2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
131 static bool largepages_enabled = true;
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
142 return PageReserved(pfn_to_page(pfn));
148 * Switches to specified vcpu, until a matching vcpu_put()
150 int vcpu_load(struct kvm_vcpu *vcpu)
154 if (mutex_lock_killable(&vcpu->mutex))
157 preempt_notifier_register(&vcpu->preempt_notifier);
158 kvm_arch_vcpu_load(vcpu, cpu);
162 EXPORT_SYMBOL_GPL(vcpu_load);
164 void vcpu_put(struct kvm_vcpu *vcpu)
167 kvm_arch_vcpu_put(vcpu);
168 preempt_notifier_unregister(&vcpu->preempt_notifier);
170 mutex_unlock(&vcpu->mutex);
172 EXPORT_SYMBOL_GPL(vcpu_put);
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
177 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
180 * We need to wait for the VCPU to reenable interrupts and get out of
181 * READING_SHADOW_PAGE_TABLES mode.
183 if (req & KVM_REQUEST_WAIT)
184 return mode != OUTSIDE_GUEST_MODE;
187 * Need to kick a running VCPU, but otherwise there is nothing to do.
189 return mode == IN_GUEST_MODE;
192 static void ack_flush(void *_completed)
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
199 cpus = cpu_online_mask;
201 if (cpumask_empty(cpus))
204 smp_call_function_many(cpus, ack_flush, NULL, wait);
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
213 struct kvm_vcpu *vcpu;
215 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
218 kvm_for_each_vcpu(i, vcpu, kvm) {
219 kvm_make_request(req, vcpu);
222 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
225 if (cpus != NULL && cpu != -1 && cpu != me &&
226 kvm_request_needs_ipi(vcpu, req))
227 __cpumask_set_cpu(cpu, cpus);
229 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
231 free_cpumask_var(cpus);
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
239 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240 * kvm_make_all_cpus_request.
242 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
245 * We want to publish modifications to the page tables before reading
246 * mode. Pairs with a memory barrier in arch-specific code.
247 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248 * and smp_mb in walk_shadow_page_lockless_begin/end.
249 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
251 * There is already an smp_mb__after_atomic() before
252 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
255 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256 ++kvm->stat.remote_tlb_flush;
257 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
262 void kvm_reload_remote_mmus(struct kvm *kvm)
264 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
272 mutex_init(&vcpu->mutex);
277 init_swait_queue_head(&vcpu->wq);
278 kvm_async_pf_vcpu_init(vcpu);
281 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
283 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
288 vcpu->run = page_address(page);
290 kvm_vcpu_set_in_spin_loop(vcpu, false);
291 kvm_vcpu_set_dy_eligible(vcpu, false);
292 vcpu->preempted = false;
294 r = kvm_arch_vcpu_init(vcpu);
300 free_page((unsigned long)vcpu->run);
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
309 * no need for rcu_read_lock as VCPU_RUN is the only place that
310 * will change the vcpu->pid pointer and on uninit all file
311 * descriptors are already gone.
313 put_pid(rcu_dereference_protected(vcpu->pid, 1));
314 kvm_arch_vcpu_uninit(vcpu);
315 free_page((unsigned long)vcpu->run);
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
322 return container_of(mn, struct kvm, mmu_notifier);
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address,
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335 kvm->mmu_notifier_seq++;
336 kvm_set_spte_hva(kvm, address, pte);
337 spin_unlock(&kvm->mmu_lock);
338 srcu_read_unlock(&kvm->srcu, idx);
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 struct mm_struct *mm,
346 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 int need_tlb_flush = 0, idx;
349 idx = srcu_read_lock(&kvm->srcu);
350 spin_lock(&kvm->mmu_lock);
352 * The count increase must become visible at unlock time as no
353 * spte can be established without taking the mmu_lock and
354 * count is also read inside the mmu_lock critical section.
356 kvm->mmu_notifier_count++;
357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 need_tlb_flush |= kvm->tlbs_dirty;
359 /* we've to flush the tlb before the pages can be freed */
361 kvm_flush_remote_tlbs(kvm);
363 spin_unlock(&kvm->mmu_lock);
364 srcu_read_unlock(&kvm->srcu, idx);
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 struct mm_struct *mm,
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 spin_lock(&kvm->mmu_lock);
376 * This sequence increase will notify the kvm page fault that
377 * the page that is going to be mapped in the spte could have
380 kvm->mmu_notifier_seq++;
383 * The above sequence increase must be visible before the
384 * below count decrease, which is ensured by the smp_wmb above
385 * in conjunction with the smp_rmb in mmu_notifier_retry().
387 kvm->mmu_notifier_count--;
388 spin_unlock(&kvm->mmu_lock);
390 BUG_ON(kvm->mmu_notifier_count < 0);
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
404 young = kvm_age_hva(kvm, start, end);
406 kvm_flush_remote_tlbs(kvm);
408 spin_unlock(&kvm->mmu_lock);
409 srcu_read_unlock(&kvm->srcu, idx);
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 struct mm_struct *mm,
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
422 idx = srcu_read_lock(&kvm->srcu);
423 spin_lock(&kvm->mmu_lock);
425 * Even though we do not flush TLB, this will still adversely
426 * affect performance on pre-Haswell Intel EPT, where there is
427 * no EPT Access Bit to clear so that we have to tear down EPT
428 * tables instead. If we find this unacceptable, we can always
429 * add a parameter to kvm_age_hva so that it effectively doesn't
430 * do anything on clear_young.
432 * Also note that currently we never issue secondary TLB flushes
433 * from clear_young, leaving this job up to the regular system
434 * cadence. If we find this inaccurate, we might come up with a
435 * more sophisticated heuristic later.
437 young = kvm_age_hva(kvm, start, end);
438 spin_unlock(&kvm->mmu_lock);
439 srcu_read_unlock(&kvm->srcu, idx);
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 struct mm_struct *mm,
446 unsigned long address)
448 struct kvm *kvm = mmu_notifier_to_kvm(mn);
451 idx = srcu_read_lock(&kvm->srcu);
452 spin_lock(&kvm->mmu_lock);
453 young = kvm_test_age_hva(kvm, address);
454 spin_unlock(&kvm->mmu_lock);
455 srcu_read_unlock(&kvm->srcu, idx);
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 struct mm_struct *mm)
463 struct kvm *kvm = mmu_notifier_to_kvm(mn);
466 idx = srcu_read_lock(&kvm->srcu);
467 kvm_arch_flush_shadow_all(kvm);
468 srcu_read_unlock(&kvm->srcu, idx);
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
473 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
474 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
475 .clear_young = kvm_mmu_notifier_clear_young,
476 .test_young = kvm_mmu_notifier_test_young,
477 .change_pte = kvm_mmu_notifier_change_pte,
478 .release = kvm_mmu_notifier_release,
481 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
484 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
487 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
494 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496 static struct kvm_memslots *kvm_alloc_memslots(void)
499 struct kvm_memslots *slots;
501 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
505 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
506 slots->id_to_index[i] = slots->memslots[i].id = i;
511 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
513 if (!memslot->dirty_bitmap)
516 kvfree(memslot->dirty_bitmap);
517 memslot->dirty_bitmap = NULL;
521 * Free any memory in @free but not in @dont.
523 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
524 struct kvm_memory_slot *dont)
526 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527 kvm_destroy_dirty_bitmap(free);
529 kvm_arch_free_memslot(kvm, free, dont);
534 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
536 struct kvm_memory_slot *memslot;
541 kvm_for_each_memslot(memslot, slots)
542 kvm_free_memslot(kvm, memslot, NULL);
547 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
551 if (!kvm->debugfs_dentry)
554 debugfs_remove_recursive(kvm->debugfs_dentry);
556 if (kvm->debugfs_stat_data) {
557 for (i = 0; i < kvm_debugfs_num_entries; i++)
558 kfree(kvm->debugfs_stat_data[i]);
559 kfree(kvm->debugfs_stat_data);
563 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
565 char dir_name[ITOA_MAX_LEN * 2];
566 struct kvm_stat_data *stat_data;
567 struct kvm_stats_debugfs_item *p;
569 if (!debugfs_initialized())
572 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
573 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
575 if (!kvm->debugfs_dentry)
578 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
579 sizeof(*kvm->debugfs_stat_data),
581 if (!kvm->debugfs_stat_data)
584 for (p = debugfs_entries; p->name; p++) {
585 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
589 stat_data->kvm = kvm;
590 stat_data->offset = p->offset;
591 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
592 if (!debugfs_create_file(p->name, 0644,
595 stat_fops_per_vm[p->kind]))
601 static struct kvm *kvm_create_vm(unsigned long type)
604 struct kvm *kvm = kvm_arch_alloc_vm();
607 return ERR_PTR(-ENOMEM);
609 spin_lock_init(&kvm->mmu_lock);
611 kvm->mm = current->mm;
612 kvm_eventfd_init(kvm);
613 mutex_init(&kvm->lock);
614 mutex_init(&kvm->irq_lock);
615 mutex_init(&kvm->slots_lock);
616 refcount_set(&kvm->users_count, 1);
617 INIT_LIST_HEAD(&kvm->devices);
619 r = kvm_arch_init_vm(kvm, type);
621 goto out_err_no_disable;
623 r = hardware_enable_all();
625 goto out_err_no_disable;
627 #ifdef CONFIG_HAVE_KVM_IRQFD
628 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
631 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
634 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
635 struct kvm_memslots *slots = kvm_alloc_memslots();
637 goto out_err_no_srcu;
639 * Generations must be different for each address space.
640 * Init kvm generation close to the maximum to easily test the
641 * code of handling generation number wrap-around.
643 slots->generation = i * 2 - 150;
644 rcu_assign_pointer(kvm->memslots[i], slots);
647 if (init_srcu_struct(&kvm->srcu))
648 goto out_err_no_srcu;
649 if (init_srcu_struct(&kvm->irq_srcu))
650 goto out_err_no_irq_srcu;
651 for (i = 0; i < KVM_NR_BUSES; i++) {
652 rcu_assign_pointer(kvm->buses[i],
653 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
658 r = kvm_init_mmu_notifier(kvm);
662 spin_lock(&kvm_lock);
663 list_add(&kvm->vm_list, &vm_list);
664 spin_unlock(&kvm_lock);
666 preempt_notifier_inc();
671 cleanup_srcu_struct(&kvm->irq_srcu);
673 cleanup_srcu_struct(&kvm->srcu);
675 hardware_disable_all();
677 refcount_set(&kvm->users_count, 0);
678 for (i = 0; i < KVM_NR_BUSES; i++)
679 kfree(kvm_get_bus(kvm, i));
680 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
681 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
682 kvm_arch_free_vm(kvm);
687 static void kvm_destroy_devices(struct kvm *kvm)
689 struct kvm_device *dev, *tmp;
692 * We do not need to take the kvm->lock here, because nobody else
693 * has a reference to the struct kvm at this point and therefore
694 * cannot access the devices list anyhow.
696 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
697 list_del(&dev->vm_node);
698 dev->ops->destroy(dev);
702 static void kvm_destroy_vm(struct kvm *kvm)
705 struct mm_struct *mm = kvm->mm;
707 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
708 kvm_destroy_vm_debugfs(kvm);
709 kvm_arch_sync_events(kvm);
710 spin_lock(&kvm_lock);
711 list_del(&kvm->vm_list);
712 spin_unlock(&kvm_lock);
713 kvm_free_irq_routing(kvm);
714 for (i = 0; i < KVM_NR_BUSES; i++) {
715 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
718 kvm_io_bus_destroy(bus);
719 kvm->buses[i] = NULL;
721 kvm_coalesced_mmio_free(kvm);
722 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
723 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
725 kvm_arch_flush_shadow_all(kvm);
727 kvm_arch_destroy_vm(kvm);
728 kvm_destroy_devices(kvm);
729 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
730 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
731 cleanup_srcu_struct(&kvm->irq_srcu);
732 cleanup_srcu_struct(&kvm->srcu);
733 kvm_arch_free_vm(kvm);
734 preempt_notifier_dec();
735 hardware_disable_all();
739 void kvm_get_kvm(struct kvm *kvm)
741 refcount_inc(&kvm->users_count);
743 EXPORT_SYMBOL_GPL(kvm_get_kvm);
745 void kvm_put_kvm(struct kvm *kvm)
747 if (refcount_dec_and_test(&kvm->users_count))
750 EXPORT_SYMBOL_GPL(kvm_put_kvm);
753 static int kvm_vm_release(struct inode *inode, struct file *filp)
755 struct kvm *kvm = filp->private_data;
757 kvm_irqfd_release(kvm);
764 * Allocation size is twice as large as the actual dirty bitmap size.
765 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
767 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
769 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
771 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
772 if (!memslot->dirty_bitmap)
779 * Insert memslot and re-sort memslots based on their GFN,
780 * so binary search could be used to lookup GFN.
781 * Sorting algorithm takes advantage of having initially
782 * sorted array and known changed memslot position.
784 static void update_memslots(struct kvm_memslots *slots,
785 struct kvm_memory_slot *new)
788 int i = slots->id_to_index[id];
789 struct kvm_memory_slot *mslots = slots->memslots;
791 WARN_ON(mslots[i].id != id);
793 WARN_ON(!mslots[i].npages);
794 if (mslots[i].npages)
797 if (!mslots[i].npages)
801 while (i < KVM_MEM_SLOTS_NUM - 1 &&
802 new->base_gfn <= mslots[i + 1].base_gfn) {
803 if (!mslots[i + 1].npages)
805 mslots[i] = mslots[i + 1];
806 slots->id_to_index[mslots[i].id] = i;
811 * The ">=" is needed when creating a slot with base_gfn == 0,
812 * so that it moves before all those with base_gfn == npages == 0.
814 * On the other hand, if new->npages is zero, the above loop has
815 * already left i pointing to the beginning of the empty part of
816 * mslots, and the ">=" would move the hole backwards in this
817 * case---which is wrong. So skip the loop when deleting a slot.
821 new->base_gfn >= mslots[i - 1].base_gfn) {
822 mslots[i] = mslots[i - 1];
823 slots->id_to_index[mslots[i].id] = i;
827 WARN_ON_ONCE(i != slots->used_slots);
830 slots->id_to_index[mslots[i].id] = i;
833 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
835 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
837 #ifdef __KVM_HAVE_READONLY_MEM
838 valid_flags |= KVM_MEM_READONLY;
841 if (mem->flags & ~valid_flags)
847 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
848 int as_id, struct kvm_memslots *slots)
850 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
853 * Set the low bit in the generation, which disables SPTE caching
854 * until the end of synchronize_srcu_expedited.
856 WARN_ON(old_memslots->generation & 1);
857 slots->generation = old_memslots->generation + 1;
859 rcu_assign_pointer(kvm->memslots[as_id], slots);
860 synchronize_srcu_expedited(&kvm->srcu);
863 * Increment the new memslot generation a second time. This prevents
864 * vm exits that race with memslot updates from caching a memslot
865 * generation that will (potentially) be valid forever.
867 * Generations must be unique even across address spaces. We do not need
868 * a global counter for that, instead the generation space is evenly split
869 * across address spaces. For example, with two address spaces, address
870 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
871 * use generations 2, 6, 10, 14, ...
873 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
875 kvm_arch_memslots_updated(kvm, slots);
881 * Allocate some memory and give it an address in the guest physical address
884 * Discontiguous memory is allowed, mostly for framebuffers.
886 * Must be called holding kvm->slots_lock for write.
888 int __kvm_set_memory_region(struct kvm *kvm,
889 const struct kvm_userspace_memory_region *mem)
893 unsigned long npages;
894 struct kvm_memory_slot *slot;
895 struct kvm_memory_slot old, new;
896 struct kvm_memslots *slots = NULL, *old_memslots;
898 enum kvm_mr_change change;
900 r = check_memory_region_flags(mem);
905 as_id = mem->slot >> 16;
908 /* General sanity checks */
909 if (mem->memory_size & (PAGE_SIZE - 1))
911 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
913 /* We can read the guest memory with __xxx_user() later on. */
914 if ((id < KVM_USER_MEM_SLOTS) &&
915 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
916 !access_ok(VERIFY_WRITE,
917 (void __user *)(unsigned long)mem->userspace_addr,
920 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
922 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
925 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
926 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
927 npages = mem->memory_size >> PAGE_SHIFT;
929 if (npages > KVM_MEM_MAX_NR_PAGES)
935 new.base_gfn = base_gfn;
937 new.flags = mem->flags;
941 change = KVM_MR_CREATE;
942 else { /* Modify an existing slot. */
943 if ((mem->userspace_addr != old.userspace_addr) ||
944 (npages != old.npages) ||
945 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
948 if (base_gfn != old.base_gfn)
949 change = KVM_MR_MOVE;
950 else if (new.flags != old.flags)
951 change = KVM_MR_FLAGS_ONLY;
952 else { /* Nothing to change. */
961 change = KVM_MR_DELETE;
966 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
967 /* Check for overlaps */
969 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
970 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
973 if (!((base_gfn + npages <= slot->base_gfn) ||
974 (base_gfn >= slot->base_gfn + slot->npages)))
979 /* Free page dirty bitmap if unneeded */
980 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
981 new.dirty_bitmap = NULL;
984 if (change == KVM_MR_CREATE) {
985 new.userspace_addr = mem->userspace_addr;
987 if (kvm_arch_create_memslot(kvm, &new, npages))
991 /* Allocate page dirty bitmap if needed */
992 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
993 if (kvm_create_dirty_bitmap(&new) < 0)
997 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1000 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1002 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1003 slot = id_to_memslot(slots, id);
1004 slot->flags |= KVM_MEMSLOT_INVALID;
1006 old_memslots = install_new_memslots(kvm, as_id, slots);
1008 /* From this point no new shadow pages pointing to a deleted,
1009 * or moved, memslot will be created.
1011 * validation of sp->gfn happens in:
1012 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013 * - kvm_is_visible_gfn (mmu_check_roots)
1015 kvm_arch_flush_shadow_memslot(kvm, slot);
1018 * We can re-use the old_memslots from above, the only difference
1019 * from the currently installed memslots is the invalid flag. This
1020 * will get overwritten by update_memslots anyway.
1022 slots = old_memslots;
1025 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1029 /* actual memory is freed via old in kvm_free_memslot below */
1030 if (change == KVM_MR_DELETE) {
1031 new.dirty_bitmap = NULL;
1032 memset(&new.arch, 0, sizeof(new.arch));
1035 update_memslots(slots, &new);
1036 old_memslots = install_new_memslots(kvm, as_id, slots);
1038 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1040 kvm_free_memslot(kvm, &old, &new);
1041 kvfree(old_memslots);
1047 kvm_free_memslot(kvm, &new, &old);
1051 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1053 int kvm_set_memory_region(struct kvm *kvm,
1054 const struct kvm_userspace_memory_region *mem)
1058 mutex_lock(&kvm->slots_lock);
1059 r = __kvm_set_memory_region(kvm, mem);
1060 mutex_unlock(&kvm->slots_lock);
1063 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1065 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1066 struct kvm_userspace_memory_region *mem)
1068 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1071 return kvm_set_memory_region(kvm, mem);
1074 int kvm_get_dirty_log(struct kvm *kvm,
1075 struct kvm_dirty_log *log, int *is_dirty)
1077 struct kvm_memslots *slots;
1078 struct kvm_memory_slot *memslot;
1081 unsigned long any = 0;
1083 as_id = log->slot >> 16;
1084 id = (u16)log->slot;
1085 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1088 slots = __kvm_memslots(kvm, as_id);
1089 memslot = id_to_memslot(slots, id);
1090 if (!memslot->dirty_bitmap)
1093 n = kvm_dirty_bitmap_bytes(memslot);
1095 for (i = 0; !any && i < n/sizeof(long); ++i)
1096 any = memslot->dirty_bitmap[i];
1098 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1105 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1107 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1109 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1110 * are dirty write protect them for next write.
1111 * @kvm: pointer to kvm instance
1112 * @log: slot id and address to which we copy the log
1113 * @is_dirty: flag set if any page is dirty
1115 * We need to keep it in mind that VCPU threads can write to the bitmap
1116 * concurrently. So, to avoid losing track of dirty pages we keep the
1119 * 1. Take a snapshot of the bit and clear it if needed.
1120 * 2. Write protect the corresponding page.
1121 * 3. Copy the snapshot to the userspace.
1122 * 4. Upon return caller flushes TLB's if needed.
1124 * Between 2 and 4, the guest may write to the page using the remaining TLB
1125 * entry. This is not a problem because the page is reported dirty using
1126 * the snapshot taken before and step 4 ensures that writes done after
1127 * exiting to userspace will be logged for the next call.
1130 int kvm_get_dirty_log_protect(struct kvm *kvm,
1131 struct kvm_dirty_log *log, bool *is_dirty)
1133 struct kvm_memslots *slots;
1134 struct kvm_memory_slot *memslot;
1137 unsigned long *dirty_bitmap;
1138 unsigned long *dirty_bitmap_buffer;
1140 as_id = log->slot >> 16;
1141 id = (u16)log->slot;
1142 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1145 slots = __kvm_memslots(kvm, as_id);
1146 memslot = id_to_memslot(slots, id);
1148 dirty_bitmap = memslot->dirty_bitmap;
1152 n = kvm_dirty_bitmap_bytes(memslot);
1154 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1155 memset(dirty_bitmap_buffer, 0, n);
1157 spin_lock(&kvm->mmu_lock);
1159 for (i = 0; i < n / sizeof(long); i++) {
1163 if (!dirty_bitmap[i])
1168 mask = xchg(&dirty_bitmap[i], 0);
1169 dirty_bitmap_buffer[i] = mask;
1172 offset = i * BITS_PER_LONG;
1173 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1178 spin_unlock(&kvm->mmu_lock);
1179 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1183 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1186 bool kvm_largepages_enabled(void)
1188 return largepages_enabled;
1191 void kvm_disable_largepages(void)
1193 largepages_enabled = false;
1195 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1197 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1199 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1201 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1203 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1205 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1208 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1210 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1212 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1213 memslot->flags & KVM_MEMSLOT_INVALID)
1218 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1220 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1222 struct vm_area_struct *vma;
1223 unsigned long addr, size;
1227 addr = gfn_to_hva(kvm, gfn);
1228 if (kvm_is_error_hva(addr))
1231 down_read(¤t->mm->mmap_sem);
1232 vma = find_vma(current->mm, addr);
1236 size = vma_kernel_pagesize(vma);
1239 up_read(¤t->mm->mmap_sem);
1244 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1246 return slot->flags & KVM_MEM_READONLY;
1249 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1250 gfn_t *nr_pages, bool write)
1252 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1253 return KVM_HVA_ERR_BAD;
1255 if (memslot_is_readonly(slot) && write)
1256 return KVM_HVA_ERR_RO_BAD;
1259 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1261 return __gfn_to_hva_memslot(slot, gfn);
1264 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1267 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1270 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1273 return gfn_to_hva_many(slot, gfn, NULL);
1275 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1277 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1279 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1281 EXPORT_SYMBOL_GPL(gfn_to_hva);
1283 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1285 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1287 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1290 * If writable is set to false, the hva returned by this function is only
1291 * allowed to be read.
1293 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1294 gfn_t gfn, bool *writable)
1296 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1298 if (!kvm_is_error_hva(hva) && writable)
1299 *writable = !memslot_is_readonly(slot);
1304 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1306 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1308 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1311 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1313 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1315 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1318 static int get_user_page_nowait(unsigned long start, int write,
1321 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1324 flags |= FOLL_WRITE;
1326 return get_user_pages(start, 1, flags, page, NULL);
1329 static inline int check_user_page_hwpoison(unsigned long addr)
1331 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1333 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1334 return rc == -EHWPOISON;
1338 * The atomic path to get the writable pfn which will be stored in @pfn,
1339 * true indicates success, otherwise false is returned.
1341 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1342 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1344 struct page *page[1];
1347 if (!(async || atomic))
1351 * Fast pin a writable pfn only if it is a write fault request
1352 * or the caller allows to map a writable pfn for a read fault
1355 if (!(write_fault || writable))
1358 npages = __get_user_pages_fast(addr, 1, 1, page);
1360 *pfn = page_to_pfn(page[0]);
1371 * The slow path to get the pfn of the specified host virtual address,
1372 * 1 indicates success, -errno is returned if error is detected.
1374 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1375 bool *writable, kvm_pfn_t *pfn)
1377 struct page *page[1];
1383 *writable = write_fault;
1386 down_read(¤t->mm->mmap_sem);
1387 npages = get_user_page_nowait(addr, write_fault, page);
1388 up_read(¤t->mm->mmap_sem);
1390 unsigned int flags = FOLL_HWPOISON;
1393 flags |= FOLL_WRITE;
1395 npages = get_user_pages_unlocked(addr, 1, page, flags);
1400 /* map read fault as writable if possible */
1401 if (unlikely(!write_fault) && writable) {
1402 struct page *wpage[1];
1404 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1413 *pfn = page_to_pfn(page[0]);
1417 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1419 if (unlikely(!(vma->vm_flags & VM_READ)))
1422 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1428 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1429 unsigned long addr, bool *async,
1430 bool write_fault, kvm_pfn_t *p_pfn)
1435 r = follow_pfn(vma, addr, &pfn);
1438 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1439 * not call the fault handler, so do it here.
1441 bool unlocked = false;
1442 r = fixup_user_fault(current, current->mm, addr,
1443 (write_fault ? FAULT_FLAG_WRITE : 0),
1450 r = follow_pfn(vma, addr, &pfn);
1458 * Get a reference here because callers of *hva_to_pfn* and
1459 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1460 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1461 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1462 * simply do nothing for reserved pfns.
1464 * Whoever called remap_pfn_range is also going to call e.g.
1465 * unmap_mapping_range before the underlying pages are freed,
1466 * causing a call to our MMU notifier.
1475 * Pin guest page in memory and return its pfn.
1476 * @addr: host virtual address which maps memory to the guest
1477 * @atomic: whether this function can sleep
1478 * @async: whether this function need to wait IO complete if the
1479 * host page is not in the memory
1480 * @write_fault: whether we should get a writable host page
1481 * @writable: whether it allows to map a writable host page for !@write_fault
1483 * The function will map a writable host page for these two cases:
1484 * 1): @write_fault = true
1485 * 2): @write_fault = false && @writable, @writable will tell the caller
1486 * whether the mapping is writable.
1488 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1489 bool write_fault, bool *writable)
1491 struct vm_area_struct *vma;
1495 /* we can do it either atomically or asynchronously, not both */
1496 BUG_ON(atomic && async);
1498 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1502 return KVM_PFN_ERR_FAULT;
1504 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1508 down_read(¤t->mm->mmap_sem);
1509 if (npages == -EHWPOISON ||
1510 (!async && check_user_page_hwpoison(addr))) {
1511 pfn = KVM_PFN_ERR_HWPOISON;
1516 vma = find_vma_intersection(current->mm, addr, addr + 1);
1519 pfn = KVM_PFN_ERR_FAULT;
1520 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1521 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1525 pfn = KVM_PFN_ERR_FAULT;
1527 if (async && vma_is_valid(vma, write_fault))
1529 pfn = KVM_PFN_ERR_FAULT;
1532 up_read(¤t->mm->mmap_sem);
1536 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1537 bool atomic, bool *async, bool write_fault,
1540 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1542 if (addr == KVM_HVA_ERR_RO_BAD) {
1545 return KVM_PFN_ERR_RO_FAULT;
1548 if (kvm_is_error_hva(addr)) {
1551 return KVM_PFN_NOSLOT;
1554 /* Do not map writable pfn in the readonly memslot. */
1555 if (writable && memslot_is_readonly(slot)) {
1560 return hva_to_pfn(addr, atomic, async, write_fault,
1563 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1565 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1568 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1569 write_fault, writable);
1571 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1573 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1575 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1577 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1579 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1581 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1585 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1587 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1591 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1593 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1595 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1597 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1599 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1603 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1605 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1607 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1609 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1610 struct page **pages, int nr_pages)
1615 addr = gfn_to_hva_many(slot, gfn, &entry);
1616 if (kvm_is_error_hva(addr))
1619 if (entry < nr_pages)
1622 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1624 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1626 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1628 if (is_error_noslot_pfn(pfn))
1629 return KVM_ERR_PTR_BAD_PAGE;
1631 if (kvm_is_reserved_pfn(pfn)) {
1633 return KVM_ERR_PTR_BAD_PAGE;
1636 return pfn_to_page(pfn);
1639 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1643 pfn = gfn_to_pfn(kvm, gfn);
1645 return kvm_pfn_to_page(pfn);
1647 EXPORT_SYMBOL_GPL(gfn_to_page);
1649 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1653 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1655 return kvm_pfn_to_page(pfn);
1657 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1659 void kvm_release_page_clean(struct page *page)
1661 WARN_ON(is_error_page(page));
1663 kvm_release_pfn_clean(page_to_pfn(page));
1665 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1667 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1669 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1670 put_page(pfn_to_page(pfn));
1672 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1674 void kvm_release_page_dirty(struct page *page)
1676 WARN_ON(is_error_page(page));
1678 kvm_release_pfn_dirty(page_to_pfn(page));
1680 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1682 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1684 kvm_set_pfn_dirty(pfn);
1685 kvm_release_pfn_clean(pfn);
1688 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1690 if (!kvm_is_reserved_pfn(pfn)) {
1691 struct page *page = pfn_to_page(pfn);
1693 if (!PageReserved(page))
1697 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1699 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1701 if (!kvm_is_reserved_pfn(pfn))
1702 mark_page_accessed(pfn_to_page(pfn));
1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1706 void kvm_get_pfn(kvm_pfn_t pfn)
1708 if (!kvm_is_reserved_pfn(pfn))
1709 get_page(pfn_to_page(pfn));
1711 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1713 static int next_segment(unsigned long len, int offset)
1715 if (len > PAGE_SIZE - offset)
1716 return PAGE_SIZE - offset;
1721 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1722 void *data, int offset, int len)
1727 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1728 if (kvm_is_error_hva(addr))
1730 r = __copy_from_user(data, (void __user *)addr + offset, len);
1736 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1739 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1741 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1743 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1745 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1746 int offset, int len)
1748 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1750 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1752 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1754 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1756 gfn_t gfn = gpa >> PAGE_SHIFT;
1758 int offset = offset_in_page(gpa);
1761 while ((seg = next_segment(len, offset)) != 0) {
1762 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1772 EXPORT_SYMBOL_GPL(kvm_read_guest);
1774 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1776 gfn_t gfn = gpa >> PAGE_SHIFT;
1778 int offset = offset_in_page(gpa);
1781 while ((seg = next_segment(len, offset)) != 0) {
1782 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1792 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1794 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1795 void *data, int offset, unsigned long len)
1800 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1801 if (kvm_is_error_hva(addr))
1803 pagefault_disable();
1804 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1811 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1814 gfn_t gfn = gpa >> PAGE_SHIFT;
1815 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1816 int offset = offset_in_page(gpa);
1818 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1820 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1822 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1823 void *data, unsigned long len)
1825 gfn_t gfn = gpa >> PAGE_SHIFT;
1826 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1827 int offset = offset_in_page(gpa);
1829 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1833 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1834 const void *data, int offset, int len)
1839 addr = gfn_to_hva_memslot(memslot, gfn);
1840 if (kvm_is_error_hva(addr))
1842 r = __copy_to_user((void __user *)addr + offset, data, len);
1845 mark_page_dirty_in_slot(memslot, gfn);
1849 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1850 const void *data, int offset, int len)
1852 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1854 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1856 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1858 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1859 const void *data, int offset, int len)
1861 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1863 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1865 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1867 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1870 gfn_t gfn = gpa >> PAGE_SHIFT;
1872 int offset = offset_in_page(gpa);
1875 while ((seg = next_segment(len, offset)) != 0) {
1876 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1886 EXPORT_SYMBOL_GPL(kvm_write_guest);
1888 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1891 gfn_t gfn = gpa >> PAGE_SHIFT;
1893 int offset = offset_in_page(gpa);
1896 while ((seg = next_segment(len, offset)) != 0) {
1897 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1909 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1910 struct gfn_to_hva_cache *ghc,
1911 gpa_t gpa, unsigned long len)
1913 int offset = offset_in_page(gpa);
1914 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1915 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1916 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1917 gfn_t nr_pages_avail;
1920 ghc->generation = slots->generation;
1922 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1923 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1924 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1928 * If the requested region crosses two memslots, we still
1929 * verify that the entire region is valid here.
1931 while (start_gfn <= end_gfn) {
1933 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1934 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1936 if (kvm_is_error_hva(ghc->hva))
1938 start_gfn += nr_pages_avail;
1940 /* Use the slow path for cross page reads and writes. */
1941 ghc->memslot = NULL;
1946 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1947 gpa_t gpa, unsigned long len)
1949 struct kvm_memslots *slots = kvm_memslots(kvm);
1950 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1952 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1954 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1955 void *data, int offset, unsigned long len)
1957 struct kvm_memslots *slots = kvm_memslots(kvm);
1959 gpa_t gpa = ghc->gpa + offset;
1961 BUG_ON(len + offset > ghc->len);
1963 if (slots->generation != ghc->generation)
1964 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1966 if (unlikely(!ghc->memslot))
1967 return kvm_write_guest(kvm, gpa, data, len);
1969 if (kvm_is_error_hva(ghc->hva))
1972 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1975 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1979 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1981 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1982 void *data, unsigned long len)
1984 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1986 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1988 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989 void *data, unsigned long len)
1991 struct kvm_memslots *slots = kvm_memslots(kvm);
1994 BUG_ON(len > ghc->len);
1996 if (slots->generation != ghc->generation)
1997 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1999 if (unlikely(!ghc->memslot))
2000 return kvm_read_guest(kvm, ghc->gpa, data, len);
2002 if (kvm_is_error_hva(ghc->hva))
2005 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2011 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2013 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2015 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2017 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2019 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2021 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2023 gfn_t gfn = gpa >> PAGE_SHIFT;
2025 int offset = offset_in_page(gpa);
2028 while ((seg = next_segment(len, offset)) != 0) {
2029 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2038 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2040 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2043 if (memslot && memslot->dirty_bitmap) {
2044 unsigned long rel_gfn = gfn - memslot->base_gfn;
2046 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2050 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2052 struct kvm_memory_slot *memslot;
2054 memslot = gfn_to_memslot(kvm, gfn);
2055 mark_page_dirty_in_slot(memslot, gfn);
2057 EXPORT_SYMBOL_GPL(mark_page_dirty);
2059 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2061 struct kvm_memory_slot *memslot;
2063 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2064 mark_page_dirty_in_slot(memslot, gfn);
2066 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2068 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2070 unsigned int old, val, grow;
2072 old = val = vcpu->halt_poll_ns;
2073 grow = READ_ONCE(halt_poll_ns_grow);
2075 if (val == 0 && grow)
2080 if (val > halt_poll_ns)
2083 vcpu->halt_poll_ns = val;
2084 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2087 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2089 unsigned int old, val, shrink;
2091 old = val = vcpu->halt_poll_ns;
2092 shrink = READ_ONCE(halt_poll_ns_shrink);
2098 vcpu->halt_poll_ns = val;
2099 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2102 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2104 if (kvm_arch_vcpu_runnable(vcpu)) {
2105 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2108 if (kvm_cpu_has_pending_timer(vcpu))
2110 if (signal_pending(current))
2117 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2119 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2122 DECLARE_SWAITQUEUE(wait);
2123 bool waited = false;
2126 start = cur = ktime_get();
2127 if (vcpu->halt_poll_ns) {
2128 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2130 ++vcpu->stat.halt_attempted_poll;
2133 * This sets KVM_REQ_UNHALT if an interrupt
2136 if (kvm_vcpu_check_block(vcpu) < 0) {
2137 ++vcpu->stat.halt_successful_poll;
2138 if (!vcpu_valid_wakeup(vcpu))
2139 ++vcpu->stat.halt_poll_invalid;
2143 } while (single_task_running() && ktime_before(cur, stop));
2146 kvm_arch_vcpu_blocking(vcpu);
2149 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2151 if (kvm_vcpu_check_block(vcpu) < 0)
2158 finish_swait(&vcpu->wq, &wait);
2161 kvm_arch_vcpu_unblocking(vcpu);
2163 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2165 if (!vcpu_valid_wakeup(vcpu))
2166 shrink_halt_poll_ns(vcpu);
2167 else if (halt_poll_ns) {
2168 if (block_ns <= vcpu->halt_poll_ns)
2170 /* we had a long block, shrink polling */
2171 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2172 shrink_halt_poll_ns(vcpu);
2173 /* we had a short halt and our poll time is too small */
2174 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2175 block_ns < halt_poll_ns)
2176 grow_halt_poll_ns(vcpu);
2178 vcpu->halt_poll_ns = 0;
2180 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2181 kvm_arch_vcpu_block_finish(vcpu);
2183 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2185 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2187 struct swait_queue_head *wqp;
2189 wqp = kvm_arch_vcpu_wq(vcpu);
2190 if (swq_has_sleeper(wqp)) {
2192 ++vcpu->stat.halt_wakeup;
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2202 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2204 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2207 int cpu = vcpu->cpu;
2209 if (kvm_vcpu_wake_up(vcpu))
2213 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2214 if (kvm_arch_vcpu_should_kick(vcpu))
2215 smp_send_reschedule(cpu);
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2219 #endif /* !CONFIG_S390 */
2221 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2224 struct task_struct *task = NULL;
2228 pid = rcu_dereference(target->pid);
2230 task = get_pid_task(pid, PIDTYPE_PID);
2234 ret = yield_to(task, 1);
2235 put_task_struct(task);
2239 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2242 * Helper that checks whether a VCPU is eligible for directed yield.
2243 * Most eligible candidate to yield is decided by following heuristics:
2245 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2246 * (preempted lock holder), indicated by @in_spin_loop.
2247 * Set at the beiginning and cleared at the end of interception/PLE handler.
2249 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2250 * chance last time (mostly it has become eligible now since we have probably
2251 * yielded to lockholder in last iteration. This is done by toggling
2252 * @dy_eligible each time a VCPU checked for eligibility.)
2254 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2255 * to preempted lock-holder could result in wrong VCPU selection and CPU
2256 * burning. Giving priority for a potential lock-holder increases lock
2259 * Since algorithm is based on heuristics, accessing another VCPU data without
2260 * locking does not harm. It may result in trying to yield to same VCPU, fail
2261 * and continue with next VCPU and so on.
2263 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2265 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2268 eligible = !vcpu->spin_loop.in_spin_loop ||
2269 vcpu->spin_loop.dy_eligible;
2271 if (vcpu->spin_loop.in_spin_loop)
2272 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2280 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2282 struct kvm *kvm = me->kvm;
2283 struct kvm_vcpu *vcpu;
2284 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2290 kvm_vcpu_set_in_spin_loop(me, true);
2292 * We boost the priority of a VCPU that is runnable but not
2293 * currently running, because it got preempted by something
2294 * else and called schedule in __vcpu_run. Hopefully that
2295 * VCPU is holding the lock that we need and will release it.
2296 * We approximate round-robin by starting at the last boosted VCPU.
2298 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2299 kvm_for_each_vcpu(i, vcpu, kvm) {
2300 if (!pass && i <= last_boosted_vcpu) {
2301 i = last_boosted_vcpu;
2303 } else if (pass && i > last_boosted_vcpu)
2305 if (!ACCESS_ONCE(vcpu->preempted))
2309 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2311 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2313 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2316 yielded = kvm_vcpu_yield_to(vcpu);
2318 kvm->last_boosted_vcpu = i;
2320 } else if (yielded < 0) {
2327 kvm_vcpu_set_in_spin_loop(me, false);
2329 /* Ensure vcpu is not eligible during next spinloop */
2330 kvm_vcpu_set_dy_eligible(me, false);
2332 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2334 static int kvm_vcpu_fault(struct vm_fault *vmf)
2336 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2339 if (vmf->pgoff == 0)
2340 page = virt_to_page(vcpu->run);
2342 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2343 page = virt_to_page(vcpu->arch.pio_data);
2345 #ifdef CONFIG_KVM_MMIO
2346 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2347 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2350 return kvm_arch_vcpu_fault(vcpu, vmf);
2356 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2357 .fault = kvm_vcpu_fault,
2360 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2362 vma->vm_ops = &kvm_vcpu_vm_ops;
2366 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2368 struct kvm_vcpu *vcpu = filp->private_data;
2370 debugfs_remove_recursive(vcpu->debugfs_dentry);
2371 kvm_put_kvm(vcpu->kvm);
2375 static struct file_operations kvm_vcpu_fops = {
2376 .release = kvm_vcpu_release,
2377 .unlocked_ioctl = kvm_vcpu_ioctl,
2378 #ifdef CONFIG_KVM_COMPAT
2379 .compat_ioctl = kvm_vcpu_compat_ioctl,
2381 .mmap = kvm_vcpu_mmap,
2382 .llseek = noop_llseek,
2386 * Allocates an inode for the vcpu.
2388 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2390 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2393 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2395 char dir_name[ITOA_MAX_LEN * 2];
2398 if (!kvm_arch_has_vcpu_debugfs())
2401 if (!debugfs_initialized())
2404 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2405 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2406 vcpu->kvm->debugfs_dentry);
2407 if (!vcpu->debugfs_dentry)
2410 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2412 debugfs_remove_recursive(vcpu->debugfs_dentry);
2420 * Creates some virtual cpus. Good luck creating more than one.
2422 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2425 struct kvm_vcpu *vcpu;
2427 if (id >= KVM_MAX_VCPU_ID)
2430 mutex_lock(&kvm->lock);
2431 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2432 mutex_unlock(&kvm->lock);
2436 kvm->created_vcpus++;
2437 mutex_unlock(&kvm->lock);
2439 vcpu = kvm_arch_vcpu_create(kvm, id);
2442 goto vcpu_decrement;
2445 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2447 r = kvm_arch_vcpu_setup(vcpu);
2451 r = kvm_create_vcpu_debugfs(vcpu);
2455 mutex_lock(&kvm->lock);
2456 if (kvm_get_vcpu_by_id(kvm, id)) {
2458 goto unlock_vcpu_destroy;
2461 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2463 /* Now it's all set up, let userspace reach it */
2465 r = create_vcpu_fd(vcpu);
2468 goto unlock_vcpu_destroy;
2471 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2474 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2475 * before kvm->online_vcpu's incremented value.
2478 atomic_inc(&kvm->online_vcpus);
2480 mutex_unlock(&kvm->lock);
2481 kvm_arch_vcpu_postcreate(vcpu);
2484 unlock_vcpu_destroy:
2485 mutex_unlock(&kvm->lock);
2486 debugfs_remove_recursive(vcpu->debugfs_dentry);
2488 kvm_arch_vcpu_destroy(vcpu);
2490 mutex_lock(&kvm->lock);
2491 kvm->created_vcpus--;
2492 mutex_unlock(&kvm->lock);
2496 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2499 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2500 vcpu->sigset_active = 1;
2501 vcpu->sigset = *sigset;
2503 vcpu->sigset_active = 0;
2507 static long kvm_vcpu_ioctl(struct file *filp,
2508 unsigned int ioctl, unsigned long arg)
2510 struct kvm_vcpu *vcpu = filp->private_data;
2511 void __user *argp = (void __user *)arg;
2513 struct kvm_fpu *fpu = NULL;
2514 struct kvm_sregs *kvm_sregs = NULL;
2516 if (vcpu->kvm->mm != current->mm)
2519 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2522 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2524 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2525 * so vcpu_load() would break it.
2527 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2528 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2532 r = vcpu_load(vcpu);
2541 oldpid = rcu_access_pointer(vcpu->pid);
2542 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2543 /* The thread running this VCPU changed. */
2544 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2546 rcu_assign_pointer(vcpu->pid, newpid);
2551 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2552 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2555 case KVM_GET_REGS: {
2556 struct kvm_regs *kvm_regs;
2559 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2562 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2566 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2573 case KVM_SET_REGS: {
2574 struct kvm_regs *kvm_regs;
2577 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2578 if (IS_ERR(kvm_regs)) {
2579 r = PTR_ERR(kvm_regs);
2582 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2586 case KVM_GET_SREGS: {
2587 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2591 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2595 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2600 case KVM_SET_SREGS: {
2601 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2602 if (IS_ERR(kvm_sregs)) {
2603 r = PTR_ERR(kvm_sregs);
2607 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2610 case KVM_GET_MP_STATE: {
2611 struct kvm_mp_state mp_state;
2613 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2617 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2622 case KVM_SET_MP_STATE: {
2623 struct kvm_mp_state mp_state;
2626 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2628 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2631 case KVM_TRANSLATE: {
2632 struct kvm_translation tr;
2635 if (copy_from_user(&tr, argp, sizeof(tr)))
2637 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2641 if (copy_to_user(argp, &tr, sizeof(tr)))
2646 case KVM_SET_GUEST_DEBUG: {
2647 struct kvm_guest_debug dbg;
2650 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2652 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2655 case KVM_SET_SIGNAL_MASK: {
2656 struct kvm_signal_mask __user *sigmask_arg = argp;
2657 struct kvm_signal_mask kvm_sigmask;
2658 sigset_t sigset, *p;
2663 if (copy_from_user(&kvm_sigmask, argp,
2664 sizeof(kvm_sigmask)))
2667 if (kvm_sigmask.len != sizeof(sigset))
2670 if (copy_from_user(&sigset, sigmask_arg->sigset,
2675 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2679 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2683 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2687 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2693 fpu = memdup_user(argp, sizeof(*fpu));
2699 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2703 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2712 #ifdef CONFIG_KVM_COMPAT
2713 static long kvm_vcpu_compat_ioctl(struct file *filp,
2714 unsigned int ioctl, unsigned long arg)
2716 struct kvm_vcpu *vcpu = filp->private_data;
2717 void __user *argp = compat_ptr(arg);
2720 if (vcpu->kvm->mm != current->mm)
2724 case KVM_SET_SIGNAL_MASK: {
2725 struct kvm_signal_mask __user *sigmask_arg = argp;
2726 struct kvm_signal_mask kvm_sigmask;
2727 compat_sigset_t csigset;
2732 if (copy_from_user(&kvm_sigmask, argp,
2733 sizeof(kvm_sigmask)))
2736 if (kvm_sigmask.len != sizeof(csigset))
2739 if (copy_from_user(&csigset, sigmask_arg->sigset,
2742 sigset_from_compat(&sigset, &csigset);
2743 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2745 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2749 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2757 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2758 int (*accessor)(struct kvm_device *dev,
2759 struct kvm_device_attr *attr),
2762 struct kvm_device_attr attr;
2767 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2770 return accessor(dev, &attr);
2773 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2776 struct kvm_device *dev = filp->private_data;
2779 case KVM_SET_DEVICE_ATTR:
2780 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2781 case KVM_GET_DEVICE_ATTR:
2782 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2783 case KVM_HAS_DEVICE_ATTR:
2784 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2786 if (dev->ops->ioctl)
2787 return dev->ops->ioctl(dev, ioctl, arg);
2793 static int kvm_device_release(struct inode *inode, struct file *filp)
2795 struct kvm_device *dev = filp->private_data;
2796 struct kvm *kvm = dev->kvm;
2802 static const struct file_operations kvm_device_fops = {
2803 .unlocked_ioctl = kvm_device_ioctl,
2804 #ifdef CONFIG_KVM_COMPAT
2805 .compat_ioctl = kvm_device_ioctl,
2807 .release = kvm_device_release,
2810 struct kvm_device *kvm_device_from_filp(struct file *filp)
2812 if (filp->f_op != &kvm_device_fops)
2815 return filp->private_data;
2818 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2819 #ifdef CONFIG_KVM_MPIC
2820 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2821 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2825 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2827 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2830 if (kvm_device_ops_table[type] != NULL)
2833 kvm_device_ops_table[type] = ops;
2837 void kvm_unregister_device_ops(u32 type)
2839 if (kvm_device_ops_table[type] != NULL)
2840 kvm_device_ops_table[type] = NULL;
2843 static int kvm_ioctl_create_device(struct kvm *kvm,
2844 struct kvm_create_device *cd)
2846 struct kvm_device_ops *ops = NULL;
2847 struct kvm_device *dev;
2848 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2851 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2854 ops = kvm_device_ops_table[cd->type];
2861 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2868 mutex_lock(&kvm->lock);
2869 ret = ops->create(dev, cd->type);
2871 mutex_unlock(&kvm->lock);
2875 list_add(&dev->vm_node, &kvm->devices);
2876 mutex_unlock(&kvm->lock);
2881 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2883 mutex_lock(&kvm->lock);
2884 list_del(&dev->vm_node);
2885 mutex_unlock(&kvm->lock);
2895 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2898 case KVM_CAP_USER_MEMORY:
2899 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2900 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2901 case KVM_CAP_INTERNAL_ERROR_DATA:
2902 #ifdef CONFIG_HAVE_KVM_MSI
2903 case KVM_CAP_SIGNAL_MSI:
2905 #ifdef CONFIG_HAVE_KVM_IRQFD
2907 case KVM_CAP_IRQFD_RESAMPLE:
2909 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2910 case KVM_CAP_CHECK_EXTENSION_VM:
2912 #ifdef CONFIG_KVM_MMIO
2913 case KVM_CAP_COALESCED_MMIO:
2914 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2916 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2917 case KVM_CAP_IRQ_ROUTING:
2918 return KVM_MAX_IRQ_ROUTES;
2920 #if KVM_ADDRESS_SPACE_NUM > 1
2921 case KVM_CAP_MULTI_ADDRESS_SPACE:
2922 return KVM_ADDRESS_SPACE_NUM;
2924 case KVM_CAP_MAX_VCPU_ID:
2925 return KVM_MAX_VCPU_ID;
2929 return kvm_vm_ioctl_check_extension(kvm, arg);
2932 static long kvm_vm_ioctl(struct file *filp,
2933 unsigned int ioctl, unsigned long arg)
2935 struct kvm *kvm = filp->private_data;
2936 void __user *argp = (void __user *)arg;
2939 if (kvm->mm != current->mm)
2942 case KVM_CREATE_VCPU:
2943 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2945 case KVM_SET_USER_MEMORY_REGION: {
2946 struct kvm_userspace_memory_region kvm_userspace_mem;
2949 if (copy_from_user(&kvm_userspace_mem, argp,
2950 sizeof(kvm_userspace_mem)))
2953 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2956 case KVM_GET_DIRTY_LOG: {
2957 struct kvm_dirty_log log;
2960 if (copy_from_user(&log, argp, sizeof(log)))
2962 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2965 #ifdef CONFIG_KVM_MMIO
2966 case KVM_REGISTER_COALESCED_MMIO: {
2967 struct kvm_coalesced_mmio_zone zone;
2970 if (copy_from_user(&zone, argp, sizeof(zone)))
2972 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2975 case KVM_UNREGISTER_COALESCED_MMIO: {
2976 struct kvm_coalesced_mmio_zone zone;
2979 if (copy_from_user(&zone, argp, sizeof(zone)))
2981 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2986 struct kvm_irqfd data;
2989 if (copy_from_user(&data, argp, sizeof(data)))
2991 r = kvm_irqfd(kvm, &data);
2994 case KVM_IOEVENTFD: {
2995 struct kvm_ioeventfd data;
2998 if (copy_from_user(&data, argp, sizeof(data)))
3000 r = kvm_ioeventfd(kvm, &data);
3003 #ifdef CONFIG_HAVE_KVM_MSI
3004 case KVM_SIGNAL_MSI: {
3008 if (copy_from_user(&msi, argp, sizeof(msi)))
3010 r = kvm_send_userspace_msi(kvm, &msi);
3014 #ifdef __KVM_HAVE_IRQ_LINE
3015 case KVM_IRQ_LINE_STATUS:
3016 case KVM_IRQ_LINE: {
3017 struct kvm_irq_level irq_event;
3020 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3023 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3024 ioctl == KVM_IRQ_LINE_STATUS);
3029 if (ioctl == KVM_IRQ_LINE_STATUS) {
3030 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3038 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3039 case KVM_SET_GSI_ROUTING: {
3040 struct kvm_irq_routing routing;
3041 struct kvm_irq_routing __user *urouting;
3042 struct kvm_irq_routing_entry *entries = NULL;
3045 if (copy_from_user(&routing, argp, sizeof(routing)))
3048 if (!kvm_arch_can_set_irq_routing(kvm))
3050 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3056 entries = vmalloc(routing.nr * sizeof(*entries));
3061 if (copy_from_user(entries, urouting->entries,
3062 routing.nr * sizeof(*entries)))
3063 goto out_free_irq_routing;
3065 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3067 out_free_irq_routing:
3071 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3072 case KVM_CREATE_DEVICE: {
3073 struct kvm_create_device cd;
3076 if (copy_from_user(&cd, argp, sizeof(cd)))
3079 r = kvm_ioctl_create_device(kvm, &cd);
3084 if (copy_to_user(argp, &cd, sizeof(cd)))
3090 case KVM_CHECK_EXTENSION:
3091 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3094 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3100 #ifdef CONFIG_KVM_COMPAT
3101 struct compat_kvm_dirty_log {
3105 compat_uptr_t dirty_bitmap; /* one bit per page */
3110 static long kvm_vm_compat_ioctl(struct file *filp,
3111 unsigned int ioctl, unsigned long arg)
3113 struct kvm *kvm = filp->private_data;
3116 if (kvm->mm != current->mm)
3119 case KVM_GET_DIRTY_LOG: {
3120 struct compat_kvm_dirty_log compat_log;
3121 struct kvm_dirty_log log;
3123 if (copy_from_user(&compat_log, (void __user *)arg,
3124 sizeof(compat_log)))
3126 log.slot = compat_log.slot;
3127 log.padding1 = compat_log.padding1;
3128 log.padding2 = compat_log.padding2;
3129 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3131 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3135 r = kvm_vm_ioctl(filp, ioctl, arg);
3141 static struct file_operations kvm_vm_fops = {
3142 .release = kvm_vm_release,
3143 .unlocked_ioctl = kvm_vm_ioctl,
3144 #ifdef CONFIG_KVM_COMPAT
3145 .compat_ioctl = kvm_vm_compat_ioctl,
3147 .llseek = noop_llseek,
3150 static int kvm_dev_ioctl_create_vm(unsigned long type)
3156 kvm = kvm_create_vm(type);
3158 return PTR_ERR(kvm);
3159 #ifdef CONFIG_KVM_MMIO
3160 r = kvm_coalesced_mmio_init(kvm);
3166 r = get_unused_fd_flags(O_CLOEXEC);
3171 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3175 return PTR_ERR(file);
3179 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3180 * already set, with ->release() being kvm_vm_release(). In error
3181 * cases it will be called by the final fput(file) and will take
3182 * care of doing kvm_put_kvm(kvm).
3184 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3189 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3191 fd_install(r, file);
3195 static long kvm_dev_ioctl(struct file *filp,
3196 unsigned int ioctl, unsigned long arg)
3201 case KVM_GET_API_VERSION:
3204 r = KVM_API_VERSION;
3207 r = kvm_dev_ioctl_create_vm(arg);
3209 case KVM_CHECK_EXTENSION:
3210 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3212 case KVM_GET_VCPU_MMAP_SIZE:
3215 r = PAGE_SIZE; /* struct kvm_run */
3217 r += PAGE_SIZE; /* pio data page */
3219 #ifdef CONFIG_KVM_MMIO
3220 r += PAGE_SIZE; /* coalesced mmio ring page */
3223 case KVM_TRACE_ENABLE:
3224 case KVM_TRACE_PAUSE:
3225 case KVM_TRACE_DISABLE:
3229 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3235 static struct file_operations kvm_chardev_ops = {
3236 .unlocked_ioctl = kvm_dev_ioctl,
3237 .compat_ioctl = kvm_dev_ioctl,
3238 .llseek = noop_llseek,
3241 static struct miscdevice kvm_dev = {
3247 static void hardware_enable_nolock(void *junk)
3249 int cpu = raw_smp_processor_id();
3252 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3255 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3257 r = kvm_arch_hardware_enable();
3260 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3261 atomic_inc(&hardware_enable_failed);
3262 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3266 static int kvm_starting_cpu(unsigned int cpu)
3268 raw_spin_lock(&kvm_count_lock);
3269 if (kvm_usage_count)
3270 hardware_enable_nolock(NULL);
3271 raw_spin_unlock(&kvm_count_lock);
3275 static void hardware_disable_nolock(void *junk)
3277 int cpu = raw_smp_processor_id();
3279 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3281 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3282 kvm_arch_hardware_disable();
3285 static int kvm_dying_cpu(unsigned int cpu)
3287 raw_spin_lock(&kvm_count_lock);
3288 if (kvm_usage_count)
3289 hardware_disable_nolock(NULL);
3290 raw_spin_unlock(&kvm_count_lock);
3294 static void hardware_disable_all_nolock(void)
3296 BUG_ON(!kvm_usage_count);
3299 if (!kvm_usage_count)
3300 on_each_cpu(hardware_disable_nolock, NULL, 1);
3303 static void hardware_disable_all(void)
3305 raw_spin_lock(&kvm_count_lock);
3306 hardware_disable_all_nolock();
3307 raw_spin_unlock(&kvm_count_lock);
3310 static int hardware_enable_all(void)
3314 raw_spin_lock(&kvm_count_lock);
3317 if (kvm_usage_count == 1) {
3318 atomic_set(&hardware_enable_failed, 0);
3319 on_each_cpu(hardware_enable_nolock, NULL, 1);
3321 if (atomic_read(&hardware_enable_failed)) {
3322 hardware_disable_all_nolock();
3327 raw_spin_unlock(&kvm_count_lock);
3332 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3336 * Some (well, at least mine) BIOSes hang on reboot if
3339 * And Intel TXT required VMX off for all cpu when system shutdown.
3341 pr_info("kvm: exiting hardware virtualization\n");
3342 kvm_rebooting = true;
3343 on_each_cpu(hardware_disable_nolock, NULL, 1);
3347 static struct notifier_block kvm_reboot_notifier = {
3348 .notifier_call = kvm_reboot,
3352 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3356 for (i = 0; i < bus->dev_count; i++) {
3357 struct kvm_io_device *pos = bus->range[i].dev;
3359 kvm_iodevice_destructor(pos);
3364 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3365 const struct kvm_io_range *r2)
3367 gpa_t addr1 = r1->addr;
3368 gpa_t addr2 = r2->addr;
3373 /* If r2->len == 0, match the exact address. If r2->len != 0,
3374 * accept any overlapping write. Any order is acceptable for
3375 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3376 * we process all of them.
3389 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3391 return kvm_io_bus_cmp(p1, p2);
3394 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3395 gpa_t addr, int len)
3397 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3403 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3404 kvm_io_bus_sort_cmp, NULL);
3409 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3410 gpa_t addr, int len)
3412 struct kvm_io_range *range, key;
3415 key = (struct kvm_io_range) {
3420 range = bsearch(&key, bus->range, bus->dev_count,
3421 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3425 off = range - bus->range;
3427 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3433 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3434 struct kvm_io_range *range, const void *val)
3438 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3442 while (idx < bus->dev_count &&
3443 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3444 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3453 /* kvm_io_bus_write - called under kvm->slots_lock */
3454 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3455 int len, const void *val)
3457 struct kvm_io_bus *bus;
3458 struct kvm_io_range range;
3461 range = (struct kvm_io_range) {
3466 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3469 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3470 return r < 0 ? r : 0;
3473 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3474 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3475 gpa_t addr, int len, const void *val, long cookie)
3477 struct kvm_io_bus *bus;
3478 struct kvm_io_range range;
3480 range = (struct kvm_io_range) {
3485 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3489 /* First try the device referenced by cookie. */
3490 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3491 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3492 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3497 * cookie contained garbage; fall back to search and return the
3498 * correct cookie value.
3500 return __kvm_io_bus_write(vcpu, bus, &range, val);
3503 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3504 struct kvm_io_range *range, void *val)
3508 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3512 while (idx < bus->dev_count &&
3513 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3514 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3522 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3524 /* kvm_io_bus_read - called under kvm->slots_lock */
3525 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3528 struct kvm_io_bus *bus;
3529 struct kvm_io_range range;
3532 range = (struct kvm_io_range) {
3537 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3540 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3541 return r < 0 ? r : 0;
3545 /* Caller must hold slots_lock. */
3546 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3547 int len, struct kvm_io_device *dev)
3549 struct kvm_io_bus *new_bus, *bus;
3551 bus = kvm_get_bus(kvm, bus_idx);
3555 /* exclude ioeventfd which is limited by maximum fd */
3556 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3559 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3560 sizeof(struct kvm_io_range)), GFP_KERNEL);
3563 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3564 sizeof(struct kvm_io_range)));
3565 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3566 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3567 synchronize_srcu_expedited(&kvm->srcu);
3573 /* Caller must hold slots_lock. */
3574 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3575 struct kvm_io_device *dev)
3578 struct kvm_io_bus *new_bus, *bus;
3580 bus = kvm_get_bus(kvm, bus_idx);
3584 for (i = 0; i < bus->dev_count; i++)
3585 if (bus->range[i].dev == dev) {
3589 if (i == bus->dev_count)
3592 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3593 sizeof(struct kvm_io_range)), GFP_KERNEL);
3595 pr_err("kvm: failed to shrink bus, removing it completely\n");
3599 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3600 new_bus->dev_count--;
3601 memcpy(new_bus->range + i, bus->range + i + 1,
3602 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3605 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3606 synchronize_srcu_expedited(&kvm->srcu);
3611 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3614 struct kvm_io_bus *bus;
3615 int dev_idx, srcu_idx;
3616 struct kvm_io_device *iodev = NULL;
3618 srcu_idx = srcu_read_lock(&kvm->srcu);
3620 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3624 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3628 iodev = bus->range[dev_idx].dev;
3631 srcu_read_unlock(&kvm->srcu, srcu_idx);
3635 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3637 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3638 int (*get)(void *, u64 *), int (*set)(void *, u64),
3641 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3644 /* The debugfs files are a reference to the kvm struct which
3645 * is still valid when kvm_destroy_vm is called.
3646 * To avoid the race between open and the removal of the debugfs
3647 * directory we test against the users count.
3649 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3652 if (simple_attr_open(inode, file, get, set, fmt)) {
3653 kvm_put_kvm(stat_data->kvm);
3660 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3662 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3665 simple_attr_release(inode, file);
3666 kvm_put_kvm(stat_data->kvm);
3671 static int vm_stat_get_per_vm(void *data, u64 *val)
3673 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3675 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3680 static int vm_stat_clear_per_vm(void *data, u64 val)
3682 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3687 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3692 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3694 __simple_attr_check_format("%llu\n", 0ull);
3695 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3696 vm_stat_clear_per_vm, "%llu\n");
3699 static const struct file_operations vm_stat_get_per_vm_fops = {
3700 .owner = THIS_MODULE,
3701 .open = vm_stat_get_per_vm_open,
3702 .release = kvm_debugfs_release,
3703 .read = simple_attr_read,
3704 .write = simple_attr_write,
3705 .llseek = no_llseek,
3708 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3711 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3712 struct kvm_vcpu *vcpu;
3716 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3717 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3722 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3725 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3726 struct kvm_vcpu *vcpu;
3731 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3732 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3737 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3739 __simple_attr_check_format("%llu\n", 0ull);
3740 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3741 vcpu_stat_clear_per_vm, "%llu\n");
3744 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3745 .owner = THIS_MODULE,
3746 .open = vcpu_stat_get_per_vm_open,
3747 .release = kvm_debugfs_release,
3748 .read = simple_attr_read,
3749 .write = simple_attr_write,
3750 .llseek = no_llseek,
3753 static const struct file_operations *stat_fops_per_vm[] = {
3754 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3755 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3758 static int vm_stat_get(void *_offset, u64 *val)
3760 unsigned offset = (long)_offset;
3762 struct kvm_stat_data stat_tmp = {.offset = offset};
3766 spin_lock(&kvm_lock);
3767 list_for_each_entry(kvm, &vm_list, vm_list) {
3769 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3772 spin_unlock(&kvm_lock);
3776 static int vm_stat_clear(void *_offset, u64 val)
3778 unsigned offset = (long)_offset;
3780 struct kvm_stat_data stat_tmp = {.offset = offset};
3785 spin_lock(&kvm_lock);
3786 list_for_each_entry(kvm, &vm_list, vm_list) {
3788 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3790 spin_unlock(&kvm_lock);
3795 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3797 static int vcpu_stat_get(void *_offset, u64 *val)
3799 unsigned offset = (long)_offset;
3801 struct kvm_stat_data stat_tmp = {.offset = offset};
3805 spin_lock(&kvm_lock);
3806 list_for_each_entry(kvm, &vm_list, vm_list) {
3808 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3811 spin_unlock(&kvm_lock);
3815 static int vcpu_stat_clear(void *_offset, u64 val)
3817 unsigned offset = (long)_offset;
3819 struct kvm_stat_data stat_tmp = {.offset = offset};
3824 spin_lock(&kvm_lock);
3825 list_for_each_entry(kvm, &vm_list, vm_list) {
3827 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3829 spin_unlock(&kvm_lock);
3834 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3837 static const struct file_operations *stat_fops[] = {
3838 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3839 [KVM_STAT_VM] = &vm_stat_fops,
3842 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3844 struct kobj_uevent_env *env;
3845 unsigned long long created, active;
3847 if (!kvm_dev.this_device || !kvm)
3850 spin_lock(&kvm_lock);
3851 if (type == KVM_EVENT_CREATE_VM) {
3852 kvm_createvm_count++;
3854 } else if (type == KVM_EVENT_DESTROY_VM) {
3857 created = kvm_createvm_count;
3858 active = kvm_active_vms;
3859 spin_unlock(&kvm_lock);
3861 env = kzalloc(sizeof(*env), GFP_KERNEL);
3865 add_uevent_var(env, "CREATED=%llu", created);
3866 add_uevent_var(env, "COUNT=%llu", active);
3868 if (type == KVM_EVENT_CREATE_VM) {
3869 add_uevent_var(env, "EVENT=create");
3870 kvm->userspace_pid = task_pid_nr(current);
3871 } else if (type == KVM_EVENT_DESTROY_VM) {
3872 add_uevent_var(env, "EVENT=destroy");
3874 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3876 if (kvm->debugfs_dentry) {
3877 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3880 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3882 add_uevent_var(env, "STATS_PATH=%s", tmp);
3886 /* no need for checks, since we are adding at most only 5 keys */
3887 env->envp[env->envp_idx++] = NULL;
3888 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3892 static int kvm_init_debug(void)
3895 struct kvm_stats_debugfs_item *p;
3897 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3898 if (kvm_debugfs_dir == NULL)
3901 kvm_debugfs_num_entries = 0;
3902 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3903 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3904 (void *)(long)p->offset,
3905 stat_fops[p->kind]))
3912 debugfs_remove_recursive(kvm_debugfs_dir);
3917 static int kvm_suspend(void)
3919 if (kvm_usage_count)
3920 hardware_disable_nolock(NULL);
3924 static void kvm_resume(void)
3926 if (kvm_usage_count) {
3927 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3928 hardware_enable_nolock(NULL);
3932 static struct syscore_ops kvm_syscore_ops = {
3933 .suspend = kvm_suspend,
3934 .resume = kvm_resume,
3938 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3940 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3943 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3945 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3947 if (vcpu->preempted)
3948 vcpu->preempted = false;
3950 kvm_arch_sched_in(vcpu, cpu);
3952 kvm_arch_vcpu_load(vcpu, cpu);
3955 static void kvm_sched_out(struct preempt_notifier *pn,
3956 struct task_struct *next)
3958 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3960 if (current->state == TASK_RUNNING)
3961 vcpu->preempted = true;
3962 kvm_arch_vcpu_put(vcpu);
3965 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3966 struct module *module)
3971 r = kvm_arch_init(opaque);
3976 * kvm_arch_init makes sure there's at most one caller
3977 * for architectures that support multiple implementations,
3978 * like intel and amd on x86.
3979 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3980 * conflicts in case kvm is already setup for another implementation.
3982 r = kvm_irqfd_init();
3986 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3991 r = kvm_arch_hardware_setup();
3995 for_each_online_cpu(cpu) {
3996 smp_call_function_single(cpu,
3997 kvm_arch_check_processor_compat,
4003 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4004 kvm_starting_cpu, kvm_dying_cpu);
4007 register_reboot_notifier(&kvm_reboot_notifier);
4009 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4011 vcpu_align = __alignof__(struct kvm_vcpu);
4012 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4014 if (!kvm_vcpu_cache) {
4019 r = kvm_async_pf_init();
4023 kvm_chardev_ops.owner = module;
4024 kvm_vm_fops.owner = module;
4025 kvm_vcpu_fops.owner = module;
4027 r = misc_register(&kvm_dev);
4029 pr_err("kvm: misc device register failed\n");
4033 register_syscore_ops(&kvm_syscore_ops);
4035 kvm_preempt_ops.sched_in = kvm_sched_in;
4036 kvm_preempt_ops.sched_out = kvm_sched_out;
4038 r = kvm_init_debug();
4040 pr_err("kvm: create debugfs files failed\n");
4044 r = kvm_vfio_ops_init();
4050 unregister_syscore_ops(&kvm_syscore_ops);
4051 misc_deregister(&kvm_dev);
4053 kvm_async_pf_deinit();
4055 kmem_cache_destroy(kvm_vcpu_cache);
4057 unregister_reboot_notifier(&kvm_reboot_notifier);
4058 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4061 kvm_arch_hardware_unsetup();
4063 free_cpumask_var(cpus_hardware_enabled);
4071 EXPORT_SYMBOL_GPL(kvm_init);
4075 debugfs_remove_recursive(kvm_debugfs_dir);
4076 misc_deregister(&kvm_dev);
4077 kmem_cache_destroy(kvm_vcpu_cache);
4078 kvm_async_pf_deinit();
4079 unregister_syscore_ops(&kvm_syscore_ops);
4080 unregister_reboot_notifier(&kvm_reboot_notifier);
4081 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4082 on_each_cpu(hardware_disable_nolock, NULL, 1);
4083 kvm_arch_hardware_unsetup();
4086 free_cpumask_var(cpus_hardware_enabled);
4087 kvm_vfio_ops_exit();
4089 EXPORT_SYMBOL_GPL(kvm_exit);