_len = find_raid56_stripe_len(num_stripes - 2,
875 btrfs_super_stripesize(info->super_copy));
878 /* we don't want a chunk larger than 10% of the FS */
879 percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1);
880 max_chunk_size = min(percent_max, max_chunk_size);
883 if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
885 calc_size = max_chunk_size;
886 calc_size /= num_stripes;
887 calc_size /= stripe_len;
888 calc_size *= stripe_len;
890 /* we don't want tiny stripes */
891 calc_size = max_t(u64, calc_size, min_stripe_size);
893 calc_size /= stripe_len;
894 calc_size *= stripe_len;
895 INIT_LIST_HEAD(&private_devs);
896 cur = dev_list->next;
899 if (type & BTRFS_BLOCK_GROUP_DUP)
900 min_free = calc_size * 2;
902 min_free = calc_size;
904 /* build a private list of devices we will allocate from */
905 while(index < num_stripes) {
906 device = list_entry(cur, struct btrfs_device, dev_list);
907 ret = btrfs_device_avail_bytes(trans, device, &avail);
911 if (avail >= min_free) {
912 list_move_tail(&device->dev_list, &private_devs);
914 if (type & BTRFS_BLOCK_GROUP_DUP)
916 } else if (avail > max_avail)
921 if (index < num_stripes) {
922 list_splice(&private_devs, dev_list);
923 if (index >= min_stripes) {
925 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
926 num_stripes /= sub_stripes;
927 num_stripes *= sub_stripes;
932 if (!looped && max_avail > 0) {
934 calc_size = max_avail;
939 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
943 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
944 key.type = BTRFS_CHUNK_ITEM_KEY;
947 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
951 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
957 stripes = &chunk->stripe;
958 *num_bytes = chunk_bytes_by_type(type, calc_size,
959 num_stripes, sub_stripes);
961 while(index < num_stripes) {
962 struct btrfs_stripe *stripe;
963 BUG_ON(list_empty(&private_devs));
964 cur = private_devs.next;
965 device = list_entry(cur, struct btrfs_device, dev_list);
967 /* loop over this device again if we're doing a dup group */
968 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
969 (index == num_stripes - 1))
970 list_move_tail(&device->dev_list, dev_list);
972 ret = btrfs_alloc_dev_extent(trans, device,
973 info->chunk_root->root_key.objectid,
974 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
975 calc_size, &dev_offset);
978 device->bytes_used += calc_size;
979 ret = btrfs_update_device(trans, device);
982 map->stripes[index].dev = device;
983 map->stripes[index].physical = dev_offset;
984 stripe = stripes + index;
985 btrfs_set_stack_stripe_devid(stripe, device->devid);
986 btrfs_set_stack_stripe_offset(stripe, dev_offset);
987 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
990 BUG_ON(!list_empty(&private_devs));
992 /* key was set above */
993 btrfs_set_stack_chunk_length(chunk, *num_bytes);
994 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
995 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
996 btrfs_set_stack_chunk_type(chunk, type);
997 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
998 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
999 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1000 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1001 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1002 map->sector_size = extent_root->sectorsize;
1003 map->stripe_len = stripe_len;
1004 map->io_align = stripe_len;
1005 map->io_width = stripe_len;
1007 map->num_stripes = num_stripes;
1008 map->sub_stripes = sub_stripes;
1010 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1011 btrfs_chunk_item_size(num_stripes));
1013 *start = key.offset;;
1015 map->ce.start = key.offset;
1016 map->ce.size = *num_bytes;
1018 ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1021 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1022 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1023 chunk, btrfs_chunk_item_size(num_stripes));
1031 int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
1032 struct btrfs_root *extent_root, u64 *start,
1033 u64 num_bytes, u64 type)
1036 struct btrfs_fs_info *info = extent_root->fs_info;
1037 struct btrfs_root *chunk_root = info->chunk_root;
1038 struct btrfs_stripe *stripes;
1039 struct btrfs_device *device = NULL;
1040 struct btrfs_chunk *chunk;
1041 struct list_head *dev_list = &info->fs_devices->devices;
1042 struct list_head *cur;
1043 struct map_lookup *map;
1044 u64 calc_size = 8 * 1024 * 1024;
1045 int num_stripes = 1;
1046 int sub_stripes = 0;
1049 int stripe_len = BTRFS_STRIPE_LEN;
1050 struct btrfs_key key;
1052 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1053 key.type = BTRFS_CHUNK_ITEM_KEY;
1054 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1059 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1063 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1069 stripes = &chunk->stripe;
1070 calc_size = num_bytes;
1073 cur = dev_list->next;
1074 device = list_entry(cur, struct btrfs_device, dev_list);
1076 while (index < num_stripes) {
1077 struct btrfs_stripe *stripe;
1079 ret = btrfs_alloc_dev_extent(trans, device,
1080 info->chunk_root->root_key.objectid,
1081 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1082 calc_size, &dev_offset);
1085 device->bytes_used += calc_size;
1086 ret = btrfs_update_device(trans, device);
1089 map->stripes[index].dev = device;
1090 map->stripes[index].physical = dev_offset;
1091 stripe = stripes + index;
1092 btrfs_set_stack_stripe_devid(stripe, device->devid);
1093 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1094 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1098 /* key was set above */
1099 btrfs_set_stack_chunk_length(chunk, num_bytes);
1100 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1101 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1102 btrfs_set_stack_chunk_type(chunk, type);
1103 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1104 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1105 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1106 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1107 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1108 map->sector_size = extent_root->sectorsize;
1109 map->stripe_len = stripe_len;
1110 map->io_align = stripe_len;
1111 map->io_width = stripe_len;
1113 map->num_stripes = num_stripes;
1114 map->sub_stripes = sub_stripes;
1116 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1117 btrfs_chunk_item_size(num_stripes));
1119 *start = key.offset;
1121 map->ce.start = key.offset;
1122 map->ce.size = num_bytes;
1124 ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1131 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1133 struct cache_extent *ce;
1134 struct map_lookup *map;
1137 ce = search_cache_extent(&map_tree->cache_tree, logical);
1139 fprintf(stderr, "No mapping for %llu-%llu\n",
1140 (unsigned long long)logical,
1141 (unsigned long long)logical+len);
1144 if (ce->start > logical || ce->start + ce->size < logical) {
1145 fprintf(stderr, "Invalid mapping for %llu-%llu, got "
1146 "%llu-%llu\n", (unsigned long long)logical,
1147 (unsigned long long)logical+len,
1148 (unsigned long long)ce->start,
1149 (unsigned long long)ce->start + ce->size);
1152 map = container_of(ce, struct map_lookup, ce);
1154 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1155 ret = map->num_stripes;
1156 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1157 ret = map->sub_stripes;
1158 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
1160 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1167 int btrfs_next_metadata(struct btrfs_mapping_tree *map_tree, u64 *logical,
1170 struct cache_extent *ce;
1171 struct map_lookup *map;
1173 ce = search_cache_extent(&map_tree->cache_tree, *logical);
1176 ce = next_cache_extent(ce);
1180 map = container_of(ce, struct map_lookup, ce);
1181 if (map->type & BTRFS_BLOCK_GROUP_METADATA) {
1182 *logical = ce->start;
1191 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
1192 u64 chunk_start, u64 physical, u64 devid,
1193 u64 **logical, int *naddrs, int *stripe_len)
1195 struct cache_extent *ce;
1196 struct map_lookup *map;
1204 ce = search_cache_extent(&map_tree->cache_tree, chunk_start);
1206 map = container_of(ce, struct map_lookup, ce);
1209 rmap_len = map->stripe_len;
1210 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1211 length = ce->size / (map->num_stripes / map->sub_stripes);
1212 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1213 length = ce->size / map->num_stripes;
1214 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1215 BTRFS_BLOCK_GROUP_RAID6)) {
1216 length = ce->size / nr_data_stripes(map);
1217 rmap_len = map->stripe_len * nr_data_stripes(map);
1220 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1222 for (i = 0; i < map->num_stripes; i++) {
1223 if (devid && map->stripes[i].dev->devid != devid)
1225 if (map->stripes[i].physical > physical ||
1226 map->stripes[i].physical + length <= physical)
1229 stripe_nr = (physical - map->stripes[i].physical) /
1232 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1233 stripe_nr = (stripe_nr * map->num_stripes + i) /
1235 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1236 stripe_nr = stripe_nr * map->num_stripes + i;
1237 } /* else if RAID[56], multiply by nr_data_stripes().
1238 * Alternatively, just use rmap_len below instead of
1239 * map->stripe_len */
1241 bytenr = ce->start + stripe_nr * rmap_len;
1242 for (j = 0; j < nr; j++) {
1243 if (buf[j] == bytenr)
1252 *stripe_len = rmap_len;
1257 static inline int parity_smaller(u64 a, u64 b)
1262 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
1263 static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
1265 struct btrfs_bio_stripe s;
1272 for (i = 0; i < bbio->num_stripes - 1; i++) {
1273 if (parity_smaller(raid_map[i], raid_map[i+1])) {
1274 s = bbio->stripes[i];
1276 bbio->stripes[i] = bbio->stripes[i+1];
1277 raid_map[i] = raid_map[i+1];
1278 bbio->stripes[i+1] = s;
1286 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1287 u64 logical, u64 *length,
1288 struct btrfs_multi_bio **multi_ret, int mirror_num,
1291 return __btrfs_map_block(map_tree, rw, logical, length, NULL,
1292 multi_ret, mirror_num, raid_map_ret);
1295 int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1296 u64 logical, u64 *length, u64 *type,
1297 struct btrfs_multi_bio **multi_ret, int mirror_num,
1300 struct cache_extent *ce;
1301 struct map_lookup *map;
1305 u64 *raid_map = NULL;
1306 int stripes_allocated = 8;
1307 int stripes_required = 1;
1310 struct btrfs_multi_bio *multi = NULL;
1312 if (multi_ret && rw == READ) {
1313 stripes_allocated = 1;
1316 ce = search_cache_extent(&map_tree->cache_tree, logical);
1322 if (ce->start > logical) {
1324 *length = ce->start - logical;
1329 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1334 map = container_of(ce, struct map_lookup, ce);
1335 offset = logical - ce->start;
1338 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1339 BTRFS_BLOCK_GROUP_DUP)) {
1340 stripes_required = map->num_stripes;
1341 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1342 stripes_required = map->sub_stripes;
1345 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
1346 && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
1347 /* RAID[56] write or recovery. Return all stripes */
1348 stripes_required = map->num_stripes;
1350 /* Only allocate the map if we've already got a large enough multi_ret */
1351 if (stripes_allocated >= stripes_required) {
1352 raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1360 /* if our multi bio struct is too small, back off and try again */
1361 if (multi_ret && stripes_allocated < stripes_required) {
1362 stripes_allocated = stripes_required;
1369 * stripe_nr counts the total number of stripes we have to stride
1370 * to get to this block
1372 stripe_nr = stripe_nr / map->stripe_len;
1374 stripe_offset = stripe_nr * map->stripe_len;
1375 BUG_ON(offset < stripe_offset);
1377 /* stripe_offset is the offset of this block in its stripe*/
1378 stripe_offset = offset - stripe_offset;
1380 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1381 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
1382 BTRFS_BLOCK_GROUP_RAID10 |
1383 BTRFS_BLOCK_GROUP_DUP)) {
1384 /* we limit the length of each bio to what fits in a stripe */
1385 *length = min_t(u64, ce->size - offset,
1386 map->stripe_len - stripe_offset);
1388 *length = ce->size - offset;
1394 multi->num_stripes = 1;
1396 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1398 multi->num_stripes = map->num_stripes;
1399 else if (mirror_num)
1400 stripe_index = mirror_num - 1;
1402 stripe_index = stripe_nr % map->num_stripes;
1403 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1404 int factor = map->num_stripes / map->sub_stripes;
1406 stripe_index = stripe_nr % factor;
1407 stripe_index *= map->sub_stripes;
1410 multi->num_stripes = map->sub_stripes;
1411 else if (mirror_num)
1412 stripe_index += mirror_num - 1;
1414 stripe_nr = stripe_nr / factor;
1415 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1417 multi->num_stripes = map->num_stripes;
1418 else if (mirror_num)
1419 stripe_index = mirror_num - 1;
1420 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1421 BTRFS_BLOCK_GROUP_RAID6)) {
1426 u64 raid56_full_stripe_start;
1427 u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
1430 * align the start of our data stripe in the logical
1433 raid56_full_stripe_start = offset / full_stripe_len;
1434 raid56_full_stripe_start *= full_stripe_len;
1436 /* get the data stripe number */
1437 stripe_nr = raid56_full_stripe_start / map->stripe_len;
1438 stripe_nr = stripe_nr / nr_data_stripes(map);
1440 /* Work out the disk rotation on this stripe-set */
1441 rot = stripe_nr % map->num_stripes;
1443 /* Fill in the logical address of each stripe */
1444 tmp = stripe_nr * nr_data_stripes(map);
1446 for (i = 0; i < nr_data_stripes(map); i++)
1447 raid_map[(i+rot) % map->num_stripes] =
1448 ce->start + (tmp + i) * map->stripe_len;
1450 raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
1451 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1452 raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
1454 *length = map->stripe_len;
1457 multi->num_stripes = map->num_stripes;
1459 stripe_index = stripe_nr % nr_data_stripes(map);
1460 stripe_nr = stripe_nr / nr_data_stripes(map);
1463 * Mirror #0 or #1 means the original data block.
1464 * Mirror #2 is RAID5 parity block.
1465 * Mirror #3 is RAID6 Q block.
1468 stripe_index = nr_data_stripes(map) + mirror_num - 2;
1470 /* We distribute the parity blocks across stripes */
1471 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
1475 * after this do_div call, stripe_nr is the number of stripes
1476 * on this device we have to walk to find the data, and
1477 * stripe_index is the number of our device in the stripe array
1479 stripe_index = stripe_nr % map->num_stripes;
1480 stripe_nr = stripe_nr / map->num_stripes;
1482 BUG_ON(stripe_index >= map->num_stripes);
1484 for (i = 0; i < multi->num_stripes; i++) {
1485 multi->stripes[i].physical =
1486 map->stripes[stripe_index].physical + stripe_offset +
1487 stripe_nr * map->stripe_len;
1488 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1497 sort_parity_stripes(multi, raid_map);
1498 *raid_map_ret = raid_map;
1504 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1507 struct btrfs_device *device;
1508 struct btrfs_fs_devices *cur_devices;
1510 cur_devices = root->fs_info->fs_devices;
1511 while (cur_devices) {
1513 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1514 device = __find_device(&cur_devices->devices,
1519 cur_devices = cur_devices->seed;
1524 struct btrfs_device *
1525 btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
1526 u64 devid, int instance)
1528 struct list_head *head = &fs_devices->devices;
1529 struct btrfs_device *dev;
1532 list_for_each_entry(dev, head, dev_list) {
1533 if (dev->devid == devid && num_found++ == instance)
1539 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
1541 struct cache_extent *ce;
1542 struct map_lookup *map;
1543 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1548 * During chunk recovering, we may fail to find block group's
1549 * corresponding chunk, we will rebuild it later
1551 ce = search_cache_extent(&map_tree->cache_tree, chunk_offset);
1552 if (!root->fs_info->is_chunk_recover)
1557 map = container_of(ce, struct map_lookup, ce);
1558 for (i = 0; i < map->num_stripes; i++) {
1559 if (!map->stripes[i].dev->writeable) {
1568 static struct btrfs_device *fill_missing_device(u64 devid)
1570 struct btrfs_device *device;
1572 device = kzalloc(sizeof(*device), GFP_NOFS);
1573 device->devid = devid;
1578 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1579 struct extent_buffer *leaf,
1580 struct btrfs_chunk *chunk)
1582 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1583 struct map_lookup *map;
1584 struct cache_extent *ce;
1588 u8 uuid[BTRFS_UUID_SIZE];
1593 logical = key->offset;
1594 length = btrfs_chunk_length(leaf, chunk);
1596 ce = search_cache_extent(&map_tree->cache_tree, logical);
1598 /* already mapped? */
1599 if (ce && ce->start <= logical && ce->start + ce->size > logical) {
1603 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1604 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1608 map->ce.start = logical;
1609 map->ce.size = length;
1610 map->num_stripes = num_stripes;
1611 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1612 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1613 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1614 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1615 map->type = btrfs_chunk_type(leaf, chunk);
1616 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1618 for (i = 0; i < num_stripes; i++) {
1619 map->stripes[i].physical =
1620 btrfs_stripe_offset_nr(leaf, chunk, i);
1621 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1622 read_extent_buffer(leaf, uuid, (unsigned long)
1623 btrfs_stripe_dev_uuid_nr(chunk, i),
1625 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
1627 if (!map->stripes[i].dev) {
1628 map->stripes[i].dev = fill_missing_device(devid);
1629 printf("warning, device %llu is missing\n",
1630 (unsigned long long)devid);
1634 ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
1640 static int fill_device_from_item(struct extent_buffer *leaf,
1641 struct btrfs_dev_item *dev_item,
1642 struct btrfs_device *device)
1646 device->devid = btrfs_device_id(leaf, dev_item);
1647 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1648 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1649 device->type = btrfs_device_type(leaf, dev_item);
1650 device->io_align = btrfs_device_io_align(leaf, dev_item);
1651 device->io_width = btrfs_device_io_width(leaf, dev_item);
1652 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1654 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1655 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1660 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
1662 struct btrfs_fs_devices *fs_devices;
1665 fs_devices = root->fs_info->fs_devices->seed;
1666 while (fs_devices) {
1667 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1671 fs_devices = fs_devices->seed;
1674 fs_devices = find_fsid(fsid);
1676 /* missing all seed devices */
1677 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1682 INIT_LIST_HEAD(&fs_devices->devices);
1683 list_add(&fs_devices->list, &fs_uuids);
1684 memcpy(fs_devices->fsid, fsid, BTRFS_FSID_SIZE);
1687 ret = btrfs_open_devices(fs_devices, O_RDONLY);
1691 fs_devices->seed = root->fs_info->fs_devices->seed;
1692 root->fs_info->fs_devices->seed = fs_devices;
1697 static int read_one_dev(struct btrfs_root *root,
1698 struct extent_buffer *leaf,
1699 struct btrfs_dev_item *dev_item)
1701 struct btrfs_device *device;
1704 u8 fs_uuid[BTRFS_UUID_SIZE];
1705 u8 dev_uuid[BTRFS_UUID_SIZE];
1707 devid = btrfs_device_id(leaf, dev_item);
1708 read_extent_buffer(leaf, dev_uuid,
1709 (unsigned long)btrfs_device_uuid(dev_item),
1711 read_extent_buffer(leaf, fs_uuid,
1712 (unsigned long)btrfs_device_fsid(dev_item),
1715 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
1716 ret = open_seed_devices(root, fs_uuid);
1721 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1723 printk("warning devid %llu not found already\n",
1724 (unsigned long long)devid);
1725 device = kzalloc(sizeof(*device), GFP_NOFS);
1729 list_add(&device->dev_list,
1730 &root->fs_info->fs_devices->devices);
1733 fill_device_from_item(leaf, dev_item, device);
1734 device->dev_root = root->fs_info->dev_root;
1738 int btrfs_read_sys_array(struct btrfs_root *root)
1740 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1741 struct extent_buffer *sb;
1742 struct btrfs_disk_key *disk_key;
1743 struct btrfs_chunk *chunk;
1744 struct btrfs_key key;
1751 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
1752 BTRFS_SUPER_INFO_SIZE);
1755 btrfs_set_buffer_uptodate(sb);
1756 write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
1757 array_end = ((u8 *)super_copy->sys_chunk_array) +
1758 btrfs_super_sys_array_size(super_copy);
1761 * we do this loop twice, once for the device items and
1762 * once for all of the chunks. This way there are device
1763 * structs filled in for every chunk
1765 ptr = super_copy->sys_chunk_array;
1767 while (ptr < array_end) {
1768 disk_key = (struct btrfs_disk_key *)ptr;
1769 btrfs_disk_key_to_cpu(&key, disk_key);
1771 len = sizeof(*disk_key);
1774 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1775 chunk = (struct btrfs_chunk *)(ptr - (u8 *)super_copy);
1776 ret = read_one_chunk(root, &key, sb, chunk);
1779 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1780 len = btrfs_chunk_item_size(num_stripes);
1786 free_extent_buffer(sb);
1790 int btrfs_read_chunk_tree(struct btrfs_root *root)
1792 struct btrfs_path *path;
1793 struct extent_buffer *leaf;
1794 struct btrfs_key key;
1795 struct btrfs_key found_key;
1799 root = root->fs_info->chunk_root;
1801 path = btrfs_alloc_path();
1806 * Read all device items, and then all the chunk items. All
1807 * device items are found before any chunk item (their object id
1808 * is smaller than the lowest possible object id for a chunk
1809 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
1811 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1814 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1818 leaf = path->nodes[0];
1819 slot = path->slots[0];
1820 if (slot >= btrfs_header_nritems(leaf)) {
1821 ret = btrfs_next_leaf(root, path);
1828 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1829 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1830 struct btrfs_dev_item *dev_item;
1831 dev_item = btrfs_item_ptr(leaf, slot,
1832 struct btrfs_dev_item);
1833 ret = read_one_dev(root, leaf, dev_item);
1835 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1836 struct btrfs_chunk *chunk;
1837 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1838 ret = read_one_chunk(root, &found_key, leaf, chunk);
1846 btrfs_free_path(path);
1850 struct list_head *btrfs_scanned_uuids(void)
1855 static int rmw_eb(struct btrfs_fs_info *info,
1856 struct extent_buffer *eb, struct extent_buffer *orig_eb)
1859 unsigned long orig_off = 0;
1860 unsigned long dest_off = 0;
1861 unsigned long copy_len = eb->len;
1863 ret = read_whole_eb(info, eb, 0);
1867 if (eb->start + eb->len <= orig_eb->start ||
1868 eb->start >= orig_eb->start + orig_eb->len)
1871 * | ----- orig_eb ------- |
1872 * | ----- stripe ------- |
1873 * | ----- orig_eb ------- |
1874 * | ----- orig_eb ------- |
1876 if (eb->start > orig_eb->start)
1877 orig_off = eb->start - orig_eb->start;
1878 if (orig_eb->start > eb->start)
1879 dest_off = orig_eb->start - eb->start;
1881 if (copy_len > orig_eb->len - orig_off)
1882 copy_len = orig_eb->len - orig_off;
1883 if (copy_len > eb->len - dest_off)
1884 copy_len = eb->len - dest_off;
1886 memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len);
1890 static void split_eb_for_raid56(struct btrfs_fs_info *info,
1891 struct extent_buffer *orig_eb,
1892 struct extent_buffer **ebs,
1893 u64 stripe_len, u64 *raid_map,
1896 struct extent_buffer *eb;
1897 u64 start = orig_eb->start;
1902 for (i = 0; i < num_stripes; i++) {
1903 if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
1906 eb = malloc(sizeof(struct extent_buffer) + stripe_len);
1909 memset(eb, 0, sizeof(struct extent_buffer) + stripe_len);
1911 eb->start = raid_map[i];
1912 eb->len = stripe_len;
1916 eb->dev_bytenr = (u64)-1;
1918 this_eb_start = raid_map[i];
1920 if (start > this_eb_start ||
1921 start + orig_eb->len < this_eb_start + stripe_len) {
1922 ret = rmw_eb(info, eb, orig_eb);
1925 memcpy(eb->data, orig_eb->data + eb->start - start, stripe_len);
1931 int write_raid56_with_parity(struct btrfs_fs_info *info,
1932 struct extent_buffer *eb,
1933 struct btrfs_multi_bio *multi,
1934 u64 stripe_len, u64 *raid_map)
1936 struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL;
1940 int alloc_size = eb->len;
1942 ebs = kmalloc(sizeof(*ebs) * multi->num_stripes, GFP_NOFS);
1945 if (stripe_len > alloc_size)
1946 alloc_size = stripe_len;
1948 split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map,
1949 multi->num_stripes);
1951 for (i = 0; i < multi->num_stripes; i++) {
1952 struct extent_buffer *new_eb;
1953 if (raid_map[i] < BTRFS_RAID5_P_STRIPE) {
1954 ebs[i]->dev_bytenr = multi->stripes[i].physical;
1955 ebs[i]->fd = multi->stripes[i].dev->fd;
1956 multi->stripes[i].dev->total_ios++;
1957 BUG_ON(ebs[i]->start != raid_map[i]);
1960 new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_NOFS);
1962 new_eb->dev_bytenr = multi->stripes[i].physical;
1963 new_eb->fd = multi->stripes[i].dev->fd;
1964 multi->stripes[i].dev->total_ios++;
1965 new_eb->len = stripe_len;
1967 if (raid_map[i] == BTRFS_RAID5_P_STRIPE)
1969 else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE)
1975 pointers = kmalloc(sizeof(*pointers) * multi->num_stripes,
1979 ebs[multi->num_stripes - 2] = p_eb;
1980 ebs[multi->num_stripes - 1] = q_eb;
1982 for (i = 0; i < multi->num_stripes; i++)
1983 pointers[i] = ebs[i]->data;
1985 raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers);
1988 ebs[multi->num_stripes - 1] = p_eb;
1989 memcpy(p_eb->data, ebs[0]->data, stripe_len);
1990 for (j = 1; j < multi->num_stripes - 1; j++) {
1991 for (i = 0; i < stripe_len; i += sizeof(unsigned long)) {
1992 *(unsigned long *)(p_eb->data + i) ^=
1993 *(unsigned long *)(ebs[j]->data + i);
1998 for (i = 0; i < multi->num_stripes; i++) {
1999 ret = write_extent_to_disk(ebs[i]);