Merge tag 'pm-6.6-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[platform/kernel/linux-starfive.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100  * Ordering of locks:
101  *
102  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static struct file_operations kvm_chardev_ops;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158 {
159 }
160
161 bool kvm_is_zone_device_page(struct page *page)
162 {
163         /*
164          * The metadata used by is_zone_device_page() to determine whether or
165          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166          * the device has been pinned, e.g. by get_user_pages().  WARN if the
167          * page_count() is zero to help detect bad usage of this helper.
168          */
169         if (WARN_ON_ONCE(!page_count(page)))
170                 return false;
171
172         return is_zone_device_page(page);
173 }
174
175 /*
176  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
178  * is likely incomplete, it has been compiled purely through people wanting to
179  * back guest with a certain type of memory and encountering issues.
180  */
181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
182 {
183         struct page *page;
184
185         if (!pfn_valid(pfn))
186                 return NULL;
187
188         page = pfn_to_page(pfn);
189         if (!PageReserved(page))
190                 return page;
191
192         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193         if (is_zero_pfn(pfn))
194                 return page;
195
196         /*
197          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198          * perspective they are "normal" pages, albeit with slightly different
199          * usage rules.
200          */
201         if (kvm_is_zone_device_page(page))
202                 return page;
203
204         return NULL;
205 }
206
207 /*
208  * Switches to specified vcpu, until a matching vcpu_put()
209  */
210 void vcpu_load(struct kvm_vcpu *vcpu)
211 {
212         int cpu = get_cpu();
213
214         __this_cpu_write(kvm_running_vcpu, vcpu);
215         preempt_notifier_register(&vcpu->preempt_notifier);
216         kvm_arch_vcpu_load(vcpu, cpu);
217         put_cpu();
218 }
219 EXPORT_SYMBOL_GPL(vcpu_load);
220
221 void vcpu_put(struct kvm_vcpu *vcpu)
222 {
223         preempt_disable();
224         kvm_arch_vcpu_put(vcpu);
225         preempt_notifier_unregister(&vcpu->preempt_notifier);
226         __this_cpu_write(kvm_running_vcpu, NULL);
227         preempt_enable();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_put);
230
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233 {
234         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235
236         /*
237          * We need to wait for the VCPU to reenable interrupts and get out of
238          * READING_SHADOW_PAGE_TABLES mode.
239          */
240         if (req & KVM_REQUEST_WAIT)
241                 return mode != OUTSIDE_GUEST_MODE;
242
243         /*
244          * Need to kick a running VCPU, but otherwise there is nothing to do.
245          */
246         return mode == IN_GUEST_MODE;
247 }
248
249 static void ack_kick(void *_completed)
250 {
251 }
252
253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
254 {
255         if (cpumask_empty(cpus))
256                 return false;
257
258         smp_call_function_many(cpus, ack_kick, NULL, wait);
259         return true;
260 }
261
262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263                                   struct cpumask *tmp, int current_cpu)
264 {
265         int cpu;
266
267         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268                 __kvm_make_request(req, vcpu);
269
270         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271                 return;
272
273         /*
274          * Note, the vCPU could get migrated to a different pCPU at any point
275          * after kvm_request_needs_ipi(), which could result in sending an IPI
276          * to the previous pCPU.  But, that's OK because the purpose of the IPI
277          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279          * after this point is also OK, as the requirement is only that KVM wait
280          * for vCPUs that were reading SPTEs _before_ any changes were
281          * finalized. See kvm_vcpu_kick() for more details on handling requests.
282          */
283         if (kvm_request_needs_ipi(vcpu, req)) {
284                 cpu = READ_ONCE(vcpu->cpu);
285                 if (cpu != -1 && cpu != current_cpu)
286                         __cpumask_set_cpu(cpu, tmp);
287         }
288 }
289
290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291                                  unsigned long *vcpu_bitmap)
292 {
293         struct kvm_vcpu *vcpu;
294         struct cpumask *cpus;
295         int i, me;
296         bool called;
297
298         me = get_cpu();
299
300         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301         cpumask_clear(cpus);
302
303         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304                 vcpu = kvm_get_vcpu(kvm, i);
305                 if (!vcpu)
306                         continue;
307                 kvm_make_vcpu_request(vcpu, req, cpus, me);
308         }
309
310         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
311         put_cpu();
312
313         return called;
314 }
315
316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317                                       struct kvm_vcpu *except)
318 {
319         struct kvm_vcpu *vcpu;
320         struct cpumask *cpus;
321         unsigned long i;
322         bool called;
323         int me;
324
325         me = get_cpu();
326
327         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328         cpumask_clear(cpus);
329
330         kvm_for_each_vcpu(i, vcpu, kvm) {
331                 if (vcpu == except)
332                         continue;
333                 kvm_make_vcpu_request(vcpu, req, cpus, me);
334         }
335
336         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
337         put_cpu();
338
339         return called;
340 }
341
342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
343 {
344         return kvm_make_all_cpus_request_except(kvm, req, NULL);
345 }
346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
347
348 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
349 void kvm_flush_remote_tlbs(struct kvm *kvm)
350 {
351         ++kvm->stat.generic.remote_tlb_flush_requests;
352
353         /*
354          * We want to publish modifications to the page tables before reading
355          * mode. Pairs with a memory barrier in arch-specific code.
356          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
357          * and smp_mb in walk_shadow_page_lockless_begin/end.
358          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
359          *
360          * There is already an smp_mb__after_atomic() before
361          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
362          * barrier here.
363          */
364         if (!kvm_arch_flush_remote_tlb(kvm)
365             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
366                 ++kvm->stat.generic.remote_tlb_flush;
367 }
368 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
369 #endif
370
371 static void kvm_flush_shadow_all(struct kvm *kvm)
372 {
373         kvm_arch_flush_shadow_all(kvm);
374         kvm_arch_guest_memory_reclaimed(kvm);
375 }
376
377 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
378 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
379                                                gfp_t gfp_flags)
380 {
381         gfp_flags |= mc->gfp_zero;
382
383         if (mc->kmem_cache)
384                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
385         else
386                 return (void *)__get_free_page(gfp_flags);
387 }
388
389 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
390 {
391         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
392         void *obj;
393
394         if (mc->nobjs >= min)
395                 return 0;
396
397         if (unlikely(!mc->objects)) {
398                 if (WARN_ON_ONCE(!capacity))
399                         return -EIO;
400
401                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
402                 if (!mc->objects)
403                         return -ENOMEM;
404
405                 mc->capacity = capacity;
406         }
407
408         /* It is illegal to request a different capacity across topups. */
409         if (WARN_ON_ONCE(mc->capacity != capacity))
410                 return -EIO;
411
412         while (mc->nobjs < mc->capacity) {
413                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
414                 if (!obj)
415                         return mc->nobjs >= min ? 0 : -ENOMEM;
416                 mc->objects[mc->nobjs++] = obj;
417         }
418         return 0;
419 }
420
421 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
422 {
423         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
424 }
425
426 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
427 {
428         return mc->nobjs;
429 }
430
431 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
432 {
433         while (mc->nobjs) {
434                 if (mc->kmem_cache)
435                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
436                 else
437                         free_page((unsigned long)mc->objects[--mc->nobjs]);
438         }
439
440         kvfree(mc->objects);
441
442         mc->objects = NULL;
443         mc->capacity = 0;
444 }
445
446 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
447 {
448         void *p;
449
450         if (WARN_ON(!mc->nobjs))
451                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
452         else
453                 p = mc->objects[--mc->nobjs];
454         BUG_ON(!p);
455         return p;
456 }
457 #endif
458
459 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
460 {
461         mutex_init(&vcpu->mutex);
462         vcpu->cpu = -1;
463         vcpu->kvm = kvm;
464         vcpu->vcpu_id = id;
465         vcpu->pid = NULL;
466 #ifndef __KVM_HAVE_ARCH_WQP
467         rcuwait_init(&vcpu->wait);
468 #endif
469         kvm_async_pf_vcpu_init(vcpu);
470
471         kvm_vcpu_set_in_spin_loop(vcpu, false);
472         kvm_vcpu_set_dy_eligible(vcpu, false);
473         vcpu->preempted = false;
474         vcpu->ready = false;
475         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
476         vcpu->last_used_slot = NULL;
477
478         /* Fill the stats id string for the vcpu */
479         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
480                  task_pid_nr(current), id);
481 }
482
483 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
484 {
485         kvm_arch_vcpu_destroy(vcpu);
486         kvm_dirty_ring_free(&vcpu->dirty_ring);
487
488         /*
489          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
490          * the vcpu->pid pointer, and at destruction time all file descriptors
491          * are already gone.
492          */
493         put_pid(rcu_dereference_protected(vcpu->pid, 1));
494
495         free_page((unsigned long)vcpu->run);
496         kmem_cache_free(kvm_vcpu_cache, vcpu);
497 }
498
499 void kvm_destroy_vcpus(struct kvm *kvm)
500 {
501         unsigned long i;
502         struct kvm_vcpu *vcpu;
503
504         kvm_for_each_vcpu(i, vcpu, kvm) {
505                 kvm_vcpu_destroy(vcpu);
506                 xa_erase(&kvm->vcpu_array, i);
507         }
508
509         atomic_set(&kvm->online_vcpus, 0);
510 }
511 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
512
513 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
514 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
515 {
516         return container_of(mn, struct kvm, mmu_notifier);
517 }
518
519 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
520
521 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
522                              unsigned long end);
523
524 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
525
526 struct kvm_hva_range {
527         unsigned long start;
528         unsigned long end;
529         pte_t pte;
530         hva_handler_t handler;
531         on_lock_fn_t on_lock;
532         on_unlock_fn_t on_unlock;
533         bool flush_on_ret;
534         bool may_block;
535 };
536
537 /*
538  * Use a dedicated stub instead of NULL to indicate that there is no callback
539  * function/handler.  The compiler technically can't guarantee that a real
540  * function will have a non-zero address, and so it will generate code to
541  * check for !NULL, whereas comparing against a stub will be elided at compile
542  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
543  */
544 static void kvm_null_fn(void)
545 {
546
547 }
548 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
549
550 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
551 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
552         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
553              node;                                                           \
554              node = interval_tree_iter_next(node, start, last))      \
555
556 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
557                                                   const struct kvm_hva_range *range)
558 {
559         bool ret = false, locked = false;
560         struct kvm_gfn_range gfn_range;
561         struct kvm_memory_slot *slot;
562         struct kvm_memslots *slots;
563         int i, idx;
564
565         if (WARN_ON_ONCE(range->end <= range->start))
566                 return 0;
567
568         /* A null handler is allowed if and only if on_lock() is provided. */
569         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
570                          IS_KVM_NULL_FN(range->handler)))
571                 return 0;
572
573         idx = srcu_read_lock(&kvm->srcu);
574
575         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
576                 struct interval_tree_node *node;
577
578                 slots = __kvm_memslots(kvm, i);
579                 kvm_for_each_memslot_in_hva_range(node, slots,
580                                                   range->start, range->end - 1) {
581                         unsigned long hva_start, hva_end;
582
583                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
584                         hva_start = max(range->start, slot->userspace_addr);
585                         hva_end = min(range->end, slot->userspace_addr +
586                                                   (slot->npages << PAGE_SHIFT));
587
588                         /*
589                          * To optimize for the likely case where the address
590                          * range is covered by zero or one memslots, don't
591                          * bother making these conditional (to avoid writes on
592                          * the second or later invocation of the handler).
593                          */
594                         gfn_range.pte = range->pte;
595                         gfn_range.may_block = range->may_block;
596
597                         /*
598                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
599                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
600                          */
601                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
602                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
603                         gfn_range.slot = slot;
604
605                         if (!locked) {
606                                 locked = true;
607                                 KVM_MMU_LOCK(kvm);
608                                 if (!IS_KVM_NULL_FN(range->on_lock))
609                                         range->on_lock(kvm, range->start, range->end);
610                                 if (IS_KVM_NULL_FN(range->handler))
611                                         break;
612                         }
613                         ret |= range->handler(kvm, &gfn_range);
614                 }
615         }
616
617         if (range->flush_on_ret && ret)
618                 kvm_flush_remote_tlbs(kvm);
619
620         if (locked) {
621                 KVM_MMU_UNLOCK(kvm);
622                 if (!IS_KVM_NULL_FN(range->on_unlock))
623                         range->on_unlock(kvm);
624         }
625
626         srcu_read_unlock(&kvm->srcu, idx);
627
628         /* The notifiers are averse to booleans. :-( */
629         return (int)ret;
630 }
631
632 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
633                                                 unsigned long start,
634                                                 unsigned long end,
635                                                 pte_t pte,
636                                                 hva_handler_t handler)
637 {
638         struct kvm *kvm = mmu_notifier_to_kvm(mn);
639         const struct kvm_hva_range range = {
640                 .start          = start,
641                 .end            = end,
642                 .pte            = pte,
643                 .handler        = handler,
644                 .on_lock        = (void *)kvm_null_fn,
645                 .on_unlock      = (void *)kvm_null_fn,
646                 .flush_on_ret   = true,
647                 .may_block      = false,
648         };
649
650         return __kvm_handle_hva_range(kvm, &range);
651 }
652
653 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
654                                                          unsigned long start,
655                                                          unsigned long end,
656                                                          hva_handler_t handler)
657 {
658         struct kvm *kvm = mmu_notifier_to_kvm(mn);
659         const struct kvm_hva_range range = {
660                 .start          = start,
661                 .end            = end,
662                 .pte            = __pte(0),
663                 .handler        = handler,
664                 .on_lock        = (void *)kvm_null_fn,
665                 .on_unlock      = (void *)kvm_null_fn,
666                 .flush_on_ret   = false,
667                 .may_block      = false,
668         };
669
670         return __kvm_handle_hva_range(kvm, &range);
671 }
672
673 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
674 {
675         /*
676          * Skipping invalid memslots is correct if and only change_pte() is
677          * surrounded by invalidate_range_{start,end}(), which is currently
678          * guaranteed by the primary MMU.  If that ever changes, KVM needs to
679          * unmap the memslot instead of skipping the memslot to ensure that KVM
680          * doesn't hold references to the old PFN.
681          */
682         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
683
684         if (range->slot->flags & KVM_MEMSLOT_INVALID)
685                 return false;
686
687         return kvm_set_spte_gfn(kvm, range);
688 }
689
690 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
691                                         struct mm_struct *mm,
692                                         unsigned long address,
693                                         pte_t pte)
694 {
695         struct kvm *kvm = mmu_notifier_to_kvm(mn);
696
697         trace_kvm_set_spte_hva(address);
698
699         /*
700          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
701          * If mmu_invalidate_in_progress is zero, then no in-progress
702          * invalidations, including this one, found a relevant memslot at
703          * start(); rechecking memslots here is unnecessary.  Note, a false
704          * positive (count elevated by a different invalidation) is sub-optimal
705          * but functionally ok.
706          */
707         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
708         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
709                 return;
710
711         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
712 }
713
714 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
715                               unsigned long end)
716 {
717         /*
718          * The count increase must become visible at unlock time as no
719          * spte can be established without taking the mmu_lock and
720          * count is also read inside the mmu_lock critical section.
721          */
722         kvm->mmu_invalidate_in_progress++;
723         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
724                 kvm->mmu_invalidate_range_start = start;
725                 kvm->mmu_invalidate_range_end = end;
726         } else {
727                 /*
728                  * Fully tracking multiple concurrent ranges has diminishing
729                  * returns. Keep things simple and just find the minimal range
730                  * which includes the current and new ranges. As there won't be
731                  * enough information to subtract a range after its invalidate
732                  * completes, any ranges invalidated concurrently will
733                  * accumulate and persist until all outstanding invalidates
734                  * complete.
735                  */
736                 kvm->mmu_invalidate_range_start =
737                         min(kvm->mmu_invalidate_range_start, start);
738                 kvm->mmu_invalidate_range_end =
739                         max(kvm->mmu_invalidate_range_end, end);
740         }
741 }
742
743 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
744                                         const struct mmu_notifier_range *range)
745 {
746         struct kvm *kvm = mmu_notifier_to_kvm(mn);
747         const struct kvm_hva_range hva_range = {
748                 .start          = range->start,
749                 .end            = range->end,
750                 .pte            = __pte(0),
751                 .handler        = kvm_unmap_gfn_range,
752                 .on_lock        = kvm_mmu_invalidate_begin,
753                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
754                 .flush_on_ret   = true,
755                 .may_block      = mmu_notifier_range_blockable(range),
756         };
757
758         trace_kvm_unmap_hva_range(range->start, range->end);
759
760         /*
761          * Prevent memslot modification between range_start() and range_end()
762          * so that conditionally locking provides the same result in both
763          * functions.  Without that guarantee, the mmu_invalidate_in_progress
764          * adjustments will be imbalanced.
765          *
766          * Pairs with the decrement in range_end().
767          */
768         spin_lock(&kvm->mn_invalidate_lock);
769         kvm->mn_active_invalidate_count++;
770         spin_unlock(&kvm->mn_invalidate_lock);
771
772         /*
773          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
774          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
775          * each cache's lock.  There are relatively few caches in existence at
776          * any given time, and the caches themselves can check for hva overlap,
777          * i.e. don't need to rely on memslot overlap checks for performance.
778          * Because this runs without holding mmu_lock, the pfn caches must use
779          * mn_active_invalidate_count (see above) instead of
780          * mmu_invalidate_in_progress.
781          */
782         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
783                                           hva_range.may_block);
784
785         __kvm_handle_hva_range(kvm, &hva_range);
786
787         return 0;
788 }
789
790 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
791                             unsigned long end)
792 {
793         /*
794          * This sequence increase will notify the kvm page fault that
795          * the page that is going to be mapped in the spte could have
796          * been freed.
797          */
798         kvm->mmu_invalidate_seq++;
799         smp_wmb();
800         /*
801          * The above sequence increase must be visible before the
802          * below count decrease, which is ensured by the smp_wmb above
803          * in conjunction with the smp_rmb in mmu_invalidate_retry().
804          */
805         kvm->mmu_invalidate_in_progress--;
806 }
807
808 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
809                                         const struct mmu_notifier_range *range)
810 {
811         struct kvm *kvm = mmu_notifier_to_kvm(mn);
812         const struct kvm_hva_range hva_range = {
813                 .start          = range->start,
814                 .end            = range->end,
815                 .pte            = __pte(0),
816                 .handler        = (void *)kvm_null_fn,
817                 .on_lock        = kvm_mmu_invalidate_end,
818                 .on_unlock      = (void *)kvm_null_fn,
819                 .flush_on_ret   = false,
820                 .may_block      = mmu_notifier_range_blockable(range),
821         };
822         bool wake;
823
824         __kvm_handle_hva_range(kvm, &hva_range);
825
826         /* Pairs with the increment in range_start(). */
827         spin_lock(&kvm->mn_invalidate_lock);
828         wake = (--kvm->mn_active_invalidate_count == 0);
829         spin_unlock(&kvm->mn_invalidate_lock);
830
831         /*
832          * There can only be one waiter, since the wait happens under
833          * slots_lock.
834          */
835         if (wake)
836                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
837
838         BUG_ON(kvm->mmu_invalidate_in_progress < 0);
839 }
840
841 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
842                                               struct mm_struct *mm,
843                                               unsigned long start,
844                                               unsigned long end)
845 {
846         trace_kvm_age_hva(start, end);
847
848         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
849 }
850
851 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
852                                         struct mm_struct *mm,
853                                         unsigned long start,
854                                         unsigned long end)
855 {
856         trace_kvm_age_hva(start, end);
857
858         /*
859          * Even though we do not flush TLB, this will still adversely
860          * affect performance on pre-Haswell Intel EPT, where there is
861          * no EPT Access Bit to clear so that we have to tear down EPT
862          * tables instead. If we find this unacceptable, we can always
863          * add a parameter to kvm_age_hva so that it effectively doesn't
864          * do anything on clear_young.
865          *
866          * Also note that currently we never issue secondary TLB flushes
867          * from clear_young, leaving this job up to the regular system
868          * cadence. If we find this inaccurate, we might come up with a
869          * more sophisticated heuristic later.
870          */
871         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
872 }
873
874 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
875                                        struct mm_struct *mm,
876                                        unsigned long address)
877 {
878         trace_kvm_test_age_hva(address);
879
880         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
881                                              kvm_test_age_gfn);
882 }
883
884 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
885                                      struct mm_struct *mm)
886 {
887         struct kvm *kvm = mmu_notifier_to_kvm(mn);
888         int idx;
889
890         idx = srcu_read_lock(&kvm->srcu);
891         kvm_flush_shadow_all(kvm);
892         srcu_read_unlock(&kvm->srcu, idx);
893 }
894
895 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
896         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
897         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
898         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
899         .clear_young            = kvm_mmu_notifier_clear_young,
900         .test_young             = kvm_mmu_notifier_test_young,
901         .change_pte             = kvm_mmu_notifier_change_pte,
902         .release                = kvm_mmu_notifier_release,
903 };
904
905 static int kvm_init_mmu_notifier(struct kvm *kvm)
906 {
907         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
908         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
909 }
910
911 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
912
913 static int kvm_init_mmu_notifier(struct kvm *kvm)
914 {
915         return 0;
916 }
917
918 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
919
920 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
921 static int kvm_pm_notifier_call(struct notifier_block *bl,
922                                 unsigned long state,
923                                 void *unused)
924 {
925         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
926
927         return kvm_arch_pm_notifier(kvm, state);
928 }
929
930 static void kvm_init_pm_notifier(struct kvm *kvm)
931 {
932         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
933         /* Suspend KVM before we suspend ftrace, RCU, etc. */
934         kvm->pm_notifier.priority = INT_MAX;
935         register_pm_notifier(&kvm->pm_notifier);
936 }
937
938 static void kvm_destroy_pm_notifier(struct kvm *kvm)
939 {
940         unregister_pm_notifier(&kvm->pm_notifier);
941 }
942 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
943 static void kvm_init_pm_notifier(struct kvm *kvm)
944 {
945 }
946
947 static void kvm_destroy_pm_notifier(struct kvm *kvm)
948 {
949 }
950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
951
952 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
953 {
954         if (!memslot->dirty_bitmap)
955                 return;
956
957         kvfree(memslot->dirty_bitmap);
958         memslot->dirty_bitmap = NULL;
959 }
960
961 /* This does not remove the slot from struct kvm_memslots data structures */
962 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
963 {
964         kvm_destroy_dirty_bitmap(slot);
965
966         kvm_arch_free_memslot(kvm, slot);
967
968         kfree(slot);
969 }
970
971 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
972 {
973         struct hlist_node *idnode;
974         struct kvm_memory_slot *memslot;
975         int bkt;
976
977         /*
978          * The same memslot objects live in both active and inactive sets,
979          * arbitrarily free using index '1' so the second invocation of this
980          * function isn't operating over a structure with dangling pointers
981          * (even though this function isn't actually touching them).
982          */
983         if (!slots->node_idx)
984                 return;
985
986         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
987                 kvm_free_memslot(kvm, memslot);
988 }
989
990 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
991 {
992         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
993         case KVM_STATS_TYPE_INSTANT:
994                 return 0444;
995         case KVM_STATS_TYPE_CUMULATIVE:
996         case KVM_STATS_TYPE_PEAK:
997         default:
998                 return 0644;
999         }
1000 }
1001
1002
1003 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1004 {
1005         int i;
1006         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1007                                       kvm_vcpu_stats_header.num_desc;
1008
1009         if (IS_ERR(kvm->debugfs_dentry))
1010                 return;
1011
1012         debugfs_remove_recursive(kvm->debugfs_dentry);
1013
1014         if (kvm->debugfs_stat_data) {
1015                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1016                         kfree(kvm->debugfs_stat_data[i]);
1017                 kfree(kvm->debugfs_stat_data);
1018         }
1019 }
1020
1021 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1022 {
1023         static DEFINE_MUTEX(kvm_debugfs_lock);
1024         struct dentry *dent;
1025         char dir_name[ITOA_MAX_LEN * 2];
1026         struct kvm_stat_data *stat_data;
1027         const struct _kvm_stats_desc *pdesc;
1028         int i, ret = -ENOMEM;
1029         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1030                                       kvm_vcpu_stats_header.num_desc;
1031
1032         if (!debugfs_initialized())
1033                 return 0;
1034
1035         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1036         mutex_lock(&kvm_debugfs_lock);
1037         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1038         if (dent) {
1039                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1040                 dput(dent);
1041                 mutex_unlock(&kvm_debugfs_lock);
1042                 return 0;
1043         }
1044         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1045         mutex_unlock(&kvm_debugfs_lock);
1046         if (IS_ERR(dent))
1047                 return 0;
1048
1049         kvm->debugfs_dentry = dent;
1050         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1051                                          sizeof(*kvm->debugfs_stat_data),
1052                                          GFP_KERNEL_ACCOUNT);
1053         if (!kvm->debugfs_stat_data)
1054                 goto out_err;
1055
1056         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1057                 pdesc = &kvm_vm_stats_desc[i];
1058                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1059                 if (!stat_data)
1060                         goto out_err;
1061
1062                 stat_data->kvm = kvm;
1063                 stat_data->desc = pdesc;
1064                 stat_data->kind = KVM_STAT_VM;
1065                 kvm->debugfs_stat_data[i] = stat_data;
1066                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1067                                     kvm->debugfs_dentry, stat_data,
1068                                     &stat_fops_per_vm);
1069         }
1070
1071         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1072                 pdesc = &kvm_vcpu_stats_desc[i];
1073                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1074                 if (!stat_data)
1075                         goto out_err;
1076
1077                 stat_data->kvm = kvm;
1078                 stat_data->desc = pdesc;
1079                 stat_data->kind = KVM_STAT_VCPU;
1080                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1081                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1082                                     kvm->debugfs_dentry, stat_data,
1083                                     &stat_fops_per_vm);
1084         }
1085
1086         ret = kvm_arch_create_vm_debugfs(kvm);
1087         if (ret)
1088                 goto out_err;
1089
1090         return 0;
1091 out_err:
1092         kvm_destroy_vm_debugfs(kvm);
1093         return ret;
1094 }
1095
1096 /*
1097  * Called after the VM is otherwise initialized, but just before adding it to
1098  * the vm_list.
1099  */
1100 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1101 {
1102         return 0;
1103 }
1104
1105 /*
1106  * Called just after removing the VM from the vm_list, but before doing any
1107  * other destruction.
1108  */
1109 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1110 {
1111 }
1112
1113 /*
1114  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1115  * be setup already, so we can create arch-specific debugfs entries under it.
1116  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1117  * a per-arch destroy interface is not needed.
1118  */
1119 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1120 {
1121         return 0;
1122 }
1123
1124 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1125 {
1126         struct kvm *kvm = kvm_arch_alloc_vm();
1127         struct kvm_memslots *slots;
1128         int r = -ENOMEM;
1129         int i, j;
1130
1131         if (!kvm)
1132                 return ERR_PTR(-ENOMEM);
1133
1134         /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1135         __module_get(kvm_chardev_ops.owner);
1136
1137         KVM_MMU_LOCK_INIT(kvm);
1138         mmgrab(current->mm);
1139         kvm->mm = current->mm;
1140         kvm_eventfd_init(kvm);
1141         mutex_init(&kvm->lock);
1142         mutex_init(&kvm->irq_lock);
1143         mutex_init(&kvm->slots_lock);
1144         mutex_init(&kvm->slots_arch_lock);
1145         spin_lock_init(&kvm->mn_invalidate_lock);
1146         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1147         xa_init(&kvm->vcpu_array);
1148
1149         INIT_LIST_HEAD(&kvm->gpc_list);
1150         spin_lock_init(&kvm->gpc_lock);
1151
1152         INIT_LIST_HEAD(&kvm->devices);
1153         kvm->max_vcpus = KVM_MAX_VCPUS;
1154
1155         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1156
1157         /*
1158          * Force subsequent debugfs file creations to fail if the VM directory
1159          * is not created (by kvm_create_vm_debugfs()).
1160          */
1161         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1162
1163         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1164                  task_pid_nr(current));
1165
1166         if (init_srcu_struct(&kvm->srcu))
1167                 goto out_err_no_srcu;
1168         if (init_srcu_struct(&kvm->irq_srcu))
1169                 goto out_err_no_irq_srcu;
1170
1171         refcount_set(&kvm->users_count, 1);
1172         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1173                 for (j = 0; j < 2; j++) {
1174                         slots = &kvm->__memslots[i][j];
1175
1176                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1177                         slots->hva_tree = RB_ROOT_CACHED;
1178                         slots->gfn_tree = RB_ROOT;
1179                         hash_init(slots->id_hash);
1180                         slots->node_idx = j;
1181
1182                         /* Generations must be different for each address space. */
1183                         slots->generation = i;
1184                 }
1185
1186                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1187         }
1188
1189         for (i = 0; i < KVM_NR_BUSES; i++) {
1190                 rcu_assign_pointer(kvm->buses[i],
1191                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1192                 if (!kvm->buses[i])
1193                         goto out_err_no_arch_destroy_vm;
1194         }
1195
1196         r = kvm_arch_init_vm(kvm, type);
1197         if (r)
1198                 goto out_err_no_arch_destroy_vm;
1199
1200         r = hardware_enable_all();
1201         if (r)
1202                 goto out_err_no_disable;
1203
1204 #ifdef CONFIG_HAVE_KVM_IRQFD
1205         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1206 #endif
1207
1208         r = kvm_init_mmu_notifier(kvm);
1209         if (r)
1210                 goto out_err_no_mmu_notifier;
1211
1212         r = kvm_coalesced_mmio_init(kvm);
1213         if (r < 0)
1214                 goto out_no_coalesced_mmio;
1215
1216         r = kvm_create_vm_debugfs(kvm, fdname);
1217         if (r)
1218                 goto out_err_no_debugfs;
1219
1220         r = kvm_arch_post_init_vm(kvm);
1221         if (r)
1222                 goto out_err;
1223
1224         mutex_lock(&kvm_lock);
1225         list_add(&kvm->vm_list, &vm_list);
1226         mutex_unlock(&kvm_lock);
1227
1228         preempt_notifier_inc();
1229         kvm_init_pm_notifier(kvm);
1230
1231         return kvm;
1232
1233 out_err:
1234         kvm_destroy_vm_debugfs(kvm);
1235 out_err_no_debugfs:
1236         kvm_coalesced_mmio_free(kvm);
1237 out_no_coalesced_mmio:
1238 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1239         if (kvm->mmu_notifier.ops)
1240                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1241 #endif
1242 out_err_no_mmu_notifier:
1243         hardware_disable_all();
1244 out_err_no_disable:
1245         kvm_arch_destroy_vm(kvm);
1246 out_err_no_arch_destroy_vm:
1247         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1248         for (i = 0; i < KVM_NR_BUSES; i++)
1249                 kfree(kvm_get_bus(kvm, i));
1250         cleanup_srcu_struct(&kvm->irq_srcu);
1251 out_err_no_irq_srcu:
1252         cleanup_srcu_struct(&kvm->srcu);
1253 out_err_no_srcu:
1254         kvm_arch_free_vm(kvm);
1255         mmdrop(current->mm);
1256         module_put(kvm_chardev_ops.owner);
1257         return ERR_PTR(r);
1258 }
1259
1260 static void kvm_destroy_devices(struct kvm *kvm)
1261 {
1262         struct kvm_device *dev, *tmp;
1263
1264         /*
1265          * We do not need to take the kvm->lock here, because nobody else
1266          * has a reference to the struct kvm at this point and therefore
1267          * cannot access the devices list anyhow.
1268          */
1269         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1270                 list_del(&dev->vm_node);
1271                 dev->ops->destroy(dev);
1272         }
1273 }
1274
1275 static void kvm_destroy_vm(struct kvm *kvm)
1276 {
1277         int i;
1278         struct mm_struct *mm = kvm->mm;
1279
1280         kvm_destroy_pm_notifier(kvm);
1281         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1282         kvm_destroy_vm_debugfs(kvm);
1283         kvm_arch_sync_events(kvm);
1284         mutex_lock(&kvm_lock);
1285         list_del(&kvm->vm_list);
1286         mutex_unlock(&kvm_lock);
1287         kvm_arch_pre_destroy_vm(kvm);
1288
1289         kvm_free_irq_routing(kvm);
1290         for (i = 0; i < KVM_NR_BUSES; i++) {
1291                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1292
1293                 if (bus)
1294                         kvm_io_bus_destroy(bus);
1295                 kvm->buses[i] = NULL;
1296         }
1297         kvm_coalesced_mmio_free(kvm);
1298 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1299         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1300         /*
1301          * At this point, pending calls to invalidate_range_start()
1302          * have completed but no more MMU notifiers will run, so
1303          * mn_active_invalidate_count may remain unbalanced.
1304          * No threads can be waiting in kvm_swap_active_memslots() as the
1305          * last reference on KVM has been dropped, but freeing
1306          * memslots would deadlock without this manual intervention.
1307          */
1308         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1309         kvm->mn_active_invalidate_count = 0;
1310 #else
1311         kvm_flush_shadow_all(kvm);
1312 #endif
1313         kvm_arch_destroy_vm(kvm);
1314         kvm_destroy_devices(kvm);
1315         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1316                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1317                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1318         }
1319         cleanup_srcu_struct(&kvm->irq_srcu);
1320         cleanup_srcu_struct(&kvm->srcu);
1321         kvm_arch_free_vm(kvm);
1322         preempt_notifier_dec();
1323         hardware_disable_all();
1324         mmdrop(mm);
1325         module_put(kvm_chardev_ops.owner);
1326 }
1327
1328 void kvm_get_kvm(struct kvm *kvm)
1329 {
1330         refcount_inc(&kvm->users_count);
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1333
1334 /*
1335  * Make sure the vm is not during destruction, which is a safe version of
1336  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1337  */
1338 bool kvm_get_kvm_safe(struct kvm *kvm)
1339 {
1340         return refcount_inc_not_zero(&kvm->users_count);
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1343
1344 void kvm_put_kvm(struct kvm *kvm)
1345 {
1346         if (refcount_dec_and_test(&kvm->users_count))
1347                 kvm_destroy_vm(kvm);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1350
1351 /*
1352  * Used to put a reference that was taken on behalf of an object associated
1353  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1354  * of the new file descriptor fails and the reference cannot be transferred to
1355  * its final owner.  In such cases, the caller is still actively using @kvm and
1356  * will fail miserably if the refcount unexpectedly hits zero.
1357  */
1358 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1359 {
1360         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1363
1364 static int kvm_vm_release(struct inode *inode, struct file *filp)
1365 {
1366         struct kvm *kvm = filp->private_data;
1367
1368         kvm_irqfd_release(kvm);
1369
1370         kvm_put_kvm(kvm);
1371         return 0;
1372 }
1373
1374 /*
1375  * Allocation size is twice as large as the actual dirty bitmap size.
1376  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1377  */
1378 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1379 {
1380         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1381
1382         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1383         if (!memslot->dirty_bitmap)
1384                 return -ENOMEM;
1385
1386         return 0;
1387 }
1388
1389 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1390 {
1391         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1392         int node_idx_inactive = active->node_idx ^ 1;
1393
1394         return &kvm->__memslots[as_id][node_idx_inactive];
1395 }
1396
1397 /*
1398  * Helper to get the address space ID when one of memslot pointers may be NULL.
1399  * This also serves as a sanity that at least one of the pointers is non-NULL,
1400  * and that their address space IDs don't diverge.
1401  */
1402 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1403                                   struct kvm_memory_slot *b)
1404 {
1405         if (WARN_ON_ONCE(!a && !b))
1406                 return 0;
1407
1408         if (!a)
1409                 return b->as_id;
1410         if (!b)
1411                 return a->as_id;
1412
1413         WARN_ON_ONCE(a->as_id != b->as_id);
1414         return a->as_id;
1415 }
1416
1417 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1418                                 struct kvm_memory_slot *slot)
1419 {
1420         struct rb_root *gfn_tree = &slots->gfn_tree;
1421         struct rb_node **node, *parent;
1422         int idx = slots->node_idx;
1423
1424         parent = NULL;
1425         for (node = &gfn_tree->rb_node; *node; ) {
1426                 struct kvm_memory_slot *tmp;
1427
1428                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1429                 parent = *node;
1430                 if (slot->base_gfn < tmp->base_gfn)
1431                         node = &(*node)->rb_left;
1432                 else if (slot->base_gfn > tmp->base_gfn)
1433                         node = &(*node)->rb_right;
1434                 else
1435                         BUG();
1436         }
1437
1438         rb_link_node(&slot->gfn_node[idx], parent, node);
1439         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1440 }
1441
1442 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1443                                struct kvm_memory_slot *slot)
1444 {
1445         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1446 }
1447
1448 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1449                                  struct kvm_memory_slot *old,
1450                                  struct kvm_memory_slot *new)
1451 {
1452         int idx = slots->node_idx;
1453
1454         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1455
1456         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1457                         &slots->gfn_tree);
1458 }
1459
1460 /*
1461  * Replace @old with @new in the inactive memslots.
1462  *
1463  * With NULL @old this simply adds @new.
1464  * With NULL @new this simply removes @old.
1465  *
1466  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1467  * appropriately.
1468  */
1469 static void kvm_replace_memslot(struct kvm *kvm,
1470                                 struct kvm_memory_slot *old,
1471                                 struct kvm_memory_slot *new)
1472 {
1473         int as_id = kvm_memslots_get_as_id(old, new);
1474         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1475         int idx = slots->node_idx;
1476
1477         if (old) {
1478                 hash_del(&old->id_node[idx]);
1479                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1480
1481                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1482                         atomic_long_set(&slots->last_used_slot, (long)new);
1483
1484                 if (!new) {
1485                         kvm_erase_gfn_node(slots, old);
1486                         return;
1487                 }
1488         }
1489
1490         /*
1491          * Initialize @new's hva range.  Do this even when replacing an @old
1492          * slot, kvm_copy_memslot() deliberately does not touch node data.
1493          */
1494         new->hva_node[idx].start = new->userspace_addr;
1495         new->hva_node[idx].last = new->userspace_addr +
1496                                   (new->npages << PAGE_SHIFT) - 1;
1497
1498         /*
1499          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1500          * hva_node needs to be swapped with remove+insert even though hva can't
1501          * change when replacing an existing slot.
1502          */
1503         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1504         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1505
1506         /*
1507          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1508          * switch the node in the gfn tree instead of removing the old and
1509          * inserting the new as two separate operations. Replacement is a
1510          * single O(1) operation versus two O(log(n)) operations for
1511          * remove+insert.
1512          */
1513         if (old && old->base_gfn == new->base_gfn) {
1514                 kvm_replace_gfn_node(slots, old, new);
1515         } else {
1516                 if (old)
1517                         kvm_erase_gfn_node(slots, old);
1518                 kvm_insert_gfn_node(slots, new);
1519         }
1520 }
1521
1522 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1523 {
1524         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1525
1526 #ifdef __KVM_HAVE_READONLY_MEM
1527         valid_flags |= KVM_MEM_READONLY;
1528 #endif
1529
1530         if (mem->flags & ~valid_flags)
1531                 return -EINVAL;
1532
1533         return 0;
1534 }
1535
1536 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1537 {
1538         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1539
1540         /* Grab the generation from the activate memslots. */
1541         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1542
1543         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1544         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1545
1546         /*
1547          * Do not store the new memslots while there are invalidations in
1548          * progress, otherwise the locking in invalidate_range_start and
1549          * invalidate_range_end will be unbalanced.
1550          */
1551         spin_lock(&kvm->mn_invalidate_lock);
1552         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1553         while (kvm->mn_active_invalidate_count) {
1554                 set_current_state(TASK_UNINTERRUPTIBLE);
1555                 spin_unlock(&kvm->mn_invalidate_lock);
1556                 schedule();
1557                 spin_lock(&kvm->mn_invalidate_lock);
1558         }
1559         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1560         rcu_assign_pointer(kvm->memslots[as_id], slots);
1561         spin_unlock(&kvm->mn_invalidate_lock);
1562
1563         /*
1564          * Acquired in kvm_set_memslot. Must be released before synchronize
1565          * SRCU below in order to avoid deadlock with another thread
1566          * acquiring the slots_arch_lock in an srcu critical section.
1567          */
1568         mutex_unlock(&kvm->slots_arch_lock);
1569
1570         synchronize_srcu_expedited(&kvm->srcu);
1571
1572         /*
1573          * Increment the new memslot generation a second time, dropping the
1574          * update in-progress flag and incrementing the generation based on
1575          * the number of address spaces.  This provides a unique and easily
1576          * identifiable generation number while the memslots are in flux.
1577          */
1578         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1579
1580         /*
1581          * Generations must be unique even across address spaces.  We do not need
1582          * a global counter for that, instead the generation space is evenly split
1583          * across address spaces.  For example, with two address spaces, address
1584          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1585          * use generations 1, 3, 5, ...
1586          */
1587         gen += KVM_ADDRESS_SPACE_NUM;
1588
1589         kvm_arch_memslots_updated(kvm, gen);
1590
1591         slots->generation = gen;
1592 }
1593
1594 static int kvm_prepare_memory_region(struct kvm *kvm,
1595                                      const struct kvm_memory_slot *old,
1596                                      struct kvm_memory_slot *new,
1597                                      enum kvm_mr_change change)
1598 {
1599         int r;
1600
1601         /*
1602          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1603          * will be freed on "commit".  If logging is enabled in both old and
1604          * new, reuse the existing bitmap.  If logging is enabled only in the
1605          * new and KVM isn't using a ring buffer, allocate and initialize a
1606          * new bitmap.
1607          */
1608         if (change != KVM_MR_DELETE) {
1609                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1610                         new->dirty_bitmap = NULL;
1611                 else if (old && old->dirty_bitmap)
1612                         new->dirty_bitmap = old->dirty_bitmap;
1613                 else if (kvm_use_dirty_bitmap(kvm)) {
1614                         r = kvm_alloc_dirty_bitmap(new);
1615                         if (r)
1616                                 return r;
1617
1618                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1619                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1620                 }
1621         }
1622
1623         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1624
1625         /* Free the bitmap on failure if it was allocated above. */
1626         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1627                 kvm_destroy_dirty_bitmap(new);
1628
1629         return r;
1630 }
1631
1632 static void kvm_commit_memory_region(struct kvm *kvm,
1633                                      struct kvm_memory_slot *old,
1634                                      const struct kvm_memory_slot *new,
1635                                      enum kvm_mr_change change)
1636 {
1637         int old_flags = old ? old->flags : 0;
1638         int new_flags = new ? new->flags : 0;
1639         /*
1640          * Update the total number of memslot pages before calling the arch
1641          * hook so that architectures can consume the result directly.
1642          */
1643         if (change == KVM_MR_DELETE)
1644                 kvm->nr_memslot_pages -= old->npages;
1645         else if (change == KVM_MR_CREATE)
1646                 kvm->nr_memslot_pages += new->npages;
1647
1648         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1649                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1650                 atomic_set(&kvm->nr_memslots_dirty_logging,
1651                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1652         }
1653
1654         kvm_arch_commit_memory_region(kvm, old, new, change);
1655
1656         switch (change) {
1657         case KVM_MR_CREATE:
1658                 /* Nothing more to do. */
1659                 break;
1660         case KVM_MR_DELETE:
1661                 /* Free the old memslot and all its metadata. */
1662                 kvm_free_memslot(kvm, old);
1663                 break;
1664         case KVM_MR_MOVE:
1665         case KVM_MR_FLAGS_ONLY:
1666                 /*
1667                  * Free the dirty bitmap as needed; the below check encompasses
1668                  * both the flags and whether a ring buffer is being used)
1669                  */
1670                 if (old->dirty_bitmap && !new->dirty_bitmap)
1671                         kvm_destroy_dirty_bitmap(old);
1672
1673                 /*
1674                  * The final quirk.  Free the detached, old slot, but only its
1675                  * memory, not any metadata.  Metadata, including arch specific
1676                  * data, may be reused by @new.
1677                  */
1678                 kfree(old);
1679                 break;
1680         default:
1681                 BUG();
1682         }
1683 }
1684
1685 /*
1686  * Activate @new, which must be installed in the inactive slots by the caller,
1687  * by swapping the active slots and then propagating @new to @old once @old is
1688  * unreachable and can be safely modified.
1689  *
1690  * With NULL @old this simply adds @new to @active (while swapping the sets).
1691  * With NULL @new this simply removes @old from @active and frees it
1692  * (while also swapping the sets).
1693  */
1694 static void kvm_activate_memslot(struct kvm *kvm,
1695                                  struct kvm_memory_slot *old,
1696                                  struct kvm_memory_slot *new)
1697 {
1698         int as_id = kvm_memslots_get_as_id(old, new);
1699
1700         kvm_swap_active_memslots(kvm, as_id);
1701
1702         /* Propagate the new memslot to the now inactive memslots. */
1703         kvm_replace_memslot(kvm, old, new);
1704 }
1705
1706 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1707                              const struct kvm_memory_slot *src)
1708 {
1709         dest->base_gfn = src->base_gfn;
1710         dest->npages = src->npages;
1711         dest->dirty_bitmap = src->dirty_bitmap;
1712         dest->arch = src->arch;
1713         dest->userspace_addr = src->userspace_addr;
1714         dest->flags = src->flags;
1715         dest->id = src->id;
1716         dest->as_id = src->as_id;
1717 }
1718
1719 static void kvm_invalidate_memslot(struct kvm *kvm,
1720                                    struct kvm_memory_slot *old,
1721                                    struct kvm_memory_slot *invalid_slot)
1722 {
1723         /*
1724          * Mark the current slot INVALID.  As with all memslot modifications,
1725          * this must be done on an unreachable slot to avoid modifying the
1726          * current slot in the active tree.
1727          */
1728         kvm_copy_memslot(invalid_slot, old);
1729         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1730         kvm_replace_memslot(kvm, old, invalid_slot);
1731
1732         /*
1733          * Activate the slot that is now marked INVALID, but don't propagate
1734          * the slot to the now inactive slots. The slot is either going to be
1735          * deleted or recreated as a new slot.
1736          */
1737         kvm_swap_active_memslots(kvm, old->as_id);
1738
1739         /*
1740          * From this point no new shadow pages pointing to a deleted, or moved,
1741          * memslot will be created.  Validation of sp->gfn happens in:
1742          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1743          *      - kvm_is_visible_gfn (mmu_check_root)
1744          */
1745         kvm_arch_flush_shadow_memslot(kvm, old);
1746         kvm_arch_guest_memory_reclaimed(kvm);
1747
1748         /* Was released by kvm_swap_active_memslots(), reacquire. */
1749         mutex_lock(&kvm->slots_arch_lock);
1750
1751         /*
1752          * Copy the arch-specific field of the newly-installed slot back to the
1753          * old slot as the arch data could have changed between releasing
1754          * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1755          * above.  Writers are required to retrieve memslots *after* acquiring
1756          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1757          */
1758         old->arch = invalid_slot->arch;
1759 }
1760
1761 static void kvm_create_memslot(struct kvm *kvm,
1762                                struct kvm_memory_slot *new)
1763 {
1764         /* Add the new memslot to the inactive set and activate. */
1765         kvm_replace_memslot(kvm, NULL, new);
1766         kvm_activate_memslot(kvm, NULL, new);
1767 }
1768
1769 static void kvm_delete_memslot(struct kvm *kvm,
1770                                struct kvm_memory_slot *old,
1771                                struct kvm_memory_slot *invalid_slot)
1772 {
1773         /*
1774          * Remove the old memslot (in the inactive memslots) by passing NULL as
1775          * the "new" slot, and for the invalid version in the active slots.
1776          */
1777         kvm_replace_memslot(kvm, old, NULL);
1778         kvm_activate_memslot(kvm, invalid_slot, NULL);
1779 }
1780
1781 static void kvm_move_memslot(struct kvm *kvm,
1782                              struct kvm_memory_slot *old,
1783                              struct kvm_memory_slot *new,
1784                              struct kvm_memory_slot *invalid_slot)
1785 {
1786         /*
1787          * Replace the old memslot in the inactive slots, and then swap slots
1788          * and replace the current INVALID with the new as well.
1789          */
1790         kvm_replace_memslot(kvm, old, new);
1791         kvm_activate_memslot(kvm, invalid_slot, new);
1792 }
1793
1794 static void kvm_update_flags_memslot(struct kvm *kvm,
1795                                      struct kvm_memory_slot *old,
1796                                      struct kvm_memory_slot *new)
1797 {
1798         /*
1799          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1800          * an intermediate step. Instead, the old memslot is simply replaced
1801          * with a new, updated copy in both memslot sets.
1802          */
1803         kvm_replace_memslot(kvm, old, new);
1804         kvm_activate_memslot(kvm, old, new);
1805 }
1806
1807 static int kvm_set_memslot(struct kvm *kvm,
1808                            struct kvm_memory_slot *old,
1809                            struct kvm_memory_slot *new,
1810                            enum kvm_mr_change change)
1811 {
1812         struct kvm_memory_slot *invalid_slot;
1813         int r;
1814
1815         /*
1816          * Released in kvm_swap_active_memslots().
1817          *
1818          * Must be held from before the current memslots are copied until after
1819          * the new memslots are installed with rcu_assign_pointer, then
1820          * released before the synchronize srcu in kvm_swap_active_memslots().
1821          *
1822          * When modifying memslots outside of the slots_lock, must be held
1823          * before reading the pointer to the current memslots until after all
1824          * changes to those memslots are complete.
1825          *
1826          * These rules ensure that installing new memslots does not lose
1827          * changes made to the previous memslots.
1828          */
1829         mutex_lock(&kvm->slots_arch_lock);
1830
1831         /*
1832          * Invalidate the old slot if it's being deleted or moved.  This is
1833          * done prior to actually deleting/moving the memslot to allow vCPUs to
1834          * continue running by ensuring there are no mappings or shadow pages
1835          * for the memslot when it is deleted/moved.  Without pre-invalidation
1836          * (and without a lock), a window would exist between effecting the
1837          * delete/move and committing the changes in arch code where KVM or a
1838          * guest could access a non-existent memslot.
1839          *
1840          * Modifications are done on a temporary, unreachable slot.  The old
1841          * slot needs to be preserved in case a later step fails and the
1842          * invalidation needs to be reverted.
1843          */
1844         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1845                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1846                 if (!invalid_slot) {
1847                         mutex_unlock(&kvm->slots_arch_lock);
1848                         return -ENOMEM;
1849                 }
1850                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1851         }
1852
1853         r = kvm_prepare_memory_region(kvm, old, new, change);
1854         if (r) {
1855                 /*
1856                  * For DELETE/MOVE, revert the above INVALID change.  No
1857                  * modifications required since the original slot was preserved
1858                  * in the inactive slots.  Changing the active memslots also
1859                  * release slots_arch_lock.
1860                  */
1861                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1862                         kvm_activate_memslot(kvm, invalid_slot, old);
1863                         kfree(invalid_slot);
1864                 } else {
1865                         mutex_unlock(&kvm->slots_arch_lock);
1866                 }
1867                 return r;
1868         }
1869
1870         /*
1871          * For DELETE and MOVE, the working slot is now active as the INVALID
1872          * version of the old slot.  MOVE is particularly special as it reuses
1873          * the old slot and returns a copy of the old slot (in working_slot).
1874          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1875          * old slot is detached but otherwise preserved.
1876          */
1877         if (change == KVM_MR_CREATE)
1878                 kvm_create_memslot(kvm, new);
1879         else if (change == KVM_MR_DELETE)
1880                 kvm_delete_memslot(kvm, old, invalid_slot);
1881         else if (change == KVM_MR_MOVE)
1882                 kvm_move_memslot(kvm, old, new, invalid_slot);
1883         else if (change == KVM_MR_FLAGS_ONLY)
1884                 kvm_update_flags_memslot(kvm, old, new);
1885         else
1886                 BUG();
1887
1888         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1889         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1890                 kfree(invalid_slot);
1891
1892         /*
1893          * No need to refresh new->arch, changes after dropping slots_arch_lock
1894          * will directly hit the final, active memslot.  Architectures are
1895          * responsible for knowing that new->arch may be stale.
1896          */
1897         kvm_commit_memory_region(kvm, old, new, change);
1898
1899         return 0;
1900 }
1901
1902 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1903                                       gfn_t start, gfn_t end)
1904 {
1905         struct kvm_memslot_iter iter;
1906
1907         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1908                 if (iter.slot->id != id)
1909                         return true;
1910         }
1911
1912         return false;
1913 }
1914
1915 /*
1916  * Allocate some memory and give it an address in the guest physical address
1917  * space.
1918  *
1919  * Discontiguous memory is allowed, mostly for framebuffers.
1920  *
1921  * Must be called holding kvm->slots_lock for write.
1922  */
1923 int __kvm_set_memory_region(struct kvm *kvm,
1924                             const struct kvm_userspace_memory_region *mem)
1925 {
1926         struct kvm_memory_slot *old, *new;
1927         struct kvm_memslots *slots;
1928         enum kvm_mr_change change;
1929         unsigned long npages;
1930         gfn_t base_gfn;
1931         int as_id, id;
1932         int r;
1933
1934         r = check_memory_region_flags(mem);
1935         if (r)
1936                 return r;
1937
1938         as_id = mem->slot >> 16;
1939         id = (u16)mem->slot;
1940
1941         /* General sanity checks */
1942         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1943             (mem->memory_size != (unsigned long)mem->memory_size))
1944                 return -EINVAL;
1945         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1946                 return -EINVAL;
1947         /* We can read the guest memory with __xxx_user() later on. */
1948         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1949             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1950              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1951                         mem->memory_size))
1952                 return -EINVAL;
1953         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1954                 return -EINVAL;
1955         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1956                 return -EINVAL;
1957         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1958                 return -EINVAL;
1959
1960         slots = __kvm_memslots(kvm, as_id);
1961
1962         /*
1963          * Note, the old memslot (and the pointer itself!) may be invalidated
1964          * and/or destroyed by kvm_set_memslot().
1965          */
1966         old = id_to_memslot(slots, id);
1967
1968         if (!mem->memory_size) {
1969                 if (!old || !old->npages)
1970                         return -EINVAL;
1971
1972                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1973                         return -EIO;
1974
1975                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1976         }
1977
1978         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1979         npages = (mem->memory_size >> PAGE_SHIFT);
1980
1981         if (!old || !old->npages) {
1982                 change = KVM_MR_CREATE;
1983
1984                 /*
1985                  * To simplify KVM internals, the total number of pages across
1986                  * all memslots must fit in an unsigned long.
1987                  */
1988                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1989                         return -EINVAL;
1990         } else { /* Modify an existing slot. */
1991                 if ((mem->userspace_addr != old->userspace_addr) ||
1992                     (npages != old->npages) ||
1993                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1994                         return -EINVAL;
1995
1996                 if (base_gfn != old->base_gfn)
1997                         change = KVM_MR_MOVE;
1998                 else if (mem->flags != old->flags)
1999                         change = KVM_MR_FLAGS_ONLY;
2000                 else /* Nothing to change. */
2001                         return 0;
2002         }
2003
2004         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2005             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2006                 return -EEXIST;
2007
2008         /* Allocate a slot that will persist in the memslot. */
2009         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2010         if (!new)
2011                 return -ENOMEM;
2012
2013         new->as_id = as_id;
2014         new->id = id;
2015         new->base_gfn = base_gfn;
2016         new->npages = npages;
2017         new->flags = mem->flags;
2018         new->userspace_addr = mem->userspace_addr;
2019
2020         r = kvm_set_memslot(kvm, old, new, change);
2021         if (r)
2022                 kfree(new);
2023         return r;
2024 }
2025 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2026
2027 int kvm_set_memory_region(struct kvm *kvm,
2028                           const struct kvm_userspace_memory_region *mem)
2029 {
2030         int r;
2031
2032         mutex_lock(&kvm->slots_lock);
2033         r = __kvm_set_memory_region(kvm, mem);
2034         mutex_unlock(&kvm->slots_lock);
2035         return r;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2038
2039 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2040                                           struct kvm_userspace_memory_region *mem)
2041 {
2042         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2043                 return -EINVAL;
2044
2045         return kvm_set_memory_region(kvm, mem);
2046 }
2047
2048 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2049 /**
2050  * kvm_get_dirty_log - get a snapshot of dirty pages
2051  * @kvm:        pointer to kvm instance
2052  * @log:        slot id and address to which we copy the log
2053  * @is_dirty:   set to '1' if any dirty pages were found
2054  * @memslot:    set to the associated memslot, always valid on success
2055  */
2056 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2057                       int *is_dirty, struct kvm_memory_slot **memslot)
2058 {
2059         struct kvm_memslots *slots;
2060         int i, as_id, id;
2061         unsigned long n;
2062         unsigned long any = 0;
2063
2064         /* Dirty ring tracking may be exclusive to dirty log tracking */
2065         if (!kvm_use_dirty_bitmap(kvm))
2066                 return -ENXIO;
2067
2068         *memslot = NULL;
2069         *is_dirty = 0;
2070
2071         as_id = log->slot >> 16;
2072         id = (u16)log->slot;
2073         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2074                 return -EINVAL;
2075
2076         slots = __kvm_memslots(kvm, as_id);
2077         *memslot = id_to_memslot(slots, id);
2078         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2079                 return -ENOENT;
2080
2081         kvm_arch_sync_dirty_log(kvm, *memslot);
2082
2083         n = kvm_dirty_bitmap_bytes(*memslot);
2084
2085         for (i = 0; !any && i < n/sizeof(long); ++i)
2086                 any = (*memslot)->dirty_bitmap[i];
2087
2088         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2089                 return -EFAULT;
2090
2091         if (any)
2092                 *is_dirty = 1;
2093         return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2096
2097 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2098 /**
2099  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2100  *      and reenable dirty page tracking for the corresponding pages.
2101  * @kvm:        pointer to kvm instance
2102  * @log:        slot id and address to which we copy the log
2103  *
2104  * We need to keep it in mind that VCPU threads can write to the bitmap
2105  * concurrently. So, to avoid losing track of dirty pages we keep the
2106  * following order:
2107  *
2108  *    1. Take a snapshot of the bit and clear it if needed.
2109  *    2. Write protect the corresponding page.
2110  *    3. Copy the snapshot to the userspace.
2111  *    4. Upon return caller flushes TLB's if needed.
2112  *
2113  * Between 2 and 4, the guest may write to the page using the remaining TLB
2114  * entry.  This is not a problem because the page is reported dirty using
2115  * the snapshot taken before and step 4 ensures that writes done after
2116  * exiting to userspace will be logged for the next call.
2117  *
2118  */
2119 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2120 {
2121         struct kvm_memslots *slots;
2122         struct kvm_memory_slot *memslot;
2123         int i, as_id, id;
2124         unsigned long n;
2125         unsigned long *dirty_bitmap;
2126         unsigned long *dirty_bitmap_buffer;
2127         bool flush;
2128
2129         /* Dirty ring tracking may be exclusive to dirty log tracking */
2130         if (!kvm_use_dirty_bitmap(kvm))
2131                 return -ENXIO;
2132
2133         as_id = log->slot >> 16;
2134         id = (u16)log->slot;
2135         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2136                 return -EINVAL;
2137
2138         slots = __kvm_memslots(kvm, as_id);
2139         memslot = id_to_memslot(slots, id);
2140         if (!memslot || !memslot->dirty_bitmap)
2141                 return -ENOENT;
2142
2143         dirty_bitmap = memslot->dirty_bitmap;
2144
2145         kvm_arch_sync_dirty_log(kvm, memslot);
2146
2147         n = kvm_dirty_bitmap_bytes(memslot);
2148         flush = false;
2149         if (kvm->manual_dirty_log_protect) {
2150                 /*
2151                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2152                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2153                  * is some code duplication between this function and
2154                  * kvm_get_dirty_log, but hopefully all architecture
2155                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2156                  * can be eliminated.
2157                  */
2158                 dirty_bitmap_buffer = dirty_bitmap;
2159         } else {
2160                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2161                 memset(dirty_bitmap_buffer, 0, n);
2162
2163                 KVM_MMU_LOCK(kvm);
2164                 for (i = 0; i < n / sizeof(long); i++) {
2165                         unsigned long mask;
2166                         gfn_t offset;
2167
2168                         if (!dirty_bitmap[i])
2169                                 continue;
2170
2171                         flush = true;
2172                         mask = xchg(&dirty_bitmap[i], 0);
2173                         dirty_bitmap_buffer[i] = mask;
2174
2175                         offset = i * BITS_PER_LONG;
2176                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2177                                                                 offset, mask);
2178                 }
2179                 KVM_MMU_UNLOCK(kvm);
2180         }
2181
2182         if (flush)
2183                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2184
2185         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2186                 return -EFAULT;
2187         return 0;
2188 }
2189
2190
2191 /**
2192  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2193  * @kvm: kvm instance
2194  * @log: slot id and address to which we copy the log
2195  *
2196  * Steps 1-4 below provide general overview of dirty page logging. See
2197  * kvm_get_dirty_log_protect() function description for additional details.
2198  *
2199  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2200  * always flush the TLB (step 4) even if previous step failed  and the dirty
2201  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2202  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2203  * writes will be marked dirty for next log read.
2204  *
2205  *   1. Take a snapshot of the bit and clear it if needed.
2206  *   2. Write protect the corresponding page.
2207  *   3. Copy the snapshot to the userspace.
2208  *   4. Flush TLB's if needed.
2209  */
2210 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2211                                       struct kvm_dirty_log *log)
2212 {
2213         int r;
2214
2215         mutex_lock(&kvm->slots_lock);
2216
2217         r = kvm_get_dirty_log_protect(kvm, log);
2218
2219         mutex_unlock(&kvm->slots_lock);
2220         return r;
2221 }
2222
2223 /**
2224  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2225  *      and reenable dirty page tracking for the corresponding pages.
2226  * @kvm:        pointer to kvm instance
2227  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2228  */
2229 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2230                                        struct kvm_clear_dirty_log *log)
2231 {
2232         struct kvm_memslots *slots;
2233         struct kvm_memory_slot *memslot;
2234         int as_id, id;
2235         gfn_t offset;
2236         unsigned long i, n;
2237         unsigned long *dirty_bitmap;
2238         unsigned long *dirty_bitmap_buffer;
2239         bool flush;
2240
2241         /* Dirty ring tracking may be exclusive to dirty log tracking */
2242         if (!kvm_use_dirty_bitmap(kvm))
2243                 return -ENXIO;
2244
2245         as_id = log->slot >> 16;
2246         id = (u16)log->slot;
2247         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2248                 return -EINVAL;
2249
2250         if (log->first_page & 63)
2251                 return -EINVAL;
2252
2253         slots = __kvm_memslots(kvm, as_id);
2254         memslot = id_to_memslot(slots, id);
2255         if (!memslot || !memslot->dirty_bitmap)
2256                 return -ENOENT;
2257
2258         dirty_bitmap = memslot->dirty_bitmap;
2259
2260         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2261
2262         if (log->first_page > memslot->npages ||
2263             log->num_pages > memslot->npages - log->first_page ||
2264             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2265             return -EINVAL;
2266
2267         kvm_arch_sync_dirty_log(kvm, memslot);
2268
2269         flush = false;
2270         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2271         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2272                 return -EFAULT;
2273
2274         KVM_MMU_LOCK(kvm);
2275         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2276                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2277              i++, offset += BITS_PER_LONG) {
2278                 unsigned long mask = *dirty_bitmap_buffer++;
2279                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2280                 if (!mask)
2281                         continue;
2282
2283                 mask &= atomic_long_fetch_andnot(mask, p);
2284
2285                 /*
2286                  * mask contains the bits that really have been cleared.  This
2287                  * never includes any bits beyond the length of the memslot (if
2288                  * the length is not aligned to 64 pages), therefore it is not
2289                  * a problem if userspace sets them in log->dirty_bitmap.
2290                 */
2291                 if (mask) {
2292                         flush = true;
2293                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2294                                                                 offset, mask);
2295                 }
2296         }
2297         KVM_MMU_UNLOCK(kvm);
2298
2299         if (flush)
2300                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2301
2302         return 0;
2303 }
2304
2305 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2306                                         struct kvm_clear_dirty_log *log)
2307 {
2308         int r;
2309
2310         mutex_lock(&kvm->slots_lock);
2311
2312         r = kvm_clear_dirty_log_protect(kvm, log);
2313
2314         mutex_unlock(&kvm->slots_lock);
2315         return r;
2316 }
2317 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2318
2319 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2320 {
2321         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2322 }
2323 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2324
2325 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2326 {
2327         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2328         u64 gen = slots->generation;
2329         struct kvm_memory_slot *slot;
2330
2331         /*
2332          * This also protects against using a memslot from a different address space,
2333          * since different address spaces have different generation numbers.
2334          */
2335         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2336                 vcpu->last_used_slot = NULL;
2337                 vcpu->last_used_slot_gen = gen;
2338         }
2339
2340         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2341         if (slot)
2342                 return slot;
2343
2344         /*
2345          * Fall back to searching all memslots. We purposely use
2346          * search_memslots() instead of __gfn_to_memslot() to avoid
2347          * thrashing the VM-wide last_used_slot in kvm_memslots.
2348          */
2349         slot = search_memslots(slots, gfn, false);
2350         if (slot) {
2351                 vcpu->last_used_slot = slot;
2352                 return slot;
2353         }
2354
2355         return NULL;
2356 }
2357
2358 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2359 {
2360         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2361
2362         return kvm_is_visible_memslot(memslot);
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2365
2366 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2367 {
2368         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2369
2370         return kvm_is_visible_memslot(memslot);
2371 }
2372 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2373
2374 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2375 {
2376         struct vm_area_struct *vma;
2377         unsigned long addr, size;
2378
2379         size = PAGE_SIZE;
2380
2381         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2382         if (kvm_is_error_hva(addr))
2383                 return PAGE_SIZE;
2384
2385         mmap_read_lock(current->mm);
2386         vma = find_vma(current->mm, addr);
2387         if (!vma)
2388                 goto out;
2389
2390         size = vma_kernel_pagesize(vma);
2391
2392 out:
2393         mmap_read_unlock(current->mm);
2394
2395         return size;
2396 }
2397
2398 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2399 {
2400         return slot->flags & KVM_MEM_READONLY;
2401 }
2402
2403 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2404                                        gfn_t *nr_pages, bool write)
2405 {
2406         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2407                 return KVM_HVA_ERR_BAD;
2408
2409         if (memslot_is_readonly(slot) && write)
2410                 return KVM_HVA_ERR_RO_BAD;
2411
2412         if (nr_pages)
2413                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2414
2415         return __gfn_to_hva_memslot(slot, gfn);
2416 }
2417
2418 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2419                                      gfn_t *nr_pages)
2420 {
2421         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2422 }
2423
2424 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2425                                         gfn_t gfn)
2426 {
2427         return gfn_to_hva_many(slot, gfn, NULL);
2428 }
2429 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2430
2431 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2432 {
2433         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2434 }
2435 EXPORT_SYMBOL_GPL(gfn_to_hva);
2436
2437 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2438 {
2439         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2440 }
2441 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2442
2443 /*
2444  * Return the hva of a @gfn and the R/W attribute if possible.
2445  *
2446  * @slot: the kvm_memory_slot which contains @gfn
2447  * @gfn: the gfn to be translated
2448  * @writable: used to return the read/write attribute of the @slot if the hva
2449  * is valid and @writable is not NULL
2450  */
2451 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2452                                       gfn_t gfn, bool *writable)
2453 {
2454         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2455
2456         if (!kvm_is_error_hva(hva) && writable)
2457                 *writable = !memslot_is_readonly(slot);
2458
2459         return hva;
2460 }
2461
2462 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2463 {
2464         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2465
2466         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2467 }
2468
2469 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2470 {
2471         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2472
2473         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2474 }
2475
2476 static inline int check_user_page_hwpoison(unsigned long addr)
2477 {
2478         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2479
2480         rc = get_user_pages(addr, 1, flags, NULL);
2481         return rc == -EHWPOISON;
2482 }
2483
2484 /*
2485  * The fast path to get the writable pfn which will be stored in @pfn,
2486  * true indicates success, otherwise false is returned.  It's also the
2487  * only part that runs if we can in atomic context.
2488  */
2489 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2490                             bool *writable, kvm_pfn_t *pfn)
2491 {
2492         struct page *page[1];
2493
2494         /*
2495          * Fast pin a writable pfn only if it is a write fault request
2496          * or the caller allows to map a writable pfn for a read fault
2497          * request.
2498          */
2499         if (!(write_fault || writable))
2500                 return false;
2501
2502         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2503                 *pfn = page_to_pfn(page[0]);
2504
2505                 if (writable)
2506                         *writable = true;
2507                 return true;
2508         }
2509
2510         return false;
2511 }
2512
2513 /*
2514  * The slow path to get the pfn of the specified host virtual address,
2515  * 1 indicates success, -errno is returned if error is detected.
2516  */
2517 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2518                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2519 {
2520         /*
2521          * When a VCPU accesses a page that is not mapped into the secondary
2522          * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2523          * make progress. We always want to honor NUMA hinting faults in that
2524          * case, because GUP usage corresponds to memory accesses from the VCPU.
2525          * Otherwise, we'd not trigger NUMA hinting faults once a page is
2526          * mapped into the secondary MMU and gets accessed by a VCPU.
2527          *
2528          * Note that get_user_page_fast_only() and FOLL_WRITE for now
2529          * implicitly honor NUMA hinting faults and don't need this flag.
2530          */
2531         unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2532         struct page *page;
2533         int npages;
2534
2535         might_sleep();
2536
2537         if (writable)
2538                 *writable = write_fault;
2539
2540         if (write_fault)
2541                 flags |= FOLL_WRITE;
2542         if (async)
2543                 flags |= FOLL_NOWAIT;
2544         if (interruptible)
2545                 flags |= FOLL_INTERRUPTIBLE;
2546
2547         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2548         if (npages != 1)
2549                 return npages;
2550
2551         /* map read fault as writable if possible */
2552         if (unlikely(!write_fault) && writable) {
2553                 struct page *wpage;
2554
2555                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2556                         *writable = true;
2557                         put_page(page);
2558                         page = wpage;
2559                 }
2560         }
2561         *pfn = page_to_pfn(page);
2562         return npages;
2563 }
2564
2565 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2566 {
2567         if (unlikely(!(vma->vm_flags & VM_READ)))
2568                 return false;
2569
2570         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2571                 return false;
2572
2573         return true;
2574 }
2575
2576 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2577 {
2578         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2579
2580         if (!page)
2581                 return 1;
2582
2583         return get_page_unless_zero(page);
2584 }
2585
2586 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2587                                unsigned long addr, bool write_fault,
2588                                bool *writable, kvm_pfn_t *p_pfn)
2589 {
2590         kvm_pfn_t pfn;
2591         pte_t *ptep;
2592         pte_t pte;
2593         spinlock_t *ptl;
2594         int r;
2595
2596         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2597         if (r) {
2598                 /*
2599                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2600                  * not call the fault handler, so do it here.
2601                  */
2602                 bool unlocked = false;
2603                 r = fixup_user_fault(current->mm, addr,
2604                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2605                                      &unlocked);
2606                 if (unlocked)
2607                         return -EAGAIN;
2608                 if (r)
2609                         return r;
2610
2611                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2612                 if (r)
2613                         return r;
2614         }
2615
2616         pte = ptep_get(ptep);
2617
2618         if (write_fault && !pte_write(pte)) {
2619                 pfn = KVM_PFN_ERR_RO_FAULT;
2620                 goto out;
2621         }
2622
2623         if (writable)
2624                 *writable = pte_write(pte);
2625         pfn = pte_pfn(pte);
2626
2627         /*
2628          * Get a reference here because callers of *hva_to_pfn* and
2629          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2630          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2631          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2632          * simply do nothing for reserved pfns.
2633          *
2634          * Whoever called remap_pfn_range is also going to call e.g.
2635          * unmap_mapping_range before the underlying pages are freed,
2636          * causing a call to our MMU notifier.
2637          *
2638          * Certain IO or PFNMAP mappings can be backed with valid
2639          * struct pages, but be allocated without refcounting e.g.,
2640          * tail pages of non-compound higher order allocations, which
2641          * would then underflow the refcount when the caller does the
2642          * required put_page. Don't allow those pages here.
2643          */
2644         if (!kvm_try_get_pfn(pfn))
2645                 r = -EFAULT;
2646
2647 out:
2648         pte_unmap_unlock(ptep, ptl);
2649         *p_pfn = pfn;
2650
2651         return r;
2652 }
2653
2654 /*
2655  * Pin guest page in memory and return its pfn.
2656  * @addr: host virtual address which maps memory to the guest
2657  * @atomic: whether this function can sleep
2658  * @interruptible: whether the process can be interrupted by non-fatal signals
2659  * @async: whether this function need to wait IO complete if the
2660  *         host page is not in the memory
2661  * @write_fault: whether we should get a writable host page
2662  * @writable: whether it allows to map a writable host page for !@write_fault
2663  *
2664  * The function will map a writable host page for these two cases:
2665  * 1): @write_fault = true
2666  * 2): @write_fault = false && @writable, @writable will tell the caller
2667  *     whether the mapping is writable.
2668  */
2669 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2670                      bool *async, bool write_fault, bool *writable)
2671 {
2672         struct vm_area_struct *vma;
2673         kvm_pfn_t pfn;
2674         int npages, r;
2675
2676         /* we can do it either atomically or asynchronously, not both */
2677         BUG_ON(atomic && async);
2678
2679         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2680                 return pfn;
2681
2682         if (atomic)
2683                 return KVM_PFN_ERR_FAULT;
2684
2685         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2686                                  writable, &pfn);
2687         if (npages == 1)
2688                 return pfn;
2689         if (npages == -EINTR)
2690                 return KVM_PFN_ERR_SIGPENDING;
2691
2692         mmap_read_lock(current->mm);
2693         if (npages == -EHWPOISON ||
2694               (!async && check_user_page_hwpoison(addr))) {
2695                 pfn = KVM_PFN_ERR_HWPOISON;
2696                 goto exit;
2697         }
2698
2699 retry:
2700         vma = vma_lookup(current->mm, addr);
2701
2702         if (vma == NULL)
2703                 pfn = KVM_PFN_ERR_FAULT;
2704         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2705                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2706                 if (r == -EAGAIN)
2707                         goto retry;
2708                 if (r < 0)
2709                         pfn = KVM_PFN_ERR_FAULT;
2710         } else {
2711                 if (async && vma_is_valid(vma, write_fault))
2712                         *async = true;
2713                 pfn = KVM_PFN_ERR_FAULT;
2714         }
2715 exit:
2716         mmap_read_unlock(current->mm);
2717         return pfn;
2718 }
2719
2720 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2721                                bool atomic, bool interruptible, bool *async,
2722                                bool write_fault, bool *writable, hva_t *hva)
2723 {
2724         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2725
2726         if (hva)
2727                 *hva = addr;
2728
2729         if (addr == KVM_HVA_ERR_RO_BAD) {
2730                 if (writable)
2731                         *writable = false;
2732                 return KVM_PFN_ERR_RO_FAULT;
2733         }
2734
2735         if (kvm_is_error_hva(addr)) {
2736                 if (writable)
2737                         *writable = false;
2738                 return KVM_PFN_NOSLOT;
2739         }
2740
2741         /* Do not map writable pfn in the readonly memslot. */
2742         if (writable && memslot_is_readonly(slot)) {
2743                 *writable = false;
2744                 writable = NULL;
2745         }
2746
2747         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2748                           writable);
2749 }
2750 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2751
2752 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2753                       bool *writable)
2754 {
2755         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2756                                     NULL, write_fault, writable, NULL);
2757 }
2758 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2759
2760 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2761 {
2762         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2763                                     NULL, NULL);
2764 }
2765 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2766
2767 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2768 {
2769         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2770                                     NULL, NULL);
2771 }
2772 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2773
2774 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2775 {
2776         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2777 }
2778 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2779
2780 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2781 {
2782         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2783 }
2784 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2785
2786 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2787 {
2788         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2789 }
2790 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2791
2792 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2793                             struct page **pages, int nr_pages)
2794 {
2795         unsigned long addr;
2796         gfn_t entry = 0;
2797
2798         addr = gfn_to_hva_many(slot, gfn, &entry);
2799         if (kvm_is_error_hva(addr))
2800                 return -1;
2801
2802         if (entry < nr_pages)
2803                 return 0;
2804
2805         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2806 }
2807 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2808
2809 /*
2810  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2811  * backed by 'struct page'.  A valid example is if the backing memslot is
2812  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2813  * been elevated by gfn_to_pfn().
2814  */
2815 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2816 {
2817         struct page *page;
2818         kvm_pfn_t pfn;
2819
2820         pfn = gfn_to_pfn(kvm, gfn);
2821
2822         if (is_error_noslot_pfn(pfn))
2823                 return KVM_ERR_PTR_BAD_PAGE;
2824
2825         page = kvm_pfn_to_refcounted_page(pfn);
2826         if (!page)
2827                 return KVM_ERR_PTR_BAD_PAGE;
2828
2829         return page;
2830 }
2831 EXPORT_SYMBOL_GPL(gfn_to_page);
2832
2833 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2834 {
2835         if (dirty)
2836                 kvm_release_pfn_dirty(pfn);
2837         else
2838                 kvm_release_pfn_clean(pfn);
2839 }
2840
2841 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2842 {
2843         kvm_pfn_t pfn;
2844         void *hva = NULL;
2845         struct page *page = KVM_UNMAPPED_PAGE;
2846
2847         if (!map)
2848                 return -EINVAL;
2849
2850         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2851         if (is_error_noslot_pfn(pfn))
2852                 return -EINVAL;
2853
2854         if (pfn_valid(pfn)) {
2855                 page = pfn_to_page(pfn);
2856                 hva = kmap(page);
2857 #ifdef CONFIG_HAS_IOMEM
2858         } else {
2859                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2860 #endif
2861         }
2862
2863         if (!hva)
2864                 return -EFAULT;
2865
2866         map->page = page;
2867         map->hva = hva;
2868         map->pfn = pfn;
2869         map->gfn = gfn;
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2874
2875 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2876 {
2877         if (!map)
2878                 return;
2879
2880         if (!map->hva)
2881                 return;
2882
2883         if (map->page != KVM_UNMAPPED_PAGE)
2884                 kunmap(map->page);
2885 #ifdef CONFIG_HAS_IOMEM
2886         else
2887                 memunmap(map->hva);
2888 #endif
2889
2890         if (dirty)
2891                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2892
2893         kvm_release_pfn(map->pfn, dirty);
2894
2895         map->hva = NULL;
2896         map->page = NULL;
2897 }
2898 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2899
2900 static bool kvm_is_ad_tracked_page(struct page *page)
2901 {
2902         /*
2903          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2904          * touched (e.g. set dirty) except by its owner".
2905          */
2906         return !PageReserved(page);
2907 }
2908
2909 static void kvm_set_page_dirty(struct page *page)
2910 {
2911         if (kvm_is_ad_tracked_page(page))
2912                 SetPageDirty(page);
2913 }
2914
2915 static void kvm_set_page_accessed(struct page *page)
2916 {
2917         if (kvm_is_ad_tracked_page(page))
2918                 mark_page_accessed(page);
2919 }
2920
2921 void kvm_release_page_clean(struct page *page)
2922 {
2923         WARN_ON(is_error_page(page));
2924
2925         kvm_set_page_accessed(page);
2926         put_page(page);
2927 }
2928 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2929
2930 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2931 {
2932         struct page *page;
2933
2934         if (is_error_noslot_pfn(pfn))
2935                 return;
2936
2937         page = kvm_pfn_to_refcounted_page(pfn);
2938         if (!page)
2939                 return;
2940
2941         kvm_release_page_clean(page);
2942 }
2943 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2944
2945 void kvm_release_page_dirty(struct page *page)
2946 {
2947         WARN_ON(is_error_page(page));
2948
2949         kvm_set_page_dirty(page);
2950         kvm_release_page_clean(page);
2951 }
2952 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2953
2954 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2955 {
2956         struct page *page;
2957
2958         if (is_error_noslot_pfn(pfn))
2959                 return;
2960
2961         page = kvm_pfn_to_refcounted_page(pfn);
2962         if (!page)
2963                 return;
2964
2965         kvm_release_page_dirty(page);
2966 }
2967 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2968
2969 /*
2970  * Note, checking for an error/noslot pfn is the caller's responsibility when
2971  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2972  * "set" helpers are not to be used when the pfn might point at garbage.
2973  */
2974 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2975 {
2976         if (WARN_ON(is_error_noslot_pfn(pfn)))
2977                 return;
2978
2979         if (pfn_valid(pfn))
2980                 kvm_set_page_dirty(pfn_to_page(pfn));
2981 }
2982 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2983
2984 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2985 {
2986         if (WARN_ON(is_error_noslot_pfn(pfn)))
2987                 return;
2988
2989         if (pfn_valid(pfn))
2990                 kvm_set_page_accessed(pfn_to_page(pfn));
2991 }
2992 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2993
2994 static int next_segment(unsigned long len, int offset)
2995 {
2996         if (len > PAGE_SIZE - offset)
2997                 return PAGE_SIZE - offset;
2998         else
2999                 return len;
3000 }
3001
3002 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3003                                  void *data, int offset, int len)
3004 {
3005         int r;
3006         unsigned long addr;
3007
3008         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3009         if (kvm_is_error_hva(addr))
3010                 return -EFAULT;
3011         r = __copy_from_user(data, (void __user *)addr + offset, len);
3012         if (r)
3013                 return -EFAULT;
3014         return 0;
3015 }
3016
3017 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3018                         int len)
3019 {
3020         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3021
3022         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3023 }
3024 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3025
3026 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3027                              int offset, int len)
3028 {
3029         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3030
3031         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3032 }
3033 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3034
3035 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3036 {
3037         gfn_t gfn = gpa >> PAGE_SHIFT;
3038         int seg;
3039         int offset = offset_in_page(gpa);
3040         int ret;
3041
3042         while ((seg = next_segment(len, offset)) != 0) {
3043                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3044                 if (ret < 0)
3045                         return ret;
3046                 offset = 0;
3047                 len -= seg;
3048                 data += seg;
3049                 ++gfn;
3050         }
3051         return 0;
3052 }
3053 EXPORT_SYMBOL_GPL(kvm_read_guest);
3054
3055 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3056 {
3057         gfn_t gfn = gpa >> PAGE_SHIFT;
3058         int seg;
3059         int offset = offset_in_page(gpa);
3060         int ret;
3061
3062         while ((seg = next_segment(len, offset)) != 0) {
3063                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3064                 if (ret < 0)
3065                         return ret;
3066                 offset = 0;
3067                 len -= seg;
3068                 data += seg;
3069                 ++gfn;
3070         }
3071         return 0;
3072 }
3073 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3074
3075 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3076                                    void *data, int offset, unsigned long len)
3077 {
3078         int r;
3079         unsigned long addr;
3080
3081         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3082         if (kvm_is_error_hva(addr))
3083                 return -EFAULT;
3084         pagefault_disable();
3085         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3086         pagefault_enable();
3087         if (r)
3088                 return -EFAULT;
3089         return 0;
3090 }
3091
3092 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3093                                void *data, unsigned long len)
3094 {
3095         gfn_t gfn = gpa >> PAGE_SHIFT;
3096         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3097         int offset = offset_in_page(gpa);
3098
3099         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3100 }
3101 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3102
3103 static int __kvm_write_guest_page(struct kvm *kvm,
3104                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3105                                   const void *data, int offset, int len)
3106 {
3107         int r;
3108         unsigned long addr;
3109
3110         addr = gfn_to_hva_memslot(memslot, gfn);
3111         if (kvm_is_error_hva(addr))
3112                 return -EFAULT;
3113         r = __copy_to_user((void __user *)addr + offset, data, len);
3114         if (r)
3115                 return -EFAULT;
3116         mark_page_dirty_in_slot(kvm, memslot, gfn);
3117         return 0;
3118 }
3119
3120 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3121                          const void *data, int offset, int len)
3122 {
3123         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3124
3125         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3126 }
3127 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3128
3129 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3130                               const void *data, int offset, int len)
3131 {
3132         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3133
3134         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3135 }
3136 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3137
3138 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3139                     unsigned long len)
3140 {
3141         gfn_t gfn = gpa >> PAGE_SHIFT;
3142         int seg;
3143         int offset = offset_in_page(gpa);
3144         int ret;
3145
3146         while ((seg = next_segment(len, offset)) != 0) {
3147                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3148                 if (ret < 0)
3149                         return ret;
3150                 offset = 0;
3151                 len -= seg;
3152                 data += seg;
3153                 ++gfn;
3154         }
3155         return 0;
3156 }
3157 EXPORT_SYMBOL_GPL(kvm_write_guest);
3158
3159 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3160                          unsigned long len)
3161 {
3162         gfn_t gfn = gpa >> PAGE_SHIFT;
3163         int seg;
3164         int offset = offset_in_page(gpa);
3165         int ret;
3166
3167         while ((seg = next_segment(len, offset)) != 0) {
3168                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3169                 if (ret < 0)
3170                         return ret;
3171                 offset = 0;
3172                 len -= seg;
3173                 data += seg;
3174                 ++gfn;
3175         }
3176         return 0;
3177 }
3178 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3179
3180 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3181                                        struct gfn_to_hva_cache *ghc,
3182                                        gpa_t gpa, unsigned long len)
3183 {
3184         int offset = offset_in_page(gpa);
3185         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3186         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3187         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3188         gfn_t nr_pages_avail;
3189
3190         /* Update ghc->generation before performing any error checks. */
3191         ghc->generation = slots->generation;
3192
3193         if (start_gfn > end_gfn) {
3194                 ghc->hva = KVM_HVA_ERR_BAD;
3195                 return -EINVAL;
3196         }
3197
3198         /*
3199          * If the requested region crosses two memslots, we still
3200          * verify that the entire region is valid here.
3201          */
3202         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3203                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3204                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3205                                            &nr_pages_avail);
3206                 if (kvm_is_error_hva(ghc->hva))
3207                         return -EFAULT;
3208         }
3209
3210         /* Use the slow path for cross page reads and writes. */
3211         if (nr_pages_needed == 1)
3212                 ghc->hva += offset;
3213         else
3214                 ghc->memslot = NULL;
3215
3216         ghc->gpa = gpa;
3217         ghc->len = len;
3218         return 0;
3219 }
3220
3221 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3222                               gpa_t gpa, unsigned long len)
3223 {
3224         struct kvm_memslots *slots = kvm_memslots(kvm);
3225         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3226 }
3227 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3228
3229 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3230                                   void *data, unsigned int offset,
3231                                   unsigned long len)
3232 {
3233         struct kvm_memslots *slots = kvm_memslots(kvm);
3234         int r;
3235         gpa_t gpa = ghc->gpa + offset;
3236
3237         if (WARN_ON_ONCE(len + offset > ghc->len))
3238                 return -EINVAL;
3239
3240         if (slots->generation != ghc->generation) {
3241                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3242                         return -EFAULT;
3243         }
3244
3245         if (kvm_is_error_hva(ghc->hva))
3246                 return -EFAULT;
3247
3248         if (unlikely(!ghc->memslot))
3249                 return kvm_write_guest(kvm, gpa, data, len);
3250
3251         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3252         if (r)
3253                 return -EFAULT;
3254         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3255
3256         return 0;
3257 }
3258 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3259
3260 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3261                            void *data, unsigned long len)
3262 {
3263         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3264 }
3265 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3266
3267 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3268                                  void *data, unsigned int offset,
3269                                  unsigned long len)
3270 {
3271         struct kvm_memslots *slots = kvm_memslots(kvm);
3272         int r;
3273         gpa_t gpa = ghc->gpa + offset;
3274
3275         if (WARN_ON_ONCE(len + offset > ghc->len))
3276                 return -EINVAL;
3277
3278         if (slots->generation != ghc->generation) {
3279                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3280                         return -EFAULT;
3281         }
3282
3283         if (kvm_is_error_hva(ghc->hva))
3284                 return -EFAULT;
3285
3286         if (unlikely(!ghc->memslot))
3287                 return kvm_read_guest(kvm, gpa, data, len);
3288
3289         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3290         if (r)
3291                 return -EFAULT;
3292
3293         return 0;
3294 }
3295 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3296
3297 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3298                           void *data, unsigned long len)
3299 {
3300         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3301 }
3302 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3303
3304 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3305 {
3306         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3307         gfn_t gfn = gpa >> PAGE_SHIFT;
3308         int seg;
3309         int offset = offset_in_page(gpa);
3310         int ret;
3311
3312         while ((seg = next_segment(len, offset)) != 0) {
3313                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3314                 if (ret < 0)
3315                         return ret;
3316                 offset = 0;
3317                 len -= seg;
3318                 ++gfn;
3319         }
3320         return 0;
3321 }
3322 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3323
3324 void mark_page_dirty_in_slot(struct kvm *kvm,
3325                              const struct kvm_memory_slot *memslot,
3326                              gfn_t gfn)
3327 {
3328         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3329
3330 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3331         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3332                 return;
3333
3334         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3335 #endif
3336
3337         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3338                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3339                 u32 slot = (memslot->as_id << 16) | memslot->id;
3340
3341                 if (kvm->dirty_ring_size && vcpu)
3342                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3343                 else if (memslot->dirty_bitmap)
3344                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3345         }
3346 }
3347 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3348
3349 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3350 {
3351         struct kvm_memory_slot *memslot;
3352
3353         memslot = gfn_to_memslot(kvm, gfn);
3354         mark_page_dirty_in_slot(kvm, memslot, gfn);
3355 }
3356 EXPORT_SYMBOL_GPL(mark_page_dirty);
3357
3358 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3359 {
3360         struct kvm_memory_slot *memslot;
3361
3362         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3363         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3364 }
3365 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3366
3367 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3368 {
3369         if (!vcpu->sigset_active)
3370                 return;
3371
3372         /*
3373          * This does a lockless modification of ->real_blocked, which is fine
3374          * because, only current can change ->real_blocked and all readers of
3375          * ->real_blocked don't care as long ->real_blocked is always a subset
3376          * of ->blocked.
3377          */
3378         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3379 }
3380
3381 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3382 {
3383         if (!vcpu->sigset_active)
3384                 return;
3385
3386         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3387         sigemptyset(&current->real_blocked);
3388 }
3389
3390 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3391 {
3392         unsigned int old, val, grow, grow_start;
3393
3394         old = val = vcpu->halt_poll_ns;
3395         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3396         grow = READ_ONCE(halt_poll_ns_grow);
3397         if (!grow)
3398                 goto out;
3399
3400         val *= grow;
3401         if (val < grow_start)
3402                 val = grow_start;
3403
3404         vcpu->halt_poll_ns = val;
3405 out:
3406         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3407 }
3408
3409 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3410 {
3411         unsigned int old, val, shrink, grow_start;
3412
3413         old = val = vcpu->halt_poll_ns;
3414         shrink = READ_ONCE(halt_poll_ns_shrink);
3415         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3416         if (shrink == 0)
3417                 val = 0;
3418         else
3419                 val /= shrink;
3420
3421         if (val < grow_start)
3422                 val = 0;
3423
3424         vcpu->halt_poll_ns = val;
3425         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3426 }
3427
3428 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3429 {
3430         int ret = -EINTR;
3431         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3432
3433         if (kvm_arch_vcpu_runnable(vcpu))
3434                 goto out;
3435         if (kvm_cpu_has_pending_timer(vcpu))
3436                 goto out;
3437         if (signal_pending(current))
3438                 goto out;
3439         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3440                 goto out;
3441
3442         ret = 0;
3443 out:
3444         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3445         return ret;
3446 }
3447
3448 /*
3449  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3450  * pending.  This is mostly used when halting a vCPU, but may also be used
3451  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3452  */
3453 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3454 {
3455         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3456         bool waited = false;
3457
3458         vcpu->stat.generic.blocking = 1;
3459
3460         preempt_disable();
3461         kvm_arch_vcpu_blocking(vcpu);
3462         prepare_to_rcuwait(wait);
3463         preempt_enable();
3464
3465         for (;;) {
3466                 set_current_state(TASK_INTERRUPTIBLE);
3467
3468                 if (kvm_vcpu_check_block(vcpu) < 0)
3469                         break;
3470
3471                 waited = true;
3472                 schedule();
3473         }
3474
3475         preempt_disable();
3476         finish_rcuwait(wait);
3477         kvm_arch_vcpu_unblocking(vcpu);
3478         preempt_enable();
3479
3480         vcpu->stat.generic.blocking = 0;
3481
3482         return waited;
3483 }
3484
3485 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3486                                           ktime_t end, bool success)
3487 {
3488         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3489         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3490
3491         ++vcpu->stat.generic.halt_attempted_poll;
3492
3493         if (success) {
3494                 ++vcpu->stat.generic.halt_successful_poll;
3495
3496                 if (!vcpu_valid_wakeup(vcpu))
3497                         ++vcpu->stat.generic.halt_poll_invalid;
3498
3499                 stats->halt_poll_success_ns += poll_ns;
3500                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3501         } else {
3502                 stats->halt_poll_fail_ns += poll_ns;
3503                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3504         }
3505 }
3506
3507 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3508 {
3509         struct kvm *kvm = vcpu->kvm;
3510
3511         if (kvm->override_halt_poll_ns) {
3512                 /*
3513                  * Ensure kvm->max_halt_poll_ns is not read before
3514                  * kvm->override_halt_poll_ns.
3515                  *
3516                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3517                  */
3518                 smp_rmb();
3519                 return READ_ONCE(kvm->max_halt_poll_ns);
3520         }
3521
3522         return READ_ONCE(halt_poll_ns);
3523 }
3524
3525 /*
3526  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3527  * polling is enabled, busy wait for a short time before blocking to avoid the
3528  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3529  * is halted.
3530  */
3531 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3532 {
3533         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3534         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3535         ktime_t start, cur, poll_end;
3536         bool waited = false;
3537         bool do_halt_poll;
3538         u64 halt_ns;
3539
3540         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3541                 vcpu->halt_poll_ns = max_halt_poll_ns;
3542
3543         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3544
3545         start = cur = poll_end = ktime_get();
3546         if (do_halt_poll) {
3547                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3548
3549                 do {
3550                         if (kvm_vcpu_check_block(vcpu) < 0)
3551                                 goto out;
3552                         cpu_relax();
3553                         poll_end = cur = ktime_get();
3554                 } while (kvm_vcpu_can_poll(cur, stop));
3555         }
3556
3557         waited = kvm_vcpu_block(vcpu);
3558
3559         cur = ktime_get();
3560         if (waited) {
3561                 vcpu->stat.generic.halt_wait_ns +=
3562                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3563                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3564                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3565         }
3566 out:
3567         /* The total time the vCPU was "halted", including polling time. */
3568         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3569
3570         /*
3571          * Note, halt-polling is considered successful so long as the vCPU was
3572          * never actually scheduled out, i.e. even if the wake event arrived
3573          * after of the halt-polling loop itself, but before the full wait.
3574          */
3575         if (do_halt_poll)
3576                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3577
3578         if (halt_poll_allowed) {
3579                 /* Recompute the max halt poll time in case it changed. */
3580                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3581
3582                 if (!vcpu_valid_wakeup(vcpu)) {
3583                         shrink_halt_poll_ns(vcpu);
3584                 } else if (max_halt_poll_ns) {
3585                         if (halt_ns <= vcpu->halt_poll_ns)
3586                                 ;
3587                         /* we had a long block, shrink polling */
3588                         else if (vcpu->halt_poll_ns &&
3589                                  halt_ns > max_halt_poll_ns)
3590                                 shrink_halt_poll_ns(vcpu);
3591                         /* we had a short halt and our poll time is too small */
3592                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3593                                  halt_ns < max_halt_poll_ns)
3594                                 grow_halt_poll_ns(vcpu);
3595                 } else {
3596                         vcpu->halt_poll_ns = 0;
3597                 }
3598         }
3599
3600         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3601 }
3602 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3603
3604 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3605 {
3606         if (__kvm_vcpu_wake_up(vcpu)) {
3607                 WRITE_ONCE(vcpu->ready, true);
3608                 ++vcpu->stat.generic.halt_wakeup;
3609                 return true;
3610         }
3611
3612         return false;
3613 }
3614 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3615
3616 #ifndef CONFIG_S390
3617 /*
3618  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3619  */
3620 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3621 {
3622         int me, cpu;
3623
3624         if (kvm_vcpu_wake_up(vcpu))
3625                 return;
3626
3627         me = get_cpu();
3628         /*
3629          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3630          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3631          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3632          * within the vCPU thread itself.
3633          */
3634         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3635                 if (vcpu->mode == IN_GUEST_MODE)
3636                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3637                 goto out;
3638         }
3639
3640         /*
3641          * Note, the vCPU could get migrated to a different pCPU at any point
3642          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3643          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3644          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3645          * vCPU also requires it to leave IN_GUEST_MODE.
3646          */
3647         if (kvm_arch_vcpu_should_kick(vcpu)) {
3648                 cpu = READ_ONCE(vcpu->cpu);
3649                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3650                         smp_send_reschedule(cpu);
3651         }
3652 out:
3653         put_cpu();
3654 }
3655 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3656 #endif /* !CONFIG_S390 */
3657
3658 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3659 {
3660         struct pid *pid;
3661         struct task_struct *task = NULL;
3662         int ret = 0;
3663
3664         rcu_read_lock();
3665         pid = rcu_dereference(target->pid);
3666         if (pid)
3667                 task = get_pid_task(pid, PIDTYPE_PID);
3668         rcu_read_unlock();
3669         if (!task)
3670                 return ret;
3671         ret = yield_to(task, 1);
3672         put_task_struct(task);
3673
3674         return ret;
3675 }
3676 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3677
3678 /*
3679  * Helper that checks whether a VCPU is eligible for directed yield.
3680  * Most eligible candidate to yield is decided by following heuristics:
3681  *
3682  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3683  *  (preempted lock holder), indicated by @in_spin_loop.
3684  *  Set at the beginning and cleared at the end of interception/PLE handler.
3685  *
3686  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3687  *  chance last time (mostly it has become eligible now since we have probably
3688  *  yielded to lockholder in last iteration. This is done by toggling
3689  *  @dy_eligible each time a VCPU checked for eligibility.)
3690  *
3691  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3692  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3693  *  burning. Giving priority for a potential lock-holder increases lock
3694  *  progress.
3695  *
3696  *  Since algorithm is based on heuristics, accessing another VCPU data without
3697  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3698  *  and continue with next VCPU and so on.
3699  */
3700 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3701 {
3702 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3703         bool eligible;
3704
3705         eligible = !vcpu->spin_loop.in_spin_loop ||
3706                     vcpu->spin_loop.dy_eligible;
3707
3708         if (vcpu->spin_loop.in_spin_loop)
3709                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3710
3711         return eligible;
3712 #else
3713         return true;
3714 #endif
3715 }
3716
3717 /*
3718  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3719  * a vcpu_load/vcpu_put pair.  However, for most architectures
3720  * kvm_arch_vcpu_runnable does not require vcpu_load.
3721  */
3722 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3723 {
3724         return kvm_arch_vcpu_runnable(vcpu);
3725 }
3726
3727 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3728 {
3729         if (kvm_arch_dy_runnable(vcpu))
3730                 return true;
3731
3732 #ifdef CONFIG_KVM_ASYNC_PF
3733         if (!list_empty_careful(&vcpu->async_pf.done))
3734                 return true;
3735 #endif
3736
3737         return false;
3738 }
3739
3740 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3741 {
3742         return false;
3743 }
3744
3745 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3746 {
3747         struct kvm *kvm = me->kvm;
3748         struct kvm_vcpu *vcpu;
3749         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3750         unsigned long i;
3751         int yielded = 0;
3752         int try = 3;
3753         int pass;
3754
3755         kvm_vcpu_set_in_spin_loop(me, true);
3756         /*
3757          * We boost the priority of a VCPU that is runnable but not
3758          * currently running, because it got preempted by something
3759          * else and called schedule in __vcpu_run.  Hopefully that
3760          * VCPU is holding the lock that we need and will release it.
3761          * We approximate round-robin by starting at the last boosted VCPU.
3762          */
3763         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3764                 kvm_for_each_vcpu(i, vcpu, kvm) {
3765                         if (!pass && i <= last_boosted_vcpu) {
3766                                 i = last_boosted_vcpu;
3767                                 continue;
3768                         } else if (pass && i > last_boosted_vcpu)
3769                                 break;
3770                         if (!READ_ONCE(vcpu->ready))
3771                                 continue;
3772                         if (vcpu == me)
3773                                 continue;
3774                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3775                                 continue;
3776                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3777                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3778                             !kvm_arch_vcpu_in_kernel(vcpu))
3779                                 continue;
3780                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3781                                 continue;
3782
3783                         yielded = kvm_vcpu_yield_to(vcpu);
3784                         if (yielded > 0) {
3785                                 kvm->last_boosted_vcpu = i;
3786                                 break;
3787                         } else if (yielded < 0) {
3788                                 try--;
3789                                 if (!try)
3790                                         break;
3791                         }
3792                 }
3793         }
3794         kvm_vcpu_set_in_spin_loop(me, false);
3795
3796         /* Ensure vcpu is not eligible during next spinloop */
3797         kvm_vcpu_set_dy_eligible(me, false);
3798 }
3799 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3800
3801 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3802 {
3803 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3804         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3805             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3806              kvm->dirty_ring_size / PAGE_SIZE);
3807 #else
3808         return false;
3809 #endif
3810 }
3811
3812 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3813 {
3814         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3815         struct page *page;
3816
3817         if (vmf->pgoff == 0)
3818                 page = virt_to_page(vcpu->run);
3819 #ifdef CONFIG_X86
3820         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3821                 page = virt_to_page(vcpu->arch.pio_data);
3822 #endif
3823 #ifdef CONFIG_KVM_MMIO
3824         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3825                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3826 #endif
3827         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3828                 page = kvm_dirty_ring_get_page(
3829                     &vcpu->dirty_ring,
3830                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3831         else
3832                 return kvm_arch_vcpu_fault(vcpu, vmf);
3833         get_page(page);
3834         vmf->page = page;
3835         return 0;
3836 }
3837
3838 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3839         .fault = kvm_vcpu_fault,
3840 };
3841
3842 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3843 {
3844         struct kvm_vcpu *vcpu = file->private_data;
3845         unsigned long pages = vma_pages(vma);
3846
3847         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3848              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3849             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3850                 return -EINVAL;
3851
3852         vma->vm_ops = &kvm_vcpu_vm_ops;
3853         return 0;
3854 }
3855
3856 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3857 {
3858         struct kvm_vcpu *vcpu = filp->private_data;
3859
3860         kvm_put_kvm(vcpu->kvm);
3861         return 0;
3862 }
3863
3864 static const struct file_operations kvm_vcpu_fops = {
3865         .release        = kvm_vcpu_release,
3866         .unlocked_ioctl = kvm_vcpu_ioctl,
3867         .mmap           = kvm_vcpu_mmap,
3868         .llseek         = noop_llseek,
3869         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3870 };
3871
3872 /*
3873  * Allocates an inode for the vcpu.
3874  */
3875 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3876 {
3877         char name[8 + 1 + ITOA_MAX_LEN + 1];
3878
3879         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3880         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3881 }
3882
3883 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3884 static int vcpu_get_pid(void *data, u64 *val)
3885 {
3886         struct kvm_vcpu *vcpu = data;
3887
3888         rcu_read_lock();
3889         *val = pid_nr(rcu_dereference(vcpu->pid));
3890         rcu_read_unlock();
3891         return 0;
3892 }
3893
3894 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3895
3896 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3897 {
3898         struct dentry *debugfs_dentry;
3899         char dir_name[ITOA_MAX_LEN * 2];
3900
3901         if (!debugfs_initialized())
3902                 return;
3903
3904         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3905         debugfs_dentry = debugfs_create_dir(dir_name,
3906                                             vcpu->kvm->debugfs_dentry);
3907         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3908                             &vcpu_get_pid_fops);
3909
3910         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3911 }
3912 #endif
3913
3914 /*
3915  * Creates some virtual cpus.  Good luck creating more than one.
3916  */
3917 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3918 {
3919         int r;
3920         struct kvm_vcpu *vcpu;
3921         struct page *page;
3922
3923         if (id >= KVM_MAX_VCPU_IDS)
3924                 return -EINVAL;
3925
3926         mutex_lock(&kvm->lock);
3927         if (kvm->created_vcpus >= kvm->max_vcpus) {
3928                 mutex_unlock(&kvm->lock);
3929                 return -EINVAL;
3930         }
3931
3932         r = kvm_arch_vcpu_precreate(kvm, id);
3933         if (r) {
3934                 mutex_unlock(&kvm->lock);
3935                 return r;
3936         }
3937
3938         kvm->created_vcpus++;
3939         mutex_unlock(&kvm->lock);
3940
3941         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3942         if (!vcpu) {
3943                 r = -ENOMEM;
3944                 goto vcpu_decrement;
3945         }
3946
3947         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3948         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3949         if (!page) {
3950                 r = -ENOMEM;
3951                 goto vcpu_free;
3952         }
3953         vcpu->run = page_address(page);
3954
3955         kvm_vcpu_init(vcpu, kvm, id);
3956
3957         r = kvm_arch_vcpu_create(vcpu);
3958         if (r)
3959                 goto vcpu_free_run_page;
3960
3961         if (kvm->dirty_ring_size) {
3962                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3963                                          id, kvm->dirty_ring_size);
3964                 if (r)
3965                         goto arch_vcpu_destroy;
3966         }
3967
3968         mutex_lock(&kvm->lock);
3969
3970 #ifdef CONFIG_LOCKDEP
3971         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3972         mutex_lock(&vcpu->mutex);
3973         mutex_unlock(&vcpu->mutex);
3974 #endif
3975
3976         if (kvm_get_vcpu_by_id(kvm, id)) {
3977                 r = -EEXIST;
3978                 goto unlock_vcpu_destroy;
3979         }
3980
3981         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3982         r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3983         if (r)
3984                 goto unlock_vcpu_destroy;
3985
3986         /* Now it's all set up, let userspace reach it */
3987         kvm_get_kvm(kvm);
3988         r = create_vcpu_fd(vcpu);
3989         if (r < 0)
3990                 goto kvm_put_xa_release;
3991
3992         if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3993                 r = -EINVAL;
3994                 goto kvm_put_xa_release;
3995         }
3996
3997         /*
3998          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3999          * pointer before kvm->online_vcpu's incremented value.
4000          */
4001         smp_wmb();
4002         atomic_inc(&kvm->online_vcpus);
4003
4004         mutex_unlock(&kvm->lock);
4005         kvm_arch_vcpu_postcreate(vcpu);
4006         kvm_create_vcpu_debugfs(vcpu);
4007         return r;
4008
4009 kvm_put_xa_release:
4010         kvm_put_kvm_no_destroy(kvm);
4011         xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4012 unlock_vcpu_destroy:
4013         mutex_unlock(&kvm->lock);
4014         kvm_dirty_ring_free(&vcpu->dirty_ring);
4015 arch_vcpu_destroy:
4016         kvm_arch_vcpu_destroy(vcpu);
4017 vcpu_free_run_page:
4018         free_page((unsigned long)vcpu->run);
4019 vcpu_free:
4020         kmem_cache_free(kvm_vcpu_cache, vcpu);
4021 vcpu_decrement:
4022         mutex_lock(&kvm->lock);
4023         kvm->created_vcpus--;
4024         mutex_unlock(&kvm->lock);
4025         return r;
4026 }
4027
4028 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4029 {
4030         if (sigset) {
4031                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4032                 vcpu->sigset_active = 1;
4033                 vcpu->sigset = *sigset;
4034         } else
4035                 vcpu->sigset_active = 0;
4036         return 0;
4037 }
4038
4039 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4040                               size_t size, loff_t *offset)
4041 {
4042         struct kvm_vcpu *vcpu = file->private_data;
4043
4044         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4045                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4046                         sizeof(vcpu->stat), user_buffer, size, offset);
4047 }
4048
4049 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4050 {
4051         struct kvm_vcpu *vcpu = file->private_data;
4052
4053         kvm_put_kvm(vcpu->kvm);
4054         return 0;
4055 }
4056
4057 static const struct file_operations kvm_vcpu_stats_fops = {
4058         .read = kvm_vcpu_stats_read,
4059         .release = kvm_vcpu_stats_release,
4060         .llseek = noop_llseek,
4061 };
4062
4063 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4064 {
4065         int fd;
4066         struct file *file;
4067         char name[15 + ITOA_MAX_LEN + 1];
4068
4069         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4070
4071         fd = get_unused_fd_flags(O_CLOEXEC);
4072         if (fd < 0)
4073                 return fd;
4074
4075         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4076         if (IS_ERR(file)) {
4077                 put_unused_fd(fd);
4078                 return PTR_ERR(file);
4079         }
4080
4081         kvm_get_kvm(vcpu->kvm);
4082
4083         file->f_mode |= FMODE_PREAD;
4084         fd_install(fd, file);
4085
4086         return fd;
4087 }
4088
4089 static long kvm_vcpu_ioctl(struct file *filp,
4090                            unsigned int ioctl, unsigned long arg)
4091 {
4092         struct kvm_vcpu *vcpu = filp->private_data;
4093         void __user *argp = (void __user *)arg;
4094         int r;
4095         struct kvm_fpu *fpu = NULL;
4096         struct kvm_sregs *kvm_sregs = NULL;
4097
4098         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4099                 return -EIO;
4100
4101         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4102                 return -EINVAL;
4103
4104         /*
4105          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4106          * execution; mutex_lock() would break them.
4107          */
4108         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4109         if (r != -ENOIOCTLCMD)
4110                 return r;
4111
4112         if (mutex_lock_killable(&vcpu->mutex))
4113                 return -EINTR;
4114         switch (ioctl) {
4115         case KVM_RUN: {
4116                 struct pid *oldpid;
4117                 r = -EINVAL;
4118                 if (arg)
4119                         goto out;
4120                 oldpid = rcu_access_pointer(vcpu->pid);
4121                 if (unlikely(oldpid != task_pid(current))) {
4122                         /* The thread running this VCPU changed. */
4123                         struct pid *newpid;
4124
4125                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4126                         if (r)
4127                                 break;
4128
4129                         newpid = get_task_pid(current, PIDTYPE_PID);
4130                         rcu_assign_pointer(vcpu->pid, newpid);
4131                         if (oldpid)
4132                                 synchronize_rcu();
4133                         put_pid(oldpid);
4134                 }
4135                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4136                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4137                 break;
4138         }
4139         case KVM_GET_REGS: {
4140                 struct kvm_regs *kvm_regs;
4141
4142                 r = -ENOMEM;
4143                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4144                 if (!kvm_regs)
4145                         goto out;
4146                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4147                 if (r)
4148                         goto out_free1;
4149                 r = -EFAULT;
4150                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4151                         goto out_free1;
4152                 r = 0;
4153 out_free1:
4154                 kfree(kvm_regs);
4155                 break;
4156         }
4157         case KVM_SET_REGS: {
4158                 struct kvm_regs *kvm_regs;
4159
4160                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4161                 if (IS_ERR(kvm_regs)) {
4162                         r = PTR_ERR(kvm_regs);
4163                         goto out;
4164                 }
4165                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4166                 kfree(kvm_regs);
4167                 break;
4168         }
4169         case KVM_GET_SREGS: {
4170                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4171                                     GFP_KERNEL_ACCOUNT);
4172                 r = -ENOMEM;
4173                 if (!kvm_sregs)
4174                         goto out;
4175                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4176                 if (r)
4177                         goto out;
4178                 r = -EFAULT;
4179                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4180                         goto out;
4181                 r = 0;
4182                 break;
4183         }
4184         case KVM_SET_SREGS: {
4185                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4186                 if (IS_ERR(kvm_sregs)) {
4187                         r = PTR_ERR(kvm_sregs);
4188                         kvm_sregs = NULL;
4189                         goto out;
4190                 }
4191                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4192                 break;
4193         }
4194         case KVM_GET_MP_STATE: {
4195                 struct kvm_mp_state mp_state;
4196
4197                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4198                 if (r)
4199                         goto out;
4200                 r = -EFAULT;
4201                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4202                         goto out;
4203                 r = 0;
4204                 break;
4205         }
4206         case KVM_SET_MP_STATE: {
4207                 struct kvm_mp_state mp_state;
4208
4209                 r = -EFAULT;
4210                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4211                         goto out;
4212                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4213                 break;
4214         }
4215         case KVM_TRANSLATE: {
4216                 struct kvm_translation tr;
4217
4218                 r = -EFAULT;
4219                 if (copy_from_user(&tr, argp, sizeof(tr)))
4220                         goto out;
4221                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4222                 if (r)
4223                         goto out;
4224                 r = -EFAULT;
4225                 if (copy_to_user(argp, &tr, sizeof(tr)))
4226                         goto out;
4227                 r = 0;
4228                 break;
4229         }
4230         case KVM_SET_GUEST_DEBUG: {
4231                 struct kvm_guest_debug dbg;
4232
4233                 r = -EFAULT;
4234                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4235                         goto out;
4236                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4237                 break;
4238         }
4239         case KVM_SET_SIGNAL_MASK: {
4240                 struct kvm_signal_mask __user *sigmask_arg = argp;
4241                 struct kvm_signal_mask kvm_sigmask;
4242                 sigset_t sigset, *p;
4243
4244                 p = NULL;
4245                 if (argp) {
4246                         r = -EFAULT;
4247                         if (copy_from_user(&kvm_sigmask, argp,
4248                                            sizeof(kvm_sigmask)))
4249                                 goto out;
4250                         r = -EINVAL;
4251                         if (kvm_sigmask.len != sizeof(sigset))
4252                                 goto out;
4253                         r = -EFAULT;
4254                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4255                                            sizeof(sigset)))
4256                                 goto out;
4257                         p = &sigset;
4258                 }
4259                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4260                 break;
4261         }
4262         case KVM_GET_FPU: {
4263                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4264                 r = -ENOMEM;
4265                 if (!fpu)
4266                         goto out;
4267                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4268                 if (r)
4269                         goto out;
4270                 r = -EFAULT;
4271                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4272                         goto out;
4273                 r = 0;
4274                 break;
4275         }
4276         case KVM_SET_FPU: {
4277                 fpu = memdup_user(argp, sizeof(*fpu));
4278                 if (IS_ERR(fpu)) {
4279                         r = PTR_ERR(fpu);
4280                         fpu = NULL;
4281                         goto out;
4282                 }
4283                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4284                 break;
4285         }
4286         case KVM_GET_STATS_FD: {
4287                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4288                 break;
4289         }
4290         default:
4291                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4292         }
4293 out:
4294         mutex_unlock(&vcpu->mutex);
4295         kfree(fpu);
4296         kfree(kvm_sregs);
4297         return r;
4298 }
4299
4300 #ifdef CONFIG_KVM_COMPAT
4301 static long kvm_vcpu_compat_ioctl(struct file *filp,
4302                                   unsigned int ioctl, unsigned long arg)
4303 {
4304         struct kvm_vcpu *vcpu = filp->private_data;
4305         void __user *argp = compat_ptr(arg);
4306         int r;
4307
4308         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4309                 return -EIO;
4310
4311         switch (ioctl) {
4312         case KVM_SET_SIGNAL_MASK: {
4313                 struct kvm_signal_mask __user *sigmask_arg = argp;
4314                 struct kvm_signal_mask kvm_sigmask;
4315                 sigset_t sigset;
4316
4317                 if (argp) {
4318                         r = -EFAULT;
4319                         if (copy_from_user(&kvm_sigmask, argp,
4320                                            sizeof(kvm_sigmask)))
4321                                 goto out;
4322                         r = -EINVAL;
4323                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4324                                 goto out;
4325                         r = -EFAULT;
4326                         if (get_compat_sigset(&sigset,
4327                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4328                                 goto out;
4329                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4330                 } else
4331                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4332                 break;
4333         }
4334         default:
4335                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4336         }
4337
4338 out:
4339         return r;
4340 }
4341 #endif
4342
4343 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4344 {
4345         struct kvm_device *dev = filp->private_data;
4346
4347         if (dev->ops->mmap)
4348                 return dev->ops->mmap(dev, vma);
4349
4350         return -ENODEV;
4351 }
4352
4353 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4354                                  int (*accessor)(struct kvm_device *dev,
4355                                                  struct kvm_device_attr *attr),
4356                                  unsigned long arg)
4357 {
4358         struct kvm_device_attr attr;
4359
4360         if (!accessor)
4361                 return -EPERM;
4362
4363         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4364                 return -EFAULT;
4365
4366         return accessor(dev, &attr);
4367 }
4368
4369 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4370                              unsigned long arg)
4371 {
4372         struct kvm_device *dev = filp->private_data;
4373
4374         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4375                 return -EIO;
4376
4377         switch (ioctl) {
4378         case KVM_SET_DEVICE_ATTR:
4379                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4380         case KVM_GET_DEVICE_ATTR:
4381                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4382         case KVM_HAS_DEVICE_ATTR:
4383                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4384         default:
4385                 if (dev->ops->ioctl)
4386                         return dev->ops->ioctl(dev, ioctl, arg);
4387
4388                 return -ENOTTY;
4389         }
4390 }
4391
4392 static int kvm_device_release(struct inode *inode, struct file *filp)
4393 {
4394         struct kvm_device *dev = filp->private_data;
4395         struct kvm *kvm = dev->kvm;
4396
4397         if (dev->ops->release) {
4398                 mutex_lock(&kvm->lock);
4399                 list_del(&dev->vm_node);
4400                 dev->ops->release(dev);
4401                 mutex_unlock(&kvm->lock);
4402         }
4403
4404         kvm_put_kvm(kvm);
4405         return 0;
4406 }
4407
4408 static const struct file_operations kvm_device_fops = {
4409         .unlocked_ioctl = kvm_device_ioctl,
4410         .release = kvm_device_release,
4411         KVM_COMPAT(kvm_device_ioctl),
4412         .mmap = kvm_device_mmap,
4413 };
4414
4415 struct kvm_device *kvm_device_from_filp(struct file *filp)
4416 {
4417         if (filp->f_op != &kvm_device_fops)
4418                 return NULL;
4419
4420         return filp->private_data;
4421 }
4422
4423 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4424 #ifdef CONFIG_KVM_MPIC
4425         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4426         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4427 #endif
4428 };
4429
4430 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4431 {
4432         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4433                 return -ENOSPC;
4434
4435         if (kvm_device_ops_table[type] != NULL)
4436                 return -EEXIST;
4437
4438         kvm_device_ops_table[type] = ops;
4439         return 0;
4440 }
4441
4442 void kvm_unregister_device_ops(u32 type)
4443 {
4444         if (kvm_device_ops_table[type] != NULL)
4445                 kvm_device_ops_table[type] = NULL;
4446 }
4447
4448 static int kvm_ioctl_create_device(struct kvm *kvm,
4449                                    struct kvm_create_device *cd)
4450 {
4451         const struct kvm_device_ops *ops;
4452         struct kvm_device *dev;
4453         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4454         int type;
4455         int ret;
4456
4457         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4458                 return -ENODEV;
4459
4460         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4461         ops = kvm_device_ops_table[type];
4462         if (ops == NULL)
4463                 return -ENODEV;
4464
4465         if (test)
4466                 return 0;
4467
4468         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4469         if (!dev)
4470                 return -ENOMEM;
4471
4472         dev->ops = ops;
4473         dev->kvm = kvm;
4474
4475         mutex_lock(&kvm->lock);
4476         ret = ops->create(dev, type);
4477         if (ret < 0) {
4478                 mutex_unlock(&kvm->lock);
4479                 kfree(dev);
4480                 return ret;
4481         }
4482         list_add(&dev->vm_node, &kvm->devices);
4483         mutex_unlock(&kvm->lock);
4484
4485         if (ops->init)
4486                 ops->init(dev);
4487
4488         kvm_get_kvm(kvm);
4489         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4490         if (ret < 0) {
4491                 kvm_put_kvm_no_destroy(kvm);
4492                 mutex_lock(&kvm->lock);
4493                 list_del(&dev->vm_node);
4494                 if (ops->release)
4495                         ops->release(dev);
4496                 mutex_unlock(&kvm->lock);
4497                 if (ops->destroy)
4498                         ops->destroy(dev);
4499                 return ret;
4500         }
4501
4502         cd->fd = ret;
4503         return 0;
4504 }
4505
4506 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4507 {
4508         switch (arg) {
4509         case KVM_CAP_USER_MEMORY:
4510         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4511         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4512         case KVM_CAP_INTERNAL_ERROR_DATA:
4513 #ifdef CONFIG_HAVE_KVM_MSI
4514         case KVM_CAP_SIGNAL_MSI:
4515 #endif
4516 #ifdef CONFIG_HAVE_KVM_IRQFD
4517         case KVM_CAP_IRQFD:
4518 #endif
4519         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4520         case KVM_CAP_CHECK_EXTENSION_VM:
4521         case KVM_CAP_ENABLE_CAP_VM:
4522         case KVM_CAP_HALT_POLL:
4523                 return 1;
4524 #ifdef CONFIG_KVM_MMIO
4525         case KVM_CAP_COALESCED_MMIO:
4526                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4527         case KVM_CAP_COALESCED_PIO:
4528                 return 1;
4529 #endif
4530 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4531         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4532                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4533 #endif
4534 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4535         case KVM_CAP_IRQ_ROUTING:
4536                 return KVM_MAX_IRQ_ROUTES;
4537 #endif
4538 #if KVM_ADDRESS_SPACE_NUM > 1
4539         case KVM_CAP_MULTI_ADDRESS_SPACE:
4540                 return KVM_ADDRESS_SPACE_NUM;
4541 #endif
4542         case KVM_CAP_NR_MEMSLOTS:
4543                 return KVM_USER_MEM_SLOTS;
4544         case KVM_CAP_DIRTY_LOG_RING:
4545 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4546                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4547 #else
4548                 return 0;
4549 #endif
4550         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4551 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4552                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4553 #else
4554                 return 0;
4555 #endif
4556 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4557         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4558 #endif
4559         case KVM_CAP_BINARY_STATS_FD:
4560         case KVM_CAP_SYSTEM_EVENT_DATA:
4561                 return 1;
4562         default:
4563                 break;
4564         }
4565         return kvm_vm_ioctl_check_extension(kvm, arg);
4566 }
4567
4568 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4569 {
4570         int r;
4571
4572         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4573                 return -EINVAL;
4574
4575         /* the size should be power of 2 */
4576         if (!size || (size & (size - 1)))
4577                 return -EINVAL;
4578
4579         /* Should be bigger to keep the reserved entries, or a page */
4580         if (size < kvm_dirty_ring_get_rsvd_entries() *
4581             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4582                 return -EINVAL;
4583
4584         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4585             sizeof(struct kvm_dirty_gfn))
4586                 return -E2BIG;
4587
4588         /* We only allow it to set once */
4589         if (kvm->dirty_ring_size)
4590                 return -EINVAL;
4591
4592         mutex_lock(&kvm->lock);
4593
4594         if (kvm->created_vcpus) {
4595                 /* We don't allow to change this value after vcpu created */
4596                 r = -EINVAL;
4597         } else {
4598                 kvm->dirty_ring_size = size;
4599                 r = 0;
4600         }
4601
4602         mutex_unlock(&kvm->lock);
4603         return r;
4604 }
4605
4606 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4607 {
4608         unsigned long i;
4609         struct kvm_vcpu *vcpu;
4610         int cleared = 0;
4611
4612         if (!kvm->dirty_ring_size)
4613                 return -EINVAL;
4614
4615         mutex_lock(&kvm->slots_lock);
4616
4617         kvm_for_each_vcpu(i, vcpu, kvm)
4618                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4619
4620         mutex_unlock(&kvm->slots_lock);
4621
4622         if (cleared)
4623                 kvm_flush_remote_tlbs(kvm);
4624
4625         return cleared;
4626 }
4627
4628 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4629                                                   struct kvm_enable_cap *cap)
4630 {
4631         return -EINVAL;
4632 }
4633
4634 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4635 {
4636         int i;
4637
4638         lockdep_assert_held(&kvm->slots_lock);
4639
4640         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4641                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4642                         return false;
4643         }
4644
4645         return true;
4646 }
4647 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4648
4649 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4650                                            struct kvm_enable_cap *cap)
4651 {
4652         switch (cap->cap) {
4653 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4654         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4655                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4656
4657                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4658                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4659
4660                 if (cap->flags || (cap->args[0] & ~allowed_options))
4661                         return -EINVAL;
4662                 kvm->manual_dirty_log_protect = cap->args[0];
4663                 return 0;
4664         }
4665 #endif
4666         case KVM_CAP_HALT_POLL: {
4667                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4668                         return -EINVAL;
4669
4670                 kvm->max_halt_poll_ns = cap->args[0];
4671
4672                 /*
4673                  * Ensure kvm->override_halt_poll_ns does not become visible
4674                  * before kvm->max_halt_poll_ns.
4675                  *
4676                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4677                  */
4678                 smp_wmb();
4679                 kvm->override_halt_poll_ns = true;
4680
4681                 return 0;
4682         }
4683         case KVM_CAP_DIRTY_LOG_RING:
4684         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4685                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4686                         return -EINVAL;
4687
4688                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4689         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4690                 int r = -EINVAL;
4691
4692                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4693                     !kvm->dirty_ring_size || cap->flags)
4694                         return r;
4695
4696                 mutex_lock(&kvm->slots_lock);
4697
4698                 /*
4699                  * For simplicity, allow enabling ring+bitmap if and only if
4700                  * there are no memslots, e.g. to ensure all memslots allocate
4701                  * a bitmap after the capability is enabled.
4702                  */
4703                 if (kvm_are_all_memslots_empty(kvm)) {
4704                         kvm->dirty_ring_with_bitmap = true;
4705                         r = 0;
4706                 }
4707
4708                 mutex_unlock(&kvm->slots_lock);
4709
4710                 return r;
4711         }
4712         default:
4713                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4714         }
4715 }
4716
4717 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4718                               size_t size, loff_t *offset)
4719 {
4720         struct kvm *kvm = file->private_data;
4721
4722         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4723                                 &kvm_vm_stats_desc[0], &kvm->stat,
4724                                 sizeof(kvm->stat), user_buffer, size, offset);
4725 }
4726
4727 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4728 {
4729         struct kvm *kvm = file->private_data;
4730
4731         kvm_put_kvm(kvm);
4732         return 0;
4733 }
4734
4735 static const struct file_operations kvm_vm_stats_fops = {
4736         .read = kvm_vm_stats_read,
4737         .release = kvm_vm_stats_release,
4738         .llseek = noop_llseek,
4739 };
4740
4741 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4742 {
4743         int fd;
4744         struct file *file;
4745
4746         fd = get_unused_fd_flags(O_CLOEXEC);
4747         if (fd < 0)
4748                 return fd;
4749
4750         file = anon_inode_getfile("kvm-vm-stats",
4751                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4752         if (IS_ERR(file)) {
4753                 put_unused_fd(fd);
4754                 return PTR_ERR(file);
4755         }
4756
4757         kvm_get_kvm(kvm);
4758
4759         file->f_mode |= FMODE_PREAD;
4760         fd_install(fd, file);
4761
4762         return fd;
4763 }
4764
4765 static long kvm_vm_ioctl(struct file *filp,
4766                            unsigned int ioctl, unsigned long arg)
4767 {
4768         struct kvm *kvm = filp->private_data;
4769         void __user *argp = (void __user *)arg;
4770         int r;
4771
4772         if (kvm->mm != current->mm || kvm->vm_dead)
4773                 return -EIO;
4774         switch (ioctl) {
4775         case KVM_CREATE_VCPU:
4776                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4777                 break;
4778         case KVM_ENABLE_CAP: {
4779                 struct kvm_enable_cap cap;
4780
4781                 r = -EFAULT;
4782                 if (copy_from_user(&cap, argp, sizeof(cap)))
4783                         goto out;
4784                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4785                 break;
4786         }
4787         case KVM_SET_USER_MEMORY_REGION: {
4788                 struct kvm_userspace_memory_region kvm_userspace_mem;
4789
4790                 r = -EFAULT;
4791                 if (copy_from_user(&kvm_userspace_mem, argp,
4792                                                 sizeof(kvm_userspace_mem)))
4793                         goto out;
4794
4795                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4796                 break;
4797         }
4798         case KVM_GET_DIRTY_LOG: {
4799                 struct kvm_dirty_log log;
4800
4801                 r = -EFAULT;
4802                 if (copy_from_user(&log, argp, sizeof(log)))
4803                         goto out;
4804                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4805                 break;
4806         }
4807 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4808         case KVM_CLEAR_DIRTY_LOG: {
4809                 struct kvm_clear_dirty_log log;
4810
4811                 r = -EFAULT;
4812                 if (copy_from_user(&log, argp, sizeof(log)))
4813                         goto out;
4814                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4815                 break;
4816         }
4817 #endif
4818 #ifdef CONFIG_KVM_MMIO
4819         case KVM_REGISTER_COALESCED_MMIO: {
4820                 struct kvm_coalesced_mmio_zone zone;
4821
4822                 r = -EFAULT;
4823                 if (copy_from_user(&zone, argp, sizeof(zone)))
4824                         goto out;
4825                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4826                 break;
4827         }
4828         case KVM_UNREGISTER_COALESCED_MMIO: {
4829                 struct kvm_coalesced_mmio_zone zone;
4830
4831                 r = -EFAULT;
4832                 if (copy_from_user(&zone, argp, sizeof(zone)))
4833                         goto out;
4834                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4835                 break;
4836         }
4837 #endif
4838         case KVM_IRQFD: {
4839                 struct kvm_irqfd data;
4840
4841                 r = -EFAULT;
4842                 if (copy_from_user(&data, argp, sizeof(data)))
4843                         goto out;
4844                 r = kvm_irqfd(kvm, &data);
4845                 break;
4846         }
4847         case KVM_IOEVENTFD: {
4848                 struct kvm_ioeventfd data;
4849
4850                 r = -EFAULT;
4851                 if (copy_from_user(&data, argp, sizeof(data)))
4852                         goto out;
4853                 r = kvm_ioeventfd(kvm, &data);
4854                 break;
4855         }
4856 #ifdef CONFIG_HAVE_KVM_MSI
4857         case KVM_SIGNAL_MSI: {
4858                 struct kvm_msi msi;
4859
4860                 r = -EFAULT;
4861                 if (copy_from_user(&msi, argp, sizeof(msi)))
4862                         goto out;
4863                 r = kvm_send_userspace_msi(kvm, &msi);
4864                 break;
4865         }
4866 #endif
4867 #ifdef __KVM_HAVE_IRQ_LINE
4868         case KVM_IRQ_LINE_STATUS:
4869         case KVM_IRQ_LINE: {
4870                 struct kvm_irq_level irq_event;
4871
4872                 r = -EFAULT;
4873                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4874                         goto out;
4875
4876                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4877                                         ioctl == KVM_IRQ_LINE_STATUS);
4878                 if (r)
4879                         goto out;
4880
4881                 r = -EFAULT;
4882                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4883                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4884                                 goto out;
4885                 }
4886
4887                 r = 0;
4888                 break;
4889         }
4890 #endif
4891 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4892         case KVM_SET_GSI_ROUTING: {
4893                 struct kvm_irq_routing routing;
4894                 struct kvm_irq_routing __user *urouting;
4895                 struct kvm_irq_routing_entry *entries = NULL;
4896
4897                 r = -EFAULT;
4898                 if (copy_from_user(&routing, argp, sizeof(routing)))
4899                         goto out;
4900                 r = -EINVAL;
4901                 if (!kvm_arch_can_set_irq_routing(kvm))
4902                         goto out;
4903                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4904                         goto out;
4905                 if (routing.flags)
4906                         goto out;
4907                 if (routing.nr) {
4908                         urouting = argp;
4909                         entries = vmemdup_user(urouting->entries,
4910                                                array_size(sizeof(*entries),
4911                                                           routing.nr));
4912                         if (IS_ERR(entries)) {
4913                                 r = PTR_ERR(entries);
4914                                 goto out;
4915                         }
4916                 }
4917                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4918                                         routing.flags);
4919                 kvfree(entries);
4920                 break;
4921         }
4922 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4923         case KVM_CREATE_DEVICE: {
4924                 struct kvm_create_device cd;
4925
4926                 r = -EFAULT;
4927                 if (copy_from_user(&cd, argp, sizeof(cd)))
4928                         goto out;
4929
4930                 r = kvm_ioctl_create_device(kvm, &cd);
4931                 if (r)
4932                         goto out;
4933
4934                 r = -EFAULT;
4935                 if (copy_to_user(argp, &cd, sizeof(cd)))
4936                         goto out;
4937
4938                 r = 0;
4939                 break;
4940         }
4941         case KVM_CHECK_EXTENSION:
4942                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4943                 break;
4944         case KVM_RESET_DIRTY_RINGS:
4945                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4946                 break;
4947         case KVM_GET_STATS_FD:
4948                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4949                 break;
4950         default:
4951                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4952         }
4953 out:
4954         return r;
4955 }
4956
4957 #ifdef CONFIG_KVM_COMPAT
4958 struct compat_kvm_dirty_log {
4959         __u32 slot;
4960         __u32 padding1;
4961         union {
4962                 compat_uptr_t dirty_bitmap; /* one bit per page */
4963                 __u64 padding2;
4964         };
4965 };
4966
4967 struct compat_kvm_clear_dirty_log {
4968         __u32 slot;
4969         __u32 num_pages;
4970         __u64 first_page;
4971         union {
4972                 compat_uptr_t dirty_bitmap; /* one bit per page */
4973                 __u64 padding2;
4974         };
4975 };
4976
4977 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4978                                      unsigned long arg)
4979 {
4980         return -ENOTTY;
4981 }
4982
4983 static long kvm_vm_compat_ioctl(struct file *filp,
4984                            unsigned int ioctl, unsigned long arg)
4985 {
4986         struct kvm *kvm = filp->private_data;
4987         int r;
4988
4989         if (kvm->mm != current->mm || kvm->vm_dead)
4990                 return -EIO;
4991
4992         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4993         if (r != -ENOTTY)
4994                 return r;
4995
4996         switch (ioctl) {
4997 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4998         case KVM_CLEAR_DIRTY_LOG: {
4999                 struct compat_kvm_clear_dirty_log compat_log;
5000                 struct kvm_clear_dirty_log log;
5001
5002                 if (copy_from_user(&compat_log, (void __user *)arg,
5003                                    sizeof(compat_log)))
5004                         return -EFAULT;
5005                 log.slot         = compat_log.slot;
5006                 log.num_pages    = compat_log.num_pages;
5007                 log.first_page   = compat_log.first_page;
5008                 log.padding2     = compat_log.padding2;
5009                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5010
5011                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5012                 break;
5013         }
5014 #endif
5015         case KVM_GET_DIRTY_LOG: {
5016                 struct compat_kvm_dirty_log compat_log;
5017                 struct kvm_dirty_log log;
5018
5019                 if (copy_from_user(&compat_log, (void __user *)arg,
5020                                    sizeof(compat_log)))
5021                         return -EFAULT;
5022                 log.slot         = compat_log.slot;
5023                 log.padding1     = compat_log.padding1;
5024                 log.padding2     = compat_log.padding2;
5025                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5026
5027                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5028                 break;
5029         }
5030         default:
5031                 r = kvm_vm_ioctl(filp, ioctl, arg);
5032         }
5033         return r;
5034 }
5035 #endif
5036
5037 static const struct file_operations kvm_vm_fops = {
5038         .release        = kvm_vm_release,
5039         .unlocked_ioctl = kvm_vm_ioctl,
5040         .llseek         = noop_llseek,
5041         KVM_COMPAT(kvm_vm_compat_ioctl),
5042 };
5043
5044 bool file_is_kvm(struct file *file)
5045 {
5046         return file && file->f_op == &kvm_vm_fops;
5047 }
5048 EXPORT_SYMBOL_GPL(file_is_kvm);
5049
5050 static int kvm_dev_ioctl_create_vm(unsigned long type)
5051 {
5052         char fdname[ITOA_MAX_LEN + 1];
5053         int r, fd;
5054         struct kvm *kvm;
5055         struct file *file;
5056
5057         fd = get_unused_fd_flags(O_CLOEXEC);
5058         if (fd < 0)
5059                 return fd;
5060
5061         snprintf(fdname, sizeof(fdname), "%d", fd);
5062
5063         kvm = kvm_create_vm(type, fdname);
5064         if (IS_ERR(kvm)) {
5065                 r = PTR_ERR(kvm);
5066                 goto put_fd;
5067         }
5068
5069         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5070         if (IS_ERR(file)) {
5071                 r = PTR_ERR(file);
5072                 goto put_kvm;
5073         }
5074
5075         /*
5076          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5077          * already set, with ->release() being kvm_vm_release().  In error
5078          * cases it will be called by the final fput(file) and will take
5079          * care of doing kvm_put_kvm(kvm).
5080          */
5081         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5082
5083         fd_install(fd, file);
5084         return fd;
5085
5086 put_kvm:
5087         kvm_put_kvm(kvm);
5088 put_fd:
5089         put_unused_fd(fd);
5090         return r;
5091 }
5092
5093 static long kvm_dev_ioctl(struct file *filp,
5094                           unsigned int ioctl, unsigned long arg)
5095 {
5096         int r = -EINVAL;
5097
5098         switch (ioctl) {
5099         case KVM_GET_API_VERSION:
5100                 if (arg)
5101                         goto out;
5102                 r = KVM_API_VERSION;
5103                 break;
5104         case KVM_CREATE_VM:
5105                 r = kvm_dev_ioctl_create_vm(arg);
5106                 break;
5107         case KVM_CHECK_EXTENSION:
5108                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5109                 break;
5110         case KVM_GET_VCPU_MMAP_SIZE:
5111                 if (arg)
5112                         goto out;
5113                 r = PAGE_SIZE;     /* struct kvm_run */
5114 #ifdef CONFIG_X86
5115                 r += PAGE_SIZE;    /* pio data page */
5116 #endif
5117 #ifdef CONFIG_KVM_MMIO
5118                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5119 #endif
5120                 break;
5121         case KVM_TRACE_ENABLE:
5122         case KVM_TRACE_PAUSE:
5123         case KVM_TRACE_DISABLE:
5124                 r = -EOPNOTSUPP;
5125                 break;
5126         default:
5127                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5128         }
5129 out:
5130         return r;
5131 }
5132
5133 static struct file_operations kvm_chardev_ops = {
5134         .unlocked_ioctl = kvm_dev_ioctl,
5135         .llseek         = noop_llseek,
5136         KVM_COMPAT(kvm_dev_ioctl),
5137 };
5138
5139 static struct miscdevice kvm_dev = {
5140         KVM_MINOR,
5141         "kvm",
5142         &kvm_chardev_ops,
5143 };
5144
5145 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5146 __visible bool kvm_rebooting;
5147 EXPORT_SYMBOL_GPL(kvm_rebooting);
5148
5149 static DEFINE_PER_CPU(bool, hardware_enabled);
5150 static int kvm_usage_count;
5151
5152 static int __hardware_enable_nolock(void)
5153 {
5154         if (__this_cpu_read(hardware_enabled))
5155                 return 0;
5156
5157         if (kvm_arch_hardware_enable()) {
5158                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5159                         raw_smp_processor_id());
5160                 return -EIO;
5161         }
5162
5163         __this_cpu_write(hardware_enabled, true);
5164         return 0;
5165 }
5166
5167 static void hardware_enable_nolock(void *failed)
5168 {
5169         if (__hardware_enable_nolock())
5170                 atomic_inc(failed);
5171 }
5172
5173 static int kvm_online_cpu(unsigned int cpu)
5174 {
5175         int ret = 0;
5176
5177         /*
5178          * Abort the CPU online process if hardware virtualization cannot
5179          * be enabled. Otherwise running VMs would encounter unrecoverable
5180          * errors when scheduled to this CPU.
5181          */
5182         mutex_lock(&kvm_lock);
5183         if (kvm_usage_count)
5184                 ret = __hardware_enable_nolock();
5185         mutex_unlock(&kvm_lock);
5186         return ret;
5187 }
5188
5189 static void hardware_disable_nolock(void *junk)
5190 {
5191         /*
5192          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5193          * hardware, not just CPUs that successfully enabled hardware!
5194          */
5195         if (!__this_cpu_read(hardware_enabled))
5196                 return;
5197
5198         kvm_arch_hardware_disable();
5199
5200         __this_cpu_write(hardware_enabled, false);
5201 }
5202
5203 static int kvm_offline_cpu(unsigned int cpu)
5204 {
5205         mutex_lock(&kvm_lock);
5206         if (kvm_usage_count)
5207                 hardware_disable_nolock(NULL);
5208         mutex_unlock(&kvm_lock);
5209         return 0;
5210 }
5211
5212 static void hardware_disable_all_nolock(void)
5213 {
5214         BUG_ON(!kvm_usage_count);
5215
5216         kvm_usage_count--;
5217         if (!kvm_usage_count)
5218                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5219 }
5220
5221 static void hardware_disable_all(void)
5222 {
5223         cpus_read_lock();
5224         mutex_lock(&kvm_lock);
5225         hardware_disable_all_nolock();
5226         mutex_unlock(&kvm_lock);
5227         cpus_read_unlock();
5228 }
5229
5230 static int hardware_enable_all(void)
5231 {
5232         atomic_t failed = ATOMIC_INIT(0);
5233         int r;
5234
5235         /*
5236          * Do not enable hardware virtualization if the system is going down.
5237          * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5238          * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5239          * after kvm_reboot() is called.  Note, this relies on system_state
5240          * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5241          * hook instead of registering a dedicated reboot notifier (the latter
5242          * runs before system_state is updated).
5243          */
5244         if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5245             system_state == SYSTEM_RESTART)
5246                 return -EBUSY;
5247
5248         /*
5249          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5250          * is called, and so on_each_cpu() between them includes the CPU that
5251          * is being onlined.  As a result, hardware_enable_nolock() may get
5252          * invoked before kvm_online_cpu(), which also enables hardware if the
5253          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5254          * enable hardware multiple times.
5255          */
5256         cpus_read_lock();
5257         mutex_lock(&kvm_lock);
5258
5259         r = 0;
5260
5261         kvm_usage_count++;
5262         if (kvm_usage_count == 1) {
5263                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5264
5265                 if (atomic_read(&failed)) {
5266                         hardware_disable_all_nolock();
5267                         r = -EBUSY;
5268                 }
5269         }
5270
5271         mutex_unlock(&kvm_lock);
5272         cpus_read_unlock();
5273
5274         return r;
5275 }
5276
5277 static void kvm_shutdown(void)
5278 {
5279         /*
5280          * Disable hardware virtualization and set kvm_rebooting to indicate
5281          * that KVM has asynchronously disabled hardware virtualization, i.e.
5282          * that relevant errors and exceptions aren't entirely unexpected.
5283          * Some flavors of hardware virtualization need to be disabled before
5284          * transferring control to firmware (to perform shutdown/reboot), e.g.
5285          * on x86, virtualization can block INIT interrupts, which are used by
5286          * firmware to pull APs back under firmware control.  Note, this path
5287          * is used for both shutdown and reboot scenarios, i.e. neither name is
5288          * 100% comprehensive.
5289          */
5290         pr_info("kvm: exiting hardware virtualization\n");
5291         kvm_rebooting = true;
5292         on_each_cpu(hardware_disable_nolock, NULL, 1);
5293 }
5294
5295 static int kvm_suspend(void)
5296 {
5297         /*
5298          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5299          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5300          * is stable.  Assert that kvm_lock is not held to ensure the system
5301          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5302          * can be preempted, but the task cannot be frozen until it has dropped
5303          * all locks (userspace tasks are frozen via a fake signal).
5304          */
5305         lockdep_assert_not_held(&kvm_lock);
5306         lockdep_assert_irqs_disabled();
5307
5308         if (kvm_usage_count)
5309                 hardware_disable_nolock(NULL);
5310         return 0;
5311 }
5312
5313 static void kvm_resume(void)
5314 {
5315         lockdep_assert_not_held(&kvm_lock);
5316         lockdep_assert_irqs_disabled();
5317
5318         if (kvm_usage_count)
5319                 WARN_ON_ONCE(__hardware_enable_nolock());
5320 }
5321
5322 static struct syscore_ops kvm_syscore_ops = {
5323         .suspend = kvm_suspend,
5324         .resume = kvm_resume,
5325         .shutdown = kvm_shutdown,
5326 };
5327 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5328 static int hardware_enable_all(void)
5329 {
5330         return 0;
5331 }
5332
5333 static void hardware_disable_all(void)
5334 {
5335
5336 }
5337 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5338
5339 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5340 {
5341         if (dev->ops->destructor)
5342                 dev->ops->destructor(dev);
5343 }
5344
5345 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5346 {
5347         int i;
5348
5349         for (i = 0; i < bus->dev_count; i++) {
5350                 struct kvm_io_device *pos = bus->range[i].dev;
5351
5352                 kvm_iodevice_destructor(pos);
5353         }
5354         kfree(bus);
5355 }
5356
5357 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5358                                  const struct kvm_io_range *r2)
5359 {
5360         gpa_t addr1 = r1->addr;
5361         gpa_t addr2 = r2->addr;
5362
5363         if (addr1 < addr2)
5364                 return -1;
5365
5366         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5367          * accept any overlapping write.  Any order is acceptable for
5368          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5369          * we process all of them.
5370          */
5371         if (r2->len) {
5372                 addr1 += r1->len;
5373                 addr2 += r2->len;
5374         }
5375
5376         if (addr1 > addr2)
5377                 return 1;
5378
5379         return 0;
5380 }
5381
5382 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5383 {
5384         return kvm_io_bus_cmp(p1, p2);
5385 }
5386
5387 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5388                              gpa_t addr, int len)
5389 {
5390         struct kvm_io_range *range, key;
5391         int off;
5392
5393         key = (struct kvm_io_range) {
5394                 .addr = addr,
5395                 .len = len,
5396         };
5397
5398         range = bsearch(&key, bus->range, bus->dev_count,
5399                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5400         if (range == NULL)
5401                 return -ENOENT;
5402
5403         off = range - bus->range;
5404
5405         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5406                 off--;
5407
5408         return off;
5409 }
5410
5411 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5412                               struct kvm_io_range *range, const void *val)
5413 {
5414         int idx;
5415
5416         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5417         if (idx < 0)
5418                 return -EOPNOTSUPP;
5419
5420         while (idx < bus->dev_count &&
5421                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5422                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5423                                         range->len, val))
5424                         return idx;
5425                 idx++;
5426         }
5427
5428         return -EOPNOTSUPP;
5429 }
5430
5431 /* kvm_io_bus_write - called under kvm->slots_lock */
5432 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5433                      int len, const void *val)
5434 {
5435         struct kvm_io_bus *bus;
5436         struct kvm_io_range range;
5437         int r;
5438
5439         range = (struct kvm_io_range) {
5440                 .addr = addr,
5441                 .len = len,
5442         };
5443
5444         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5445         if (!bus)
5446                 return -ENOMEM;
5447         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5448         return r < 0 ? r : 0;
5449 }
5450 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5451
5452 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5453 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5454                             gpa_t addr, int len, const void *val, long cookie)
5455 {
5456         struct kvm_io_bus *bus;
5457         struct kvm_io_range range;
5458
5459         range = (struct kvm_io_range) {
5460                 .addr = addr,
5461                 .len = len,
5462         };
5463
5464         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5465         if (!bus)
5466                 return -ENOMEM;
5467
5468         /* First try the device referenced by cookie. */
5469         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5470             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5471                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5472                                         val))
5473                         return cookie;
5474
5475         /*
5476          * cookie contained garbage; fall back to search and return the
5477          * correct cookie value.
5478          */
5479         return __kvm_io_bus_write(vcpu, bus, &range, val);
5480 }
5481
5482 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5483                              struct kvm_io_range *range, void *val)
5484 {
5485         int idx;
5486
5487         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5488         if (idx < 0)
5489                 return -EOPNOTSUPP;
5490
5491         while (idx < bus->dev_count &&
5492                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5493                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5494                                        range->len, val))
5495                         return idx;
5496                 idx++;
5497         }
5498
5499         return -EOPNOTSUPP;
5500 }
5501
5502 /* kvm_io_bus_read - called under kvm->slots_lock */
5503 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5504                     int len, void *val)
5505 {
5506         struct kvm_io_bus *bus;
5507         struct kvm_io_range range;
5508         int r;
5509
5510         range = (struct kvm_io_range) {
5511                 .addr = addr,
5512                 .len = len,
5513         };
5514
5515         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5516         if (!bus)
5517                 return -ENOMEM;
5518         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5519         return r < 0 ? r : 0;
5520 }
5521
5522 /* Caller must hold slots_lock. */
5523 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5524                             int len, struct kvm_io_device *dev)
5525 {
5526         int i;
5527         struct kvm_io_bus *new_bus, *bus;
5528         struct kvm_io_range range;
5529
5530         bus = kvm_get_bus(kvm, bus_idx);
5531         if (!bus)
5532                 return -ENOMEM;
5533
5534         /* exclude ioeventfd which is limited by maximum fd */
5535         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5536                 return -ENOSPC;
5537
5538         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5539                           GFP_KERNEL_ACCOUNT);
5540         if (!new_bus)
5541                 return -ENOMEM;
5542
5543         range = (struct kvm_io_range) {
5544                 .addr = addr,
5545                 .len = len,
5546                 .dev = dev,
5547         };
5548
5549         for (i = 0; i < bus->dev_count; i++)
5550                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5551                         break;
5552
5553         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5554         new_bus->dev_count++;
5555         new_bus->range[i] = range;
5556         memcpy(new_bus->range + i + 1, bus->range + i,
5557                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5558         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5559         synchronize_srcu_expedited(&kvm->srcu);
5560         kfree(bus);
5561
5562         return 0;
5563 }
5564
5565 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5566                               struct kvm_io_device *dev)
5567 {
5568         int i;
5569         struct kvm_io_bus *new_bus, *bus;
5570
5571         lockdep_assert_held(&kvm->slots_lock);
5572
5573         bus = kvm_get_bus(kvm, bus_idx);
5574         if (!bus)
5575                 return 0;
5576
5577         for (i = 0; i < bus->dev_count; i++) {
5578                 if (bus->range[i].dev == dev) {
5579                         break;
5580                 }
5581         }
5582
5583         if (i == bus->dev_count)
5584                 return 0;
5585
5586         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5587                           GFP_KERNEL_ACCOUNT);
5588         if (new_bus) {
5589                 memcpy(new_bus, bus, struct_size(bus, range, i));
5590                 new_bus->dev_count--;
5591                 memcpy(new_bus->range + i, bus->range + i + 1,
5592                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5593         }
5594
5595         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5596         synchronize_srcu_expedited(&kvm->srcu);
5597
5598         /*
5599          * If NULL bus is installed, destroy the old bus, including all the
5600          * attached devices. Otherwise, destroy the caller's device only.
5601          */
5602         if (!new_bus) {
5603                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5604                 kvm_io_bus_destroy(bus);
5605                 return -ENOMEM;
5606         }
5607
5608         kvm_iodevice_destructor(dev);
5609         kfree(bus);
5610         return 0;
5611 }
5612
5613 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5614                                          gpa_t addr)
5615 {
5616         struct kvm_io_bus *bus;
5617         int dev_idx, srcu_idx;
5618         struct kvm_io_device *iodev = NULL;
5619
5620         srcu_idx = srcu_read_lock(&kvm->srcu);
5621
5622         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5623         if (!bus)
5624                 goto out_unlock;
5625
5626         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5627         if (dev_idx < 0)
5628                 goto out_unlock;
5629
5630         iodev = bus->range[dev_idx].dev;
5631
5632 out_unlock:
5633         srcu_read_unlock(&kvm->srcu, srcu_idx);
5634
5635         return iodev;
5636 }
5637 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5638
5639 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5640                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5641                            const char *fmt)
5642 {
5643         int ret;
5644         struct kvm_stat_data *stat_data = inode->i_private;
5645
5646         /*
5647          * The debugfs files are a reference to the kvm struct which
5648         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5649         * avoids the race between open and the removal of the debugfs directory.
5650          */
5651         if (!kvm_get_kvm_safe(stat_data->kvm))
5652                 return -ENOENT;
5653
5654         ret = simple_attr_open(inode, file, get,
5655                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
5656                                ? set : NULL, fmt);
5657         if (ret)
5658                 kvm_put_kvm(stat_data->kvm);
5659
5660         return ret;
5661 }
5662
5663 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5664 {
5665         struct kvm_stat_data *stat_data = inode->i_private;
5666
5667         simple_attr_release(inode, file);
5668         kvm_put_kvm(stat_data->kvm);
5669
5670         return 0;
5671 }
5672
5673 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5674 {
5675         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5676
5677         return 0;
5678 }
5679
5680 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5681 {
5682         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5683
5684         return 0;
5685 }
5686
5687 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5688 {
5689         unsigned long i;
5690         struct kvm_vcpu *vcpu;
5691
5692         *val = 0;
5693
5694         kvm_for_each_vcpu(i, vcpu, kvm)
5695                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5696
5697         return 0;
5698 }
5699
5700 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5701 {
5702         unsigned long i;
5703         struct kvm_vcpu *vcpu;
5704
5705         kvm_for_each_vcpu(i, vcpu, kvm)
5706                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5707
5708         return 0;
5709 }
5710
5711 static int kvm_stat_data_get(void *data, u64 *val)
5712 {
5713         int r = -EFAULT;
5714         struct kvm_stat_data *stat_data = data;
5715
5716         switch (stat_data->kind) {
5717         case KVM_STAT_VM:
5718                 r = kvm_get_stat_per_vm(stat_data->kvm,
5719                                         stat_data->desc->desc.offset, val);
5720                 break;
5721         case KVM_STAT_VCPU:
5722                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5723                                           stat_data->desc->desc.offset, val);
5724                 break;
5725         }
5726
5727         return r;
5728 }
5729
5730 static int kvm_stat_data_clear(void *data, u64 val)
5731 {
5732         int r = -EFAULT;
5733         struct kvm_stat_data *stat_data = data;
5734
5735         if (val)
5736                 return -EINVAL;
5737
5738         switch (stat_data->kind) {
5739         case KVM_STAT_VM:
5740                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5741                                           stat_data->desc->desc.offset);
5742                 break;
5743         case KVM_STAT_VCPU:
5744                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5745                                             stat_data->desc->desc.offset);
5746                 break;
5747         }
5748
5749         return r;
5750 }
5751
5752 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5753 {
5754         __simple_attr_check_format("%llu\n", 0ull);
5755         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5756                                 kvm_stat_data_clear, "%llu\n");
5757 }
5758
5759 static const struct file_operations stat_fops_per_vm = {
5760         .owner = THIS_MODULE,
5761         .open = kvm_stat_data_open,
5762         .release = kvm_debugfs_release,
5763         .read = simple_attr_read,
5764         .write = simple_attr_write,
5765         .llseek = no_llseek,
5766 };
5767
5768 static int vm_stat_get(void *_offset, u64 *val)
5769 {
5770         unsigned offset = (long)_offset;
5771         struct kvm *kvm;
5772         u64 tmp_val;
5773
5774         *val = 0;
5775         mutex_lock(&kvm_lock);
5776         list_for_each_entry(kvm, &vm_list, vm_list) {
5777                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5778                 *val += tmp_val;
5779         }
5780         mutex_unlock(&kvm_lock);
5781         return 0;
5782 }
5783
5784 static int vm_stat_clear(void *_offset, u64 val)
5785 {
5786         unsigned offset = (long)_offset;
5787         struct kvm *kvm;
5788
5789         if (val)
5790                 return -EINVAL;
5791
5792         mutex_lock(&kvm_lock);
5793         list_for_each_entry(kvm, &vm_list, vm_list) {
5794                 kvm_clear_stat_per_vm(kvm, offset);
5795         }
5796         mutex_unlock(&kvm_lock);
5797
5798         return 0;
5799 }
5800
5801 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5802 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5803
5804 static int vcpu_stat_get(void *_offset, u64 *val)
5805 {
5806         unsigned offset = (long)_offset;
5807         struct kvm *kvm;
5808         u64 tmp_val;
5809
5810         *val = 0;
5811         mutex_lock(&kvm_lock);
5812         list_for_each_entry(kvm, &vm_list, vm_list) {
5813                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5814                 *val += tmp_val;
5815         }
5816         mutex_unlock(&kvm_lock);
5817         return 0;
5818 }
5819
5820 static int vcpu_stat_clear(void *_offset, u64 val)
5821 {
5822         unsigned offset = (long)_offset;
5823         struct kvm *kvm;
5824
5825         if (val)
5826                 return -EINVAL;
5827
5828         mutex_lock(&kvm_lock);
5829         list_for_each_entry(kvm, &vm_list, vm_list) {
5830                 kvm_clear_stat_per_vcpu(kvm, offset);
5831         }
5832         mutex_unlock(&kvm_lock);
5833
5834         return 0;
5835 }
5836
5837 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5838                         "%llu\n");
5839 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5840
5841 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5842 {
5843         struct kobj_uevent_env *env;
5844         unsigned long long created, active;
5845
5846         if (!kvm_dev.this_device || !kvm)
5847                 return;
5848
5849         mutex_lock(&kvm_lock);
5850         if (type == KVM_EVENT_CREATE_VM) {
5851                 kvm_createvm_count++;
5852                 kvm_active_vms++;
5853         } else if (type == KVM_EVENT_DESTROY_VM) {
5854                 kvm_active_vms--;
5855         }
5856         created = kvm_createvm_count;
5857         active = kvm_active_vms;
5858         mutex_unlock(&kvm_lock);
5859
5860         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5861         if (!env)
5862                 return;
5863
5864         add_uevent_var(env, "CREATED=%llu", created);
5865         add_uevent_var(env, "COUNT=%llu", active);
5866
5867         if (type == KVM_EVENT_CREATE_VM) {
5868                 add_uevent_var(env, "EVENT=create");
5869                 kvm->userspace_pid = task_pid_nr(current);
5870         } else if (type == KVM_EVENT_DESTROY_VM) {
5871                 add_uevent_var(env, "EVENT=destroy");
5872         }
5873         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5874
5875         if (!IS_ERR(kvm->debugfs_dentry)) {
5876                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5877
5878                 if (p) {
5879                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5880                         if (!IS_ERR(tmp))
5881                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5882                         kfree(p);
5883                 }
5884         }
5885         /* no need for checks, since we are adding at most only 5 keys */
5886         env->envp[env->envp_idx++] = NULL;
5887         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5888         kfree(env);
5889 }
5890
5891 static void kvm_init_debug(void)
5892 {
5893         const struct file_operations *fops;
5894         const struct _kvm_stats_desc *pdesc;
5895         int i;
5896
5897         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5898
5899         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5900                 pdesc = &kvm_vm_stats_desc[i];
5901                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5902                         fops = &vm_stat_fops;
5903                 else
5904                         fops = &vm_stat_readonly_fops;
5905                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5906                                 kvm_debugfs_dir,
5907                                 (void *)(long)pdesc->desc.offset, fops);
5908         }
5909
5910         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5911                 pdesc = &kvm_vcpu_stats_desc[i];
5912                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5913                         fops = &vcpu_stat_fops;
5914                 else
5915                         fops = &vcpu_stat_readonly_fops;
5916                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5917                                 kvm_debugfs_dir,
5918                                 (void *)(long)pdesc->desc.offset, fops);
5919         }
5920 }
5921
5922 static inline
5923 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5924 {
5925         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5926 }
5927
5928 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5929 {
5930         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5931
5932         WRITE_ONCE(vcpu->preempted, false);
5933         WRITE_ONCE(vcpu->ready, false);
5934
5935         __this_cpu_write(kvm_running_vcpu, vcpu);
5936         kvm_arch_sched_in(vcpu, cpu);
5937         kvm_arch_vcpu_load(vcpu, cpu);
5938 }
5939
5940 static void kvm_sched_out(struct preempt_notifier *pn,
5941                           struct task_struct *next)
5942 {
5943         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5944
5945         if (current->on_rq) {
5946                 WRITE_ONCE(vcpu->preempted, true);
5947                 WRITE_ONCE(vcpu->ready, true);
5948         }
5949         kvm_arch_vcpu_put(vcpu);
5950         __this_cpu_write(kvm_running_vcpu, NULL);
5951 }
5952
5953 /**
5954  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5955  *
5956  * We can disable preemption locally around accessing the per-CPU variable,
5957  * and use the resolved vcpu pointer after enabling preemption again,
5958  * because even if the current thread is migrated to another CPU, reading
5959  * the per-CPU value later will give us the same value as we update the
5960  * per-CPU variable in the preempt notifier handlers.
5961  */
5962 struct kvm_vcpu *kvm_get_running_vcpu(void)
5963 {
5964         struct kvm_vcpu *vcpu;
5965
5966         preempt_disable();
5967         vcpu = __this_cpu_read(kvm_running_vcpu);
5968         preempt_enable();
5969
5970         return vcpu;
5971 }
5972 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5973
5974 /**
5975  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5976  */
5977 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5978 {
5979         return &kvm_running_vcpu;
5980 }
5981
5982 #ifdef CONFIG_GUEST_PERF_EVENTS
5983 static unsigned int kvm_guest_state(void)
5984 {
5985         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5986         unsigned int state;
5987
5988         if (!kvm_arch_pmi_in_guest(vcpu))
5989                 return 0;
5990
5991         state = PERF_GUEST_ACTIVE;
5992         if (!kvm_arch_vcpu_in_kernel(vcpu))
5993                 state |= PERF_GUEST_USER;
5994
5995         return state;
5996 }
5997
5998 static unsigned long kvm_guest_get_ip(void)
5999 {
6000         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6001
6002         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6003         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6004                 return 0;
6005
6006         return kvm_arch_vcpu_get_ip(vcpu);
6007 }
6008
6009 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6010         .state                  = kvm_guest_state,
6011         .get_ip                 = kvm_guest_get_ip,
6012         .handle_intel_pt_intr   = NULL,
6013 };
6014
6015 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6016 {
6017         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6018         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6019 }
6020 void kvm_unregister_perf_callbacks(void)
6021 {
6022         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6023 }
6024 #endif
6025
6026 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6027 {
6028         int r;
6029         int cpu;
6030
6031 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6032         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6033                                       kvm_online_cpu, kvm_offline_cpu);
6034         if (r)
6035                 return r;
6036
6037         register_syscore_ops(&kvm_syscore_ops);
6038 #endif
6039
6040         /* A kmem cache lets us meet the alignment requirements of fx_save. */
6041         if (!vcpu_align)
6042                 vcpu_align = __alignof__(struct kvm_vcpu);
6043         kvm_vcpu_cache =
6044                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6045                                            SLAB_ACCOUNT,
6046                                            offsetof(struct kvm_vcpu, arch),
6047                                            offsetofend(struct kvm_vcpu, stats_id)
6048                                            - offsetof(struct kvm_vcpu, arch),
6049                                            NULL);
6050         if (!kvm_vcpu_cache) {
6051                 r = -ENOMEM;
6052                 goto err_vcpu_cache;
6053         }
6054
6055         for_each_possible_cpu(cpu) {
6056                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6057                                             GFP_KERNEL, cpu_to_node(cpu))) {
6058                         r = -ENOMEM;
6059                         goto err_cpu_kick_mask;
6060                 }
6061         }
6062
6063         r = kvm_irqfd_init();
6064         if (r)
6065                 goto err_irqfd;
6066
6067         r = kvm_async_pf_init();
6068         if (r)
6069                 goto err_async_pf;
6070
6071         kvm_chardev_ops.owner = module;
6072
6073         kvm_preempt_ops.sched_in = kvm_sched_in;
6074         kvm_preempt_ops.sched_out = kvm_sched_out;
6075
6076         kvm_init_debug();
6077
6078         r = kvm_vfio_ops_init();
6079         if (WARN_ON_ONCE(r))
6080                 goto err_vfio;
6081
6082         /*
6083          * Registration _must_ be the very last thing done, as this exposes
6084          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6085          */
6086         r = misc_register(&kvm_dev);
6087         if (r) {
6088                 pr_err("kvm: misc device register failed\n");
6089                 goto err_register;
6090         }
6091
6092         return 0;
6093
6094 err_register:
6095         kvm_vfio_ops_exit();
6096 err_vfio:
6097         kvm_async_pf_deinit();
6098 err_async_pf:
6099         kvm_irqfd_exit();
6100 err_irqfd:
6101 err_cpu_kick_mask:
6102         for_each_possible_cpu(cpu)
6103                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6104         kmem_cache_destroy(kvm_vcpu_cache);
6105 err_vcpu_cache:
6106 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6107         unregister_syscore_ops(&kvm_syscore_ops);
6108         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6109 #endif
6110         return r;
6111 }
6112 EXPORT_SYMBOL_GPL(kvm_init);
6113
6114 void kvm_exit(void)
6115 {
6116         int cpu;
6117
6118         /*
6119          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6120          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6121          * to KVM while the module is being stopped.
6122          */
6123         misc_deregister(&kvm_dev);
6124
6125         debugfs_remove_recursive(kvm_debugfs_dir);
6126         for_each_possible_cpu(cpu)
6127                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6128         kmem_cache_destroy(kvm_vcpu_cache);
6129         kvm_vfio_ops_exit();
6130         kvm_async_pf_deinit();
6131 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6132         unregister_syscore_ops(&kvm_syscore_ops);
6133         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6134 #endif
6135         kvm_irqfd_exit();
6136 }
6137 EXPORT_SYMBOL_GPL(kvm_exit);
6138
6139 struct kvm_vm_worker_thread_context {
6140         struct kvm *kvm;
6141         struct task_struct *parent;
6142         struct completion init_done;
6143         kvm_vm_thread_fn_t thread_fn;
6144         uintptr_t data;
6145         int err;
6146 };
6147
6148 static int kvm_vm_worker_thread(void *context)
6149 {
6150         /*
6151          * The init_context is allocated on the stack of the parent thread, so
6152          * we have to locally copy anything that is needed beyond initialization
6153          */
6154         struct kvm_vm_worker_thread_context *init_context = context;
6155         struct task_struct *parent;
6156         struct kvm *kvm = init_context->kvm;
6157         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6158         uintptr_t data = init_context->data;
6159         int err;
6160
6161         err = kthread_park(current);
6162         /* kthread_park(current) is never supposed to return an error */
6163         WARN_ON(err != 0);
6164         if (err)
6165                 goto init_complete;
6166
6167         err = cgroup_attach_task_all(init_context->parent, current);
6168         if (err) {
6169                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6170                         __func__, err);
6171                 goto init_complete;
6172         }
6173
6174         set_user_nice(current, task_nice(init_context->parent));
6175
6176 init_complete:
6177         init_context->err = err;
6178         complete(&init_context->init_done);
6179         init_context = NULL;
6180
6181         if (err)
6182                 goto out;
6183
6184         /* Wait to be woken up by the spawner before proceeding. */
6185         kthread_parkme();
6186
6187         if (!kthread_should_stop())
6188                 err = thread_fn(kvm, data);
6189
6190 out:
6191         /*
6192          * Move kthread back to its original cgroup to prevent it lingering in
6193          * the cgroup of the VM process, after the latter finishes its
6194          * execution.
6195          *
6196          * kthread_stop() waits on the 'exited' completion condition which is
6197          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6198          * kthread is removed from the cgroup in the cgroup_exit() which is
6199          * called after the exit_mm(). This causes the kthread_stop() to return
6200          * before the kthread actually quits the cgroup.
6201          */
6202         rcu_read_lock();
6203         parent = rcu_dereference(current->real_parent);
6204         get_task_struct(parent);
6205         rcu_read_unlock();
6206         cgroup_attach_task_all(parent, current);
6207         put_task_struct(parent);
6208
6209         return err;
6210 }
6211
6212 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6213                                 uintptr_t data, const char *name,
6214                                 struct task_struct **thread_ptr)
6215 {
6216         struct kvm_vm_worker_thread_context init_context = {};
6217         struct task_struct *thread;
6218
6219         *thread_ptr = NULL;
6220         init_context.kvm = kvm;
6221         init_context.parent = current;
6222         init_context.thread_fn = thread_fn;
6223         init_context.data = data;
6224         init_completion(&init_context.init_done);
6225
6226         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6227                              "%s-%d", name, task_pid_nr(current));
6228         if (IS_ERR(thread))
6229                 return PTR_ERR(thread);
6230
6231         /* kthread_run is never supposed to return NULL */
6232         WARN_ON(thread == NULL);
6233
6234         wait_for_completion(&init_context.init_done);
6235
6236         if (!init_context.err)
6237                 *thread_ptr = thread;
6238
6239         return init_context.err;
6240 }