1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <kvm/iodev.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
60 #include "coalesced_mmio.h"
65 #include <trace/events/ipi.h>
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
70 #include <linux/kvm_dirty_ring.h>
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
105 DEFINE_MUTEX(kvm_lock);
108 static struct kmem_cache *kvm_vcpu_cache;
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116 static const struct file_operations stat_fops_per_vm;
118 static struct file_operations kvm_chardev_ops;
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
125 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
139 return is_compat_task() ? -ENODEV : 0;
141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
161 bool kvm_is_zone_device_page(struct page *page)
164 * The metadata used by is_zone_device_page() to determine whether or
165 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166 * the device has been pinned, e.g. by get_user_pages(). WARN if the
167 * page_count() is zero to help detect bad usage of this helper.
169 if (WARN_ON_ONCE(!page_count(page)))
172 return is_zone_device_page(page);
176 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
178 * is likely incomplete, it has been compiled purely through people wanting to
179 * back guest with a certain type of memory and encountering issues.
181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
188 page = pfn_to_page(pfn);
189 if (!PageReserved(page))
192 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193 if (is_zero_pfn(pfn))
197 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198 * perspective they are "normal" pages, albeit with slightly different
201 if (kvm_is_zone_device_page(page))
208 * Switches to specified vcpu, until a matching vcpu_put()
210 void vcpu_load(struct kvm_vcpu *vcpu)
214 __this_cpu_write(kvm_running_vcpu, vcpu);
215 preempt_notifier_register(&vcpu->preempt_notifier);
216 kvm_arch_vcpu_load(vcpu, cpu);
219 EXPORT_SYMBOL_GPL(vcpu_load);
221 void vcpu_put(struct kvm_vcpu *vcpu)
224 kvm_arch_vcpu_put(vcpu);
225 preempt_notifier_unregister(&vcpu->preempt_notifier);
226 __this_cpu_write(kvm_running_vcpu, NULL);
229 EXPORT_SYMBOL_GPL(vcpu_put);
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
234 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
237 * We need to wait for the VCPU to reenable interrupts and get out of
238 * READING_SHADOW_PAGE_TABLES mode.
240 if (req & KVM_REQUEST_WAIT)
241 return mode != OUTSIDE_GUEST_MODE;
244 * Need to kick a running VCPU, but otherwise there is nothing to do.
246 return mode == IN_GUEST_MODE;
249 static void ack_kick(void *_completed)
253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
255 if (cpumask_empty(cpus))
258 smp_call_function_many(cpus, ack_kick, NULL, wait);
262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263 struct cpumask *tmp, int current_cpu)
267 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268 __kvm_make_request(req, vcpu);
270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
274 * Note, the vCPU could get migrated to a different pCPU at any point
275 * after kvm_request_needs_ipi(), which could result in sending an IPI
276 * to the previous pCPU. But, that's OK because the purpose of the IPI
277 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279 * after this point is also OK, as the requirement is only that KVM wait
280 * for vCPUs that were reading SPTEs _before_ any changes were
281 * finalized. See kvm_vcpu_kick() for more details on handling requests.
283 if (kvm_request_needs_ipi(vcpu, req)) {
284 cpu = READ_ONCE(vcpu->cpu);
285 if (cpu != -1 && cpu != current_cpu)
286 __cpumask_set_cpu(cpu, tmp);
290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291 unsigned long *vcpu_bitmap)
293 struct kvm_vcpu *vcpu;
294 struct cpumask *cpus;
300 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
303 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304 vcpu = kvm_get_vcpu(kvm, i);
307 kvm_make_vcpu_request(vcpu, req, cpus, me);
310 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317 struct kvm_vcpu *except)
319 struct kvm_vcpu *vcpu;
320 struct cpumask *cpus;
327 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
330 kvm_for_each_vcpu(i, vcpu, kvm) {
333 kvm_make_vcpu_request(vcpu, req, cpus, me);
336 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
344 return kvm_make_all_cpus_request_except(kvm, req, NULL);
346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
348 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
349 void kvm_flush_remote_tlbs(struct kvm *kvm)
351 ++kvm->stat.generic.remote_tlb_flush_requests;
354 * We want to publish modifications to the page tables before reading
355 * mode. Pairs with a memory barrier in arch-specific code.
356 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
357 * and smp_mb in walk_shadow_page_lockless_begin/end.
358 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
360 * There is already an smp_mb__after_atomic() before
361 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
364 if (!kvm_arch_flush_remote_tlb(kvm)
365 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
366 ++kvm->stat.generic.remote_tlb_flush;
368 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
371 static void kvm_flush_shadow_all(struct kvm *kvm)
373 kvm_arch_flush_shadow_all(kvm);
374 kvm_arch_guest_memory_reclaimed(kvm);
377 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
378 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
381 gfp_flags |= mc->gfp_zero;
384 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
386 return (void *)__get_free_page(gfp_flags);
389 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
391 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
394 if (mc->nobjs >= min)
397 if (unlikely(!mc->objects)) {
398 if (WARN_ON_ONCE(!capacity))
401 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
405 mc->capacity = capacity;
408 /* It is illegal to request a different capacity across topups. */
409 if (WARN_ON_ONCE(mc->capacity != capacity))
412 while (mc->nobjs < mc->capacity) {
413 obj = mmu_memory_cache_alloc_obj(mc, gfp);
415 return mc->nobjs >= min ? 0 : -ENOMEM;
416 mc->objects[mc->nobjs++] = obj;
421 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
423 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
426 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
431 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
435 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
437 free_page((unsigned long)mc->objects[--mc->nobjs]);
446 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
450 if (WARN_ON(!mc->nobjs))
451 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
453 p = mc->objects[--mc->nobjs];
459 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
461 mutex_init(&vcpu->mutex);
466 #ifndef __KVM_HAVE_ARCH_WQP
467 rcuwait_init(&vcpu->wait);
469 kvm_async_pf_vcpu_init(vcpu);
471 kvm_vcpu_set_in_spin_loop(vcpu, false);
472 kvm_vcpu_set_dy_eligible(vcpu, false);
473 vcpu->preempted = false;
475 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
476 vcpu->last_used_slot = NULL;
478 /* Fill the stats id string for the vcpu */
479 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
480 task_pid_nr(current), id);
483 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
485 kvm_arch_vcpu_destroy(vcpu);
486 kvm_dirty_ring_free(&vcpu->dirty_ring);
489 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
490 * the vcpu->pid pointer, and at destruction time all file descriptors
493 put_pid(rcu_dereference_protected(vcpu->pid, 1));
495 free_page((unsigned long)vcpu->run);
496 kmem_cache_free(kvm_vcpu_cache, vcpu);
499 void kvm_destroy_vcpus(struct kvm *kvm)
502 struct kvm_vcpu *vcpu;
504 kvm_for_each_vcpu(i, vcpu, kvm) {
505 kvm_vcpu_destroy(vcpu);
506 xa_erase(&kvm->vcpu_array, i);
509 atomic_set(&kvm->online_vcpus, 0);
511 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
513 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
514 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
516 return container_of(mn, struct kvm, mmu_notifier);
519 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
521 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
524 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
526 struct kvm_hva_range {
530 hva_handler_t handler;
531 on_lock_fn_t on_lock;
532 on_unlock_fn_t on_unlock;
538 * Use a dedicated stub instead of NULL to indicate that there is no callback
539 * function/handler. The compiler technically can't guarantee that a real
540 * function will have a non-zero address, and so it will generate code to
541 * check for !NULL, whereas comparing against a stub will be elided at compile
542 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
544 static void kvm_null_fn(void)
548 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
550 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
551 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
552 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
554 node = interval_tree_iter_next(node, start, last)) \
556 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
557 const struct kvm_hva_range *range)
559 bool ret = false, locked = false;
560 struct kvm_gfn_range gfn_range;
561 struct kvm_memory_slot *slot;
562 struct kvm_memslots *slots;
565 if (WARN_ON_ONCE(range->end <= range->start))
568 /* A null handler is allowed if and only if on_lock() is provided. */
569 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
570 IS_KVM_NULL_FN(range->handler)))
573 idx = srcu_read_lock(&kvm->srcu);
575 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
576 struct interval_tree_node *node;
578 slots = __kvm_memslots(kvm, i);
579 kvm_for_each_memslot_in_hva_range(node, slots,
580 range->start, range->end - 1) {
581 unsigned long hva_start, hva_end;
583 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
584 hva_start = max(range->start, slot->userspace_addr);
585 hva_end = min(range->end, slot->userspace_addr +
586 (slot->npages << PAGE_SHIFT));
589 * To optimize for the likely case where the address
590 * range is covered by zero or one memslots, don't
591 * bother making these conditional (to avoid writes on
592 * the second or later invocation of the handler).
594 gfn_range.pte = range->pte;
595 gfn_range.may_block = range->may_block;
598 * {gfn(page) | page intersects with [hva_start, hva_end)} =
599 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
601 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
602 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
603 gfn_range.slot = slot;
608 if (!IS_KVM_NULL_FN(range->on_lock))
609 range->on_lock(kvm, range->start, range->end);
610 if (IS_KVM_NULL_FN(range->handler))
613 ret |= range->handler(kvm, &gfn_range);
617 if (range->flush_on_ret && ret)
618 kvm_flush_remote_tlbs(kvm);
622 if (!IS_KVM_NULL_FN(range->on_unlock))
623 range->on_unlock(kvm);
626 srcu_read_unlock(&kvm->srcu, idx);
628 /* The notifiers are averse to booleans. :-( */
632 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
636 hva_handler_t handler)
638 struct kvm *kvm = mmu_notifier_to_kvm(mn);
639 const struct kvm_hva_range range = {
644 .on_lock = (void *)kvm_null_fn,
645 .on_unlock = (void *)kvm_null_fn,
646 .flush_on_ret = true,
650 return __kvm_handle_hva_range(kvm, &range);
653 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
656 hva_handler_t handler)
658 struct kvm *kvm = mmu_notifier_to_kvm(mn);
659 const struct kvm_hva_range range = {
664 .on_lock = (void *)kvm_null_fn,
665 .on_unlock = (void *)kvm_null_fn,
666 .flush_on_ret = false,
670 return __kvm_handle_hva_range(kvm, &range);
673 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
676 * Skipping invalid memslots is correct if and only change_pte() is
677 * surrounded by invalidate_range_{start,end}(), which is currently
678 * guaranteed by the primary MMU. If that ever changes, KVM needs to
679 * unmap the memslot instead of skipping the memslot to ensure that KVM
680 * doesn't hold references to the old PFN.
682 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
684 if (range->slot->flags & KVM_MEMSLOT_INVALID)
687 return kvm_set_spte_gfn(kvm, range);
690 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
691 struct mm_struct *mm,
692 unsigned long address,
695 struct kvm *kvm = mmu_notifier_to_kvm(mn);
697 trace_kvm_set_spte_hva(address);
700 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
701 * If mmu_invalidate_in_progress is zero, then no in-progress
702 * invalidations, including this one, found a relevant memslot at
703 * start(); rechecking memslots here is unnecessary. Note, a false
704 * positive (count elevated by a different invalidation) is sub-optimal
705 * but functionally ok.
707 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
708 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
711 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
714 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
718 * The count increase must become visible at unlock time as no
719 * spte can be established without taking the mmu_lock and
720 * count is also read inside the mmu_lock critical section.
722 kvm->mmu_invalidate_in_progress++;
723 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
724 kvm->mmu_invalidate_range_start = start;
725 kvm->mmu_invalidate_range_end = end;
728 * Fully tracking multiple concurrent ranges has diminishing
729 * returns. Keep things simple and just find the minimal range
730 * which includes the current and new ranges. As there won't be
731 * enough information to subtract a range after its invalidate
732 * completes, any ranges invalidated concurrently will
733 * accumulate and persist until all outstanding invalidates
736 kvm->mmu_invalidate_range_start =
737 min(kvm->mmu_invalidate_range_start, start);
738 kvm->mmu_invalidate_range_end =
739 max(kvm->mmu_invalidate_range_end, end);
743 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
744 const struct mmu_notifier_range *range)
746 struct kvm *kvm = mmu_notifier_to_kvm(mn);
747 const struct kvm_hva_range hva_range = {
748 .start = range->start,
751 .handler = kvm_unmap_gfn_range,
752 .on_lock = kvm_mmu_invalidate_begin,
753 .on_unlock = kvm_arch_guest_memory_reclaimed,
754 .flush_on_ret = true,
755 .may_block = mmu_notifier_range_blockable(range),
758 trace_kvm_unmap_hva_range(range->start, range->end);
761 * Prevent memslot modification between range_start() and range_end()
762 * so that conditionally locking provides the same result in both
763 * functions. Without that guarantee, the mmu_invalidate_in_progress
764 * adjustments will be imbalanced.
766 * Pairs with the decrement in range_end().
768 spin_lock(&kvm->mn_invalidate_lock);
769 kvm->mn_active_invalidate_count++;
770 spin_unlock(&kvm->mn_invalidate_lock);
773 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
774 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
775 * each cache's lock. There are relatively few caches in existence at
776 * any given time, and the caches themselves can check for hva overlap,
777 * i.e. don't need to rely on memslot overlap checks for performance.
778 * Because this runs without holding mmu_lock, the pfn caches must use
779 * mn_active_invalidate_count (see above) instead of
780 * mmu_invalidate_in_progress.
782 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
783 hva_range.may_block);
785 __kvm_handle_hva_range(kvm, &hva_range);
790 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
794 * This sequence increase will notify the kvm page fault that
795 * the page that is going to be mapped in the spte could have
798 kvm->mmu_invalidate_seq++;
801 * The above sequence increase must be visible before the
802 * below count decrease, which is ensured by the smp_wmb above
803 * in conjunction with the smp_rmb in mmu_invalidate_retry().
805 kvm->mmu_invalidate_in_progress--;
808 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
809 const struct mmu_notifier_range *range)
811 struct kvm *kvm = mmu_notifier_to_kvm(mn);
812 const struct kvm_hva_range hva_range = {
813 .start = range->start,
816 .handler = (void *)kvm_null_fn,
817 .on_lock = kvm_mmu_invalidate_end,
818 .on_unlock = (void *)kvm_null_fn,
819 .flush_on_ret = false,
820 .may_block = mmu_notifier_range_blockable(range),
824 __kvm_handle_hva_range(kvm, &hva_range);
826 /* Pairs with the increment in range_start(). */
827 spin_lock(&kvm->mn_invalidate_lock);
828 wake = (--kvm->mn_active_invalidate_count == 0);
829 spin_unlock(&kvm->mn_invalidate_lock);
832 * There can only be one waiter, since the wait happens under
836 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
838 BUG_ON(kvm->mmu_invalidate_in_progress < 0);
841 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
842 struct mm_struct *mm,
846 trace_kvm_age_hva(start, end);
848 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
851 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
852 struct mm_struct *mm,
856 trace_kvm_age_hva(start, end);
859 * Even though we do not flush TLB, this will still adversely
860 * affect performance on pre-Haswell Intel EPT, where there is
861 * no EPT Access Bit to clear so that we have to tear down EPT
862 * tables instead. If we find this unacceptable, we can always
863 * add a parameter to kvm_age_hva so that it effectively doesn't
864 * do anything on clear_young.
866 * Also note that currently we never issue secondary TLB flushes
867 * from clear_young, leaving this job up to the regular system
868 * cadence. If we find this inaccurate, we might come up with a
869 * more sophisticated heuristic later.
871 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
874 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
875 struct mm_struct *mm,
876 unsigned long address)
878 trace_kvm_test_age_hva(address);
880 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
884 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
885 struct mm_struct *mm)
887 struct kvm *kvm = mmu_notifier_to_kvm(mn);
890 idx = srcu_read_lock(&kvm->srcu);
891 kvm_flush_shadow_all(kvm);
892 srcu_read_unlock(&kvm->srcu, idx);
895 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
896 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
897 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
898 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
899 .clear_young = kvm_mmu_notifier_clear_young,
900 .test_young = kvm_mmu_notifier_test_young,
901 .change_pte = kvm_mmu_notifier_change_pte,
902 .release = kvm_mmu_notifier_release,
905 static int kvm_init_mmu_notifier(struct kvm *kvm)
907 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
908 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
911 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
913 static int kvm_init_mmu_notifier(struct kvm *kvm)
918 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
920 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
921 static int kvm_pm_notifier_call(struct notifier_block *bl,
925 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
927 return kvm_arch_pm_notifier(kvm, state);
930 static void kvm_init_pm_notifier(struct kvm *kvm)
932 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
933 /* Suspend KVM before we suspend ftrace, RCU, etc. */
934 kvm->pm_notifier.priority = INT_MAX;
935 register_pm_notifier(&kvm->pm_notifier);
938 static void kvm_destroy_pm_notifier(struct kvm *kvm)
940 unregister_pm_notifier(&kvm->pm_notifier);
942 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
943 static void kvm_init_pm_notifier(struct kvm *kvm)
947 static void kvm_destroy_pm_notifier(struct kvm *kvm)
950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
952 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
954 if (!memslot->dirty_bitmap)
957 kvfree(memslot->dirty_bitmap);
958 memslot->dirty_bitmap = NULL;
961 /* This does not remove the slot from struct kvm_memslots data structures */
962 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
964 kvm_destroy_dirty_bitmap(slot);
966 kvm_arch_free_memslot(kvm, slot);
971 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
973 struct hlist_node *idnode;
974 struct kvm_memory_slot *memslot;
978 * The same memslot objects live in both active and inactive sets,
979 * arbitrarily free using index '1' so the second invocation of this
980 * function isn't operating over a structure with dangling pointers
981 * (even though this function isn't actually touching them).
983 if (!slots->node_idx)
986 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
987 kvm_free_memslot(kvm, memslot);
990 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
992 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
993 case KVM_STATS_TYPE_INSTANT:
995 case KVM_STATS_TYPE_CUMULATIVE:
996 case KVM_STATS_TYPE_PEAK:
1003 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1006 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1007 kvm_vcpu_stats_header.num_desc;
1009 if (IS_ERR(kvm->debugfs_dentry))
1012 debugfs_remove_recursive(kvm->debugfs_dentry);
1014 if (kvm->debugfs_stat_data) {
1015 for (i = 0; i < kvm_debugfs_num_entries; i++)
1016 kfree(kvm->debugfs_stat_data[i]);
1017 kfree(kvm->debugfs_stat_data);
1021 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1023 static DEFINE_MUTEX(kvm_debugfs_lock);
1024 struct dentry *dent;
1025 char dir_name[ITOA_MAX_LEN * 2];
1026 struct kvm_stat_data *stat_data;
1027 const struct _kvm_stats_desc *pdesc;
1028 int i, ret = -ENOMEM;
1029 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1030 kvm_vcpu_stats_header.num_desc;
1032 if (!debugfs_initialized())
1035 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1036 mutex_lock(&kvm_debugfs_lock);
1037 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1039 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1041 mutex_unlock(&kvm_debugfs_lock);
1044 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1045 mutex_unlock(&kvm_debugfs_lock);
1049 kvm->debugfs_dentry = dent;
1050 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1051 sizeof(*kvm->debugfs_stat_data),
1052 GFP_KERNEL_ACCOUNT);
1053 if (!kvm->debugfs_stat_data)
1056 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1057 pdesc = &kvm_vm_stats_desc[i];
1058 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1062 stat_data->kvm = kvm;
1063 stat_data->desc = pdesc;
1064 stat_data->kind = KVM_STAT_VM;
1065 kvm->debugfs_stat_data[i] = stat_data;
1066 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1067 kvm->debugfs_dentry, stat_data,
1071 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1072 pdesc = &kvm_vcpu_stats_desc[i];
1073 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1077 stat_data->kvm = kvm;
1078 stat_data->desc = pdesc;
1079 stat_data->kind = KVM_STAT_VCPU;
1080 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1081 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1082 kvm->debugfs_dentry, stat_data,
1086 ret = kvm_arch_create_vm_debugfs(kvm);
1092 kvm_destroy_vm_debugfs(kvm);
1097 * Called after the VM is otherwise initialized, but just before adding it to
1100 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1106 * Called just after removing the VM from the vm_list, but before doing any
1107 * other destruction.
1109 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1114 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1115 * be setup already, so we can create arch-specific debugfs entries under it.
1116 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1117 * a per-arch destroy interface is not needed.
1119 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1124 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1126 struct kvm *kvm = kvm_arch_alloc_vm();
1127 struct kvm_memslots *slots;
1132 return ERR_PTR(-ENOMEM);
1134 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1135 __module_get(kvm_chardev_ops.owner);
1137 KVM_MMU_LOCK_INIT(kvm);
1138 mmgrab(current->mm);
1139 kvm->mm = current->mm;
1140 kvm_eventfd_init(kvm);
1141 mutex_init(&kvm->lock);
1142 mutex_init(&kvm->irq_lock);
1143 mutex_init(&kvm->slots_lock);
1144 mutex_init(&kvm->slots_arch_lock);
1145 spin_lock_init(&kvm->mn_invalidate_lock);
1146 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1147 xa_init(&kvm->vcpu_array);
1149 INIT_LIST_HEAD(&kvm->gpc_list);
1150 spin_lock_init(&kvm->gpc_lock);
1152 INIT_LIST_HEAD(&kvm->devices);
1153 kvm->max_vcpus = KVM_MAX_VCPUS;
1155 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1158 * Force subsequent debugfs file creations to fail if the VM directory
1159 * is not created (by kvm_create_vm_debugfs()).
1161 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1163 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1164 task_pid_nr(current));
1166 if (init_srcu_struct(&kvm->srcu))
1167 goto out_err_no_srcu;
1168 if (init_srcu_struct(&kvm->irq_srcu))
1169 goto out_err_no_irq_srcu;
1171 refcount_set(&kvm->users_count, 1);
1172 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1173 for (j = 0; j < 2; j++) {
1174 slots = &kvm->__memslots[i][j];
1176 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1177 slots->hva_tree = RB_ROOT_CACHED;
1178 slots->gfn_tree = RB_ROOT;
1179 hash_init(slots->id_hash);
1180 slots->node_idx = j;
1182 /* Generations must be different for each address space. */
1183 slots->generation = i;
1186 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1189 for (i = 0; i < KVM_NR_BUSES; i++) {
1190 rcu_assign_pointer(kvm->buses[i],
1191 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1193 goto out_err_no_arch_destroy_vm;
1196 r = kvm_arch_init_vm(kvm, type);
1198 goto out_err_no_arch_destroy_vm;
1200 r = hardware_enable_all();
1202 goto out_err_no_disable;
1204 #ifdef CONFIG_HAVE_KVM_IRQFD
1205 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1208 r = kvm_init_mmu_notifier(kvm);
1210 goto out_err_no_mmu_notifier;
1212 r = kvm_coalesced_mmio_init(kvm);
1214 goto out_no_coalesced_mmio;
1216 r = kvm_create_vm_debugfs(kvm, fdname);
1218 goto out_err_no_debugfs;
1220 r = kvm_arch_post_init_vm(kvm);
1224 mutex_lock(&kvm_lock);
1225 list_add(&kvm->vm_list, &vm_list);
1226 mutex_unlock(&kvm_lock);
1228 preempt_notifier_inc();
1229 kvm_init_pm_notifier(kvm);
1234 kvm_destroy_vm_debugfs(kvm);
1236 kvm_coalesced_mmio_free(kvm);
1237 out_no_coalesced_mmio:
1238 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1239 if (kvm->mmu_notifier.ops)
1240 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1242 out_err_no_mmu_notifier:
1243 hardware_disable_all();
1245 kvm_arch_destroy_vm(kvm);
1246 out_err_no_arch_destroy_vm:
1247 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1248 for (i = 0; i < KVM_NR_BUSES; i++)
1249 kfree(kvm_get_bus(kvm, i));
1250 cleanup_srcu_struct(&kvm->irq_srcu);
1251 out_err_no_irq_srcu:
1252 cleanup_srcu_struct(&kvm->srcu);
1254 kvm_arch_free_vm(kvm);
1255 mmdrop(current->mm);
1256 module_put(kvm_chardev_ops.owner);
1260 static void kvm_destroy_devices(struct kvm *kvm)
1262 struct kvm_device *dev, *tmp;
1265 * We do not need to take the kvm->lock here, because nobody else
1266 * has a reference to the struct kvm at this point and therefore
1267 * cannot access the devices list anyhow.
1269 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1270 list_del(&dev->vm_node);
1271 dev->ops->destroy(dev);
1275 static void kvm_destroy_vm(struct kvm *kvm)
1278 struct mm_struct *mm = kvm->mm;
1280 kvm_destroy_pm_notifier(kvm);
1281 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1282 kvm_destroy_vm_debugfs(kvm);
1283 kvm_arch_sync_events(kvm);
1284 mutex_lock(&kvm_lock);
1285 list_del(&kvm->vm_list);
1286 mutex_unlock(&kvm_lock);
1287 kvm_arch_pre_destroy_vm(kvm);
1289 kvm_free_irq_routing(kvm);
1290 for (i = 0; i < KVM_NR_BUSES; i++) {
1291 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1294 kvm_io_bus_destroy(bus);
1295 kvm->buses[i] = NULL;
1297 kvm_coalesced_mmio_free(kvm);
1298 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1299 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1301 * At this point, pending calls to invalidate_range_start()
1302 * have completed but no more MMU notifiers will run, so
1303 * mn_active_invalidate_count may remain unbalanced.
1304 * No threads can be waiting in kvm_swap_active_memslots() as the
1305 * last reference on KVM has been dropped, but freeing
1306 * memslots would deadlock without this manual intervention.
1308 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1309 kvm->mn_active_invalidate_count = 0;
1311 kvm_flush_shadow_all(kvm);
1313 kvm_arch_destroy_vm(kvm);
1314 kvm_destroy_devices(kvm);
1315 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1316 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1317 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1319 cleanup_srcu_struct(&kvm->irq_srcu);
1320 cleanup_srcu_struct(&kvm->srcu);
1321 kvm_arch_free_vm(kvm);
1322 preempt_notifier_dec();
1323 hardware_disable_all();
1325 module_put(kvm_chardev_ops.owner);
1328 void kvm_get_kvm(struct kvm *kvm)
1330 refcount_inc(&kvm->users_count);
1332 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1335 * Make sure the vm is not during destruction, which is a safe version of
1336 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1338 bool kvm_get_kvm_safe(struct kvm *kvm)
1340 return refcount_inc_not_zero(&kvm->users_count);
1342 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1344 void kvm_put_kvm(struct kvm *kvm)
1346 if (refcount_dec_and_test(&kvm->users_count))
1347 kvm_destroy_vm(kvm);
1349 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1352 * Used to put a reference that was taken on behalf of an object associated
1353 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1354 * of the new file descriptor fails and the reference cannot be transferred to
1355 * its final owner. In such cases, the caller is still actively using @kvm and
1356 * will fail miserably if the refcount unexpectedly hits zero.
1358 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1360 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1362 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1364 static int kvm_vm_release(struct inode *inode, struct file *filp)
1366 struct kvm *kvm = filp->private_data;
1368 kvm_irqfd_release(kvm);
1375 * Allocation size is twice as large as the actual dirty bitmap size.
1376 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1378 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1380 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1382 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1383 if (!memslot->dirty_bitmap)
1389 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1391 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1392 int node_idx_inactive = active->node_idx ^ 1;
1394 return &kvm->__memslots[as_id][node_idx_inactive];
1398 * Helper to get the address space ID when one of memslot pointers may be NULL.
1399 * This also serves as a sanity that at least one of the pointers is non-NULL,
1400 * and that their address space IDs don't diverge.
1402 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1403 struct kvm_memory_slot *b)
1405 if (WARN_ON_ONCE(!a && !b))
1413 WARN_ON_ONCE(a->as_id != b->as_id);
1417 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1418 struct kvm_memory_slot *slot)
1420 struct rb_root *gfn_tree = &slots->gfn_tree;
1421 struct rb_node **node, *parent;
1422 int idx = slots->node_idx;
1425 for (node = &gfn_tree->rb_node; *node; ) {
1426 struct kvm_memory_slot *tmp;
1428 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1430 if (slot->base_gfn < tmp->base_gfn)
1431 node = &(*node)->rb_left;
1432 else if (slot->base_gfn > tmp->base_gfn)
1433 node = &(*node)->rb_right;
1438 rb_link_node(&slot->gfn_node[idx], parent, node);
1439 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1442 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1443 struct kvm_memory_slot *slot)
1445 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1448 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1449 struct kvm_memory_slot *old,
1450 struct kvm_memory_slot *new)
1452 int idx = slots->node_idx;
1454 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1456 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1461 * Replace @old with @new in the inactive memslots.
1463 * With NULL @old this simply adds @new.
1464 * With NULL @new this simply removes @old.
1466 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1469 static void kvm_replace_memslot(struct kvm *kvm,
1470 struct kvm_memory_slot *old,
1471 struct kvm_memory_slot *new)
1473 int as_id = kvm_memslots_get_as_id(old, new);
1474 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1475 int idx = slots->node_idx;
1478 hash_del(&old->id_node[idx]);
1479 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1481 if ((long)old == atomic_long_read(&slots->last_used_slot))
1482 atomic_long_set(&slots->last_used_slot, (long)new);
1485 kvm_erase_gfn_node(slots, old);
1491 * Initialize @new's hva range. Do this even when replacing an @old
1492 * slot, kvm_copy_memslot() deliberately does not touch node data.
1494 new->hva_node[idx].start = new->userspace_addr;
1495 new->hva_node[idx].last = new->userspace_addr +
1496 (new->npages << PAGE_SHIFT) - 1;
1499 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1500 * hva_node needs to be swapped with remove+insert even though hva can't
1501 * change when replacing an existing slot.
1503 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1504 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1507 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1508 * switch the node in the gfn tree instead of removing the old and
1509 * inserting the new as two separate operations. Replacement is a
1510 * single O(1) operation versus two O(log(n)) operations for
1513 if (old && old->base_gfn == new->base_gfn) {
1514 kvm_replace_gfn_node(slots, old, new);
1517 kvm_erase_gfn_node(slots, old);
1518 kvm_insert_gfn_node(slots, new);
1522 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1524 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1526 #ifdef __KVM_HAVE_READONLY_MEM
1527 valid_flags |= KVM_MEM_READONLY;
1530 if (mem->flags & ~valid_flags)
1536 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1538 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1540 /* Grab the generation from the activate memslots. */
1541 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1543 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1544 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1547 * Do not store the new memslots while there are invalidations in
1548 * progress, otherwise the locking in invalidate_range_start and
1549 * invalidate_range_end will be unbalanced.
1551 spin_lock(&kvm->mn_invalidate_lock);
1552 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1553 while (kvm->mn_active_invalidate_count) {
1554 set_current_state(TASK_UNINTERRUPTIBLE);
1555 spin_unlock(&kvm->mn_invalidate_lock);
1557 spin_lock(&kvm->mn_invalidate_lock);
1559 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1560 rcu_assign_pointer(kvm->memslots[as_id], slots);
1561 spin_unlock(&kvm->mn_invalidate_lock);
1564 * Acquired in kvm_set_memslot. Must be released before synchronize
1565 * SRCU below in order to avoid deadlock with another thread
1566 * acquiring the slots_arch_lock in an srcu critical section.
1568 mutex_unlock(&kvm->slots_arch_lock);
1570 synchronize_srcu_expedited(&kvm->srcu);
1573 * Increment the new memslot generation a second time, dropping the
1574 * update in-progress flag and incrementing the generation based on
1575 * the number of address spaces. This provides a unique and easily
1576 * identifiable generation number while the memslots are in flux.
1578 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1581 * Generations must be unique even across address spaces. We do not need
1582 * a global counter for that, instead the generation space is evenly split
1583 * across address spaces. For example, with two address spaces, address
1584 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1585 * use generations 1, 3, 5, ...
1587 gen += KVM_ADDRESS_SPACE_NUM;
1589 kvm_arch_memslots_updated(kvm, gen);
1591 slots->generation = gen;
1594 static int kvm_prepare_memory_region(struct kvm *kvm,
1595 const struct kvm_memory_slot *old,
1596 struct kvm_memory_slot *new,
1597 enum kvm_mr_change change)
1602 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1603 * will be freed on "commit". If logging is enabled in both old and
1604 * new, reuse the existing bitmap. If logging is enabled only in the
1605 * new and KVM isn't using a ring buffer, allocate and initialize a
1608 if (change != KVM_MR_DELETE) {
1609 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1610 new->dirty_bitmap = NULL;
1611 else if (old && old->dirty_bitmap)
1612 new->dirty_bitmap = old->dirty_bitmap;
1613 else if (kvm_use_dirty_bitmap(kvm)) {
1614 r = kvm_alloc_dirty_bitmap(new);
1618 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1619 bitmap_set(new->dirty_bitmap, 0, new->npages);
1623 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1625 /* Free the bitmap on failure if it was allocated above. */
1626 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1627 kvm_destroy_dirty_bitmap(new);
1632 static void kvm_commit_memory_region(struct kvm *kvm,
1633 struct kvm_memory_slot *old,
1634 const struct kvm_memory_slot *new,
1635 enum kvm_mr_change change)
1637 int old_flags = old ? old->flags : 0;
1638 int new_flags = new ? new->flags : 0;
1640 * Update the total number of memslot pages before calling the arch
1641 * hook so that architectures can consume the result directly.
1643 if (change == KVM_MR_DELETE)
1644 kvm->nr_memslot_pages -= old->npages;
1645 else if (change == KVM_MR_CREATE)
1646 kvm->nr_memslot_pages += new->npages;
1648 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1649 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1650 atomic_set(&kvm->nr_memslots_dirty_logging,
1651 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1654 kvm_arch_commit_memory_region(kvm, old, new, change);
1658 /* Nothing more to do. */
1661 /* Free the old memslot and all its metadata. */
1662 kvm_free_memslot(kvm, old);
1665 case KVM_MR_FLAGS_ONLY:
1667 * Free the dirty bitmap as needed; the below check encompasses
1668 * both the flags and whether a ring buffer is being used)
1670 if (old->dirty_bitmap && !new->dirty_bitmap)
1671 kvm_destroy_dirty_bitmap(old);
1674 * The final quirk. Free the detached, old slot, but only its
1675 * memory, not any metadata. Metadata, including arch specific
1676 * data, may be reused by @new.
1686 * Activate @new, which must be installed in the inactive slots by the caller,
1687 * by swapping the active slots and then propagating @new to @old once @old is
1688 * unreachable and can be safely modified.
1690 * With NULL @old this simply adds @new to @active (while swapping the sets).
1691 * With NULL @new this simply removes @old from @active and frees it
1692 * (while also swapping the sets).
1694 static void kvm_activate_memslot(struct kvm *kvm,
1695 struct kvm_memory_slot *old,
1696 struct kvm_memory_slot *new)
1698 int as_id = kvm_memslots_get_as_id(old, new);
1700 kvm_swap_active_memslots(kvm, as_id);
1702 /* Propagate the new memslot to the now inactive memslots. */
1703 kvm_replace_memslot(kvm, old, new);
1706 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1707 const struct kvm_memory_slot *src)
1709 dest->base_gfn = src->base_gfn;
1710 dest->npages = src->npages;
1711 dest->dirty_bitmap = src->dirty_bitmap;
1712 dest->arch = src->arch;
1713 dest->userspace_addr = src->userspace_addr;
1714 dest->flags = src->flags;
1716 dest->as_id = src->as_id;
1719 static void kvm_invalidate_memslot(struct kvm *kvm,
1720 struct kvm_memory_slot *old,
1721 struct kvm_memory_slot *invalid_slot)
1724 * Mark the current slot INVALID. As with all memslot modifications,
1725 * this must be done on an unreachable slot to avoid modifying the
1726 * current slot in the active tree.
1728 kvm_copy_memslot(invalid_slot, old);
1729 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1730 kvm_replace_memslot(kvm, old, invalid_slot);
1733 * Activate the slot that is now marked INVALID, but don't propagate
1734 * the slot to the now inactive slots. The slot is either going to be
1735 * deleted or recreated as a new slot.
1737 kvm_swap_active_memslots(kvm, old->as_id);
1740 * From this point no new shadow pages pointing to a deleted, or moved,
1741 * memslot will be created. Validation of sp->gfn happens in:
1742 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1743 * - kvm_is_visible_gfn (mmu_check_root)
1745 kvm_arch_flush_shadow_memslot(kvm, old);
1746 kvm_arch_guest_memory_reclaimed(kvm);
1748 /* Was released by kvm_swap_active_memslots(), reacquire. */
1749 mutex_lock(&kvm->slots_arch_lock);
1752 * Copy the arch-specific field of the newly-installed slot back to the
1753 * old slot as the arch data could have changed between releasing
1754 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1755 * above. Writers are required to retrieve memslots *after* acquiring
1756 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1758 old->arch = invalid_slot->arch;
1761 static void kvm_create_memslot(struct kvm *kvm,
1762 struct kvm_memory_slot *new)
1764 /* Add the new memslot to the inactive set and activate. */
1765 kvm_replace_memslot(kvm, NULL, new);
1766 kvm_activate_memslot(kvm, NULL, new);
1769 static void kvm_delete_memslot(struct kvm *kvm,
1770 struct kvm_memory_slot *old,
1771 struct kvm_memory_slot *invalid_slot)
1774 * Remove the old memslot (in the inactive memslots) by passing NULL as
1775 * the "new" slot, and for the invalid version in the active slots.
1777 kvm_replace_memslot(kvm, old, NULL);
1778 kvm_activate_memslot(kvm, invalid_slot, NULL);
1781 static void kvm_move_memslot(struct kvm *kvm,
1782 struct kvm_memory_slot *old,
1783 struct kvm_memory_slot *new,
1784 struct kvm_memory_slot *invalid_slot)
1787 * Replace the old memslot in the inactive slots, and then swap slots
1788 * and replace the current INVALID with the new as well.
1790 kvm_replace_memslot(kvm, old, new);
1791 kvm_activate_memslot(kvm, invalid_slot, new);
1794 static void kvm_update_flags_memslot(struct kvm *kvm,
1795 struct kvm_memory_slot *old,
1796 struct kvm_memory_slot *new)
1799 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1800 * an intermediate step. Instead, the old memslot is simply replaced
1801 * with a new, updated copy in both memslot sets.
1803 kvm_replace_memslot(kvm, old, new);
1804 kvm_activate_memslot(kvm, old, new);
1807 static int kvm_set_memslot(struct kvm *kvm,
1808 struct kvm_memory_slot *old,
1809 struct kvm_memory_slot *new,
1810 enum kvm_mr_change change)
1812 struct kvm_memory_slot *invalid_slot;
1816 * Released in kvm_swap_active_memslots().
1818 * Must be held from before the current memslots are copied until after
1819 * the new memslots are installed with rcu_assign_pointer, then
1820 * released before the synchronize srcu in kvm_swap_active_memslots().
1822 * When modifying memslots outside of the slots_lock, must be held
1823 * before reading the pointer to the current memslots until after all
1824 * changes to those memslots are complete.
1826 * These rules ensure that installing new memslots does not lose
1827 * changes made to the previous memslots.
1829 mutex_lock(&kvm->slots_arch_lock);
1832 * Invalidate the old slot if it's being deleted or moved. This is
1833 * done prior to actually deleting/moving the memslot to allow vCPUs to
1834 * continue running by ensuring there are no mappings or shadow pages
1835 * for the memslot when it is deleted/moved. Without pre-invalidation
1836 * (and without a lock), a window would exist between effecting the
1837 * delete/move and committing the changes in arch code where KVM or a
1838 * guest could access a non-existent memslot.
1840 * Modifications are done on a temporary, unreachable slot. The old
1841 * slot needs to be preserved in case a later step fails and the
1842 * invalidation needs to be reverted.
1844 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1845 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1846 if (!invalid_slot) {
1847 mutex_unlock(&kvm->slots_arch_lock);
1850 kvm_invalidate_memslot(kvm, old, invalid_slot);
1853 r = kvm_prepare_memory_region(kvm, old, new, change);
1856 * For DELETE/MOVE, revert the above INVALID change. No
1857 * modifications required since the original slot was preserved
1858 * in the inactive slots. Changing the active memslots also
1859 * release slots_arch_lock.
1861 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1862 kvm_activate_memslot(kvm, invalid_slot, old);
1863 kfree(invalid_slot);
1865 mutex_unlock(&kvm->slots_arch_lock);
1871 * For DELETE and MOVE, the working slot is now active as the INVALID
1872 * version of the old slot. MOVE is particularly special as it reuses
1873 * the old slot and returns a copy of the old slot (in working_slot).
1874 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1875 * old slot is detached but otherwise preserved.
1877 if (change == KVM_MR_CREATE)
1878 kvm_create_memslot(kvm, new);
1879 else if (change == KVM_MR_DELETE)
1880 kvm_delete_memslot(kvm, old, invalid_slot);
1881 else if (change == KVM_MR_MOVE)
1882 kvm_move_memslot(kvm, old, new, invalid_slot);
1883 else if (change == KVM_MR_FLAGS_ONLY)
1884 kvm_update_flags_memslot(kvm, old, new);
1888 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1889 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1890 kfree(invalid_slot);
1893 * No need to refresh new->arch, changes after dropping slots_arch_lock
1894 * will directly hit the final, active memslot. Architectures are
1895 * responsible for knowing that new->arch may be stale.
1897 kvm_commit_memory_region(kvm, old, new, change);
1902 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1903 gfn_t start, gfn_t end)
1905 struct kvm_memslot_iter iter;
1907 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1908 if (iter.slot->id != id)
1916 * Allocate some memory and give it an address in the guest physical address
1919 * Discontiguous memory is allowed, mostly for framebuffers.
1921 * Must be called holding kvm->slots_lock for write.
1923 int __kvm_set_memory_region(struct kvm *kvm,
1924 const struct kvm_userspace_memory_region *mem)
1926 struct kvm_memory_slot *old, *new;
1927 struct kvm_memslots *slots;
1928 enum kvm_mr_change change;
1929 unsigned long npages;
1934 r = check_memory_region_flags(mem);
1938 as_id = mem->slot >> 16;
1939 id = (u16)mem->slot;
1941 /* General sanity checks */
1942 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1943 (mem->memory_size != (unsigned long)mem->memory_size))
1945 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1947 /* We can read the guest memory with __xxx_user() later on. */
1948 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1949 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1950 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1953 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1955 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1957 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1960 slots = __kvm_memslots(kvm, as_id);
1963 * Note, the old memslot (and the pointer itself!) may be invalidated
1964 * and/or destroyed by kvm_set_memslot().
1966 old = id_to_memslot(slots, id);
1968 if (!mem->memory_size) {
1969 if (!old || !old->npages)
1972 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1975 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1978 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1979 npages = (mem->memory_size >> PAGE_SHIFT);
1981 if (!old || !old->npages) {
1982 change = KVM_MR_CREATE;
1985 * To simplify KVM internals, the total number of pages across
1986 * all memslots must fit in an unsigned long.
1988 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1990 } else { /* Modify an existing slot. */
1991 if ((mem->userspace_addr != old->userspace_addr) ||
1992 (npages != old->npages) ||
1993 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1996 if (base_gfn != old->base_gfn)
1997 change = KVM_MR_MOVE;
1998 else if (mem->flags != old->flags)
1999 change = KVM_MR_FLAGS_ONLY;
2000 else /* Nothing to change. */
2004 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2005 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2008 /* Allocate a slot that will persist in the memslot. */
2009 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2015 new->base_gfn = base_gfn;
2016 new->npages = npages;
2017 new->flags = mem->flags;
2018 new->userspace_addr = mem->userspace_addr;
2020 r = kvm_set_memslot(kvm, old, new, change);
2025 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2027 int kvm_set_memory_region(struct kvm *kvm,
2028 const struct kvm_userspace_memory_region *mem)
2032 mutex_lock(&kvm->slots_lock);
2033 r = __kvm_set_memory_region(kvm, mem);
2034 mutex_unlock(&kvm->slots_lock);
2037 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2039 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2040 struct kvm_userspace_memory_region *mem)
2042 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2045 return kvm_set_memory_region(kvm, mem);
2048 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2050 * kvm_get_dirty_log - get a snapshot of dirty pages
2051 * @kvm: pointer to kvm instance
2052 * @log: slot id and address to which we copy the log
2053 * @is_dirty: set to '1' if any dirty pages were found
2054 * @memslot: set to the associated memslot, always valid on success
2056 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2057 int *is_dirty, struct kvm_memory_slot **memslot)
2059 struct kvm_memslots *slots;
2062 unsigned long any = 0;
2064 /* Dirty ring tracking may be exclusive to dirty log tracking */
2065 if (!kvm_use_dirty_bitmap(kvm))
2071 as_id = log->slot >> 16;
2072 id = (u16)log->slot;
2073 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2076 slots = __kvm_memslots(kvm, as_id);
2077 *memslot = id_to_memslot(slots, id);
2078 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2081 kvm_arch_sync_dirty_log(kvm, *memslot);
2083 n = kvm_dirty_bitmap_bytes(*memslot);
2085 for (i = 0; !any && i < n/sizeof(long); ++i)
2086 any = (*memslot)->dirty_bitmap[i];
2088 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2097 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2099 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2100 * and reenable dirty page tracking for the corresponding pages.
2101 * @kvm: pointer to kvm instance
2102 * @log: slot id and address to which we copy the log
2104 * We need to keep it in mind that VCPU threads can write to the bitmap
2105 * concurrently. So, to avoid losing track of dirty pages we keep the
2108 * 1. Take a snapshot of the bit and clear it if needed.
2109 * 2. Write protect the corresponding page.
2110 * 3. Copy the snapshot to the userspace.
2111 * 4. Upon return caller flushes TLB's if needed.
2113 * Between 2 and 4, the guest may write to the page using the remaining TLB
2114 * entry. This is not a problem because the page is reported dirty using
2115 * the snapshot taken before and step 4 ensures that writes done after
2116 * exiting to userspace will be logged for the next call.
2119 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2121 struct kvm_memslots *slots;
2122 struct kvm_memory_slot *memslot;
2125 unsigned long *dirty_bitmap;
2126 unsigned long *dirty_bitmap_buffer;
2129 /* Dirty ring tracking may be exclusive to dirty log tracking */
2130 if (!kvm_use_dirty_bitmap(kvm))
2133 as_id = log->slot >> 16;
2134 id = (u16)log->slot;
2135 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2138 slots = __kvm_memslots(kvm, as_id);
2139 memslot = id_to_memslot(slots, id);
2140 if (!memslot || !memslot->dirty_bitmap)
2143 dirty_bitmap = memslot->dirty_bitmap;
2145 kvm_arch_sync_dirty_log(kvm, memslot);
2147 n = kvm_dirty_bitmap_bytes(memslot);
2149 if (kvm->manual_dirty_log_protect) {
2151 * Unlike kvm_get_dirty_log, we always return false in *flush,
2152 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2153 * is some code duplication between this function and
2154 * kvm_get_dirty_log, but hopefully all architecture
2155 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2156 * can be eliminated.
2158 dirty_bitmap_buffer = dirty_bitmap;
2160 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2161 memset(dirty_bitmap_buffer, 0, n);
2164 for (i = 0; i < n / sizeof(long); i++) {
2168 if (!dirty_bitmap[i])
2172 mask = xchg(&dirty_bitmap[i], 0);
2173 dirty_bitmap_buffer[i] = mask;
2175 offset = i * BITS_PER_LONG;
2176 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2179 KVM_MMU_UNLOCK(kvm);
2183 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2185 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2192 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2193 * @kvm: kvm instance
2194 * @log: slot id and address to which we copy the log
2196 * Steps 1-4 below provide general overview of dirty page logging. See
2197 * kvm_get_dirty_log_protect() function description for additional details.
2199 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2200 * always flush the TLB (step 4) even if previous step failed and the dirty
2201 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2202 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2203 * writes will be marked dirty for next log read.
2205 * 1. Take a snapshot of the bit and clear it if needed.
2206 * 2. Write protect the corresponding page.
2207 * 3. Copy the snapshot to the userspace.
2208 * 4. Flush TLB's if needed.
2210 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2211 struct kvm_dirty_log *log)
2215 mutex_lock(&kvm->slots_lock);
2217 r = kvm_get_dirty_log_protect(kvm, log);
2219 mutex_unlock(&kvm->slots_lock);
2224 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2225 * and reenable dirty page tracking for the corresponding pages.
2226 * @kvm: pointer to kvm instance
2227 * @log: slot id and address from which to fetch the bitmap of dirty pages
2229 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2230 struct kvm_clear_dirty_log *log)
2232 struct kvm_memslots *slots;
2233 struct kvm_memory_slot *memslot;
2237 unsigned long *dirty_bitmap;
2238 unsigned long *dirty_bitmap_buffer;
2241 /* Dirty ring tracking may be exclusive to dirty log tracking */
2242 if (!kvm_use_dirty_bitmap(kvm))
2245 as_id = log->slot >> 16;
2246 id = (u16)log->slot;
2247 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2250 if (log->first_page & 63)
2253 slots = __kvm_memslots(kvm, as_id);
2254 memslot = id_to_memslot(slots, id);
2255 if (!memslot || !memslot->dirty_bitmap)
2258 dirty_bitmap = memslot->dirty_bitmap;
2260 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2262 if (log->first_page > memslot->npages ||
2263 log->num_pages > memslot->npages - log->first_page ||
2264 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2267 kvm_arch_sync_dirty_log(kvm, memslot);
2270 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2271 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2275 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2276 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2277 i++, offset += BITS_PER_LONG) {
2278 unsigned long mask = *dirty_bitmap_buffer++;
2279 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2283 mask &= atomic_long_fetch_andnot(mask, p);
2286 * mask contains the bits that really have been cleared. This
2287 * never includes any bits beyond the length of the memslot (if
2288 * the length is not aligned to 64 pages), therefore it is not
2289 * a problem if userspace sets them in log->dirty_bitmap.
2293 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2297 KVM_MMU_UNLOCK(kvm);
2300 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2305 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2306 struct kvm_clear_dirty_log *log)
2310 mutex_lock(&kvm->slots_lock);
2312 r = kvm_clear_dirty_log_protect(kvm, log);
2314 mutex_unlock(&kvm->slots_lock);
2317 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2319 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2321 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2323 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2325 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2327 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2328 u64 gen = slots->generation;
2329 struct kvm_memory_slot *slot;
2332 * This also protects against using a memslot from a different address space,
2333 * since different address spaces have different generation numbers.
2335 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2336 vcpu->last_used_slot = NULL;
2337 vcpu->last_used_slot_gen = gen;
2340 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2345 * Fall back to searching all memslots. We purposely use
2346 * search_memslots() instead of __gfn_to_memslot() to avoid
2347 * thrashing the VM-wide last_used_slot in kvm_memslots.
2349 slot = search_memslots(slots, gfn, false);
2351 vcpu->last_used_slot = slot;
2358 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2360 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2362 return kvm_is_visible_memslot(memslot);
2364 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2366 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2368 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2370 return kvm_is_visible_memslot(memslot);
2372 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2374 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2376 struct vm_area_struct *vma;
2377 unsigned long addr, size;
2381 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2382 if (kvm_is_error_hva(addr))
2385 mmap_read_lock(current->mm);
2386 vma = find_vma(current->mm, addr);
2390 size = vma_kernel_pagesize(vma);
2393 mmap_read_unlock(current->mm);
2398 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2400 return slot->flags & KVM_MEM_READONLY;
2403 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2404 gfn_t *nr_pages, bool write)
2406 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2407 return KVM_HVA_ERR_BAD;
2409 if (memslot_is_readonly(slot) && write)
2410 return KVM_HVA_ERR_RO_BAD;
2413 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2415 return __gfn_to_hva_memslot(slot, gfn);
2418 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2421 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2424 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2427 return gfn_to_hva_many(slot, gfn, NULL);
2429 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2431 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2433 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2435 EXPORT_SYMBOL_GPL(gfn_to_hva);
2437 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2439 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2441 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2444 * Return the hva of a @gfn and the R/W attribute if possible.
2446 * @slot: the kvm_memory_slot which contains @gfn
2447 * @gfn: the gfn to be translated
2448 * @writable: used to return the read/write attribute of the @slot if the hva
2449 * is valid and @writable is not NULL
2451 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2452 gfn_t gfn, bool *writable)
2454 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2456 if (!kvm_is_error_hva(hva) && writable)
2457 *writable = !memslot_is_readonly(slot);
2462 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2464 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2466 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2469 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2471 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2473 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2476 static inline int check_user_page_hwpoison(unsigned long addr)
2478 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2480 rc = get_user_pages(addr, 1, flags, NULL);
2481 return rc == -EHWPOISON;
2485 * The fast path to get the writable pfn which will be stored in @pfn,
2486 * true indicates success, otherwise false is returned. It's also the
2487 * only part that runs if we can in atomic context.
2489 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2490 bool *writable, kvm_pfn_t *pfn)
2492 struct page *page[1];
2495 * Fast pin a writable pfn only if it is a write fault request
2496 * or the caller allows to map a writable pfn for a read fault
2499 if (!(write_fault || writable))
2502 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2503 *pfn = page_to_pfn(page[0]);
2514 * The slow path to get the pfn of the specified host virtual address,
2515 * 1 indicates success, -errno is returned if error is detected.
2517 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2518 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2521 * When a VCPU accesses a page that is not mapped into the secondary
2522 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2523 * make progress. We always want to honor NUMA hinting faults in that
2524 * case, because GUP usage corresponds to memory accesses from the VCPU.
2525 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2526 * mapped into the secondary MMU and gets accessed by a VCPU.
2528 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2529 * implicitly honor NUMA hinting faults and don't need this flag.
2531 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2538 *writable = write_fault;
2541 flags |= FOLL_WRITE;
2543 flags |= FOLL_NOWAIT;
2545 flags |= FOLL_INTERRUPTIBLE;
2547 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2551 /* map read fault as writable if possible */
2552 if (unlikely(!write_fault) && writable) {
2555 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2561 *pfn = page_to_pfn(page);
2565 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2567 if (unlikely(!(vma->vm_flags & VM_READ)))
2570 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2576 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2578 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2583 return get_page_unless_zero(page);
2586 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2587 unsigned long addr, bool write_fault,
2588 bool *writable, kvm_pfn_t *p_pfn)
2596 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2599 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2600 * not call the fault handler, so do it here.
2602 bool unlocked = false;
2603 r = fixup_user_fault(current->mm, addr,
2604 (write_fault ? FAULT_FLAG_WRITE : 0),
2611 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2616 pte = ptep_get(ptep);
2618 if (write_fault && !pte_write(pte)) {
2619 pfn = KVM_PFN_ERR_RO_FAULT;
2624 *writable = pte_write(pte);
2628 * Get a reference here because callers of *hva_to_pfn* and
2629 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2630 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2631 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2632 * simply do nothing for reserved pfns.
2634 * Whoever called remap_pfn_range is also going to call e.g.
2635 * unmap_mapping_range before the underlying pages are freed,
2636 * causing a call to our MMU notifier.
2638 * Certain IO or PFNMAP mappings can be backed with valid
2639 * struct pages, but be allocated without refcounting e.g.,
2640 * tail pages of non-compound higher order allocations, which
2641 * would then underflow the refcount when the caller does the
2642 * required put_page. Don't allow those pages here.
2644 if (!kvm_try_get_pfn(pfn))
2648 pte_unmap_unlock(ptep, ptl);
2655 * Pin guest page in memory and return its pfn.
2656 * @addr: host virtual address which maps memory to the guest
2657 * @atomic: whether this function can sleep
2658 * @interruptible: whether the process can be interrupted by non-fatal signals
2659 * @async: whether this function need to wait IO complete if the
2660 * host page is not in the memory
2661 * @write_fault: whether we should get a writable host page
2662 * @writable: whether it allows to map a writable host page for !@write_fault
2664 * The function will map a writable host page for these two cases:
2665 * 1): @write_fault = true
2666 * 2): @write_fault = false && @writable, @writable will tell the caller
2667 * whether the mapping is writable.
2669 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2670 bool *async, bool write_fault, bool *writable)
2672 struct vm_area_struct *vma;
2676 /* we can do it either atomically or asynchronously, not both */
2677 BUG_ON(atomic && async);
2679 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2683 return KVM_PFN_ERR_FAULT;
2685 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2689 if (npages == -EINTR)
2690 return KVM_PFN_ERR_SIGPENDING;
2692 mmap_read_lock(current->mm);
2693 if (npages == -EHWPOISON ||
2694 (!async && check_user_page_hwpoison(addr))) {
2695 pfn = KVM_PFN_ERR_HWPOISON;
2700 vma = vma_lookup(current->mm, addr);
2703 pfn = KVM_PFN_ERR_FAULT;
2704 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2705 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2709 pfn = KVM_PFN_ERR_FAULT;
2711 if (async && vma_is_valid(vma, write_fault))
2713 pfn = KVM_PFN_ERR_FAULT;
2716 mmap_read_unlock(current->mm);
2720 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2721 bool atomic, bool interruptible, bool *async,
2722 bool write_fault, bool *writable, hva_t *hva)
2724 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2729 if (addr == KVM_HVA_ERR_RO_BAD) {
2732 return KVM_PFN_ERR_RO_FAULT;
2735 if (kvm_is_error_hva(addr)) {
2738 return KVM_PFN_NOSLOT;
2741 /* Do not map writable pfn in the readonly memslot. */
2742 if (writable && memslot_is_readonly(slot)) {
2747 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2750 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2752 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2755 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2756 NULL, write_fault, writable, NULL);
2758 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2760 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2762 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2765 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2767 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2769 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2772 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2774 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2776 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2778 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2780 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2782 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2784 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2786 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2788 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2790 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2792 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2793 struct page **pages, int nr_pages)
2798 addr = gfn_to_hva_many(slot, gfn, &entry);
2799 if (kvm_is_error_hva(addr))
2802 if (entry < nr_pages)
2805 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2807 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2810 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2811 * backed by 'struct page'. A valid example is if the backing memslot is
2812 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2813 * been elevated by gfn_to_pfn().
2815 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2820 pfn = gfn_to_pfn(kvm, gfn);
2822 if (is_error_noslot_pfn(pfn))
2823 return KVM_ERR_PTR_BAD_PAGE;
2825 page = kvm_pfn_to_refcounted_page(pfn);
2827 return KVM_ERR_PTR_BAD_PAGE;
2831 EXPORT_SYMBOL_GPL(gfn_to_page);
2833 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2836 kvm_release_pfn_dirty(pfn);
2838 kvm_release_pfn_clean(pfn);
2841 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2845 struct page *page = KVM_UNMAPPED_PAGE;
2850 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2851 if (is_error_noslot_pfn(pfn))
2854 if (pfn_valid(pfn)) {
2855 page = pfn_to_page(pfn);
2857 #ifdef CONFIG_HAS_IOMEM
2859 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2873 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2875 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2883 if (map->page != KVM_UNMAPPED_PAGE)
2885 #ifdef CONFIG_HAS_IOMEM
2891 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2893 kvm_release_pfn(map->pfn, dirty);
2898 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2900 static bool kvm_is_ad_tracked_page(struct page *page)
2903 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2904 * touched (e.g. set dirty) except by its owner".
2906 return !PageReserved(page);
2909 static void kvm_set_page_dirty(struct page *page)
2911 if (kvm_is_ad_tracked_page(page))
2915 static void kvm_set_page_accessed(struct page *page)
2917 if (kvm_is_ad_tracked_page(page))
2918 mark_page_accessed(page);
2921 void kvm_release_page_clean(struct page *page)
2923 WARN_ON(is_error_page(page));
2925 kvm_set_page_accessed(page);
2928 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2930 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2934 if (is_error_noslot_pfn(pfn))
2937 page = kvm_pfn_to_refcounted_page(pfn);
2941 kvm_release_page_clean(page);
2943 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2945 void kvm_release_page_dirty(struct page *page)
2947 WARN_ON(is_error_page(page));
2949 kvm_set_page_dirty(page);
2950 kvm_release_page_clean(page);
2952 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2954 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2958 if (is_error_noslot_pfn(pfn))
2961 page = kvm_pfn_to_refcounted_page(pfn);
2965 kvm_release_page_dirty(page);
2967 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2970 * Note, checking for an error/noslot pfn is the caller's responsibility when
2971 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
2972 * "set" helpers are not to be used when the pfn might point at garbage.
2974 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2976 if (WARN_ON(is_error_noslot_pfn(pfn)))
2980 kvm_set_page_dirty(pfn_to_page(pfn));
2982 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2984 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2986 if (WARN_ON(is_error_noslot_pfn(pfn)))
2990 kvm_set_page_accessed(pfn_to_page(pfn));
2992 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2994 static int next_segment(unsigned long len, int offset)
2996 if (len > PAGE_SIZE - offset)
2997 return PAGE_SIZE - offset;
3002 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3003 void *data, int offset, int len)
3008 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3009 if (kvm_is_error_hva(addr))
3011 r = __copy_from_user(data, (void __user *)addr + offset, len);
3017 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3020 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3022 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3024 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3026 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3027 int offset, int len)
3029 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3031 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3033 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3035 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3037 gfn_t gfn = gpa >> PAGE_SHIFT;
3039 int offset = offset_in_page(gpa);
3042 while ((seg = next_segment(len, offset)) != 0) {
3043 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3053 EXPORT_SYMBOL_GPL(kvm_read_guest);
3055 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3057 gfn_t gfn = gpa >> PAGE_SHIFT;
3059 int offset = offset_in_page(gpa);
3062 while ((seg = next_segment(len, offset)) != 0) {
3063 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3073 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3075 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3076 void *data, int offset, unsigned long len)
3081 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3082 if (kvm_is_error_hva(addr))
3084 pagefault_disable();
3085 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3092 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3093 void *data, unsigned long len)
3095 gfn_t gfn = gpa >> PAGE_SHIFT;
3096 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3097 int offset = offset_in_page(gpa);
3099 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3101 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3103 static int __kvm_write_guest_page(struct kvm *kvm,
3104 struct kvm_memory_slot *memslot, gfn_t gfn,
3105 const void *data, int offset, int len)
3110 addr = gfn_to_hva_memslot(memslot, gfn);
3111 if (kvm_is_error_hva(addr))
3113 r = __copy_to_user((void __user *)addr + offset, data, len);
3116 mark_page_dirty_in_slot(kvm, memslot, gfn);
3120 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3121 const void *data, int offset, int len)
3123 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3125 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3127 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3129 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3130 const void *data, int offset, int len)
3132 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3134 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3136 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3138 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3141 gfn_t gfn = gpa >> PAGE_SHIFT;
3143 int offset = offset_in_page(gpa);
3146 while ((seg = next_segment(len, offset)) != 0) {
3147 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3157 EXPORT_SYMBOL_GPL(kvm_write_guest);
3159 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3162 gfn_t gfn = gpa >> PAGE_SHIFT;
3164 int offset = offset_in_page(gpa);
3167 while ((seg = next_segment(len, offset)) != 0) {
3168 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3178 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3180 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3181 struct gfn_to_hva_cache *ghc,
3182 gpa_t gpa, unsigned long len)
3184 int offset = offset_in_page(gpa);
3185 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3186 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3187 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3188 gfn_t nr_pages_avail;
3190 /* Update ghc->generation before performing any error checks. */
3191 ghc->generation = slots->generation;
3193 if (start_gfn > end_gfn) {
3194 ghc->hva = KVM_HVA_ERR_BAD;
3199 * If the requested region crosses two memslots, we still
3200 * verify that the entire region is valid here.
3202 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3203 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3204 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3206 if (kvm_is_error_hva(ghc->hva))
3210 /* Use the slow path for cross page reads and writes. */
3211 if (nr_pages_needed == 1)
3214 ghc->memslot = NULL;
3221 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3222 gpa_t gpa, unsigned long len)
3224 struct kvm_memslots *slots = kvm_memslots(kvm);
3225 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3227 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3229 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3230 void *data, unsigned int offset,
3233 struct kvm_memslots *slots = kvm_memslots(kvm);
3235 gpa_t gpa = ghc->gpa + offset;
3237 if (WARN_ON_ONCE(len + offset > ghc->len))
3240 if (slots->generation != ghc->generation) {
3241 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3245 if (kvm_is_error_hva(ghc->hva))
3248 if (unlikely(!ghc->memslot))
3249 return kvm_write_guest(kvm, gpa, data, len);
3251 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3254 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3258 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3260 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3261 void *data, unsigned long len)
3263 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3265 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3267 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3268 void *data, unsigned int offset,
3271 struct kvm_memslots *slots = kvm_memslots(kvm);
3273 gpa_t gpa = ghc->gpa + offset;
3275 if (WARN_ON_ONCE(len + offset > ghc->len))
3278 if (slots->generation != ghc->generation) {
3279 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3283 if (kvm_is_error_hva(ghc->hva))
3286 if (unlikely(!ghc->memslot))
3287 return kvm_read_guest(kvm, gpa, data, len);
3289 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3295 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3297 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3298 void *data, unsigned long len)
3300 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3302 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3304 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3306 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3307 gfn_t gfn = gpa >> PAGE_SHIFT;
3309 int offset = offset_in_page(gpa);
3312 while ((seg = next_segment(len, offset)) != 0) {
3313 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3322 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3324 void mark_page_dirty_in_slot(struct kvm *kvm,
3325 const struct kvm_memory_slot *memslot,
3328 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3330 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3331 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3334 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3337 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3338 unsigned long rel_gfn = gfn - memslot->base_gfn;
3339 u32 slot = (memslot->as_id << 16) | memslot->id;
3341 if (kvm->dirty_ring_size && vcpu)
3342 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3343 else if (memslot->dirty_bitmap)
3344 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3347 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3349 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3351 struct kvm_memory_slot *memslot;
3353 memslot = gfn_to_memslot(kvm, gfn);
3354 mark_page_dirty_in_slot(kvm, memslot, gfn);
3356 EXPORT_SYMBOL_GPL(mark_page_dirty);
3358 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3360 struct kvm_memory_slot *memslot;
3362 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3363 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3365 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3367 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3369 if (!vcpu->sigset_active)
3373 * This does a lockless modification of ->real_blocked, which is fine
3374 * because, only current can change ->real_blocked and all readers of
3375 * ->real_blocked don't care as long ->real_blocked is always a subset
3378 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3381 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3383 if (!vcpu->sigset_active)
3386 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3387 sigemptyset(¤t->real_blocked);
3390 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3392 unsigned int old, val, grow, grow_start;
3394 old = val = vcpu->halt_poll_ns;
3395 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3396 grow = READ_ONCE(halt_poll_ns_grow);
3401 if (val < grow_start)
3404 vcpu->halt_poll_ns = val;
3406 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3409 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3411 unsigned int old, val, shrink, grow_start;
3413 old = val = vcpu->halt_poll_ns;
3414 shrink = READ_ONCE(halt_poll_ns_shrink);
3415 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3421 if (val < grow_start)
3424 vcpu->halt_poll_ns = val;
3425 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3428 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3431 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3433 if (kvm_arch_vcpu_runnable(vcpu))
3435 if (kvm_cpu_has_pending_timer(vcpu))
3437 if (signal_pending(current))
3439 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3444 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3449 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3450 * pending. This is mostly used when halting a vCPU, but may also be used
3451 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3453 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3455 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3456 bool waited = false;
3458 vcpu->stat.generic.blocking = 1;
3461 kvm_arch_vcpu_blocking(vcpu);
3462 prepare_to_rcuwait(wait);
3466 set_current_state(TASK_INTERRUPTIBLE);
3468 if (kvm_vcpu_check_block(vcpu) < 0)
3476 finish_rcuwait(wait);
3477 kvm_arch_vcpu_unblocking(vcpu);
3480 vcpu->stat.generic.blocking = 0;
3485 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3486 ktime_t end, bool success)
3488 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3489 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3491 ++vcpu->stat.generic.halt_attempted_poll;
3494 ++vcpu->stat.generic.halt_successful_poll;
3496 if (!vcpu_valid_wakeup(vcpu))
3497 ++vcpu->stat.generic.halt_poll_invalid;
3499 stats->halt_poll_success_ns += poll_ns;
3500 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3502 stats->halt_poll_fail_ns += poll_ns;
3503 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3507 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3509 struct kvm *kvm = vcpu->kvm;
3511 if (kvm->override_halt_poll_ns) {
3513 * Ensure kvm->max_halt_poll_ns is not read before
3514 * kvm->override_halt_poll_ns.
3516 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3519 return READ_ONCE(kvm->max_halt_poll_ns);
3522 return READ_ONCE(halt_poll_ns);
3526 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3527 * polling is enabled, busy wait for a short time before blocking to avoid the
3528 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3531 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3533 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3534 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3535 ktime_t start, cur, poll_end;
3536 bool waited = false;
3540 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3541 vcpu->halt_poll_ns = max_halt_poll_ns;
3543 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3545 start = cur = poll_end = ktime_get();
3547 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3550 if (kvm_vcpu_check_block(vcpu) < 0)
3553 poll_end = cur = ktime_get();
3554 } while (kvm_vcpu_can_poll(cur, stop));
3557 waited = kvm_vcpu_block(vcpu);
3561 vcpu->stat.generic.halt_wait_ns +=
3562 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3563 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3564 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3567 /* The total time the vCPU was "halted", including polling time. */
3568 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3571 * Note, halt-polling is considered successful so long as the vCPU was
3572 * never actually scheduled out, i.e. even if the wake event arrived
3573 * after of the halt-polling loop itself, but before the full wait.
3576 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3578 if (halt_poll_allowed) {
3579 /* Recompute the max halt poll time in case it changed. */
3580 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3582 if (!vcpu_valid_wakeup(vcpu)) {
3583 shrink_halt_poll_ns(vcpu);
3584 } else if (max_halt_poll_ns) {
3585 if (halt_ns <= vcpu->halt_poll_ns)
3587 /* we had a long block, shrink polling */
3588 else if (vcpu->halt_poll_ns &&
3589 halt_ns > max_halt_poll_ns)
3590 shrink_halt_poll_ns(vcpu);
3591 /* we had a short halt and our poll time is too small */
3592 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3593 halt_ns < max_halt_poll_ns)
3594 grow_halt_poll_ns(vcpu);
3596 vcpu->halt_poll_ns = 0;
3600 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3602 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3604 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3606 if (__kvm_vcpu_wake_up(vcpu)) {
3607 WRITE_ONCE(vcpu->ready, true);
3608 ++vcpu->stat.generic.halt_wakeup;
3614 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3618 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3620 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3624 if (kvm_vcpu_wake_up(vcpu))
3629 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3630 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3631 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3632 * within the vCPU thread itself.
3634 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3635 if (vcpu->mode == IN_GUEST_MODE)
3636 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3641 * Note, the vCPU could get migrated to a different pCPU at any point
3642 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3643 * IPI to the previous pCPU. But, that's ok because the purpose of the
3644 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3645 * vCPU also requires it to leave IN_GUEST_MODE.
3647 if (kvm_arch_vcpu_should_kick(vcpu)) {
3648 cpu = READ_ONCE(vcpu->cpu);
3649 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3650 smp_send_reschedule(cpu);
3655 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3656 #endif /* !CONFIG_S390 */
3658 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3661 struct task_struct *task = NULL;
3665 pid = rcu_dereference(target->pid);
3667 task = get_pid_task(pid, PIDTYPE_PID);
3671 ret = yield_to(task, 1);
3672 put_task_struct(task);
3676 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3679 * Helper that checks whether a VCPU is eligible for directed yield.
3680 * Most eligible candidate to yield is decided by following heuristics:
3682 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3683 * (preempted lock holder), indicated by @in_spin_loop.
3684 * Set at the beginning and cleared at the end of interception/PLE handler.
3686 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3687 * chance last time (mostly it has become eligible now since we have probably
3688 * yielded to lockholder in last iteration. This is done by toggling
3689 * @dy_eligible each time a VCPU checked for eligibility.)
3691 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3692 * to preempted lock-holder could result in wrong VCPU selection and CPU
3693 * burning. Giving priority for a potential lock-holder increases lock
3696 * Since algorithm is based on heuristics, accessing another VCPU data without
3697 * locking does not harm. It may result in trying to yield to same VCPU, fail
3698 * and continue with next VCPU and so on.
3700 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3702 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3705 eligible = !vcpu->spin_loop.in_spin_loop ||
3706 vcpu->spin_loop.dy_eligible;
3708 if (vcpu->spin_loop.in_spin_loop)
3709 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3718 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3719 * a vcpu_load/vcpu_put pair. However, for most architectures
3720 * kvm_arch_vcpu_runnable does not require vcpu_load.
3722 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3724 return kvm_arch_vcpu_runnable(vcpu);
3727 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3729 if (kvm_arch_dy_runnable(vcpu))
3732 #ifdef CONFIG_KVM_ASYNC_PF
3733 if (!list_empty_careful(&vcpu->async_pf.done))
3740 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3745 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3747 struct kvm *kvm = me->kvm;
3748 struct kvm_vcpu *vcpu;
3749 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3755 kvm_vcpu_set_in_spin_loop(me, true);
3757 * We boost the priority of a VCPU that is runnable but not
3758 * currently running, because it got preempted by something
3759 * else and called schedule in __vcpu_run. Hopefully that
3760 * VCPU is holding the lock that we need and will release it.
3761 * We approximate round-robin by starting at the last boosted VCPU.
3763 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3764 kvm_for_each_vcpu(i, vcpu, kvm) {
3765 if (!pass && i <= last_boosted_vcpu) {
3766 i = last_boosted_vcpu;
3768 } else if (pass && i > last_boosted_vcpu)
3770 if (!READ_ONCE(vcpu->ready))
3774 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3776 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3777 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3778 !kvm_arch_vcpu_in_kernel(vcpu))
3780 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3783 yielded = kvm_vcpu_yield_to(vcpu);
3785 kvm->last_boosted_vcpu = i;
3787 } else if (yielded < 0) {
3794 kvm_vcpu_set_in_spin_loop(me, false);
3796 /* Ensure vcpu is not eligible during next spinloop */
3797 kvm_vcpu_set_dy_eligible(me, false);
3799 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3801 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3803 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3804 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3805 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3806 kvm->dirty_ring_size / PAGE_SIZE);
3812 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3814 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3817 if (vmf->pgoff == 0)
3818 page = virt_to_page(vcpu->run);
3820 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3821 page = virt_to_page(vcpu->arch.pio_data);
3823 #ifdef CONFIG_KVM_MMIO
3824 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3825 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3827 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3828 page = kvm_dirty_ring_get_page(
3830 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3832 return kvm_arch_vcpu_fault(vcpu, vmf);
3838 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3839 .fault = kvm_vcpu_fault,
3842 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3844 struct kvm_vcpu *vcpu = file->private_data;
3845 unsigned long pages = vma_pages(vma);
3847 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3848 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3849 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3852 vma->vm_ops = &kvm_vcpu_vm_ops;
3856 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3858 struct kvm_vcpu *vcpu = filp->private_data;
3860 kvm_put_kvm(vcpu->kvm);
3864 static const struct file_operations kvm_vcpu_fops = {
3865 .release = kvm_vcpu_release,
3866 .unlocked_ioctl = kvm_vcpu_ioctl,
3867 .mmap = kvm_vcpu_mmap,
3868 .llseek = noop_llseek,
3869 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3873 * Allocates an inode for the vcpu.
3875 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3877 char name[8 + 1 + ITOA_MAX_LEN + 1];
3879 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3880 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3883 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3884 static int vcpu_get_pid(void *data, u64 *val)
3886 struct kvm_vcpu *vcpu = data;
3889 *val = pid_nr(rcu_dereference(vcpu->pid));
3894 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3896 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3898 struct dentry *debugfs_dentry;
3899 char dir_name[ITOA_MAX_LEN * 2];
3901 if (!debugfs_initialized())
3904 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3905 debugfs_dentry = debugfs_create_dir(dir_name,
3906 vcpu->kvm->debugfs_dentry);
3907 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3908 &vcpu_get_pid_fops);
3910 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3915 * Creates some virtual cpus. Good luck creating more than one.
3917 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3920 struct kvm_vcpu *vcpu;
3923 if (id >= KVM_MAX_VCPU_IDS)
3926 mutex_lock(&kvm->lock);
3927 if (kvm->created_vcpus >= kvm->max_vcpus) {
3928 mutex_unlock(&kvm->lock);
3932 r = kvm_arch_vcpu_precreate(kvm, id);
3934 mutex_unlock(&kvm->lock);
3938 kvm->created_vcpus++;
3939 mutex_unlock(&kvm->lock);
3941 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3944 goto vcpu_decrement;
3947 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3948 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3953 vcpu->run = page_address(page);
3955 kvm_vcpu_init(vcpu, kvm, id);
3957 r = kvm_arch_vcpu_create(vcpu);
3959 goto vcpu_free_run_page;
3961 if (kvm->dirty_ring_size) {
3962 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3963 id, kvm->dirty_ring_size);
3965 goto arch_vcpu_destroy;
3968 mutex_lock(&kvm->lock);
3970 #ifdef CONFIG_LOCKDEP
3971 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3972 mutex_lock(&vcpu->mutex);
3973 mutex_unlock(&vcpu->mutex);
3976 if (kvm_get_vcpu_by_id(kvm, id)) {
3978 goto unlock_vcpu_destroy;
3981 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3982 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3984 goto unlock_vcpu_destroy;
3986 /* Now it's all set up, let userspace reach it */
3988 r = create_vcpu_fd(vcpu);
3990 goto kvm_put_xa_release;
3992 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3994 goto kvm_put_xa_release;
3998 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
3999 * pointer before kvm->online_vcpu's incremented value.
4002 atomic_inc(&kvm->online_vcpus);
4004 mutex_unlock(&kvm->lock);
4005 kvm_arch_vcpu_postcreate(vcpu);
4006 kvm_create_vcpu_debugfs(vcpu);
4010 kvm_put_kvm_no_destroy(kvm);
4011 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4012 unlock_vcpu_destroy:
4013 mutex_unlock(&kvm->lock);
4014 kvm_dirty_ring_free(&vcpu->dirty_ring);
4016 kvm_arch_vcpu_destroy(vcpu);
4018 free_page((unsigned long)vcpu->run);
4020 kmem_cache_free(kvm_vcpu_cache, vcpu);
4022 mutex_lock(&kvm->lock);
4023 kvm->created_vcpus--;
4024 mutex_unlock(&kvm->lock);
4028 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4031 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4032 vcpu->sigset_active = 1;
4033 vcpu->sigset = *sigset;
4035 vcpu->sigset_active = 0;
4039 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4040 size_t size, loff_t *offset)
4042 struct kvm_vcpu *vcpu = file->private_data;
4044 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4045 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4046 sizeof(vcpu->stat), user_buffer, size, offset);
4049 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4051 struct kvm_vcpu *vcpu = file->private_data;
4053 kvm_put_kvm(vcpu->kvm);
4057 static const struct file_operations kvm_vcpu_stats_fops = {
4058 .read = kvm_vcpu_stats_read,
4059 .release = kvm_vcpu_stats_release,
4060 .llseek = noop_llseek,
4063 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4067 char name[15 + ITOA_MAX_LEN + 1];
4069 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4071 fd = get_unused_fd_flags(O_CLOEXEC);
4075 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4078 return PTR_ERR(file);
4081 kvm_get_kvm(vcpu->kvm);
4083 file->f_mode |= FMODE_PREAD;
4084 fd_install(fd, file);
4089 static long kvm_vcpu_ioctl(struct file *filp,
4090 unsigned int ioctl, unsigned long arg)
4092 struct kvm_vcpu *vcpu = filp->private_data;
4093 void __user *argp = (void __user *)arg;
4095 struct kvm_fpu *fpu = NULL;
4096 struct kvm_sregs *kvm_sregs = NULL;
4098 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4101 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4105 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4106 * execution; mutex_lock() would break them.
4108 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4109 if (r != -ENOIOCTLCMD)
4112 if (mutex_lock_killable(&vcpu->mutex))
4120 oldpid = rcu_access_pointer(vcpu->pid);
4121 if (unlikely(oldpid != task_pid(current))) {
4122 /* The thread running this VCPU changed. */
4125 r = kvm_arch_vcpu_run_pid_change(vcpu);
4129 newpid = get_task_pid(current, PIDTYPE_PID);
4130 rcu_assign_pointer(vcpu->pid, newpid);
4135 r = kvm_arch_vcpu_ioctl_run(vcpu);
4136 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4139 case KVM_GET_REGS: {
4140 struct kvm_regs *kvm_regs;
4143 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4146 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4150 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4157 case KVM_SET_REGS: {
4158 struct kvm_regs *kvm_regs;
4160 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4161 if (IS_ERR(kvm_regs)) {
4162 r = PTR_ERR(kvm_regs);
4165 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4169 case KVM_GET_SREGS: {
4170 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4171 GFP_KERNEL_ACCOUNT);
4175 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4179 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4184 case KVM_SET_SREGS: {
4185 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4186 if (IS_ERR(kvm_sregs)) {
4187 r = PTR_ERR(kvm_sregs);
4191 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4194 case KVM_GET_MP_STATE: {
4195 struct kvm_mp_state mp_state;
4197 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4201 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4206 case KVM_SET_MP_STATE: {
4207 struct kvm_mp_state mp_state;
4210 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4212 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4215 case KVM_TRANSLATE: {
4216 struct kvm_translation tr;
4219 if (copy_from_user(&tr, argp, sizeof(tr)))
4221 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4225 if (copy_to_user(argp, &tr, sizeof(tr)))
4230 case KVM_SET_GUEST_DEBUG: {
4231 struct kvm_guest_debug dbg;
4234 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4236 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4239 case KVM_SET_SIGNAL_MASK: {
4240 struct kvm_signal_mask __user *sigmask_arg = argp;
4241 struct kvm_signal_mask kvm_sigmask;
4242 sigset_t sigset, *p;
4247 if (copy_from_user(&kvm_sigmask, argp,
4248 sizeof(kvm_sigmask)))
4251 if (kvm_sigmask.len != sizeof(sigset))
4254 if (copy_from_user(&sigset, sigmask_arg->sigset,
4259 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4263 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4267 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4271 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4277 fpu = memdup_user(argp, sizeof(*fpu));
4283 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4286 case KVM_GET_STATS_FD: {
4287 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4291 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4294 mutex_unlock(&vcpu->mutex);
4300 #ifdef CONFIG_KVM_COMPAT
4301 static long kvm_vcpu_compat_ioctl(struct file *filp,
4302 unsigned int ioctl, unsigned long arg)
4304 struct kvm_vcpu *vcpu = filp->private_data;
4305 void __user *argp = compat_ptr(arg);
4308 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4312 case KVM_SET_SIGNAL_MASK: {
4313 struct kvm_signal_mask __user *sigmask_arg = argp;
4314 struct kvm_signal_mask kvm_sigmask;
4319 if (copy_from_user(&kvm_sigmask, argp,
4320 sizeof(kvm_sigmask)))
4323 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4326 if (get_compat_sigset(&sigset,
4327 (compat_sigset_t __user *)sigmask_arg->sigset))
4329 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4331 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4335 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4343 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4345 struct kvm_device *dev = filp->private_data;
4348 return dev->ops->mmap(dev, vma);
4353 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4354 int (*accessor)(struct kvm_device *dev,
4355 struct kvm_device_attr *attr),
4358 struct kvm_device_attr attr;
4363 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4366 return accessor(dev, &attr);
4369 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4372 struct kvm_device *dev = filp->private_data;
4374 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4378 case KVM_SET_DEVICE_ATTR:
4379 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4380 case KVM_GET_DEVICE_ATTR:
4381 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4382 case KVM_HAS_DEVICE_ATTR:
4383 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4385 if (dev->ops->ioctl)
4386 return dev->ops->ioctl(dev, ioctl, arg);
4392 static int kvm_device_release(struct inode *inode, struct file *filp)
4394 struct kvm_device *dev = filp->private_data;
4395 struct kvm *kvm = dev->kvm;
4397 if (dev->ops->release) {
4398 mutex_lock(&kvm->lock);
4399 list_del(&dev->vm_node);
4400 dev->ops->release(dev);
4401 mutex_unlock(&kvm->lock);
4408 static const struct file_operations kvm_device_fops = {
4409 .unlocked_ioctl = kvm_device_ioctl,
4410 .release = kvm_device_release,
4411 KVM_COMPAT(kvm_device_ioctl),
4412 .mmap = kvm_device_mmap,
4415 struct kvm_device *kvm_device_from_filp(struct file *filp)
4417 if (filp->f_op != &kvm_device_fops)
4420 return filp->private_data;
4423 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4424 #ifdef CONFIG_KVM_MPIC
4425 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4426 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4430 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4432 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4435 if (kvm_device_ops_table[type] != NULL)
4438 kvm_device_ops_table[type] = ops;
4442 void kvm_unregister_device_ops(u32 type)
4444 if (kvm_device_ops_table[type] != NULL)
4445 kvm_device_ops_table[type] = NULL;
4448 static int kvm_ioctl_create_device(struct kvm *kvm,
4449 struct kvm_create_device *cd)
4451 const struct kvm_device_ops *ops;
4452 struct kvm_device *dev;
4453 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4457 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4460 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4461 ops = kvm_device_ops_table[type];
4468 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4475 mutex_lock(&kvm->lock);
4476 ret = ops->create(dev, type);
4478 mutex_unlock(&kvm->lock);
4482 list_add(&dev->vm_node, &kvm->devices);
4483 mutex_unlock(&kvm->lock);
4489 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4491 kvm_put_kvm_no_destroy(kvm);
4492 mutex_lock(&kvm->lock);
4493 list_del(&dev->vm_node);
4496 mutex_unlock(&kvm->lock);
4506 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4509 case KVM_CAP_USER_MEMORY:
4510 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4511 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4512 case KVM_CAP_INTERNAL_ERROR_DATA:
4513 #ifdef CONFIG_HAVE_KVM_MSI
4514 case KVM_CAP_SIGNAL_MSI:
4516 #ifdef CONFIG_HAVE_KVM_IRQFD
4519 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4520 case KVM_CAP_CHECK_EXTENSION_VM:
4521 case KVM_CAP_ENABLE_CAP_VM:
4522 case KVM_CAP_HALT_POLL:
4524 #ifdef CONFIG_KVM_MMIO
4525 case KVM_CAP_COALESCED_MMIO:
4526 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4527 case KVM_CAP_COALESCED_PIO:
4530 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4531 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4532 return KVM_DIRTY_LOG_MANUAL_CAPS;
4534 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4535 case KVM_CAP_IRQ_ROUTING:
4536 return KVM_MAX_IRQ_ROUTES;
4538 #if KVM_ADDRESS_SPACE_NUM > 1
4539 case KVM_CAP_MULTI_ADDRESS_SPACE:
4540 return KVM_ADDRESS_SPACE_NUM;
4542 case KVM_CAP_NR_MEMSLOTS:
4543 return KVM_USER_MEM_SLOTS;
4544 case KVM_CAP_DIRTY_LOG_RING:
4545 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4546 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4550 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4551 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4552 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4556 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4557 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4559 case KVM_CAP_BINARY_STATS_FD:
4560 case KVM_CAP_SYSTEM_EVENT_DATA:
4565 return kvm_vm_ioctl_check_extension(kvm, arg);
4568 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4572 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4575 /* the size should be power of 2 */
4576 if (!size || (size & (size - 1)))
4579 /* Should be bigger to keep the reserved entries, or a page */
4580 if (size < kvm_dirty_ring_get_rsvd_entries() *
4581 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4584 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4585 sizeof(struct kvm_dirty_gfn))
4588 /* We only allow it to set once */
4589 if (kvm->dirty_ring_size)
4592 mutex_lock(&kvm->lock);
4594 if (kvm->created_vcpus) {
4595 /* We don't allow to change this value after vcpu created */
4598 kvm->dirty_ring_size = size;
4602 mutex_unlock(&kvm->lock);
4606 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4609 struct kvm_vcpu *vcpu;
4612 if (!kvm->dirty_ring_size)
4615 mutex_lock(&kvm->slots_lock);
4617 kvm_for_each_vcpu(i, vcpu, kvm)
4618 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4620 mutex_unlock(&kvm->slots_lock);
4623 kvm_flush_remote_tlbs(kvm);
4628 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4629 struct kvm_enable_cap *cap)
4634 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4638 lockdep_assert_held(&kvm->slots_lock);
4640 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4641 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4647 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4649 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4650 struct kvm_enable_cap *cap)
4653 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4654 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4655 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4657 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4658 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4660 if (cap->flags || (cap->args[0] & ~allowed_options))
4662 kvm->manual_dirty_log_protect = cap->args[0];
4666 case KVM_CAP_HALT_POLL: {
4667 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4670 kvm->max_halt_poll_ns = cap->args[0];
4673 * Ensure kvm->override_halt_poll_ns does not become visible
4674 * before kvm->max_halt_poll_ns.
4676 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4679 kvm->override_halt_poll_ns = true;
4683 case KVM_CAP_DIRTY_LOG_RING:
4684 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4685 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4688 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4689 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4692 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4693 !kvm->dirty_ring_size || cap->flags)
4696 mutex_lock(&kvm->slots_lock);
4699 * For simplicity, allow enabling ring+bitmap if and only if
4700 * there are no memslots, e.g. to ensure all memslots allocate
4701 * a bitmap after the capability is enabled.
4703 if (kvm_are_all_memslots_empty(kvm)) {
4704 kvm->dirty_ring_with_bitmap = true;
4708 mutex_unlock(&kvm->slots_lock);
4713 return kvm_vm_ioctl_enable_cap(kvm, cap);
4717 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4718 size_t size, loff_t *offset)
4720 struct kvm *kvm = file->private_data;
4722 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4723 &kvm_vm_stats_desc[0], &kvm->stat,
4724 sizeof(kvm->stat), user_buffer, size, offset);
4727 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4729 struct kvm *kvm = file->private_data;
4735 static const struct file_operations kvm_vm_stats_fops = {
4736 .read = kvm_vm_stats_read,
4737 .release = kvm_vm_stats_release,
4738 .llseek = noop_llseek,
4741 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4746 fd = get_unused_fd_flags(O_CLOEXEC);
4750 file = anon_inode_getfile("kvm-vm-stats",
4751 &kvm_vm_stats_fops, kvm, O_RDONLY);
4754 return PTR_ERR(file);
4759 file->f_mode |= FMODE_PREAD;
4760 fd_install(fd, file);
4765 static long kvm_vm_ioctl(struct file *filp,
4766 unsigned int ioctl, unsigned long arg)
4768 struct kvm *kvm = filp->private_data;
4769 void __user *argp = (void __user *)arg;
4772 if (kvm->mm != current->mm || kvm->vm_dead)
4775 case KVM_CREATE_VCPU:
4776 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4778 case KVM_ENABLE_CAP: {
4779 struct kvm_enable_cap cap;
4782 if (copy_from_user(&cap, argp, sizeof(cap)))
4784 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4787 case KVM_SET_USER_MEMORY_REGION: {
4788 struct kvm_userspace_memory_region kvm_userspace_mem;
4791 if (copy_from_user(&kvm_userspace_mem, argp,
4792 sizeof(kvm_userspace_mem)))
4795 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4798 case KVM_GET_DIRTY_LOG: {
4799 struct kvm_dirty_log log;
4802 if (copy_from_user(&log, argp, sizeof(log)))
4804 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4807 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4808 case KVM_CLEAR_DIRTY_LOG: {
4809 struct kvm_clear_dirty_log log;
4812 if (copy_from_user(&log, argp, sizeof(log)))
4814 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4818 #ifdef CONFIG_KVM_MMIO
4819 case KVM_REGISTER_COALESCED_MMIO: {
4820 struct kvm_coalesced_mmio_zone zone;
4823 if (copy_from_user(&zone, argp, sizeof(zone)))
4825 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4828 case KVM_UNREGISTER_COALESCED_MMIO: {
4829 struct kvm_coalesced_mmio_zone zone;
4832 if (copy_from_user(&zone, argp, sizeof(zone)))
4834 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4839 struct kvm_irqfd data;
4842 if (copy_from_user(&data, argp, sizeof(data)))
4844 r = kvm_irqfd(kvm, &data);
4847 case KVM_IOEVENTFD: {
4848 struct kvm_ioeventfd data;
4851 if (copy_from_user(&data, argp, sizeof(data)))
4853 r = kvm_ioeventfd(kvm, &data);
4856 #ifdef CONFIG_HAVE_KVM_MSI
4857 case KVM_SIGNAL_MSI: {
4861 if (copy_from_user(&msi, argp, sizeof(msi)))
4863 r = kvm_send_userspace_msi(kvm, &msi);
4867 #ifdef __KVM_HAVE_IRQ_LINE
4868 case KVM_IRQ_LINE_STATUS:
4869 case KVM_IRQ_LINE: {
4870 struct kvm_irq_level irq_event;
4873 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4876 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4877 ioctl == KVM_IRQ_LINE_STATUS);
4882 if (ioctl == KVM_IRQ_LINE_STATUS) {
4883 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4891 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4892 case KVM_SET_GSI_ROUTING: {
4893 struct kvm_irq_routing routing;
4894 struct kvm_irq_routing __user *urouting;
4895 struct kvm_irq_routing_entry *entries = NULL;
4898 if (copy_from_user(&routing, argp, sizeof(routing)))
4901 if (!kvm_arch_can_set_irq_routing(kvm))
4903 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4909 entries = vmemdup_user(urouting->entries,
4910 array_size(sizeof(*entries),
4912 if (IS_ERR(entries)) {
4913 r = PTR_ERR(entries);
4917 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4922 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4923 case KVM_CREATE_DEVICE: {
4924 struct kvm_create_device cd;
4927 if (copy_from_user(&cd, argp, sizeof(cd)))
4930 r = kvm_ioctl_create_device(kvm, &cd);
4935 if (copy_to_user(argp, &cd, sizeof(cd)))
4941 case KVM_CHECK_EXTENSION:
4942 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4944 case KVM_RESET_DIRTY_RINGS:
4945 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4947 case KVM_GET_STATS_FD:
4948 r = kvm_vm_ioctl_get_stats_fd(kvm);
4951 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4957 #ifdef CONFIG_KVM_COMPAT
4958 struct compat_kvm_dirty_log {
4962 compat_uptr_t dirty_bitmap; /* one bit per page */
4967 struct compat_kvm_clear_dirty_log {
4972 compat_uptr_t dirty_bitmap; /* one bit per page */
4977 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4983 static long kvm_vm_compat_ioctl(struct file *filp,
4984 unsigned int ioctl, unsigned long arg)
4986 struct kvm *kvm = filp->private_data;
4989 if (kvm->mm != current->mm || kvm->vm_dead)
4992 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4997 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4998 case KVM_CLEAR_DIRTY_LOG: {
4999 struct compat_kvm_clear_dirty_log compat_log;
5000 struct kvm_clear_dirty_log log;
5002 if (copy_from_user(&compat_log, (void __user *)arg,
5003 sizeof(compat_log)))
5005 log.slot = compat_log.slot;
5006 log.num_pages = compat_log.num_pages;
5007 log.first_page = compat_log.first_page;
5008 log.padding2 = compat_log.padding2;
5009 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5011 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5015 case KVM_GET_DIRTY_LOG: {
5016 struct compat_kvm_dirty_log compat_log;
5017 struct kvm_dirty_log log;
5019 if (copy_from_user(&compat_log, (void __user *)arg,
5020 sizeof(compat_log)))
5022 log.slot = compat_log.slot;
5023 log.padding1 = compat_log.padding1;
5024 log.padding2 = compat_log.padding2;
5025 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5027 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5031 r = kvm_vm_ioctl(filp, ioctl, arg);
5037 static const struct file_operations kvm_vm_fops = {
5038 .release = kvm_vm_release,
5039 .unlocked_ioctl = kvm_vm_ioctl,
5040 .llseek = noop_llseek,
5041 KVM_COMPAT(kvm_vm_compat_ioctl),
5044 bool file_is_kvm(struct file *file)
5046 return file && file->f_op == &kvm_vm_fops;
5048 EXPORT_SYMBOL_GPL(file_is_kvm);
5050 static int kvm_dev_ioctl_create_vm(unsigned long type)
5052 char fdname[ITOA_MAX_LEN + 1];
5057 fd = get_unused_fd_flags(O_CLOEXEC);
5061 snprintf(fdname, sizeof(fdname), "%d", fd);
5063 kvm = kvm_create_vm(type, fdname);
5069 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5076 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5077 * already set, with ->release() being kvm_vm_release(). In error
5078 * cases it will be called by the final fput(file) and will take
5079 * care of doing kvm_put_kvm(kvm).
5081 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5083 fd_install(fd, file);
5093 static long kvm_dev_ioctl(struct file *filp,
5094 unsigned int ioctl, unsigned long arg)
5099 case KVM_GET_API_VERSION:
5102 r = KVM_API_VERSION;
5105 r = kvm_dev_ioctl_create_vm(arg);
5107 case KVM_CHECK_EXTENSION:
5108 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5110 case KVM_GET_VCPU_MMAP_SIZE:
5113 r = PAGE_SIZE; /* struct kvm_run */
5115 r += PAGE_SIZE; /* pio data page */
5117 #ifdef CONFIG_KVM_MMIO
5118 r += PAGE_SIZE; /* coalesced mmio ring page */
5121 case KVM_TRACE_ENABLE:
5122 case KVM_TRACE_PAUSE:
5123 case KVM_TRACE_DISABLE:
5127 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5133 static struct file_operations kvm_chardev_ops = {
5134 .unlocked_ioctl = kvm_dev_ioctl,
5135 .llseek = noop_llseek,
5136 KVM_COMPAT(kvm_dev_ioctl),
5139 static struct miscdevice kvm_dev = {
5145 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5146 __visible bool kvm_rebooting;
5147 EXPORT_SYMBOL_GPL(kvm_rebooting);
5149 static DEFINE_PER_CPU(bool, hardware_enabled);
5150 static int kvm_usage_count;
5152 static int __hardware_enable_nolock(void)
5154 if (__this_cpu_read(hardware_enabled))
5157 if (kvm_arch_hardware_enable()) {
5158 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5159 raw_smp_processor_id());
5163 __this_cpu_write(hardware_enabled, true);
5167 static void hardware_enable_nolock(void *failed)
5169 if (__hardware_enable_nolock())
5173 static int kvm_online_cpu(unsigned int cpu)
5178 * Abort the CPU online process if hardware virtualization cannot
5179 * be enabled. Otherwise running VMs would encounter unrecoverable
5180 * errors when scheduled to this CPU.
5182 mutex_lock(&kvm_lock);
5183 if (kvm_usage_count)
5184 ret = __hardware_enable_nolock();
5185 mutex_unlock(&kvm_lock);
5189 static void hardware_disable_nolock(void *junk)
5192 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5193 * hardware, not just CPUs that successfully enabled hardware!
5195 if (!__this_cpu_read(hardware_enabled))
5198 kvm_arch_hardware_disable();
5200 __this_cpu_write(hardware_enabled, false);
5203 static int kvm_offline_cpu(unsigned int cpu)
5205 mutex_lock(&kvm_lock);
5206 if (kvm_usage_count)
5207 hardware_disable_nolock(NULL);
5208 mutex_unlock(&kvm_lock);
5212 static void hardware_disable_all_nolock(void)
5214 BUG_ON(!kvm_usage_count);
5217 if (!kvm_usage_count)
5218 on_each_cpu(hardware_disable_nolock, NULL, 1);
5221 static void hardware_disable_all(void)
5224 mutex_lock(&kvm_lock);
5225 hardware_disable_all_nolock();
5226 mutex_unlock(&kvm_lock);
5230 static int hardware_enable_all(void)
5232 atomic_t failed = ATOMIC_INIT(0);
5236 * Do not enable hardware virtualization if the system is going down.
5237 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5238 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5239 * after kvm_reboot() is called. Note, this relies on system_state
5240 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5241 * hook instead of registering a dedicated reboot notifier (the latter
5242 * runs before system_state is updated).
5244 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5245 system_state == SYSTEM_RESTART)
5249 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5250 * is called, and so on_each_cpu() between them includes the CPU that
5251 * is being onlined. As a result, hardware_enable_nolock() may get
5252 * invoked before kvm_online_cpu(), which also enables hardware if the
5253 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5254 * enable hardware multiple times.
5257 mutex_lock(&kvm_lock);
5262 if (kvm_usage_count == 1) {
5263 on_each_cpu(hardware_enable_nolock, &failed, 1);
5265 if (atomic_read(&failed)) {
5266 hardware_disable_all_nolock();
5271 mutex_unlock(&kvm_lock);
5277 static void kvm_shutdown(void)
5280 * Disable hardware virtualization and set kvm_rebooting to indicate
5281 * that KVM has asynchronously disabled hardware virtualization, i.e.
5282 * that relevant errors and exceptions aren't entirely unexpected.
5283 * Some flavors of hardware virtualization need to be disabled before
5284 * transferring control to firmware (to perform shutdown/reboot), e.g.
5285 * on x86, virtualization can block INIT interrupts, which are used by
5286 * firmware to pull APs back under firmware control. Note, this path
5287 * is used for both shutdown and reboot scenarios, i.e. neither name is
5288 * 100% comprehensive.
5290 pr_info("kvm: exiting hardware virtualization\n");
5291 kvm_rebooting = true;
5292 on_each_cpu(hardware_disable_nolock, NULL, 1);
5295 static int kvm_suspend(void)
5298 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5299 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5300 * is stable. Assert that kvm_lock is not held to ensure the system
5301 * isn't suspended while KVM is enabling hardware. Hardware enabling
5302 * can be preempted, but the task cannot be frozen until it has dropped
5303 * all locks (userspace tasks are frozen via a fake signal).
5305 lockdep_assert_not_held(&kvm_lock);
5306 lockdep_assert_irqs_disabled();
5308 if (kvm_usage_count)
5309 hardware_disable_nolock(NULL);
5313 static void kvm_resume(void)
5315 lockdep_assert_not_held(&kvm_lock);
5316 lockdep_assert_irqs_disabled();
5318 if (kvm_usage_count)
5319 WARN_ON_ONCE(__hardware_enable_nolock());
5322 static struct syscore_ops kvm_syscore_ops = {
5323 .suspend = kvm_suspend,
5324 .resume = kvm_resume,
5325 .shutdown = kvm_shutdown,
5327 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5328 static int hardware_enable_all(void)
5333 static void hardware_disable_all(void)
5337 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5339 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5341 if (dev->ops->destructor)
5342 dev->ops->destructor(dev);
5345 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5349 for (i = 0; i < bus->dev_count; i++) {
5350 struct kvm_io_device *pos = bus->range[i].dev;
5352 kvm_iodevice_destructor(pos);
5357 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5358 const struct kvm_io_range *r2)
5360 gpa_t addr1 = r1->addr;
5361 gpa_t addr2 = r2->addr;
5366 /* If r2->len == 0, match the exact address. If r2->len != 0,
5367 * accept any overlapping write. Any order is acceptable for
5368 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5369 * we process all of them.
5382 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5384 return kvm_io_bus_cmp(p1, p2);
5387 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5388 gpa_t addr, int len)
5390 struct kvm_io_range *range, key;
5393 key = (struct kvm_io_range) {
5398 range = bsearch(&key, bus->range, bus->dev_count,
5399 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5403 off = range - bus->range;
5405 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5411 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5412 struct kvm_io_range *range, const void *val)
5416 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5420 while (idx < bus->dev_count &&
5421 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5422 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5431 /* kvm_io_bus_write - called under kvm->slots_lock */
5432 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5433 int len, const void *val)
5435 struct kvm_io_bus *bus;
5436 struct kvm_io_range range;
5439 range = (struct kvm_io_range) {
5444 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5447 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5448 return r < 0 ? r : 0;
5450 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5452 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5453 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5454 gpa_t addr, int len, const void *val, long cookie)
5456 struct kvm_io_bus *bus;
5457 struct kvm_io_range range;
5459 range = (struct kvm_io_range) {
5464 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5468 /* First try the device referenced by cookie. */
5469 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5470 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5471 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5476 * cookie contained garbage; fall back to search and return the
5477 * correct cookie value.
5479 return __kvm_io_bus_write(vcpu, bus, &range, val);
5482 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5483 struct kvm_io_range *range, void *val)
5487 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5491 while (idx < bus->dev_count &&
5492 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5493 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5502 /* kvm_io_bus_read - called under kvm->slots_lock */
5503 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5506 struct kvm_io_bus *bus;
5507 struct kvm_io_range range;
5510 range = (struct kvm_io_range) {
5515 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5518 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5519 return r < 0 ? r : 0;
5522 /* Caller must hold slots_lock. */
5523 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5524 int len, struct kvm_io_device *dev)
5527 struct kvm_io_bus *new_bus, *bus;
5528 struct kvm_io_range range;
5530 bus = kvm_get_bus(kvm, bus_idx);
5534 /* exclude ioeventfd which is limited by maximum fd */
5535 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5538 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5539 GFP_KERNEL_ACCOUNT);
5543 range = (struct kvm_io_range) {
5549 for (i = 0; i < bus->dev_count; i++)
5550 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5553 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5554 new_bus->dev_count++;
5555 new_bus->range[i] = range;
5556 memcpy(new_bus->range + i + 1, bus->range + i,
5557 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5558 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5559 synchronize_srcu_expedited(&kvm->srcu);
5565 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5566 struct kvm_io_device *dev)
5569 struct kvm_io_bus *new_bus, *bus;
5571 lockdep_assert_held(&kvm->slots_lock);
5573 bus = kvm_get_bus(kvm, bus_idx);
5577 for (i = 0; i < bus->dev_count; i++) {
5578 if (bus->range[i].dev == dev) {
5583 if (i == bus->dev_count)
5586 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5587 GFP_KERNEL_ACCOUNT);
5589 memcpy(new_bus, bus, struct_size(bus, range, i));
5590 new_bus->dev_count--;
5591 memcpy(new_bus->range + i, bus->range + i + 1,
5592 flex_array_size(new_bus, range, new_bus->dev_count - i));
5595 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5596 synchronize_srcu_expedited(&kvm->srcu);
5599 * If NULL bus is installed, destroy the old bus, including all the
5600 * attached devices. Otherwise, destroy the caller's device only.
5603 pr_err("kvm: failed to shrink bus, removing it completely\n");
5604 kvm_io_bus_destroy(bus);
5608 kvm_iodevice_destructor(dev);
5613 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5616 struct kvm_io_bus *bus;
5617 int dev_idx, srcu_idx;
5618 struct kvm_io_device *iodev = NULL;
5620 srcu_idx = srcu_read_lock(&kvm->srcu);
5622 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5626 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5630 iodev = bus->range[dev_idx].dev;
5633 srcu_read_unlock(&kvm->srcu, srcu_idx);
5637 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5639 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5640 int (*get)(void *, u64 *), int (*set)(void *, u64),
5644 struct kvm_stat_data *stat_data = inode->i_private;
5647 * The debugfs files are a reference to the kvm struct which
5648 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5649 * avoids the race between open and the removal of the debugfs directory.
5651 if (!kvm_get_kvm_safe(stat_data->kvm))
5654 ret = simple_attr_open(inode, file, get,
5655 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5658 kvm_put_kvm(stat_data->kvm);
5663 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5665 struct kvm_stat_data *stat_data = inode->i_private;
5667 simple_attr_release(inode, file);
5668 kvm_put_kvm(stat_data->kvm);
5673 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5675 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5680 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5682 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5687 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5690 struct kvm_vcpu *vcpu;
5694 kvm_for_each_vcpu(i, vcpu, kvm)
5695 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5700 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5703 struct kvm_vcpu *vcpu;
5705 kvm_for_each_vcpu(i, vcpu, kvm)
5706 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5711 static int kvm_stat_data_get(void *data, u64 *val)
5714 struct kvm_stat_data *stat_data = data;
5716 switch (stat_data->kind) {
5718 r = kvm_get_stat_per_vm(stat_data->kvm,
5719 stat_data->desc->desc.offset, val);
5722 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5723 stat_data->desc->desc.offset, val);
5730 static int kvm_stat_data_clear(void *data, u64 val)
5733 struct kvm_stat_data *stat_data = data;
5738 switch (stat_data->kind) {
5740 r = kvm_clear_stat_per_vm(stat_data->kvm,
5741 stat_data->desc->desc.offset);
5744 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5745 stat_data->desc->desc.offset);
5752 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5754 __simple_attr_check_format("%llu\n", 0ull);
5755 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5756 kvm_stat_data_clear, "%llu\n");
5759 static const struct file_operations stat_fops_per_vm = {
5760 .owner = THIS_MODULE,
5761 .open = kvm_stat_data_open,
5762 .release = kvm_debugfs_release,
5763 .read = simple_attr_read,
5764 .write = simple_attr_write,
5765 .llseek = no_llseek,
5768 static int vm_stat_get(void *_offset, u64 *val)
5770 unsigned offset = (long)_offset;
5775 mutex_lock(&kvm_lock);
5776 list_for_each_entry(kvm, &vm_list, vm_list) {
5777 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5780 mutex_unlock(&kvm_lock);
5784 static int vm_stat_clear(void *_offset, u64 val)
5786 unsigned offset = (long)_offset;
5792 mutex_lock(&kvm_lock);
5793 list_for_each_entry(kvm, &vm_list, vm_list) {
5794 kvm_clear_stat_per_vm(kvm, offset);
5796 mutex_unlock(&kvm_lock);
5801 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5802 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5804 static int vcpu_stat_get(void *_offset, u64 *val)
5806 unsigned offset = (long)_offset;
5811 mutex_lock(&kvm_lock);
5812 list_for_each_entry(kvm, &vm_list, vm_list) {
5813 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5816 mutex_unlock(&kvm_lock);
5820 static int vcpu_stat_clear(void *_offset, u64 val)
5822 unsigned offset = (long)_offset;
5828 mutex_lock(&kvm_lock);
5829 list_for_each_entry(kvm, &vm_list, vm_list) {
5830 kvm_clear_stat_per_vcpu(kvm, offset);
5832 mutex_unlock(&kvm_lock);
5837 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5839 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5841 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5843 struct kobj_uevent_env *env;
5844 unsigned long long created, active;
5846 if (!kvm_dev.this_device || !kvm)
5849 mutex_lock(&kvm_lock);
5850 if (type == KVM_EVENT_CREATE_VM) {
5851 kvm_createvm_count++;
5853 } else if (type == KVM_EVENT_DESTROY_VM) {
5856 created = kvm_createvm_count;
5857 active = kvm_active_vms;
5858 mutex_unlock(&kvm_lock);
5860 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5864 add_uevent_var(env, "CREATED=%llu", created);
5865 add_uevent_var(env, "COUNT=%llu", active);
5867 if (type == KVM_EVENT_CREATE_VM) {
5868 add_uevent_var(env, "EVENT=create");
5869 kvm->userspace_pid = task_pid_nr(current);
5870 } else if (type == KVM_EVENT_DESTROY_VM) {
5871 add_uevent_var(env, "EVENT=destroy");
5873 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5875 if (!IS_ERR(kvm->debugfs_dentry)) {
5876 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5879 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5881 add_uevent_var(env, "STATS_PATH=%s", tmp);
5885 /* no need for checks, since we are adding at most only 5 keys */
5886 env->envp[env->envp_idx++] = NULL;
5887 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5891 static void kvm_init_debug(void)
5893 const struct file_operations *fops;
5894 const struct _kvm_stats_desc *pdesc;
5897 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5899 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5900 pdesc = &kvm_vm_stats_desc[i];
5901 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5902 fops = &vm_stat_fops;
5904 fops = &vm_stat_readonly_fops;
5905 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5907 (void *)(long)pdesc->desc.offset, fops);
5910 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5911 pdesc = &kvm_vcpu_stats_desc[i];
5912 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5913 fops = &vcpu_stat_fops;
5915 fops = &vcpu_stat_readonly_fops;
5916 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5918 (void *)(long)pdesc->desc.offset, fops);
5923 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5925 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5928 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5930 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5932 WRITE_ONCE(vcpu->preempted, false);
5933 WRITE_ONCE(vcpu->ready, false);
5935 __this_cpu_write(kvm_running_vcpu, vcpu);
5936 kvm_arch_sched_in(vcpu, cpu);
5937 kvm_arch_vcpu_load(vcpu, cpu);
5940 static void kvm_sched_out(struct preempt_notifier *pn,
5941 struct task_struct *next)
5943 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5945 if (current->on_rq) {
5946 WRITE_ONCE(vcpu->preempted, true);
5947 WRITE_ONCE(vcpu->ready, true);
5949 kvm_arch_vcpu_put(vcpu);
5950 __this_cpu_write(kvm_running_vcpu, NULL);
5954 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5956 * We can disable preemption locally around accessing the per-CPU variable,
5957 * and use the resolved vcpu pointer after enabling preemption again,
5958 * because even if the current thread is migrated to another CPU, reading
5959 * the per-CPU value later will give us the same value as we update the
5960 * per-CPU variable in the preempt notifier handlers.
5962 struct kvm_vcpu *kvm_get_running_vcpu(void)
5964 struct kvm_vcpu *vcpu;
5967 vcpu = __this_cpu_read(kvm_running_vcpu);
5972 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5975 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5977 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5979 return &kvm_running_vcpu;
5982 #ifdef CONFIG_GUEST_PERF_EVENTS
5983 static unsigned int kvm_guest_state(void)
5985 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5988 if (!kvm_arch_pmi_in_guest(vcpu))
5991 state = PERF_GUEST_ACTIVE;
5992 if (!kvm_arch_vcpu_in_kernel(vcpu))
5993 state |= PERF_GUEST_USER;
5998 static unsigned long kvm_guest_get_ip(void)
6000 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6002 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6003 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6006 return kvm_arch_vcpu_get_ip(vcpu);
6009 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6010 .state = kvm_guest_state,
6011 .get_ip = kvm_guest_get_ip,
6012 .handle_intel_pt_intr = NULL,
6015 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6017 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6018 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6020 void kvm_unregister_perf_callbacks(void)
6022 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6026 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6031 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6032 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6033 kvm_online_cpu, kvm_offline_cpu);
6037 register_syscore_ops(&kvm_syscore_ops);
6040 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6042 vcpu_align = __alignof__(struct kvm_vcpu);
6044 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6046 offsetof(struct kvm_vcpu, arch),
6047 offsetofend(struct kvm_vcpu, stats_id)
6048 - offsetof(struct kvm_vcpu, arch),
6050 if (!kvm_vcpu_cache) {
6052 goto err_vcpu_cache;
6055 for_each_possible_cpu(cpu) {
6056 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6057 GFP_KERNEL, cpu_to_node(cpu))) {
6059 goto err_cpu_kick_mask;
6063 r = kvm_irqfd_init();
6067 r = kvm_async_pf_init();
6071 kvm_chardev_ops.owner = module;
6073 kvm_preempt_ops.sched_in = kvm_sched_in;
6074 kvm_preempt_ops.sched_out = kvm_sched_out;
6078 r = kvm_vfio_ops_init();
6079 if (WARN_ON_ONCE(r))
6083 * Registration _must_ be the very last thing done, as this exposes
6084 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6086 r = misc_register(&kvm_dev);
6088 pr_err("kvm: misc device register failed\n");
6095 kvm_vfio_ops_exit();
6097 kvm_async_pf_deinit();
6102 for_each_possible_cpu(cpu)
6103 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6104 kmem_cache_destroy(kvm_vcpu_cache);
6106 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6107 unregister_syscore_ops(&kvm_syscore_ops);
6108 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6112 EXPORT_SYMBOL_GPL(kvm_init);
6119 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6120 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6121 * to KVM while the module is being stopped.
6123 misc_deregister(&kvm_dev);
6125 debugfs_remove_recursive(kvm_debugfs_dir);
6126 for_each_possible_cpu(cpu)
6127 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6128 kmem_cache_destroy(kvm_vcpu_cache);
6129 kvm_vfio_ops_exit();
6130 kvm_async_pf_deinit();
6131 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6132 unregister_syscore_ops(&kvm_syscore_ops);
6133 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6137 EXPORT_SYMBOL_GPL(kvm_exit);
6139 struct kvm_vm_worker_thread_context {
6141 struct task_struct *parent;
6142 struct completion init_done;
6143 kvm_vm_thread_fn_t thread_fn;
6148 static int kvm_vm_worker_thread(void *context)
6151 * The init_context is allocated on the stack of the parent thread, so
6152 * we have to locally copy anything that is needed beyond initialization
6154 struct kvm_vm_worker_thread_context *init_context = context;
6155 struct task_struct *parent;
6156 struct kvm *kvm = init_context->kvm;
6157 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6158 uintptr_t data = init_context->data;
6161 err = kthread_park(current);
6162 /* kthread_park(current) is never supposed to return an error */
6167 err = cgroup_attach_task_all(init_context->parent, current);
6169 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6174 set_user_nice(current, task_nice(init_context->parent));
6177 init_context->err = err;
6178 complete(&init_context->init_done);
6179 init_context = NULL;
6184 /* Wait to be woken up by the spawner before proceeding. */
6187 if (!kthread_should_stop())
6188 err = thread_fn(kvm, data);
6192 * Move kthread back to its original cgroup to prevent it lingering in
6193 * the cgroup of the VM process, after the latter finishes its
6196 * kthread_stop() waits on the 'exited' completion condition which is
6197 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6198 * kthread is removed from the cgroup in the cgroup_exit() which is
6199 * called after the exit_mm(). This causes the kthread_stop() to return
6200 * before the kthread actually quits the cgroup.
6203 parent = rcu_dereference(current->real_parent);
6204 get_task_struct(parent);
6206 cgroup_attach_task_all(parent, current);
6207 put_task_struct(parent);
6212 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6213 uintptr_t data, const char *name,
6214 struct task_struct **thread_ptr)
6216 struct kvm_vm_worker_thread_context init_context = {};
6217 struct task_struct *thread;
6220 init_context.kvm = kvm;
6221 init_context.parent = current;
6222 init_context.thread_fn = thread_fn;
6223 init_context.data = data;
6224 init_completion(&init_context.init_done);
6226 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6227 "%s-%d", name, task_pid_nr(current));
6229 return PTR_ERR(thread);
6231 /* kthread_run is never supposed to return NULL */
6232 WARN_ON(thread == NULL);
6234 wait_for_completion(&init_context.init_done);
6236 if (!init_context.err)
6237 *thread_ptr = thread;
6239 return init_context.err;