KVM: Allow range-based TLB invalidation from common code
[platform/kernel/linux-rpi.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100  * Ordering of locks:
101  *
102  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static struct file_operations kvm_chardev_ops;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158 {
159 }
160
161 bool kvm_is_zone_device_page(struct page *page)
162 {
163         /*
164          * The metadata used by is_zone_device_page() to determine whether or
165          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166          * the device has been pinned, e.g. by get_user_pages().  WARN if the
167          * page_count() is zero to help detect bad usage of this helper.
168          */
169         if (WARN_ON_ONCE(!page_count(page)))
170                 return false;
171
172         return is_zone_device_page(page);
173 }
174
175 /*
176  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
178  * is likely incomplete, it has been compiled purely through people wanting to
179  * back guest with a certain type of memory and encountering issues.
180  */
181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
182 {
183         struct page *page;
184
185         if (!pfn_valid(pfn))
186                 return NULL;
187
188         page = pfn_to_page(pfn);
189         if (!PageReserved(page))
190                 return page;
191
192         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193         if (is_zero_pfn(pfn))
194                 return page;
195
196         /*
197          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198          * perspective they are "normal" pages, albeit with slightly different
199          * usage rules.
200          */
201         if (kvm_is_zone_device_page(page))
202                 return page;
203
204         return NULL;
205 }
206
207 /*
208  * Switches to specified vcpu, until a matching vcpu_put()
209  */
210 void vcpu_load(struct kvm_vcpu *vcpu)
211 {
212         int cpu = get_cpu();
213
214         __this_cpu_write(kvm_running_vcpu, vcpu);
215         preempt_notifier_register(&vcpu->preempt_notifier);
216         kvm_arch_vcpu_load(vcpu, cpu);
217         put_cpu();
218 }
219 EXPORT_SYMBOL_GPL(vcpu_load);
220
221 void vcpu_put(struct kvm_vcpu *vcpu)
222 {
223         preempt_disable();
224         kvm_arch_vcpu_put(vcpu);
225         preempt_notifier_unregister(&vcpu->preempt_notifier);
226         __this_cpu_write(kvm_running_vcpu, NULL);
227         preempt_enable();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_put);
230
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233 {
234         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235
236         /*
237          * We need to wait for the VCPU to reenable interrupts and get out of
238          * READING_SHADOW_PAGE_TABLES mode.
239          */
240         if (req & KVM_REQUEST_WAIT)
241                 return mode != OUTSIDE_GUEST_MODE;
242
243         /*
244          * Need to kick a running VCPU, but otherwise there is nothing to do.
245          */
246         return mode == IN_GUEST_MODE;
247 }
248
249 static void ack_kick(void *_completed)
250 {
251 }
252
253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
254 {
255         if (cpumask_empty(cpus))
256                 return false;
257
258         smp_call_function_many(cpus, ack_kick, NULL, wait);
259         return true;
260 }
261
262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263                                   struct cpumask *tmp, int current_cpu)
264 {
265         int cpu;
266
267         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268                 __kvm_make_request(req, vcpu);
269
270         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271                 return;
272
273         /*
274          * Note, the vCPU could get migrated to a different pCPU at any point
275          * after kvm_request_needs_ipi(), which could result in sending an IPI
276          * to the previous pCPU.  But, that's OK because the purpose of the IPI
277          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279          * after this point is also OK, as the requirement is only that KVM wait
280          * for vCPUs that were reading SPTEs _before_ any changes were
281          * finalized. See kvm_vcpu_kick() for more details on handling requests.
282          */
283         if (kvm_request_needs_ipi(vcpu, req)) {
284                 cpu = READ_ONCE(vcpu->cpu);
285                 if (cpu != -1 && cpu != current_cpu)
286                         __cpumask_set_cpu(cpu, tmp);
287         }
288 }
289
290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291                                  unsigned long *vcpu_bitmap)
292 {
293         struct kvm_vcpu *vcpu;
294         struct cpumask *cpus;
295         int i, me;
296         bool called;
297
298         me = get_cpu();
299
300         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301         cpumask_clear(cpus);
302
303         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304                 vcpu = kvm_get_vcpu(kvm, i);
305                 if (!vcpu)
306                         continue;
307                 kvm_make_vcpu_request(vcpu, req, cpus, me);
308         }
309
310         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
311         put_cpu();
312
313         return called;
314 }
315
316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317                                       struct kvm_vcpu *except)
318 {
319         struct kvm_vcpu *vcpu;
320         struct cpumask *cpus;
321         unsigned long i;
322         bool called;
323         int me;
324
325         me = get_cpu();
326
327         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328         cpumask_clear(cpus);
329
330         kvm_for_each_vcpu(i, vcpu, kvm) {
331                 if (vcpu == except)
332                         continue;
333                 kvm_make_vcpu_request(vcpu, req, cpus, me);
334         }
335
336         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
337         put_cpu();
338
339         return called;
340 }
341
342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
343 {
344         return kvm_make_all_cpus_request_except(kvm, req, NULL);
345 }
346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
347
348 void kvm_flush_remote_tlbs(struct kvm *kvm)
349 {
350         ++kvm->stat.generic.remote_tlb_flush_requests;
351
352         /*
353          * We want to publish modifications to the page tables before reading
354          * mode. Pairs with a memory barrier in arch-specific code.
355          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
356          * and smp_mb in walk_shadow_page_lockless_begin/end.
357          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
358          *
359          * There is already an smp_mb__after_atomic() before
360          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
361          * barrier here.
362          */
363         if (!kvm_arch_flush_remote_tlbs(kvm)
364             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
365                 ++kvm->stat.generic.remote_tlb_flush;
366 }
367 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
368
369 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
370 {
371         if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
372                 return;
373
374         /*
375          * Fall back to a flushing entire TLBs if the architecture range-based
376          * TLB invalidation is unsupported or can't be performed for whatever
377          * reason.
378          */
379         kvm_flush_remote_tlbs(kvm);
380 }
381
382 static void kvm_flush_shadow_all(struct kvm *kvm)
383 {
384         kvm_arch_flush_shadow_all(kvm);
385         kvm_arch_guest_memory_reclaimed(kvm);
386 }
387
388 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
389 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
390                                                gfp_t gfp_flags)
391 {
392         gfp_flags |= mc->gfp_zero;
393
394         if (mc->kmem_cache)
395                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
396         else
397                 return (void *)__get_free_page(gfp_flags);
398 }
399
400 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
401 {
402         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
403         void *obj;
404
405         if (mc->nobjs >= min)
406                 return 0;
407
408         if (unlikely(!mc->objects)) {
409                 if (WARN_ON_ONCE(!capacity))
410                         return -EIO;
411
412                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
413                 if (!mc->objects)
414                         return -ENOMEM;
415
416                 mc->capacity = capacity;
417         }
418
419         /* It is illegal to request a different capacity across topups. */
420         if (WARN_ON_ONCE(mc->capacity != capacity))
421                 return -EIO;
422
423         while (mc->nobjs < mc->capacity) {
424                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
425                 if (!obj)
426                         return mc->nobjs >= min ? 0 : -ENOMEM;
427                 mc->objects[mc->nobjs++] = obj;
428         }
429         return 0;
430 }
431
432 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
433 {
434         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
435 }
436
437 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
438 {
439         return mc->nobjs;
440 }
441
442 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
443 {
444         while (mc->nobjs) {
445                 if (mc->kmem_cache)
446                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
447                 else
448                         free_page((unsigned long)mc->objects[--mc->nobjs]);
449         }
450
451         kvfree(mc->objects);
452
453         mc->objects = NULL;
454         mc->capacity = 0;
455 }
456
457 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
458 {
459         void *p;
460
461         if (WARN_ON(!mc->nobjs))
462                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
463         else
464                 p = mc->objects[--mc->nobjs];
465         BUG_ON(!p);
466         return p;
467 }
468 #endif
469
470 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
471 {
472         mutex_init(&vcpu->mutex);
473         vcpu->cpu = -1;
474         vcpu->kvm = kvm;
475         vcpu->vcpu_id = id;
476         vcpu->pid = NULL;
477 #ifndef __KVM_HAVE_ARCH_WQP
478         rcuwait_init(&vcpu->wait);
479 #endif
480         kvm_async_pf_vcpu_init(vcpu);
481
482         kvm_vcpu_set_in_spin_loop(vcpu, false);
483         kvm_vcpu_set_dy_eligible(vcpu, false);
484         vcpu->preempted = false;
485         vcpu->ready = false;
486         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
487         vcpu->last_used_slot = NULL;
488
489         /* Fill the stats id string for the vcpu */
490         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
491                  task_pid_nr(current), id);
492 }
493
494 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
495 {
496         kvm_arch_vcpu_destroy(vcpu);
497         kvm_dirty_ring_free(&vcpu->dirty_ring);
498
499         /*
500          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
501          * the vcpu->pid pointer, and at destruction time all file descriptors
502          * are already gone.
503          */
504         put_pid(rcu_dereference_protected(vcpu->pid, 1));
505
506         free_page((unsigned long)vcpu->run);
507         kmem_cache_free(kvm_vcpu_cache, vcpu);
508 }
509
510 void kvm_destroy_vcpus(struct kvm *kvm)
511 {
512         unsigned long i;
513         struct kvm_vcpu *vcpu;
514
515         kvm_for_each_vcpu(i, vcpu, kvm) {
516                 kvm_vcpu_destroy(vcpu);
517                 xa_erase(&kvm->vcpu_array, i);
518         }
519
520         atomic_set(&kvm->online_vcpus, 0);
521 }
522 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
523
524 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
525 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
526 {
527         return container_of(mn, struct kvm, mmu_notifier);
528 }
529
530 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
531
532 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
533                              unsigned long end);
534
535 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
536
537 struct kvm_hva_range {
538         unsigned long start;
539         unsigned long end;
540         pte_t pte;
541         hva_handler_t handler;
542         on_lock_fn_t on_lock;
543         on_unlock_fn_t on_unlock;
544         bool flush_on_ret;
545         bool may_block;
546 };
547
548 /*
549  * Use a dedicated stub instead of NULL to indicate that there is no callback
550  * function/handler.  The compiler technically can't guarantee that a real
551  * function will have a non-zero address, and so it will generate code to
552  * check for !NULL, whereas comparing against a stub will be elided at compile
553  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
554  */
555 static void kvm_null_fn(void)
556 {
557
558 }
559 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
560
561 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
562 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
563         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
564              node;                                                           \
565              node = interval_tree_iter_next(node, start, last))      \
566
567 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
568                                                   const struct kvm_hva_range *range)
569 {
570         bool ret = false, locked = false;
571         struct kvm_gfn_range gfn_range;
572         struct kvm_memory_slot *slot;
573         struct kvm_memslots *slots;
574         int i, idx;
575
576         if (WARN_ON_ONCE(range->end <= range->start))
577                 return 0;
578
579         /* A null handler is allowed if and only if on_lock() is provided. */
580         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
581                          IS_KVM_NULL_FN(range->handler)))
582                 return 0;
583
584         idx = srcu_read_lock(&kvm->srcu);
585
586         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
587                 struct interval_tree_node *node;
588
589                 slots = __kvm_memslots(kvm, i);
590                 kvm_for_each_memslot_in_hva_range(node, slots,
591                                                   range->start, range->end - 1) {
592                         unsigned long hva_start, hva_end;
593
594                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
595                         hva_start = max(range->start, slot->userspace_addr);
596                         hva_end = min(range->end, slot->userspace_addr +
597                                                   (slot->npages << PAGE_SHIFT));
598
599                         /*
600                          * To optimize for the likely case where the address
601                          * range is covered by zero or one memslots, don't
602                          * bother making these conditional (to avoid writes on
603                          * the second or later invocation of the handler).
604                          */
605                         gfn_range.pte = range->pte;
606                         gfn_range.may_block = range->may_block;
607
608                         /*
609                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
610                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
611                          */
612                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
613                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
614                         gfn_range.slot = slot;
615
616                         if (!locked) {
617                                 locked = true;
618                                 KVM_MMU_LOCK(kvm);
619                                 if (!IS_KVM_NULL_FN(range->on_lock))
620                                         range->on_lock(kvm, range->start, range->end);
621                                 if (IS_KVM_NULL_FN(range->handler))
622                                         break;
623                         }
624                         ret |= range->handler(kvm, &gfn_range);
625                 }
626         }
627
628         if (range->flush_on_ret && ret)
629                 kvm_flush_remote_tlbs(kvm);
630
631         if (locked) {
632                 KVM_MMU_UNLOCK(kvm);
633                 if (!IS_KVM_NULL_FN(range->on_unlock))
634                         range->on_unlock(kvm);
635         }
636
637         srcu_read_unlock(&kvm->srcu, idx);
638
639         /* The notifiers are averse to booleans. :-( */
640         return (int)ret;
641 }
642
643 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
644                                                 unsigned long start,
645                                                 unsigned long end,
646                                                 pte_t pte,
647                                                 hva_handler_t handler)
648 {
649         struct kvm *kvm = mmu_notifier_to_kvm(mn);
650         const struct kvm_hva_range range = {
651                 .start          = start,
652                 .end            = end,
653                 .pte            = pte,
654                 .handler        = handler,
655                 .on_lock        = (void *)kvm_null_fn,
656                 .on_unlock      = (void *)kvm_null_fn,
657                 .flush_on_ret   = true,
658                 .may_block      = false,
659         };
660
661         return __kvm_handle_hva_range(kvm, &range);
662 }
663
664 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
665                                                          unsigned long start,
666                                                          unsigned long end,
667                                                          hva_handler_t handler)
668 {
669         struct kvm *kvm = mmu_notifier_to_kvm(mn);
670         const struct kvm_hva_range range = {
671                 .start          = start,
672                 .end            = end,
673                 .pte            = __pte(0),
674                 .handler        = handler,
675                 .on_lock        = (void *)kvm_null_fn,
676                 .on_unlock      = (void *)kvm_null_fn,
677                 .flush_on_ret   = false,
678                 .may_block      = false,
679         };
680
681         return __kvm_handle_hva_range(kvm, &range);
682 }
683
684 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
685 {
686         /*
687          * Skipping invalid memslots is correct if and only change_pte() is
688          * surrounded by invalidate_range_{start,end}(), which is currently
689          * guaranteed by the primary MMU.  If that ever changes, KVM needs to
690          * unmap the memslot instead of skipping the memslot to ensure that KVM
691          * doesn't hold references to the old PFN.
692          */
693         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
694
695         if (range->slot->flags & KVM_MEMSLOT_INVALID)
696                 return false;
697
698         return kvm_set_spte_gfn(kvm, range);
699 }
700
701 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
702                                         struct mm_struct *mm,
703                                         unsigned long address,
704                                         pte_t pte)
705 {
706         struct kvm *kvm = mmu_notifier_to_kvm(mn);
707
708         trace_kvm_set_spte_hva(address);
709
710         /*
711          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
712          * If mmu_invalidate_in_progress is zero, then no in-progress
713          * invalidations, including this one, found a relevant memslot at
714          * start(); rechecking memslots here is unnecessary.  Note, a false
715          * positive (count elevated by a different invalidation) is sub-optimal
716          * but functionally ok.
717          */
718         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
719         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
720                 return;
721
722         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
723 }
724
725 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
726                               unsigned long end)
727 {
728         /*
729          * The count increase must become visible at unlock time as no
730          * spte can be established without taking the mmu_lock and
731          * count is also read inside the mmu_lock critical section.
732          */
733         kvm->mmu_invalidate_in_progress++;
734         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
735                 kvm->mmu_invalidate_range_start = start;
736                 kvm->mmu_invalidate_range_end = end;
737         } else {
738                 /*
739                  * Fully tracking multiple concurrent ranges has diminishing
740                  * returns. Keep things simple and just find the minimal range
741                  * which includes the current and new ranges. As there won't be
742                  * enough information to subtract a range after its invalidate
743                  * completes, any ranges invalidated concurrently will
744                  * accumulate and persist until all outstanding invalidates
745                  * complete.
746                  */
747                 kvm->mmu_invalidate_range_start =
748                         min(kvm->mmu_invalidate_range_start, start);
749                 kvm->mmu_invalidate_range_end =
750                         max(kvm->mmu_invalidate_range_end, end);
751         }
752 }
753
754 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
755                                         const struct mmu_notifier_range *range)
756 {
757         struct kvm *kvm = mmu_notifier_to_kvm(mn);
758         const struct kvm_hva_range hva_range = {
759                 .start          = range->start,
760                 .end            = range->end,
761                 .pte            = __pte(0),
762                 .handler        = kvm_unmap_gfn_range,
763                 .on_lock        = kvm_mmu_invalidate_begin,
764                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
765                 .flush_on_ret   = true,
766                 .may_block      = mmu_notifier_range_blockable(range),
767         };
768
769         trace_kvm_unmap_hva_range(range->start, range->end);
770
771         /*
772          * Prevent memslot modification between range_start() and range_end()
773          * so that conditionally locking provides the same result in both
774          * functions.  Without that guarantee, the mmu_invalidate_in_progress
775          * adjustments will be imbalanced.
776          *
777          * Pairs with the decrement in range_end().
778          */
779         spin_lock(&kvm->mn_invalidate_lock);
780         kvm->mn_active_invalidate_count++;
781         spin_unlock(&kvm->mn_invalidate_lock);
782
783         /*
784          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
785          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
786          * each cache's lock.  There are relatively few caches in existence at
787          * any given time, and the caches themselves can check for hva overlap,
788          * i.e. don't need to rely on memslot overlap checks for performance.
789          * Because this runs without holding mmu_lock, the pfn caches must use
790          * mn_active_invalidate_count (see above) instead of
791          * mmu_invalidate_in_progress.
792          */
793         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
794                                           hva_range.may_block);
795
796         __kvm_handle_hva_range(kvm, &hva_range);
797
798         return 0;
799 }
800
801 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
802                             unsigned long end)
803 {
804         /*
805          * This sequence increase will notify the kvm page fault that
806          * the page that is going to be mapped in the spte could have
807          * been freed.
808          */
809         kvm->mmu_invalidate_seq++;
810         smp_wmb();
811         /*
812          * The above sequence increase must be visible before the
813          * below count decrease, which is ensured by the smp_wmb above
814          * in conjunction with the smp_rmb in mmu_invalidate_retry().
815          */
816         kvm->mmu_invalidate_in_progress--;
817 }
818
819 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
820                                         const struct mmu_notifier_range *range)
821 {
822         struct kvm *kvm = mmu_notifier_to_kvm(mn);
823         const struct kvm_hva_range hva_range = {
824                 .start          = range->start,
825                 .end            = range->end,
826                 .pte            = __pte(0),
827                 .handler        = (void *)kvm_null_fn,
828                 .on_lock        = kvm_mmu_invalidate_end,
829                 .on_unlock      = (void *)kvm_null_fn,
830                 .flush_on_ret   = false,
831                 .may_block      = mmu_notifier_range_blockable(range),
832         };
833         bool wake;
834
835         __kvm_handle_hva_range(kvm, &hva_range);
836
837         /* Pairs with the increment in range_start(). */
838         spin_lock(&kvm->mn_invalidate_lock);
839         wake = (--kvm->mn_active_invalidate_count == 0);
840         spin_unlock(&kvm->mn_invalidate_lock);
841
842         /*
843          * There can only be one waiter, since the wait happens under
844          * slots_lock.
845          */
846         if (wake)
847                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
848
849         BUG_ON(kvm->mmu_invalidate_in_progress < 0);
850 }
851
852 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
853                                               struct mm_struct *mm,
854                                               unsigned long start,
855                                               unsigned long end)
856 {
857         trace_kvm_age_hva(start, end);
858
859         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
860 }
861
862 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
863                                         struct mm_struct *mm,
864                                         unsigned long start,
865                                         unsigned long end)
866 {
867         trace_kvm_age_hva(start, end);
868
869         /*
870          * Even though we do not flush TLB, this will still adversely
871          * affect performance on pre-Haswell Intel EPT, where there is
872          * no EPT Access Bit to clear so that we have to tear down EPT
873          * tables instead. If we find this unacceptable, we can always
874          * add a parameter to kvm_age_hva so that it effectively doesn't
875          * do anything on clear_young.
876          *
877          * Also note that currently we never issue secondary TLB flushes
878          * from clear_young, leaving this job up to the regular system
879          * cadence. If we find this inaccurate, we might come up with a
880          * more sophisticated heuristic later.
881          */
882         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
883 }
884
885 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
886                                        struct mm_struct *mm,
887                                        unsigned long address)
888 {
889         trace_kvm_test_age_hva(address);
890
891         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
892                                              kvm_test_age_gfn);
893 }
894
895 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
896                                      struct mm_struct *mm)
897 {
898         struct kvm *kvm = mmu_notifier_to_kvm(mn);
899         int idx;
900
901         idx = srcu_read_lock(&kvm->srcu);
902         kvm_flush_shadow_all(kvm);
903         srcu_read_unlock(&kvm->srcu, idx);
904 }
905
906 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
907         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
908         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
909         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
910         .clear_young            = kvm_mmu_notifier_clear_young,
911         .test_young             = kvm_mmu_notifier_test_young,
912         .change_pte             = kvm_mmu_notifier_change_pte,
913         .release                = kvm_mmu_notifier_release,
914 };
915
916 static int kvm_init_mmu_notifier(struct kvm *kvm)
917 {
918         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
919         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
920 }
921
922 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
923
924 static int kvm_init_mmu_notifier(struct kvm *kvm)
925 {
926         return 0;
927 }
928
929 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
930
931 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
932 static int kvm_pm_notifier_call(struct notifier_block *bl,
933                                 unsigned long state,
934                                 void *unused)
935 {
936         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
937
938         return kvm_arch_pm_notifier(kvm, state);
939 }
940
941 static void kvm_init_pm_notifier(struct kvm *kvm)
942 {
943         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
944         /* Suspend KVM before we suspend ftrace, RCU, etc. */
945         kvm->pm_notifier.priority = INT_MAX;
946         register_pm_notifier(&kvm->pm_notifier);
947 }
948
949 static void kvm_destroy_pm_notifier(struct kvm *kvm)
950 {
951         unregister_pm_notifier(&kvm->pm_notifier);
952 }
953 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
954 static void kvm_init_pm_notifier(struct kvm *kvm)
955 {
956 }
957
958 static void kvm_destroy_pm_notifier(struct kvm *kvm)
959 {
960 }
961 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
962
963 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
964 {
965         if (!memslot->dirty_bitmap)
966                 return;
967
968         kvfree(memslot->dirty_bitmap);
969         memslot->dirty_bitmap = NULL;
970 }
971
972 /* This does not remove the slot from struct kvm_memslots data structures */
973 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
974 {
975         kvm_destroy_dirty_bitmap(slot);
976
977         kvm_arch_free_memslot(kvm, slot);
978
979         kfree(slot);
980 }
981
982 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
983 {
984         struct hlist_node *idnode;
985         struct kvm_memory_slot *memslot;
986         int bkt;
987
988         /*
989          * The same memslot objects live in both active and inactive sets,
990          * arbitrarily free using index '1' so the second invocation of this
991          * function isn't operating over a structure with dangling pointers
992          * (even though this function isn't actually touching them).
993          */
994         if (!slots->node_idx)
995                 return;
996
997         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
998                 kvm_free_memslot(kvm, memslot);
999 }
1000
1001 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1002 {
1003         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1004         case KVM_STATS_TYPE_INSTANT:
1005                 return 0444;
1006         case KVM_STATS_TYPE_CUMULATIVE:
1007         case KVM_STATS_TYPE_PEAK:
1008         default:
1009                 return 0644;
1010         }
1011 }
1012
1013
1014 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1015 {
1016         int i;
1017         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1018                                       kvm_vcpu_stats_header.num_desc;
1019
1020         if (IS_ERR(kvm->debugfs_dentry))
1021                 return;
1022
1023         debugfs_remove_recursive(kvm->debugfs_dentry);
1024
1025         if (kvm->debugfs_stat_data) {
1026                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1027                         kfree(kvm->debugfs_stat_data[i]);
1028                 kfree(kvm->debugfs_stat_data);
1029         }
1030 }
1031
1032 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1033 {
1034         static DEFINE_MUTEX(kvm_debugfs_lock);
1035         struct dentry *dent;
1036         char dir_name[ITOA_MAX_LEN * 2];
1037         struct kvm_stat_data *stat_data;
1038         const struct _kvm_stats_desc *pdesc;
1039         int i, ret = -ENOMEM;
1040         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1041                                       kvm_vcpu_stats_header.num_desc;
1042
1043         if (!debugfs_initialized())
1044                 return 0;
1045
1046         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1047         mutex_lock(&kvm_debugfs_lock);
1048         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1049         if (dent) {
1050                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1051                 dput(dent);
1052                 mutex_unlock(&kvm_debugfs_lock);
1053                 return 0;
1054         }
1055         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1056         mutex_unlock(&kvm_debugfs_lock);
1057         if (IS_ERR(dent))
1058                 return 0;
1059
1060         kvm->debugfs_dentry = dent;
1061         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1062                                          sizeof(*kvm->debugfs_stat_data),
1063                                          GFP_KERNEL_ACCOUNT);
1064         if (!kvm->debugfs_stat_data)
1065                 goto out_err;
1066
1067         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1068                 pdesc = &kvm_vm_stats_desc[i];
1069                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1070                 if (!stat_data)
1071                         goto out_err;
1072
1073                 stat_data->kvm = kvm;
1074                 stat_data->desc = pdesc;
1075                 stat_data->kind = KVM_STAT_VM;
1076                 kvm->debugfs_stat_data[i] = stat_data;
1077                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1078                                     kvm->debugfs_dentry, stat_data,
1079                                     &stat_fops_per_vm);
1080         }
1081
1082         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1083                 pdesc = &kvm_vcpu_stats_desc[i];
1084                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1085                 if (!stat_data)
1086                         goto out_err;
1087
1088                 stat_data->kvm = kvm;
1089                 stat_data->desc = pdesc;
1090                 stat_data->kind = KVM_STAT_VCPU;
1091                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1092                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1093                                     kvm->debugfs_dentry, stat_data,
1094                                     &stat_fops_per_vm);
1095         }
1096
1097         ret = kvm_arch_create_vm_debugfs(kvm);
1098         if (ret)
1099                 goto out_err;
1100
1101         return 0;
1102 out_err:
1103         kvm_destroy_vm_debugfs(kvm);
1104         return ret;
1105 }
1106
1107 /*
1108  * Called after the VM is otherwise initialized, but just before adding it to
1109  * the vm_list.
1110  */
1111 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1112 {
1113         return 0;
1114 }
1115
1116 /*
1117  * Called just after removing the VM from the vm_list, but before doing any
1118  * other destruction.
1119  */
1120 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1121 {
1122 }
1123
1124 /*
1125  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1126  * be setup already, so we can create arch-specific debugfs entries under it.
1127  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1128  * a per-arch destroy interface is not needed.
1129  */
1130 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1131 {
1132         return 0;
1133 }
1134
1135 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1136 {
1137         struct kvm *kvm = kvm_arch_alloc_vm();
1138         struct kvm_memslots *slots;
1139         int r = -ENOMEM;
1140         int i, j;
1141
1142         if (!kvm)
1143                 return ERR_PTR(-ENOMEM);
1144
1145         /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1146         __module_get(kvm_chardev_ops.owner);
1147
1148         KVM_MMU_LOCK_INIT(kvm);
1149         mmgrab(current->mm);
1150         kvm->mm = current->mm;
1151         kvm_eventfd_init(kvm);
1152         mutex_init(&kvm->lock);
1153         mutex_init(&kvm->irq_lock);
1154         mutex_init(&kvm->slots_lock);
1155         mutex_init(&kvm->slots_arch_lock);
1156         spin_lock_init(&kvm->mn_invalidate_lock);
1157         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1158         xa_init(&kvm->vcpu_array);
1159
1160         INIT_LIST_HEAD(&kvm->gpc_list);
1161         spin_lock_init(&kvm->gpc_lock);
1162
1163         INIT_LIST_HEAD(&kvm->devices);
1164         kvm->max_vcpus = KVM_MAX_VCPUS;
1165
1166         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1167
1168         /*
1169          * Force subsequent debugfs file creations to fail if the VM directory
1170          * is not created (by kvm_create_vm_debugfs()).
1171          */
1172         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1173
1174         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1175                  task_pid_nr(current));
1176
1177         if (init_srcu_struct(&kvm->srcu))
1178                 goto out_err_no_srcu;
1179         if (init_srcu_struct(&kvm->irq_srcu))
1180                 goto out_err_no_irq_srcu;
1181
1182         refcount_set(&kvm->users_count, 1);
1183         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1184                 for (j = 0; j < 2; j++) {
1185                         slots = &kvm->__memslots[i][j];
1186
1187                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1188                         slots->hva_tree = RB_ROOT_CACHED;
1189                         slots->gfn_tree = RB_ROOT;
1190                         hash_init(slots->id_hash);
1191                         slots->node_idx = j;
1192
1193                         /* Generations must be different for each address space. */
1194                         slots->generation = i;
1195                 }
1196
1197                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1198         }
1199
1200         for (i = 0; i < KVM_NR_BUSES; i++) {
1201                 rcu_assign_pointer(kvm->buses[i],
1202                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1203                 if (!kvm->buses[i])
1204                         goto out_err_no_arch_destroy_vm;
1205         }
1206
1207         r = kvm_arch_init_vm(kvm, type);
1208         if (r)
1209                 goto out_err_no_arch_destroy_vm;
1210
1211         r = hardware_enable_all();
1212         if (r)
1213                 goto out_err_no_disable;
1214
1215 #ifdef CONFIG_HAVE_KVM_IRQFD
1216         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1217 #endif
1218
1219         r = kvm_init_mmu_notifier(kvm);
1220         if (r)
1221                 goto out_err_no_mmu_notifier;
1222
1223         r = kvm_coalesced_mmio_init(kvm);
1224         if (r < 0)
1225                 goto out_no_coalesced_mmio;
1226
1227         r = kvm_create_vm_debugfs(kvm, fdname);
1228         if (r)
1229                 goto out_err_no_debugfs;
1230
1231         r = kvm_arch_post_init_vm(kvm);
1232         if (r)
1233                 goto out_err;
1234
1235         mutex_lock(&kvm_lock);
1236         list_add(&kvm->vm_list, &vm_list);
1237         mutex_unlock(&kvm_lock);
1238
1239         preempt_notifier_inc();
1240         kvm_init_pm_notifier(kvm);
1241
1242         return kvm;
1243
1244 out_err:
1245         kvm_destroy_vm_debugfs(kvm);
1246 out_err_no_debugfs:
1247         kvm_coalesced_mmio_free(kvm);
1248 out_no_coalesced_mmio:
1249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1250         if (kvm->mmu_notifier.ops)
1251                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1252 #endif
1253 out_err_no_mmu_notifier:
1254         hardware_disable_all();
1255 out_err_no_disable:
1256         kvm_arch_destroy_vm(kvm);
1257 out_err_no_arch_destroy_vm:
1258         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1259         for (i = 0; i < KVM_NR_BUSES; i++)
1260                 kfree(kvm_get_bus(kvm, i));
1261         cleanup_srcu_struct(&kvm->irq_srcu);
1262 out_err_no_irq_srcu:
1263         cleanup_srcu_struct(&kvm->srcu);
1264 out_err_no_srcu:
1265         kvm_arch_free_vm(kvm);
1266         mmdrop(current->mm);
1267         module_put(kvm_chardev_ops.owner);
1268         return ERR_PTR(r);
1269 }
1270
1271 static void kvm_destroy_devices(struct kvm *kvm)
1272 {
1273         struct kvm_device *dev, *tmp;
1274
1275         /*
1276          * We do not need to take the kvm->lock here, because nobody else
1277          * has a reference to the struct kvm at this point and therefore
1278          * cannot access the devices list anyhow.
1279          */
1280         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1281                 list_del(&dev->vm_node);
1282                 dev->ops->destroy(dev);
1283         }
1284 }
1285
1286 static void kvm_destroy_vm(struct kvm *kvm)
1287 {
1288         int i;
1289         struct mm_struct *mm = kvm->mm;
1290
1291         kvm_destroy_pm_notifier(kvm);
1292         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1293         kvm_destroy_vm_debugfs(kvm);
1294         kvm_arch_sync_events(kvm);
1295         mutex_lock(&kvm_lock);
1296         list_del(&kvm->vm_list);
1297         mutex_unlock(&kvm_lock);
1298         kvm_arch_pre_destroy_vm(kvm);
1299
1300         kvm_free_irq_routing(kvm);
1301         for (i = 0; i < KVM_NR_BUSES; i++) {
1302                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1303
1304                 if (bus)
1305                         kvm_io_bus_destroy(bus);
1306                 kvm->buses[i] = NULL;
1307         }
1308         kvm_coalesced_mmio_free(kvm);
1309 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1310         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1311         /*
1312          * At this point, pending calls to invalidate_range_start()
1313          * have completed but no more MMU notifiers will run, so
1314          * mn_active_invalidate_count may remain unbalanced.
1315          * No threads can be waiting in kvm_swap_active_memslots() as the
1316          * last reference on KVM has been dropped, but freeing
1317          * memslots would deadlock without this manual intervention.
1318          */
1319         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1320         kvm->mn_active_invalidate_count = 0;
1321 #else
1322         kvm_flush_shadow_all(kvm);
1323 #endif
1324         kvm_arch_destroy_vm(kvm);
1325         kvm_destroy_devices(kvm);
1326         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1327                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1328                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1329         }
1330         cleanup_srcu_struct(&kvm->irq_srcu);
1331         cleanup_srcu_struct(&kvm->srcu);
1332         kvm_arch_free_vm(kvm);
1333         preempt_notifier_dec();
1334         hardware_disable_all();
1335         mmdrop(mm);
1336         module_put(kvm_chardev_ops.owner);
1337 }
1338
1339 void kvm_get_kvm(struct kvm *kvm)
1340 {
1341         refcount_inc(&kvm->users_count);
1342 }
1343 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1344
1345 /*
1346  * Make sure the vm is not during destruction, which is a safe version of
1347  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1348  */
1349 bool kvm_get_kvm_safe(struct kvm *kvm)
1350 {
1351         return refcount_inc_not_zero(&kvm->users_count);
1352 }
1353 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1354
1355 void kvm_put_kvm(struct kvm *kvm)
1356 {
1357         if (refcount_dec_and_test(&kvm->users_count))
1358                 kvm_destroy_vm(kvm);
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1361
1362 /*
1363  * Used to put a reference that was taken on behalf of an object associated
1364  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1365  * of the new file descriptor fails and the reference cannot be transferred to
1366  * its final owner.  In such cases, the caller is still actively using @kvm and
1367  * will fail miserably if the refcount unexpectedly hits zero.
1368  */
1369 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1370 {
1371         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1374
1375 static int kvm_vm_release(struct inode *inode, struct file *filp)
1376 {
1377         struct kvm *kvm = filp->private_data;
1378
1379         kvm_irqfd_release(kvm);
1380
1381         kvm_put_kvm(kvm);
1382         return 0;
1383 }
1384
1385 /*
1386  * Allocation size is twice as large as the actual dirty bitmap size.
1387  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1388  */
1389 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1390 {
1391         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1392
1393         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1394         if (!memslot->dirty_bitmap)
1395                 return -ENOMEM;
1396
1397         return 0;
1398 }
1399
1400 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1401 {
1402         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1403         int node_idx_inactive = active->node_idx ^ 1;
1404
1405         return &kvm->__memslots[as_id][node_idx_inactive];
1406 }
1407
1408 /*
1409  * Helper to get the address space ID when one of memslot pointers may be NULL.
1410  * This also serves as a sanity that at least one of the pointers is non-NULL,
1411  * and that their address space IDs don't diverge.
1412  */
1413 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1414                                   struct kvm_memory_slot *b)
1415 {
1416         if (WARN_ON_ONCE(!a && !b))
1417                 return 0;
1418
1419         if (!a)
1420                 return b->as_id;
1421         if (!b)
1422                 return a->as_id;
1423
1424         WARN_ON_ONCE(a->as_id != b->as_id);
1425         return a->as_id;
1426 }
1427
1428 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1429                                 struct kvm_memory_slot *slot)
1430 {
1431         struct rb_root *gfn_tree = &slots->gfn_tree;
1432         struct rb_node **node, *parent;
1433         int idx = slots->node_idx;
1434
1435         parent = NULL;
1436         for (node = &gfn_tree->rb_node; *node; ) {
1437                 struct kvm_memory_slot *tmp;
1438
1439                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1440                 parent = *node;
1441                 if (slot->base_gfn < tmp->base_gfn)
1442                         node = &(*node)->rb_left;
1443                 else if (slot->base_gfn > tmp->base_gfn)
1444                         node = &(*node)->rb_right;
1445                 else
1446                         BUG();
1447         }
1448
1449         rb_link_node(&slot->gfn_node[idx], parent, node);
1450         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1451 }
1452
1453 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1454                                struct kvm_memory_slot *slot)
1455 {
1456         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1457 }
1458
1459 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1460                                  struct kvm_memory_slot *old,
1461                                  struct kvm_memory_slot *new)
1462 {
1463         int idx = slots->node_idx;
1464
1465         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1466
1467         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1468                         &slots->gfn_tree);
1469 }
1470
1471 /*
1472  * Replace @old with @new in the inactive memslots.
1473  *
1474  * With NULL @old this simply adds @new.
1475  * With NULL @new this simply removes @old.
1476  *
1477  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1478  * appropriately.
1479  */
1480 static void kvm_replace_memslot(struct kvm *kvm,
1481                                 struct kvm_memory_slot *old,
1482                                 struct kvm_memory_slot *new)
1483 {
1484         int as_id = kvm_memslots_get_as_id(old, new);
1485         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1486         int idx = slots->node_idx;
1487
1488         if (old) {
1489                 hash_del(&old->id_node[idx]);
1490                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1491
1492                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1493                         atomic_long_set(&slots->last_used_slot, (long)new);
1494
1495                 if (!new) {
1496                         kvm_erase_gfn_node(slots, old);
1497                         return;
1498                 }
1499         }
1500
1501         /*
1502          * Initialize @new's hva range.  Do this even when replacing an @old
1503          * slot, kvm_copy_memslot() deliberately does not touch node data.
1504          */
1505         new->hva_node[idx].start = new->userspace_addr;
1506         new->hva_node[idx].last = new->userspace_addr +
1507                                   (new->npages << PAGE_SHIFT) - 1;
1508
1509         /*
1510          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1511          * hva_node needs to be swapped with remove+insert even though hva can't
1512          * change when replacing an existing slot.
1513          */
1514         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1515         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1516
1517         /*
1518          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1519          * switch the node in the gfn tree instead of removing the old and
1520          * inserting the new as two separate operations. Replacement is a
1521          * single O(1) operation versus two O(log(n)) operations for
1522          * remove+insert.
1523          */
1524         if (old && old->base_gfn == new->base_gfn) {
1525                 kvm_replace_gfn_node(slots, old, new);
1526         } else {
1527                 if (old)
1528                         kvm_erase_gfn_node(slots, old);
1529                 kvm_insert_gfn_node(slots, new);
1530         }
1531 }
1532
1533 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1534 {
1535         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1536
1537 #ifdef __KVM_HAVE_READONLY_MEM
1538         valid_flags |= KVM_MEM_READONLY;
1539 #endif
1540
1541         if (mem->flags & ~valid_flags)
1542                 return -EINVAL;
1543
1544         return 0;
1545 }
1546
1547 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1548 {
1549         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1550
1551         /* Grab the generation from the activate memslots. */
1552         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1553
1554         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1555         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1556
1557         /*
1558          * Do not store the new memslots while there are invalidations in
1559          * progress, otherwise the locking in invalidate_range_start and
1560          * invalidate_range_end will be unbalanced.
1561          */
1562         spin_lock(&kvm->mn_invalidate_lock);
1563         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1564         while (kvm->mn_active_invalidate_count) {
1565                 set_current_state(TASK_UNINTERRUPTIBLE);
1566                 spin_unlock(&kvm->mn_invalidate_lock);
1567                 schedule();
1568                 spin_lock(&kvm->mn_invalidate_lock);
1569         }
1570         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1571         rcu_assign_pointer(kvm->memslots[as_id], slots);
1572         spin_unlock(&kvm->mn_invalidate_lock);
1573
1574         /*
1575          * Acquired in kvm_set_memslot. Must be released before synchronize
1576          * SRCU below in order to avoid deadlock with another thread
1577          * acquiring the slots_arch_lock in an srcu critical section.
1578          */
1579         mutex_unlock(&kvm->slots_arch_lock);
1580
1581         synchronize_srcu_expedited(&kvm->srcu);
1582
1583         /*
1584          * Increment the new memslot generation a second time, dropping the
1585          * update in-progress flag and incrementing the generation based on
1586          * the number of address spaces.  This provides a unique and easily
1587          * identifiable generation number while the memslots are in flux.
1588          */
1589         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1590
1591         /*
1592          * Generations must be unique even across address spaces.  We do not need
1593          * a global counter for that, instead the generation space is evenly split
1594          * across address spaces.  For example, with two address spaces, address
1595          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1596          * use generations 1, 3, 5, ...
1597          */
1598         gen += KVM_ADDRESS_SPACE_NUM;
1599
1600         kvm_arch_memslots_updated(kvm, gen);
1601
1602         slots->generation = gen;
1603 }
1604
1605 static int kvm_prepare_memory_region(struct kvm *kvm,
1606                                      const struct kvm_memory_slot *old,
1607                                      struct kvm_memory_slot *new,
1608                                      enum kvm_mr_change change)
1609 {
1610         int r;
1611
1612         /*
1613          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1614          * will be freed on "commit".  If logging is enabled in both old and
1615          * new, reuse the existing bitmap.  If logging is enabled only in the
1616          * new and KVM isn't using a ring buffer, allocate and initialize a
1617          * new bitmap.
1618          */
1619         if (change != KVM_MR_DELETE) {
1620                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1621                         new->dirty_bitmap = NULL;
1622                 else if (old && old->dirty_bitmap)
1623                         new->dirty_bitmap = old->dirty_bitmap;
1624                 else if (kvm_use_dirty_bitmap(kvm)) {
1625                         r = kvm_alloc_dirty_bitmap(new);
1626                         if (r)
1627                                 return r;
1628
1629                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1630                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1631                 }
1632         }
1633
1634         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1635
1636         /* Free the bitmap on failure if it was allocated above. */
1637         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1638                 kvm_destroy_dirty_bitmap(new);
1639
1640         return r;
1641 }
1642
1643 static void kvm_commit_memory_region(struct kvm *kvm,
1644                                      struct kvm_memory_slot *old,
1645                                      const struct kvm_memory_slot *new,
1646                                      enum kvm_mr_change change)
1647 {
1648         int old_flags = old ? old->flags : 0;
1649         int new_flags = new ? new->flags : 0;
1650         /*
1651          * Update the total number of memslot pages before calling the arch
1652          * hook so that architectures can consume the result directly.
1653          */
1654         if (change == KVM_MR_DELETE)
1655                 kvm->nr_memslot_pages -= old->npages;
1656         else if (change == KVM_MR_CREATE)
1657                 kvm->nr_memslot_pages += new->npages;
1658
1659         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1660                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1661                 atomic_set(&kvm->nr_memslots_dirty_logging,
1662                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1663         }
1664
1665         kvm_arch_commit_memory_region(kvm, old, new, change);
1666
1667         switch (change) {
1668         case KVM_MR_CREATE:
1669                 /* Nothing more to do. */
1670                 break;
1671         case KVM_MR_DELETE:
1672                 /* Free the old memslot and all its metadata. */
1673                 kvm_free_memslot(kvm, old);
1674                 break;
1675         case KVM_MR_MOVE:
1676         case KVM_MR_FLAGS_ONLY:
1677                 /*
1678                  * Free the dirty bitmap as needed; the below check encompasses
1679                  * both the flags and whether a ring buffer is being used)
1680                  */
1681                 if (old->dirty_bitmap && !new->dirty_bitmap)
1682                         kvm_destroy_dirty_bitmap(old);
1683
1684                 /*
1685                  * The final quirk.  Free the detached, old slot, but only its
1686                  * memory, not any metadata.  Metadata, including arch specific
1687                  * data, may be reused by @new.
1688                  */
1689                 kfree(old);
1690                 break;
1691         default:
1692                 BUG();
1693         }
1694 }
1695
1696 /*
1697  * Activate @new, which must be installed in the inactive slots by the caller,
1698  * by swapping the active slots and then propagating @new to @old once @old is
1699  * unreachable and can be safely modified.
1700  *
1701  * With NULL @old this simply adds @new to @active (while swapping the sets).
1702  * With NULL @new this simply removes @old from @active and frees it
1703  * (while also swapping the sets).
1704  */
1705 static void kvm_activate_memslot(struct kvm *kvm,
1706                                  struct kvm_memory_slot *old,
1707                                  struct kvm_memory_slot *new)
1708 {
1709         int as_id = kvm_memslots_get_as_id(old, new);
1710
1711         kvm_swap_active_memslots(kvm, as_id);
1712
1713         /* Propagate the new memslot to the now inactive memslots. */
1714         kvm_replace_memslot(kvm, old, new);
1715 }
1716
1717 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1718                              const struct kvm_memory_slot *src)
1719 {
1720         dest->base_gfn = src->base_gfn;
1721         dest->npages = src->npages;
1722         dest->dirty_bitmap = src->dirty_bitmap;
1723         dest->arch = src->arch;
1724         dest->userspace_addr = src->userspace_addr;
1725         dest->flags = src->flags;
1726         dest->id = src->id;
1727         dest->as_id = src->as_id;
1728 }
1729
1730 static void kvm_invalidate_memslot(struct kvm *kvm,
1731                                    struct kvm_memory_slot *old,
1732                                    struct kvm_memory_slot *invalid_slot)
1733 {
1734         /*
1735          * Mark the current slot INVALID.  As with all memslot modifications,
1736          * this must be done on an unreachable slot to avoid modifying the
1737          * current slot in the active tree.
1738          */
1739         kvm_copy_memslot(invalid_slot, old);
1740         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1741         kvm_replace_memslot(kvm, old, invalid_slot);
1742
1743         /*
1744          * Activate the slot that is now marked INVALID, but don't propagate
1745          * the slot to the now inactive slots. The slot is either going to be
1746          * deleted or recreated as a new slot.
1747          */
1748         kvm_swap_active_memslots(kvm, old->as_id);
1749
1750         /*
1751          * From this point no new shadow pages pointing to a deleted, or moved,
1752          * memslot will be created.  Validation of sp->gfn happens in:
1753          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1754          *      - kvm_is_visible_gfn (mmu_check_root)
1755          */
1756         kvm_arch_flush_shadow_memslot(kvm, old);
1757         kvm_arch_guest_memory_reclaimed(kvm);
1758
1759         /* Was released by kvm_swap_active_memslots(), reacquire. */
1760         mutex_lock(&kvm->slots_arch_lock);
1761
1762         /*
1763          * Copy the arch-specific field of the newly-installed slot back to the
1764          * old slot as the arch data could have changed between releasing
1765          * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1766          * above.  Writers are required to retrieve memslots *after* acquiring
1767          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1768          */
1769         old->arch = invalid_slot->arch;
1770 }
1771
1772 static void kvm_create_memslot(struct kvm *kvm,
1773                                struct kvm_memory_slot *new)
1774 {
1775         /* Add the new memslot to the inactive set and activate. */
1776         kvm_replace_memslot(kvm, NULL, new);
1777         kvm_activate_memslot(kvm, NULL, new);
1778 }
1779
1780 static void kvm_delete_memslot(struct kvm *kvm,
1781                                struct kvm_memory_slot *old,
1782                                struct kvm_memory_slot *invalid_slot)
1783 {
1784         /*
1785          * Remove the old memslot (in the inactive memslots) by passing NULL as
1786          * the "new" slot, and for the invalid version in the active slots.
1787          */
1788         kvm_replace_memslot(kvm, old, NULL);
1789         kvm_activate_memslot(kvm, invalid_slot, NULL);
1790 }
1791
1792 static void kvm_move_memslot(struct kvm *kvm,
1793                              struct kvm_memory_slot *old,
1794                              struct kvm_memory_slot *new,
1795                              struct kvm_memory_slot *invalid_slot)
1796 {
1797         /*
1798          * Replace the old memslot in the inactive slots, and then swap slots
1799          * and replace the current INVALID with the new as well.
1800          */
1801         kvm_replace_memslot(kvm, old, new);
1802         kvm_activate_memslot(kvm, invalid_slot, new);
1803 }
1804
1805 static void kvm_update_flags_memslot(struct kvm *kvm,
1806                                      struct kvm_memory_slot *old,
1807                                      struct kvm_memory_slot *new)
1808 {
1809         /*
1810          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1811          * an intermediate step. Instead, the old memslot is simply replaced
1812          * with a new, updated copy in both memslot sets.
1813          */
1814         kvm_replace_memslot(kvm, old, new);
1815         kvm_activate_memslot(kvm, old, new);
1816 }
1817
1818 static int kvm_set_memslot(struct kvm *kvm,
1819                            struct kvm_memory_slot *old,
1820                            struct kvm_memory_slot *new,
1821                            enum kvm_mr_change change)
1822 {
1823         struct kvm_memory_slot *invalid_slot;
1824         int r;
1825
1826         /*
1827          * Released in kvm_swap_active_memslots().
1828          *
1829          * Must be held from before the current memslots are copied until after
1830          * the new memslots are installed with rcu_assign_pointer, then
1831          * released before the synchronize srcu in kvm_swap_active_memslots().
1832          *
1833          * When modifying memslots outside of the slots_lock, must be held
1834          * before reading the pointer to the current memslots until after all
1835          * changes to those memslots are complete.
1836          *
1837          * These rules ensure that installing new memslots does not lose
1838          * changes made to the previous memslots.
1839          */
1840         mutex_lock(&kvm->slots_arch_lock);
1841
1842         /*
1843          * Invalidate the old slot if it's being deleted or moved.  This is
1844          * done prior to actually deleting/moving the memslot to allow vCPUs to
1845          * continue running by ensuring there are no mappings or shadow pages
1846          * for the memslot when it is deleted/moved.  Without pre-invalidation
1847          * (and without a lock), a window would exist between effecting the
1848          * delete/move and committing the changes in arch code where KVM or a
1849          * guest could access a non-existent memslot.
1850          *
1851          * Modifications are done on a temporary, unreachable slot.  The old
1852          * slot needs to be preserved in case a later step fails and the
1853          * invalidation needs to be reverted.
1854          */
1855         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1856                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1857                 if (!invalid_slot) {
1858                         mutex_unlock(&kvm->slots_arch_lock);
1859                         return -ENOMEM;
1860                 }
1861                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1862         }
1863
1864         r = kvm_prepare_memory_region(kvm, old, new, change);
1865         if (r) {
1866                 /*
1867                  * For DELETE/MOVE, revert the above INVALID change.  No
1868                  * modifications required since the original slot was preserved
1869                  * in the inactive slots.  Changing the active memslots also
1870                  * release slots_arch_lock.
1871                  */
1872                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1873                         kvm_activate_memslot(kvm, invalid_slot, old);
1874                         kfree(invalid_slot);
1875                 } else {
1876                         mutex_unlock(&kvm->slots_arch_lock);
1877                 }
1878                 return r;
1879         }
1880
1881         /*
1882          * For DELETE and MOVE, the working slot is now active as the INVALID
1883          * version of the old slot.  MOVE is particularly special as it reuses
1884          * the old slot and returns a copy of the old slot (in working_slot).
1885          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1886          * old slot is detached but otherwise preserved.
1887          */
1888         if (change == KVM_MR_CREATE)
1889                 kvm_create_memslot(kvm, new);
1890         else if (change == KVM_MR_DELETE)
1891                 kvm_delete_memslot(kvm, old, invalid_slot);
1892         else if (change == KVM_MR_MOVE)
1893                 kvm_move_memslot(kvm, old, new, invalid_slot);
1894         else if (change == KVM_MR_FLAGS_ONLY)
1895                 kvm_update_flags_memslot(kvm, old, new);
1896         else
1897                 BUG();
1898
1899         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1900         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1901                 kfree(invalid_slot);
1902
1903         /*
1904          * No need to refresh new->arch, changes after dropping slots_arch_lock
1905          * will directly hit the final, active memslot.  Architectures are
1906          * responsible for knowing that new->arch may be stale.
1907          */
1908         kvm_commit_memory_region(kvm, old, new, change);
1909
1910         return 0;
1911 }
1912
1913 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1914                                       gfn_t start, gfn_t end)
1915 {
1916         struct kvm_memslot_iter iter;
1917
1918         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1919                 if (iter.slot->id != id)
1920                         return true;
1921         }
1922
1923         return false;
1924 }
1925
1926 /*
1927  * Allocate some memory and give it an address in the guest physical address
1928  * space.
1929  *
1930  * Discontiguous memory is allowed, mostly for framebuffers.
1931  *
1932  * Must be called holding kvm->slots_lock for write.
1933  */
1934 int __kvm_set_memory_region(struct kvm *kvm,
1935                             const struct kvm_userspace_memory_region *mem)
1936 {
1937         struct kvm_memory_slot *old, *new;
1938         struct kvm_memslots *slots;
1939         enum kvm_mr_change change;
1940         unsigned long npages;
1941         gfn_t base_gfn;
1942         int as_id, id;
1943         int r;
1944
1945         r = check_memory_region_flags(mem);
1946         if (r)
1947                 return r;
1948
1949         as_id = mem->slot >> 16;
1950         id = (u16)mem->slot;
1951
1952         /* General sanity checks */
1953         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1954             (mem->memory_size != (unsigned long)mem->memory_size))
1955                 return -EINVAL;
1956         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1957                 return -EINVAL;
1958         /* We can read the guest memory with __xxx_user() later on. */
1959         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1960             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1961              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1962                         mem->memory_size))
1963                 return -EINVAL;
1964         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1965                 return -EINVAL;
1966         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1967                 return -EINVAL;
1968         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1969                 return -EINVAL;
1970
1971         slots = __kvm_memslots(kvm, as_id);
1972
1973         /*
1974          * Note, the old memslot (and the pointer itself!) may be invalidated
1975          * and/or destroyed by kvm_set_memslot().
1976          */
1977         old = id_to_memslot(slots, id);
1978
1979         if (!mem->memory_size) {
1980                 if (!old || !old->npages)
1981                         return -EINVAL;
1982
1983                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1984                         return -EIO;
1985
1986                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1987         }
1988
1989         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1990         npages = (mem->memory_size >> PAGE_SHIFT);
1991
1992         if (!old || !old->npages) {
1993                 change = KVM_MR_CREATE;
1994
1995                 /*
1996                  * To simplify KVM internals, the total number of pages across
1997                  * all memslots must fit in an unsigned long.
1998                  */
1999                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2000                         return -EINVAL;
2001         } else { /* Modify an existing slot. */
2002                 if ((mem->userspace_addr != old->userspace_addr) ||
2003                     (npages != old->npages) ||
2004                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2005                         return -EINVAL;
2006
2007                 if (base_gfn != old->base_gfn)
2008                         change = KVM_MR_MOVE;
2009                 else if (mem->flags != old->flags)
2010                         change = KVM_MR_FLAGS_ONLY;
2011                 else /* Nothing to change. */
2012                         return 0;
2013         }
2014
2015         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2016             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2017                 return -EEXIST;
2018
2019         /* Allocate a slot that will persist in the memslot. */
2020         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2021         if (!new)
2022                 return -ENOMEM;
2023
2024         new->as_id = as_id;
2025         new->id = id;
2026         new->base_gfn = base_gfn;
2027         new->npages = npages;
2028         new->flags = mem->flags;
2029         new->userspace_addr = mem->userspace_addr;
2030
2031         r = kvm_set_memslot(kvm, old, new, change);
2032         if (r)
2033                 kfree(new);
2034         return r;
2035 }
2036 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2037
2038 int kvm_set_memory_region(struct kvm *kvm,
2039                           const struct kvm_userspace_memory_region *mem)
2040 {
2041         int r;
2042
2043         mutex_lock(&kvm->slots_lock);
2044         r = __kvm_set_memory_region(kvm, mem);
2045         mutex_unlock(&kvm->slots_lock);
2046         return r;
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2049
2050 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2051                                           struct kvm_userspace_memory_region *mem)
2052 {
2053         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2054                 return -EINVAL;
2055
2056         return kvm_set_memory_region(kvm, mem);
2057 }
2058
2059 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2060 /**
2061  * kvm_get_dirty_log - get a snapshot of dirty pages
2062  * @kvm:        pointer to kvm instance
2063  * @log:        slot id and address to which we copy the log
2064  * @is_dirty:   set to '1' if any dirty pages were found
2065  * @memslot:    set to the associated memslot, always valid on success
2066  */
2067 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2068                       int *is_dirty, struct kvm_memory_slot **memslot)
2069 {
2070         struct kvm_memslots *slots;
2071         int i, as_id, id;
2072         unsigned long n;
2073         unsigned long any = 0;
2074
2075         /* Dirty ring tracking may be exclusive to dirty log tracking */
2076         if (!kvm_use_dirty_bitmap(kvm))
2077                 return -ENXIO;
2078
2079         *memslot = NULL;
2080         *is_dirty = 0;
2081
2082         as_id = log->slot >> 16;
2083         id = (u16)log->slot;
2084         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2085                 return -EINVAL;
2086
2087         slots = __kvm_memslots(kvm, as_id);
2088         *memslot = id_to_memslot(slots, id);
2089         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2090                 return -ENOENT;
2091
2092         kvm_arch_sync_dirty_log(kvm, *memslot);
2093
2094         n = kvm_dirty_bitmap_bytes(*memslot);
2095
2096         for (i = 0; !any && i < n/sizeof(long); ++i)
2097                 any = (*memslot)->dirty_bitmap[i];
2098
2099         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2100                 return -EFAULT;
2101
2102         if (any)
2103                 *is_dirty = 1;
2104         return 0;
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2107
2108 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2109 /**
2110  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2111  *      and reenable dirty page tracking for the corresponding pages.
2112  * @kvm:        pointer to kvm instance
2113  * @log:        slot id and address to which we copy the log
2114  *
2115  * We need to keep it in mind that VCPU threads can write to the bitmap
2116  * concurrently. So, to avoid losing track of dirty pages we keep the
2117  * following order:
2118  *
2119  *    1. Take a snapshot of the bit and clear it if needed.
2120  *    2. Write protect the corresponding page.
2121  *    3. Copy the snapshot to the userspace.
2122  *    4. Upon return caller flushes TLB's if needed.
2123  *
2124  * Between 2 and 4, the guest may write to the page using the remaining TLB
2125  * entry.  This is not a problem because the page is reported dirty using
2126  * the snapshot taken before and step 4 ensures that writes done after
2127  * exiting to userspace will be logged for the next call.
2128  *
2129  */
2130 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2131 {
2132         struct kvm_memslots *slots;
2133         struct kvm_memory_slot *memslot;
2134         int i, as_id, id;
2135         unsigned long n;
2136         unsigned long *dirty_bitmap;
2137         unsigned long *dirty_bitmap_buffer;
2138         bool flush;
2139
2140         /* Dirty ring tracking may be exclusive to dirty log tracking */
2141         if (!kvm_use_dirty_bitmap(kvm))
2142                 return -ENXIO;
2143
2144         as_id = log->slot >> 16;
2145         id = (u16)log->slot;
2146         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2147                 return -EINVAL;
2148
2149         slots = __kvm_memslots(kvm, as_id);
2150         memslot = id_to_memslot(slots, id);
2151         if (!memslot || !memslot->dirty_bitmap)
2152                 return -ENOENT;
2153
2154         dirty_bitmap = memslot->dirty_bitmap;
2155
2156         kvm_arch_sync_dirty_log(kvm, memslot);
2157
2158         n = kvm_dirty_bitmap_bytes(memslot);
2159         flush = false;
2160         if (kvm->manual_dirty_log_protect) {
2161                 /*
2162                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2163                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2164                  * is some code duplication between this function and
2165                  * kvm_get_dirty_log, but hopefully all architecture
2166                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2167                  * can be eliminated.
2168                  */
2169                 dirty_bitmap_buffer = dirty_bitmap;
2170         } else {
2171                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2172                 memset(dirty_bitmap_buffer, 0, n);
2173
2174                 KVM_MMU_LOCK(kvm);
2175                 for (i = 0; i < n / sizeof(long); i++) {
2176                         unsigned long mask;
2177                         gfn_t offset;
2178
2179                         if (!dirty_bitmap[i])
2180                                 continue;
2181
2182                         flush = true;
2183                         mask = xchg(&dirty_bitmap[i], 0);
2184                         dirty_bitmap_buffer[i] = mask;
2185
2186                         offset = i * BITS_PER_LONG;
2187                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2188                                                                 offset, mask);
2189                 }
2190                 KVM_MMU_UNLOCK(kvm);
2191         }
2192
2193         if (flush)
2194                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2195
2196         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2197                 return -EFAULT;
2198         return 0;
2199 }
2200
2201
2202 /**
2203  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2204  * @kvm: kvm instance
2205  * @log: slot id and address to which we copy the log
2206  *
2207  * Steps 1-4 below provide general overview of dirty page logging. See
2208  * kvm_get_dirty_log_protect() function description for additional details.
2209  *
2210  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2211  * always flush the TLB (step 4) even if previous step failed  and the dirty
2212  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2213  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2214  * writes will be marked dirty for next log read.
2215  *
2216  *   1. Take a snapshot of the bit and clear it if needed.
2217  *   2. Write protect the corresponding page.
2218  *   3. Copy the snapshot to the userspace.
2219  *   4. Flush TLB's if needed.
2220  */
2221 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2222                                       struct kvm_dirty_log *log)
2223 {
2224         int r;
2225
2226         mutex_lock(&kvm->slots_lock);
2227
2228         r = kvm_get_dirty_log_protect(kvm, log);
2229
2230         mutex_unlock(&kvm->slots_lock);
2231         return r;
2232 }
2233
2234 /**
2235  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2236  *      and reenable dirty page tracking for the corresponding pages.
2237  * @kvm:        pointer to kvm instance
2238  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2239  */
2240 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2241                                        struct kvm_clear_dirty_log *log)
2242 {
2243         struct kvm_memslots *slots;
2244         struct kvm_memory_slot *memslot;
2245         int as_id, id;
2246         gfn_t offset;
2247         unsigned long i, n;
2248         unsigned long *dirty_bitmap;
2249         unsigned long *dirty_bitmap_buffer;
2250         bool flush;
2251
2252         /* Dirty ring tracking may be exclusive to dirty log tracking */
2253         if (!kvm_use_dirty_bitmap(kvm))
2254                 return -ENXIO;
2255
2256         as_id = log->slot >> 16;
2257         id = (u16)log->slot;
2258         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2259                 return -EINVAL;
2260
2261         if (log->first_page & 63)
2262                 return -EINVAL;
2263
2264         slots = __kvm_memslots(kvm, as_id);
2265         memslot = id_to_memslot(slots, id);
2266         if (!memslot || !memslot->dirty_bitmap)
2267                 return -ENOENT;
2268
2269         dirty_bitmap = memslot->dirty_bitmap;
2270
2271         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2272
2273         if (log->first_page > memslot->npages ||
2274             log->num_pages > memslot->npages - log->first_page ||
2275             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2276             return -EINVAL;
2277
2278         kvm_arch_sync_dirty_log(kvm, memslot);
2279
2280         flush = false;
2281         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2282         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2283                 return -EFAULT;
2284
2285         KVM_MMU_LOCK(kvm);
2286         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2287                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2288              i++, offset += BITS_PER_LONG) {
2289                 unsigned long mask = *dirty_bitmap_buffer++;
2290                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2291                 if (!mask)
2292                         continue;
2293
2294                 mask &= atomic_long_fetch_andnot(mask, p);
2295
2296                 /*
2297                  * mask contains the bits that really have been cleared.  This
2298                  * never includes any bits beyond the length of the memslot (if
2299                  * the length is not aligned to 64 pages), therefore it is not
2300                  * a problem if userspace sets them in log->dirty_bitmap.
2301                 */
2302                 if (mask) {
2303                         flush = true;
2304                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2305                                                                 offset, mask);
2306                 }
2307         }
2308         KVM_MMU_UNLOCK(kvm);
2309
2310         if (flush)
2311                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2312
2313         return 0;
2314 }
2315
2316 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2317                                         struct kvm_clear_dirty_log *log)
2318 {
2319         int r;
2320
2321         mutex_lock(&kvm->slots_lock);
2322
2323         r = kvm_clear_dirty_log_protect(kvm, log);
2324
2325         mutex_unlock(&kvm->slots_lock);
2326         return r;
2327 }
2328 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2329
2330 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2331 {
2332         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2333 }
2334 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2335
2336 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2337 {
2338         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2339         u64 gen = slots->generation;
2340         struct kvm_memory_slot *slot;
2341
2342         /*
2343          * This also protects against using a memslot from a different address space,
2344          * since different address spaces have different generation numbers.
2345          */
2346         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2347                 vcpu->last_used_slot = NULL;
2348                 vcpu->last_used_slot_gen = gen;
2349         }
2350
2351         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2352         if (slot)
2353                 return slot;
2354
2355         /*
2356          * Fall back to searching all memslots. We purposely use
2357          * search_memslots() instead of __gfn_to_memslot() to avoid
2358          * thrashing the VM-wide last_used_slot in kvm_memslots.
2359          */
2360         slot = search_memslots(slots, gfn, false);
2361         if (slot) {
2362                 vcpu->last_used_slot = slot;
2363                 return slot;
2364         }
2365
2366         return NULL;
2367 }
2368
2369 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2370 {
2371         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2372
2373         return kvm_is_visible_memslot(memslot);
2374 }
2375 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2376
2377 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2378 {
2379         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2380
2381         return kvm_is_visible_memslot(memslot);
2382 }
2383 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2384
2385 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2386 {
2387         struct vm_area_struct *vma;
2388         unsigned long addr, size;
2389
2390         size = PAGE_SIZE;
2391
2392         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2393         if (kvm_is_error_hva(addr))
2394                 return PAGE_SIZE;
2395
2396         mmap_read_lock(current->mm);
2397         vma = find_vma(current->mm, addr);
2398         if (!vma)
2399                 goto out;
2400
2401         size = vma_kernel_pagesize(vma);
2402
2403 out:
2404         mmap_read_unlock(current->mm);
2405
2406         return size;
2407 }
2408
2409 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2410 {
2411         return slot->flags & KVM_MEM_READONLY;
2412 }
2413
2414 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2415                                        gfn_t *nr_pages, bool write)
2416 {
2417         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2418                 return KVM_HVA_ERR_BAD;
2419
2420         if (memslot_is_readonly(slot) && write)
2421                 return KVM_HVA_ERR_RO_BAD;
2422
2423         if (nr_pages)
2424                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2425
2426         return __gfn_to_hva_memslot(slot, gfn);
2427 }
2428
2429 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2430                                      gfn_t *nr_pages)
2431 {
2432         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2433 }
2434
2435 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2436                                         gfn_t gfn)
2437 {
2438         return gfn_to_hva_many(slot, gfn, NULL);
2439 }
2440 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2441
2442 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2443 {
2444         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2445 }
2446 EXPORT_SYMBOL_GPL(gfn_to_hva);
2447
2448 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2449 {
2450         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2451 }
2452 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2453
2454 /*
2455  * Return the hva of a @gfn and the R/W attribute if possible.
2456  *
2457  * @slot: the kvm_memory_slot which contains @gfn
2458  * @gfn: the gfn to be translated
2459  * @writable: used to return the read/write attribute of the @slot if the hva
2460  * is valid and @writable is not NULL
2461  */
2462 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2463                                       gfn_t gfn, bool *writable)
2464 {
2465         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2466
2467         if (!kvm_is_error_hva(hva) && writable)
2468                 *writable = !memslot_is_readonly(slot);
2469
2470         return hva;
2471 }
2472
2473 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2474 {
2475         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2476
2477         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2478 }
2479
2480 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2481 {
2482         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2483
2484         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2485 }
2486
2487 static inline int check_user_page_hwpoison(unsigned long addr)
2488 {
2489         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2490
2491         rc = get_user_pages(addr, 1, flags, NULL);
2492         return rc == -EHWPOISON;
2493 }
2494
2495 /*
2496  * The fast path to get the writable pfn which will be stored in @pfn,
2497  * true indicates success, otherwise false is returned.  It's also the
2498  * only part that runs if we can in atomic context.
2499  */
2500 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2501                             bool *writable, kvm_pfn_t *pfn)
2502 {
2503         struct page *page[1];
2504
2505         /*
2506          * Fast pin a writable pfn only if it is a write fault request
2507          * or the caller allows to map a writable pfn for a read fault
2508          * request.
2509          */
2510         if (!(write_fault || writable))
2511                 return false;
2512
2513         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2514                 *pfn = page_to_pfn(page[0]);
2515
2516                 if (writable)
2517                         *writable = true;
2518                 return true;
2519         }
2520
2521         return false;
2522 }
2523
2524 /*
2525  * The slow path to get the pfn of the specified host virtual address,
2526  * 1 indicates success, -errno is returned if error is detected.
2527  */
2528 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2529                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2530 {
2531         unsigned int flags = FOLL_HWPOISON;
2532         struct page *page;
2533         int npages;
2534
2535         might_sleep();
2536
2537         if (writable)
2538                 *writable = write_fault;
2539
2540         if (write_fault)
2541                 flags |= FOLL_WRITE;
2542         if (async)
2543                 flags |= FOLL_NOWAIT;
2544         if (interruptible)
2545                 flags |= FOLL_INTERRUPTIBLE;
2546
2547         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2548         if (npages != 1)
2549                 return npages;
2550
2551         /* map read fault as writable if possible */
2552         if (unlikely(!write_fault) && writable) {
2553                 struct page *wpage;
2554
2555                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2556                         *writable = true;
2557                         put_page(page);
2558                         page = wpage;
2559                 }
2560         }
2561         *pfn = page_to_pfn(page);
2562         return npages;
2563 }
2564
2565 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2566 {
2567         if (unlikely(!(vma->vm_flags & VM_READ)))
2568                 return false;
2569
2570         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2571                 return false;
2572
2573         return true;
2574 }
2575
2576 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2577 {
2578         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2579
2580         if (!page)
2581                 return 1;
2582
2583         return get_page_unless_zero(page);
2584 }
2585
2586 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2587                                unsigned long addr, bool write_fault,
2588                                bool *writable, kvm_pfn_t *p_pfn)
2589 {
2590         kvm_pfn_t pfn;
2591         pte_t *ptep;
2592         pte_t pte;
2593         spinlock_t *ptl;
2594         int r;
2595
2596         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2597         if (r) {
2598                 /*
2599                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2600                  * not call the fault handler, so do it here.
2601                  */
2602                 bool unlocked = false;
2603                 r = fixup_user_fault(current->mm, addr,
2604                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2605                                      &unlocked);
2606                 if (unlocked)
2607                         return -EAGAIN;
2608                 if (r)
2609                         return r;
2610
2611                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2612                 if (r)
2613                         return r;
2614         }
2615
2616         pte = ptep_get(ptep);
2617
2618         if (write_fault && !pte_write(pte)) {
2619                 pfn = KVM_PFN_ERR_RO_FAULT;
2620                 goto out;
2621         }
2622
2623         if (writable)
2624                 *writable = pte_write(pte);
2625         pfn = pte_pfn(pte);
2626
2627         /*
2628          * Get a reference here because callers of *hva_to_pfn* and
2629          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2630          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2631          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2632          * simply do nothing for reserved pfns.
2633          *
2634          * Whoever called remap_pfn_range is also going to call e.g.
2635          * unmap_mapping_range before the underlying pages are freed,
2636          * causing a call to our MMU notifier.
2637          *
2638          * Certain IO or PFNMAP mappings can be backed with valid
2639          * struct pages, but be allocated without refcounting e.g.,
2640          * tail pages of non-compound higher order allocations, which
2641          * would then underflow the refcount when the caller does the
2642          * required put_page. Don't allow those pages here.
2643          */
2644         if (!kvm_try_get_pfn(pfn))
2645                 r = -EFAULT;
2646
2647 out:
2648         pte_unmap_unlock(ptep, ptl);
2649         *p_pfn = pfn;
2650
2651         return r;
2652 }
2653
2654 /*
2655  * Pin guest page in memory and return its pfn.
2656  * @addr: host virtual address which maps memory to the guest
2657  * @atomic: whether this function can sleep
2658  * @interruptible: whether the process can be interrupted by non-fatal signals
2659  * @async: whether this function need to wait IO complete if the
2660  *         host page is not in the memory
2661  * @write_fault: whether we should get a writable host page
2662  * @writable: whether it allows to map a writable host page for !@write_fault
2663  *
2664  * The function will map a writable host page for these two cases:
2665  * 1): @write_fault = true
2666  * 2): @write_fault = false && @writable, @writable will tell the caller
2667  *     whether the mapping is writable.
2668  */
2669 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2670                      bool *async, bool write_fault, bool *writable)
2671 {
2672         struct vm_area_struct *vma;
2673         kvm_pfn_t pfn;
2674         int npages, r;
2675
2676         /* we can do it either atomically or asynchronously, not both */
2677         BUG_ON(atomic && async);
2678
2679         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2680                 return pfn;
2681
2682         if (atomic)
2683                 return KVM_PFN_ERR_FAULT;
2684
2685         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2686                                  writable, &pfn);
2687         if (npages == 1)
2688                 return pfn;
2689         if (npages == -EINTR)
2690                 return KVM_PFN_ERR_SIGPENDING;
2691
2692         mmap_read_lock(current->mm);
2693         if (npages == -EHWPOISON ||
2694               (!async && check_user_page_hwpoison(addr))) {
2695                 pfn = KVM_PFN_ERR_HWPOISON;
2696                 goto exit;
2697         }
2698
2699 retry:
2700         vma = vma_lookup(current->mm, addr);
2701
2702         if (vma == NULL)
2703                 pfn = KVM_PFN_ERR_FAULT;
2704         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2705                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2706                 if (r == -EAGAIN)
2707                         goto retry;
2708                 if (r < 0)
2709                         pfn = KVM_PFN_ERR_FAULT;
2710         } else {
2711                 if (async && vma_is_valid(vma, write_fault))
2712                         *async = true;
2713                 pfn = KVM_PFN_ERR_FAULT;
2714         }
2715 exit:
2716         mmap_read_unlock(current->mm);
2717         return pfn;
2718 }
2719
2720 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2721                                bool atomic, bool interruptible, bool *async,
2722                                bool write_fault, bool *writable, hva_t *hva)
2723 {
2724         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2725
2726         if (hva)
2727                 *hva = addr;
2728
2729         if (addr == KVM_HVA_ERR_RO_BAD) {
2730                 if (writable)
2731                         *writable = false;
2732                 return KVM_PFN_ERR_RO_FAULT;
2733         }
2734
2735         if (kvm_is_error_hva(addr)) {
2736                 if (writable)
2737                         *writable = false;
2738                 return KVM_PFN_NOSLOT;
2739         }
2740
2741         /* Do not map writable pfn in the readonly memslot. */
2742         if (writable && memslot_is_readonly(slot)) {
2743                 *writable = false;
2744                 writable = NULL;
2745         }
2746
2747         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2748                           writable);
2749 }
2750 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2751
2752 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2753                       bool *writable)
2754 {
2755         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2756                                     NULL, write_fault, writable, NULL);
2757 }
2758 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2759
2760 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2761 {
2762         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2763                                     NULL, NULL);
2764 }
2765 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2766
2767 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2768 {
2769         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2770                                     NULL, NULL);
2771 }
2772 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2773
2774 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2775 {
2776         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2777 }
2778 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2779
2780 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2781 {
2782         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2783 }
2784 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2785
2786 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2787 {
2788         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2789 }
2790 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2791
2792 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2793                             struct page **pages, int nr_pages)
2794 {
2795         unsigned long addr;
2796         gfn_t entry = 0;
2797
2798         addr = gfn_to_hva_many(slot, gfn, &entry);
2799         if (kvm_is_error_hva(addr))
2800                 return -1;
2801
2802         if (entry < nr_pages)
2803                 return 0;
2804
2805         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2806 }
2807 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2808
2809 /*
2810  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2811  * backed by 'struct page'.  A valid example is if the backing memslot is
2812  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2813  * been elevated by gfn_to_pfn().
2814  */
2815 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2816 {
2817         struct page *page;
2818         kvm_pfn_t pfn;
2819
2820         pfn = gfn_to_pfn(kvm, gfn);
2821
2822         if (is_error_noslot_pfn(pfn))
2823                 return KVM_ERR_PTR_BAD_PAGE;
2824
2825         page = kvm_pfn_to_refcounted_page(pfn);
2826         if (!page)
2827                 return KVM_ERR_PTR_BAD_PAGE;
2828
2829         return page;
2830 }
2831 EXPORT_SYMBOL_GPL(gfn_to_page);
2832
2833 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2834 {
2835         if (dirty)
2836                 kvm_release_pfn_dirty(pfn);
2837         else
2838                 kvm_release_pfn_clean(pfn);
2839 }
2840
2841 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2842 {
2843         kvm_pfn_t pfn;
2844         void *hva = NULL;
2845         struct page *page = KVM_UNMAPPED_PAGE;
2846
2847         if (!map)
2848                 return -EINVAL;
2849
2850         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2851         if (is_error_noslot_pfn(pfn))
2852                 return -EINVAL;
2853
2854         if (pfn_valid(pfn)) {
2855                 page = pfn_to_page(pfn);
2856                 hva = kmap(page);
2857 #ifdef CONFIG_HAS_IOMEM
2858         } else {
2859                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2860 #endif
2861         }
2862
2863         if (!hva)
2864                 return -EFAULT;
2865
2866         map->page = page;
2867         map->hva = hva;
2868         map->pfn = pfn;
2869         map->gfn = gfn;
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2874
2875 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2876 {
2877         if (!map)
2878                 return;
2879
2880         if (!map->hva)
2881                 return;
2882
2883         if (map->page != KVM_UNMAPPED_PAGE)
2884                 kunmap(map->page);
2885 #ifdef CONFIG_HAS_IOMEM
2886         else
2887                 memunmap(map->hva);
2888 #endif
2889
2890         if (dirty)
2891                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2892
2893         kvm_release_pfn(map->pfn, dirty);
2894
2895         map->hva = NULL;
2896         map->page = NULL;
2897 }
2898 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2899
2900 static bool kvm_is_ad_tracked_page(struct page *page)
2901 {
2902         /*
2903          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2904          * touched (e.g. set dirty) except by its owner".
2905          */
2906         return !PageReserved(page);
2907 }
2908
2909 static void kvm_set_page_dirty(struct page *page)
2910 {
2911         if (kvm_is_ad_tracked_page(page))
2912                 SetPageDirty(page);
2913 }
2914
2915 static void kvm_set_page_accessed(struct page *page)
2916 {
2917         if (kvm_is_ad_tracked_page(page))
2918                 mark_page_accessed(page);
2919 }
2920
2921 void kvm_release_page_clean(struct page *page)
2922 {
2923         WARN_ON(is_error_page(page));
2924
2925         kvm_set_page_accessed(page);
2926         put_page(page);
2927 }
2928 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2929
2930 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2931 {
2932         struct page *page;
2933
2934         if (is_error_noslot_pfn(pfn))
2935                 return;
2936
2937         page = kvm_pfn_to_refcounted_page(pfn);
2938         if (!page)
2939                 return;
2940
2941         kvm_release_page_clean(page);
2942 }
2943 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2944
2945 void kvm_release_page_dirty(struct page *page)
2946 {
2947         WARN_ON(is_error_page(page));
2948
2949         kvm_set_page_dirty(page);
2950         kvm_release_page_clean(page);
2951 }
2952 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2953
2954 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2955 {
2956         struct page *page;
2957
2958         if (is_error_noslot_pfn(pfn))
2959                 return;
2960
2961         page = kvm_pfn_to_refcounted_page(pfn);
2962         if (!page)
2963                 return;
2964
2965         kvm_release_page_dirty(page);
2966 }
2967 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2968
2969 /*
2970  * Note, checking for an error/noslot pfn is the caller's responsibility when
2971  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2972  * "set" helpers are not to be used when the pfn might point at garbage.
2973  */
2974 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2975 {
2976         if (WARN_ON(is_error_noslot_pfn(pfn)))
2977                 return;
2978
2979         if (pfn_valid(pfn))
2980                 kvm_set_page_dirty(pfn_to_page(pfn));
2981 }
2982 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2983
2984 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2985 {
2986         if (WARN_ON(is_error_noslot_pfn(pfn)))
2987                 return;
2988
2989         if (pfn_valid(pfn))
2990                 kvm_set_page_accessed(pfn_to_page(pfn));
2991 }
2992 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2993
2994 static int next_segment(unsigned long len, int offset)
2995 {
2996         if (len > PAGE_SIZE - offset)
2997                 return PAGE_SIZE - offset;
2998         else
2999                 return len;
3000 }
3001
3002 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3003                                  void *data, int offset, int len)
3004 {
3005         int r;
3006         unsigned long addr;
3007
3008         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3009         if (kvm_is_error_hva(addr))
3010                 return -EFAULT;
3011         r = __copy_from_user(data, (void __user *)addr + offset, len);
3012         if (r)
3013                 return -EFAULT;
3014         return 0;
3015 }
3016
3017 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3018                         int len)
3019 {
3020         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3021
3022         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3023 }
3024 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3025
3026 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3027                              int offset, int len)
3028 {
3029         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3030
3031         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3032 }
3033 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3034
3035 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3036 {
3037         gfn_t gfn = gpa >> PAGE_SHIFT;
3038         int seg;
3039         int offset = offset_in_page(gpa);
3040         int ret;
3041
3042         while ((seg = next_segment(len, offset)) != 0) {
3043                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3044                 if (ret < 0)
3045                         return ret;
3046                 offset = 0;
3047                 len -= seg;
3048                 data += seg;
3049                 ++gfn;
3050         }
3051         return 0;
3052 }
3053 EXPORT_SYMBOL_GPL(kvm_read_guest);
3054
3055 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3056 {
3057         gfn_t gfn = gpa >> PAGE_SHIFT;
3058         int seg;
3059         int offset = offset_in_page(gpa);
3060         int ret;
3061
3062         while ((seg = next_segment(len, offset)) != 0) {
3063                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3064                 if (ret < 0)
3065                         return ret;
3066                 offset = 0;
3067                 len -= seg;
3068                 data += seg;
3069                 ++gfn;
3070         }
3071         return 0;
3072 }
3073 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3074
3075 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3076                                    void *data, int offset, unsigned long len)
3077 {
3078         int r;
3079         unsigned long addr;
3080
3081         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3082         if (kvm_is_error_hva(addr))
3083                 return -EFAULT;
3084         pagefault_disable();
3085         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3086         pagefault_enable();
3087         if (r)
3088                 return -EFAULT;
3089         return 0;
3090 }
3091
3092 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3093                                void *data, unsigned long len)
3094 {
3095         gfn_t gfn = gpa >> PAGE_SHIFT;
3096         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3097         int offset = offset_in_page(gpa);
3098
3099         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3100 }
3101 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3102
3103 static int __kvm_write_guest_page(struct kvm *kvm,
3104                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3105                                   const void *data, int offset, int len)
3106 {
3107         int r;
3108         unsigned long addr;
3109
3110         addr = gfn_to_hva_memslot(memslot, gfn);
3111         if (kvm_is_error_hva(addr))
3112                 return -EFAULT;
3113         r = __copy_to_user((void __user *)addr + offset, data, len);
3114         if (r)
3115                 return -EFAULT;
3116         mark_page_dirty_in_slot(kvm, memslot, gfn);
3117         return 0;
3118 }
3119
3120 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3121                          const void *data, int offset, int len)
3122 {
3123         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3124
3125         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3126 }
3127 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3128
3129 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3130                               const void *data, int offset, int len)
3131 {
3132         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3133
3134         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3135 }
3136 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3137
3138 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3139                     unsigned long len)
3140 {
3141         gfn_t gfn = gpa >> PAGE_SHIFT;
3142         int seg;
3143         int offset = offset_in_page(gpa);
3144         int ret;
3145
3146         while ((seg = next_segment(len, offset)) != 0) {
3147                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3148                 if (ret < 0)
3149                         return ret;
3150                 offset = 0;
3151                 len -= seg;
3152                 data += seg;
3153                 ++gfn;
3154         }
3155         return 0;
3156 }
3157 EXPORT_SYMBOL_GPL(kvm_write_guest);
3158
3159 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3160                          unsigned long len)
3161 {
3162         gfn_t gfn = gpa >> PAGE_SHIFT;
3163         int seg;
3164         int offset = offset_in_page(gpa);
3165         int ret;
3166
3167         while ((seg = next_segment(len, offset)) != 0) {
3168                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3169                 if (ret < 0)
3170                         return ret;
3171                 offset = 0;
3172                 len -= seg;
3173                 data += seg;
3174                 ++gfn;
3175         }
3176         return 0;
3177 }
3178 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3179
3180 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3181                                        struct gfn_to_hva_cache *ghc,
3182                                        gpa_t gpa, unsigned long len)
3183 {
3184         int offset = offset_in_page(gpa);
3185         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3186         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3187         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3188         gfn_t nr_pages_avail;
3189
3190         /* Update ghc->generation before performing any error checks. */
3191         ghc->generation = slots->generation;
3192
3193         if (start_gfn > end_gfn) {
3194                 ghc->hva = KVM_HVA_ERR_BAD;
3195                 return -EINVAL;
3196         }
3197
3198         /*
3199          * If the requested region crosses two memslots, we still
3200          * verify that the entire region is valid here.
3201          */
3202         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3203                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3204                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3205                                            &nr_pages_avail);
3206                 if (kvm_is_error_hva(ghc->hva))
3207                         return -EFAULT;
3208         }
3209
3210         /* Use the slow path for cross page reads and writes. */
3211         if (nr_pages_needed == 1)
3212                 ghc->hva += offset;
3213         else
3214                 ghc->memslot = NULL;
3215
3216         ghc->gpa = gpa;
3217         ghc->len = len;
3218         return 0;
3219 }
3220
3221 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3222                               gpa_t gpa, unsigned long len)
3223 {
3224         struct kvm_memslots *slots = kvm_memslots(kvm);
3225         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3226 }
3227 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3228
3229 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3230                                   void *data, unsigned int offset,
3231                                   unsigned long len)
3232 {
3233         struct kvm_memslots *slots = kvm_memslots(kvm);
3234         int r;
3235         gpa_t gpa = ghc->gpa + offset;
3236
3237         if (WARN_ON_ONCE(len + offset > ghc->len))
3238                 return -EINVAL;
3239
3240         if (slots->generation != ghc->generation) {
3241                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3242                         return -EFAULT;
3243         }
3244
3245         if (kvm_is_error_hva(ghc->hva))
3246                 return -EFAULT;
3247
3248         if (unlikely(!ghc->memslot))
3249                 return kvm_write_guest(kvm, gpa, data, len);
3250
3251         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3252         if (r)
3253                 return -EFAULT;
3254         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3255
3256         return 0;
3257 }
3258 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3259
3260 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3261                            void *data, unsigned long len)
3262 {
3263         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3264 }
3265 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3266
3267 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3268                                  void *data, unsigned int offset,
3269                                  unsigned long len)
3270 {
3271         struct kvm_memslots *slots = kvm_memslots(kvm);
3272         int r;
3273         gpa_t gpa = ghc->gpa + offset;
3274
3275         if (WARN_ON_ONCE(len + offset > ghc->len))
3276                 return -EINVAL;
3277
3278         if (slots->generation != ghc->generation) {
3279                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3280                         return -EFAULT;
3281         }
3282
3283         if (kvm_is_error_hva(ghc->hva))
3284                 return -EFAULT;
3285
3286         if (unlikely(!ghc->memslot))
3287                 return kvm_read_guest(kvm, gpa, data, len);
3288
3289         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3290         if (r)
3291                 return -EFAULT;
3292
3293         return 0;
3294 }
3295 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3296
3297 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3298                           void *data, unsigned long len)
3299 {
3300         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3301 }
3302 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3303
3304 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3305 {
3306         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3307         gfn_t gfn = gpa >> PAGE_SHIFT;
3308         int seg;
3309         int offset = offset_in_page(gpa);
3310         int ret;
3311
3312         while ((seg = next_segment(len, offset)) != 0) {
3313                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3314                 if (ret < 0)
3315                         return ret;
3316                 offset = 0;
3317                 len -= seg;
3318                 ++gfn;
3319         }
3320         return 0;
3321 }
3322 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3323
3324 void mark_page_dirty_in_slot(struct kvm *kvm,
3325                              const struct kvm_memory_slot *memslot,
3326                              gfn_t gfn)
3327 {
3328         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3329
3330 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3331         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3332                 return;
3333
3334         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3335 #endif
3336
3337         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3338                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3339                 u32 slot = (memslot->as_id << 16) | memslot->id;
3340
3341                 if (kvm->dirty_ring_size && vcpu)
3342                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3343                 else if (memslot->dirty_bitmap)
3344                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3345         }
3346 }
3347 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3348
3349 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3350 {
3351         struct kvm_memory_slot *memslot;
3352
3353         memslot = gfn_to_memslot(kvm, gfn);
3354         mark_page_dirty_in_slot(kvm, memslot, gfn);
3355 }
3356 EXPORT_SYMBOL_GPL(mark_page_dirty);
3357
3358 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3359 {
3360         struct kvm_memory_slot *memslot;
3361
3362         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3363         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3364 }
3365 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3366
3367 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3368 {
3369         if (!vcpu->sigset_active)
3370                 return;
3371
3372         /*
3373          * This does a lockless modification of ->real_blocked, which is fine
3374          * because, only current can change ->real_blocked and all readers of
3375          * ->real_blocked don't care as long ->real_blocked is always a subset
3376          * of ->blocked.
3377          */
3378         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3379 }
3380
3381 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3382 {
3383         if (!vcpu->sigset_active)
3384                 return;
3385
3386         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3387         sigemptyset(&current->real_blocked);
3388 }
3389
3390 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3391 {
3392         unsigned int old, val, grow, grow_start;
3393
3394         old = val = vcpu->halt_poll_ns;
3395         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3396         grow = READ_ONCE(halt_poll_ns_grow);
3397         if (!grow)
3398                 goto out;
3399
3400         val *= grow;
3401         if (val < grow_start)
3402                 val = grow_start;
3403
3404         vcpu->halt_poll_ns = val;
3405 out:
3406         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3407 }
3408
3409 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3410 {
3411         unsigned int old, val, shrink, grow_start;
3412
3413         old = val = vcpu->halt_poll_ns;
3414         shrink = READ_ONCE(halt_poll_ns_shrink);
3415         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3416         if (shrink == 0)
3417                 val = 0;
3418         else
3419                 val /= shrink;
3420
3421         if (val < grow_start)
3422                 val = 0;
3423
3424         vcpu->halt_poll_ns = val;
3425         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3426 }
3427
3428 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3429 {
3430         int ret = -EINTR;
3431         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3432
3433         if (kvm_arch_vcpu_runnable(vcpu))
3434                 goto out;
3435         if (kvm_cpu_has_pending_timer(vcpu))
3436                 goto out;
3437         if (signal_pending(current))
3438                 goto out;
3439         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3440                 goto out;
3441
3442         ret = 0;
3443 out:
3444         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3445         return ret;
3446 }
3447
3448 /*
3449  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3450  * pending.  This is mostly used when halting a vCPU, but may also be used
3451  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3452  */
3453 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3454 {
3455         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3456         bool waited = false;
3457
3458         vcpu->stat.generic.blocking = 1;
3459
3460         preempt_disable();
3461         kvm_arch_vcpu_blocking(vcpu);
3462         prepare_to_rcuwait(wait);
3463         preempt_enable();
3464
3465         for (;;) {
3466                 set_current_state(TASK_INTERRUPTIBLE);
3467
3468                 if (kvm_vcpu_check_block(vcpu) < 0)
3469                         break;
3470
3471                 waited = true;
3472                 schedule();
3473         }
3474
3475         preempt_disable();
3476         finish_rcuwait(wait);
3477         kvm_arch_vcpu_unblocking(vcpu);
3478         preempt_enable();
3479
3480         vcpu->stat.generic.blocking = 0;
3481
3482         return waited;
3483 }
3484
3485 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3486                                           ktime_t end, bool success)
3487 {
3488         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3489         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3490
3491         ++vcpu->stat.generic.halt_attempted_poll;
3492
3493         if (success) {
3494                 ++vcpu->stat.generic.halt_successful_poll;
3495
3496                 if (!vcpu_valid_wakeup(vcpu))
3497                         ++vcpu->stat.generic.halt_poll_invalid;
3498
3499                 stats->halt_poll_success_ns += poll_ns;
3500                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3501         } else {
3502                 stats->halt_poll_fail_ns += poll_ns;
3503                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3504         }
3505 }
3506
3507 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3508 {
3509         struct kvm *kvm = vcpu->kvm;
3510
3511         if (kvm->override_halt_poll_ns) {
3512                 /*
3513                  * Ensure kvm->max_halt_poll_ns is not read before
3514                  * kvm->override_halt_poll_ns.
3515                  *
3516                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3517                  */
3518                 smp_rmb();
3519                 return READ_ONCE(kvm->max_halt_poll_ns);
3520         }
3521
3522         return READ_ONCE(halt_poll_ns);
3523 }
3524
3525 /*
3526  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3527  * polling is enabled, busy wait for a short time before blocking to avoid the
3528  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3529  * is halted.
3530  */
3531 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3532 {
3533         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3534         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3535         ktime_t start, cur, poll_end;
3536         bool waited = false;
3537         bool do_halt_poll;
3538         u64 halt_ns;
3539
3540         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3541                 vcpu->halt_poll_ns = max_halt_poll_ns;
3542
3543         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3544
3545         start = cur = poll_end = ktime_get();
3546         if (do_halt_poll) {
3547                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3548
3549                 do {
3550                         if (kvm_vcpu_check_block(vcpu) < 0)
3551                                 goto out;
3552                         cpu_relax();
3553                         poll_end = cur = ktime_get();
3554                 } while (kvm_vcpu_can_poll(cur, stop));
3555         }
3556
3557         waited = kvm_vcpu_block(vcpu);
3558
3559         cur = ktime_get();
3560         if (waited) {
3561                 vcpu->stat.generic.halt_wait_ns +=
3562                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3563                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3564                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3565         }
3566 out:
3567         /* The total time the vCPU was "halted", including polling time. */
3568         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3569
3570         /*
3571          * Note, halt-polling is considered successful so long as the vCPU was
3572          * never actually scheduled out, i.e. even if the wake event arrived
3573          * after of the halt-polling loop itself, but before the full wait.
3574          */
3575         if (do_halt_poll)
3576                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3577
3578         if (halt_poll_allowed) {
3579                 /* Recompute the max halt poll time in case it changed. */
3580                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3581
3582                 if (!vcpu_valid_wakeup(vcpu)) {
3583                         shrink_halt_poll_ns(vcpu);
3584                 } else if (max_halt_poll_ns) {
3585                         if (halt_ns <= vcpu->halt_poll_ns)
3586                                 ;
3587                         /* we had a long block, shrink polling */
3588                         else if (vcpu->halt_poll_ns &&
3589                                  halt_ns > max_halt_poll_ns)
3590                                 shrink_halt_poll_ns(vcpu);
3591                         /* we had a short halt and our poll time is too small */
3592                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3593                                  halt_ns < max_halt_poll_ns)
3594                                 grow_halt_poll_ns(vcpu);
3595                 } else {
3596                         vcpu->halt_poll_ns = 0;
3597                 }
3598         }
3599
3600         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3601 }
3602 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3603
3604 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3605 {
3606         if (__kvm_vcpu_wake_up(vcpu)) {
3607                 WRITE_ONCE(vcpu->ready, true);
3608                 ++vcpu->stat.generic.halt_wakeup;
3609                 return true;
3610         }
3611
3612         return false;
3613 }
3614 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3615
3616 #ifndef CONFIG_S390
3617 /*
3618  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3619  */
3620 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3621 {
3622         int me, cpu;
3623
3624         if (kvm_vcpu_wake_up(vcpu))
3625                 return;
3626
3627         me = get_cpu();
3628         /*
3629          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3630          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3631          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3632          * within the vCPU thread itself.
3633          */
3634         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3635                 if (vcpu->mode == IN_GUEST_MODE)
3636                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3637                 goto out;
3638         }
3639
3640         /*
3641          * Note, the vCPU could get migrated to a different pCPU at any point
3642          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3643          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3644          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3645          * vCPU also requires it to leave IN_GUEST_MODE.
3646          */
3647         if (kvm_arch_vcpu_should_kick(vcpu)) {
3648                 cpu = READ_ONCE(vcpu->cpu);
3649                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3650                         smp_send_reschedule(cpu);
3651         }
3652 out:
3653         put_cpu();
3654 }
3655 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3656 #endif /* !CONFIG_S390 */
3657
3658 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3659 {
3660         struct pid *pid;
3661         struct task_struct *task = NULL;
3662         int ret = 0;
3663
3664         rcu_read_lock();
3665         pid = rcu_dereference(target->pid);
3666         if (pid)
3667                 task = get_pid_task(pid, PIDTYPE_PID);
3668         rcu_read_unlock();
3669         if (!task)
3670                 return ret;
3671         ret = yield_to(task, 1);
3672         put_task_struct(task);
3673
3674         return ret;
3675 }
3676 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3677
3678 /*
3679  * Helper that checks whether a VCPU is eligible for directed yield.
3680  * Most eligible candidate to yield is decided by following heuristics:
3681  *
3682  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3683  *  (preempted lock holder), indicated by @in_spin_loop.
3684  *  Set at the beginning and cleared at the end of interception/PLE handler.
3685  *
3686  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3687  *  chance last time (mostly it has become eligible now since we have probably
3688  *  yielded to lockholder in last iteration. This is done by toggling
3689  *  @dy_eligible each time a VCPU checked for eligibility.)
3690  *
3691  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3692  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3693  *  burning. Giving priority for a potential lock-holder increases lock
3694  *  progress.
3695  *
3696  *  Since algorithm is based on heuristics, accessing another VCPU data without
3697  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3698  *  and continue with next VCPU and so on.
3699  */
3700 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3701 {
3702 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3703         bool eligible;
3704
3705         eligible = !vcpu->spin_loop.in_spin_loop ||
3706                     vcpu->spin_loop.dy_eligible;
3707
3708         if (vcpu->spin_loop.in_spin_loop)
3709                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3710
3711         return eligible;
3712 #else
3713         return true;
3714 #endif
3715 }
3716
3717 /*
3718  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3719  * a vcpu_load/vcpu_put pair.  However, for most architectures
3720  * kvm_arch_vcpu_runnable does not require vcpu_load.
3721  */
3722 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3723 {
3724         return kvm_arch_vcpu_runnable(vcpu);
3725 }
3726
3727 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3728 {
3729         if (kvm_arch_dy_runnable(vcpu))
3730                 return true;
3731
3732 #ifdef CONFIG_KVM_ASYNC_PF
3733         if (!list_empty_careful(&vcpu->async_pf.done))
3734                 return true;
3735 #endif
3736
3737         return false;
3738 }
3739
3740 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3741 {
3742         return false;
3743 }
3744
3745 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3746 {
3747         struct kvm *kvm = me->kvm;
3748         struct kvm_vcpu *vcpu;
3749         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3750         unsigned long i;
3751         int yielded = 0;
3752         int try = 3;
3753         int pass;
3754
3755         kvm_vcpu_set_in_spin_loop(me, true);
3756         /*
3757          * We boost the priority of a VCPU that is runnable but not
3758          * currently running, because it got preempted by something
3759          * else and called schedule in __vcpu_run.  Hopefully that
3760          * VCPU is holding the lock that we need and will release it.
3761          * We approximate round-robin by starting at the last boosted VCPU.
3762          */
3763         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3764                 kvm_for_each_vcpu(i, vcpu, kvm) {
3765                         if (!pass && i <= last_boosted_vcpu) {
3766                                 i = last_boosted_vcpu;
3767                                 continue;
3768                         } else if (pass && i > last_boosted_vcpu)
3769                                 break;
3770                         if (!READ_ONCE(vcpu->ready))
3771                                 continue;
3772                         if (vcpu == me)
3773                                 continue;
3774                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3775                                 continue;
3776                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3777                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3778                             !kvm_arch_vcpu_in_kernel(vcpu))
3779                                 continue;
3780                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3781                                 continue;
3782
3783                         yielded = kvm_vcpu_yield_to(vcpu);
3784                         if (yielded > 0) {
3785                                 kvm->last_boosted_vcpu = i;
3786                                 break;
3787                         } else if (yielded < 0) {
3788                                 try--;
3789                                 if (!try)
3790                                         break;
3791                         }
3792                 }
3793         }
3794         kvm_vcpu_set_in_spin_loop(me, false);
3795
3796         /* Ensure vcpu is not eligible during next spinloop */
3797         kvm_vcpu_set_dy_eligible(me, false);
3798 }
3799 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3800
3801 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3802 {
3803 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3804         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3805             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3806              kvm->dirty_ring_size / PAGE_SIZE);
3807 #else
3808         return false;
3809 #endif
3810 }
3811
3812 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3813 {
3814         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3815         struct page *page;
3816
3817         if (vmf->pgoff == 0)
3818                 page = virt_to_page(vcpu->run);
3819 #ifdef CONFIG_X86
3820         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3821                 page = virt_to_page(vcpu->arch.pio_data);
3822 #endif
3823 #ifdef CONFIG_KVM_MMIO
3824         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3825                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3826 #endif
3827         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3828                 page = kvm_dirty_ring_get_page(
3829                     &vcpu->dirty_ring,
3830                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3831         else
3832                 return kvm_arch_vcpu_fault(vcpu, vmf);
3833         get_page(page);
3834         vmf->page = page;
3835         return 0;
3836 }
3837
3838 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3839         .fault = kvm_vcpu_fault,
3840 };
3841
3842 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3843 {
3844         struct kvm_vcpu *vcpu = file->private_data;
3845         unsigned long pages = vma_pages(vma);
3846
3847         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3848              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3849             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3850                 return -EINVAL;
3851
3852         vma->vm_ops = &kvm_vcpu_vm_ops;
3853         return 0;
3854 }
3855
3856 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3857 {
3858         struct kvm_vcpu *vcpu = filp->private_data;
3859
3860         kvm_put_kvm(vcpu->kvm);
3861         return 0;
3862 }
3863
3864 static const struct file_operations kvm_vcpu_fops = {
3865         .release        = kvm_vcpu_release,
3866         .unlocked_ioctl = kvm_vcpu_ioctl,
3867         .mmap           = kvm_vcpu_mmap,
3868         .llseek         = noop_llseek,
3869         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3870 };
3871
3872 /*
3873  * Allocates an inode for the vcpu.
3874  */
3875 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3876 {
3877         char name[8 + 1 + ITOA_MAX_LEN + 1];
3878
3879         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3880         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3881 }
3882
3883 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3884 static int vcpu_get_pid(void *data, u64 *val)
3885 {
3886         struct kvm_vcpu *vcpu = data;
3887
3888         rcu_read_lock();
3889         *val = pid_nr(rcu_dereference(vcpu->pid));
3890         rcu_read_unlock();
3891         return 0;
3892 }
3893
3894 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3895
3896 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3897 {
3898         struct dentry *debugfs_dentry;
3899         char dir_name[ITOA_MAX_LEN * 2];
3900
3901         if (!debugfs_initialized())
3902                 return;
3903
3904         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3905         debugfs_dentry = debugfs_create_dir(dir_name,
3906                                             vcpu->kvm->debugfs_dentry);
3907         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3908                             &vcpu_get_pid_fops);
3909
3910         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3911 }
3912 #endif
3913
3914 /*
3915  * Creates some virtual cpus.  Good luck creating more than one.
3916  */
3917 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3918 {
3919         int r;
3920         struct kvm_vcpu *vcpu;
3921         struct page *page;
3922
3923         if (id >= KVM_MAX_VCPU_IDS)
3924                 return -EINVAL;
3925
3926         mutex_lock(&kvm->lock);
3927         if (kvm->created_vcpus >= kvm->max_vcpus) {
3928                 mutex_unlock(&kvm->lock);
3929                 return -EINVAL;
3930         }
3931
3932         r = kvm_arch_vcpu_precreate(kvm, id);
3933         if (r) {
3934                 mutex_unlock(&kvm->lock);
3935                 return r;
3936         }
3937
3938         kvm->created_vcpus++;
3939         mutex_unlock(&kvm->lock);
3940
3941         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3942         if (!vcpu) {
3943                 r = -ENOMEM;
3944                 goto vcpu_decrement;
3945         }
3946
3947         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3948         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3949         if (!page) {
3950                 r = -ENOMEM;
3951                 goto vcpu_free;
3952         }
3953         vcpu->run = page_address(page);
3954
3955         kvm_vcpu_init(vcpu, kvm, id);
3956
3957         r = kvm_arch_vcpu_create(vcpu);
3958         if (r)
3959                 goto vcpu_free_run_page;
3960
3961         if (kvm->dirty_ring_size) {
3962                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3963                                          id, kvm->dirty_ring_size);
3964                 if (r)
3965                         goto arch_vcpu_destroy;
3966         }
3967
3968         mutex_lock(&kvm->lock);
3969
3970 #ifdef CONFIG_LOCKDEP
3971         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3972         mutex_lock(&vcpu->mutex);
3973         mutex_unlock(&vcpu->mutex);
3974 #endif
3975
3976         if (kvm_get_vcpu_by_id(kvm, id)) {
3977                 r = -EEXIST;
3978                 goto unlock_vcpu_destroy;
3979         }
3980
3981         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3982         r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3983         if (r)
3984                 goto unlock_vcpu_destroy;
3985
3986         /* Now it's all set up, let userspace reach it */
3987         kvm_get_kvm(kvm);
3988         r = create_vcpu_fd(vcpu);
3989         if (r < 0)
3990                 goto kvm_put_xa_release;
3991
3992         if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3993                 r = -EINVAL;
3994                 goto kvm_put_xa_release;
3995         }
3996
3997         /*
3998          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3999          * pointer before kvm->online_vcpu's incremented value.
4000          */
4001         smp_wmb();
4002         atomic_inc(&kvm->online_vcpus);
4003
4004         mutex_unlock(&kvm->lock);
4005         kvm_arch_vcpu_postcreate(vcpu);
4006         kvm_create_vcpu_debugfs(vcpu);
4007         return r;
4008
4009 kvm_put_xa_release:
4010         kvm_put_kvm_no_destroy(kvm);
4011         xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4012 unlock_vcpu_destroy:
4013         mutex_unlock(&kvm->lock);
4014         kvm_dirty_ring_free(&vcpu->dirty_ring);
4015 arch_vcpu_destroy:
4016         kvm_arch_vcpu_destroy(vcpu);
4017 vcpu_free_run_page:
4018         free_page((unsigned long)vcpu->run);
4019 vcpu_free:
4020         kmem_cache_free(kvm_vcpu_cache, vcpu);
4021 vcpu_decrement:
4022         mutex_lock(&kvm->lock);
4023         kvm->created_vcpus--;
4024         mutex_unlock(&kvm->lock);
4025         return r;
4026 }
4027
4028 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4029 {
4030         if (sigset) {
4031                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4032                 vcpu->sigset_active = 1;
4033                 vcpu->sigset = *sigset;
4034         } else
4035                 vcpu->sigset_active = 0;
4036         return 0;
4037 }
4038
4039 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4040                               size_t size, loff_t *offset)
4041 {
4042         struct kvm_vcpu *vcpu = file->private_data;
4043
4044         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4045                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4046                         sizeof(vcpu->stat), user_buffer, size, offset);
4047 }
4048
4049 static const struct file_operations kvm_vcpu_stats_fops = {
4050         .read = kvm_vcpu_stats_read,
4051         .llseek = noop_llseek,
4052 };
4053
4054 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4055 {
4056         int fd;
4057         struct file *file;
4058         char name[15 + ITOA_MAX_LEN + 1];
4059
4060         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4061
4062         fd = get_unused_fd_flags(O_CLOEXEC);
4063         if (fd < 0)
4064                 return fd;
4065
4066         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4067         if (IS_ERR(file)) {
4068                 put_unused_fd(fd);
4069                 return PTR_ERR(file);
4070         }
4071         file->f_mode |= FMODE_PREAD;
4072         fd_install(fd, file);
4073
4074         return fd;
4075 }
4076
4077 static long kvm_vcpu_ioctl(struct file *filp,
4078                            unsigned int ioctl, unsigned long arg)
4079 {
4080         struct kvm_vcpu *vcpu = filp->private_data;
4081         void __user *argp = (void __user *)arg;
4082         int r;
4083         struct kvm_fpu *fpu = NULL;
4084         struct kvm_sregs *kvm_sregs = NULL;
4085
4086         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4087                 return -EIO;
4088
4089         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4090                 return -EINVAL;
4091
4092         /*
4093          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4094          * execution; mutex_lock() would break them.
4095          */
4096         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4097         if (r != -ENOIOCTLCMD)
4098                 return r;
4099
4100         if (mutex_lock_killable(&vcpu->mutex))
4101                 return -EINTR;
4102         switch (ioctl) {
4103         case KVM_RUN: {
4104                 struct pid *oldpid;
4105                 r = -EINVAL;
4106                 if (arg)
4107                         goto out;
4108                 oldpid = rcu_access_pointer(vcpu->pid);
4109                 if (unlikely(oldpid != task_pid(current))) {
4110                         /* The thread running this VCPU changed. */
4111                         struct pid *newpid;
4112
4113                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4114                         if (r)
4115                                 break;
4116
4117                         newpid = get_task_pid(current, PIDTYPE_PID);
4118                         rcu_assign_pointer(vcpu->pid, newpid);
4119                         if (oldpid)
4120                                 synchronize_rcu();
4121                         put_pid(oldpid);
4122                 }
4123                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4124                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4125                 break;
4126         }
4127         case KVM_GET_REGS: {
4128                 struct kvm_regs *kvm_regs;
4129
4130                 r = -ENOMEM;
4131                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4132                 if (!kvm_regs)
4133                         goto out;
4134                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4135                 if (r)
4136                         goto out_free1;
4137                 r = -EFAULT;
4138                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4139                         goto out_free1;
4140                 r = 0;
4141 out_free1:
4142                 kfree(kvm_regs);
4143                 break;
4144         }
4145         case KVM_SET_REGS: {
4146                 struct kvm_regs *kvm_regs;
4147
4148                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4149                 if (IS_ERR(kvm_regs)) {
4150                         r = PTR_ERR(kvm_regs);
4151                         goto out;
4152                 }
4153                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4154                 kfree(kvm_regs);
4155                 break;
4156         }
4157         case KVM_GET_SREGS: {
4158                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4159                                     GFP_KERNEL_ACCOUNT);
4160                 r = -ENOMEM;
4161                 if (!kvm_sregs)
4162                         goto out;
4163                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4164                 if (r)
4165                         goto out;
4166                 r = -EFAULT;
4167                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4168                         goto out;
4169                 r = 0;
4170                 break;
4171         }
4172         case KVM_SET_SREGS: {
4173                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4174                 if (IS_ERR(kvm_sregs)) {
4175                         r = PTR_ERR(kvm_sregs);
4176                         kvm_sregs = NULL;
4177                         goto out;
4178                 }
4179                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4180                 break;
4181         }
4182         case KVM_GET_MP_STATE: {
4183                 struct kvm_mp_state mp_state;
4184
4185                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4186                 if (r)
4187                         goto out;
4188                 r = -EFAULT;
4189                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4190                         goto out;
4191                 r = 0;
4192                 break;
4193         }
4194         case KVM_SET_MP_STATE: {
4195                 struct kvm_mp_state mp_state;
4196
4197                 r = -EFAULT;
4198                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4199                         goto out;
4200                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4201                 break;
4202         }
4203         case KVM_TRANSLATE: {
4204                 struct kvm_translation tr;
4205
4206                 r = -EFAULT;
4207                 if (copy_from_user(&tr, argp, sizeof(tr)))
4208                         goto out;
4209                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4210                 if (r)
4211                         goto out;
4212                 r = -EFAULT;
4213                 if (copy_to_user(argp, &tr, sizeof(tr)))
4214                         goto out;
4215                 r = 0;
4216                 break;
4217         }
4218         case KVM_SET_GUEST_DEBUG: {
4219                 struct kvm_guest_debug dbg;
4220
4221                 r = -EFAULT;
4222                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4223                         goto out;
4224                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4225                 break;
4226         }
4227         case KVM_SET_SIGNAL_MASK: {
4228                 struct kvm_signal_mask __user *sigmask_arg = argp;
4229                 struct kvm_signal_mask kvm_sigmask;
4230                 sigset_t sigset, *p;
4231
4232                 p = NULL;
4233                 if (argp) {
4234                         r = -EFAULT;
4235                         if (copy_from_user(&kvm_sigmask, argp,
4236                                            sizeof(kvm_sigmask)))
4237                                 goto out;
4238                         r = -EINVAL;
4239                         if (kvm_sigmask.len != sizeof(sigset))
4240                                 goto out;
4241                         r = -EFAULT;
4242                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4243                                            sizeof(sigset)))
4244                                 goto out;
4245                         p = &sigset;
4246                 }
4247                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4248                 break;
4249         }
4250         case KVM_GET_FPU: {
4251                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4252                 r = -ENOMEM;
4253                 if (!fpu)
4254                         goto out;
4255                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4256                 if (r)
4257                         goto out;
4258                 r = -EFAULT;
4259                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4260                         goto out;
4261                 r = 0;
4262                 break;
4263         }
4264         case KVM_SET_FPU: {
4265                 fpu = memdup_user(argp, sizeof(*fpu));
4266                 if (IS_ERR(fpu)) {
4267                         r = PTR_ERR(fpu);
4268                         fpu = NULL;
4269                         goto out;
4270                 }
4271                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4272                 break;
4273         }
4274         case KVM_GET_STATS_FD: {
4275                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4276                 break;
4277         }
4278         default:
4279                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4280         }
4281 out:
4282         mutex_unlock(&vcpu->mutex);
4283         kfree(fpu);
4284         kfree(kvm_sregs);
4285         return r;
4286 }
4287
4288 #ifdef CONFIG_KVM_COMPAT
4289 static long kvm_vcpu_compat_ioctl(struct file *filp,
4290                                   unsigned int ioctl, unsigned long arg)
4291 {
4292         struct kvm_vcpu *vcpu = filp->private_data;
4293         void __user *argp = compat_ptr(arg);
4294         int r;
4295
4296         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4297                 return -EIO;
4298
4299         switch (ioctl) {
4300         case KVM_SET_SIGNAL_MASK: {
4301                 struct kvm_signal_mask __user *sigmask_arg = argp;
4302                 struct kvm_signal_mask kvm_sigmask;
4303                 sigset_t sigset;
4304
4305                 if (argp) {
4306                         r = -EFAULT;
4307                         if (copy_from_user(&kvm_sigmask, argp,
4308                                            sizeof(kvm_sigmask)))
4309                                 goto out;
4310                         r = -EINVAL;
4311                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4312                                 goto out;
4313                         r = -EFAULT;
4314                         if (get_compat_sigset(&sigset,
4315                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4316                                 goto out;
4317                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4318                 } else
4319                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4320                 break;
4321         }
4322         default:
4323                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4324         }
4325
4326 out:
4327         return r;
4328 }
4329 #endif
4330
4331 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4332 {
4333         struct kvm_device *dev = filp->private_data;
4334
4335         if (dev->ops->mmap)
4336                 return dev->ops->mmap(dev, vma);
4337
4338         return -ENODEV;
4339 }
4340
4341 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4342                                  int (*accessor)(struct kvm_device *dev,
4343                                                  struct kvm_device_attr *attr),
4344                                  unsigned long arg)
4345 {
4346         struct kvm_device_attr attr;
4347
4348         if (!accessor)
4349                 return -EPERM;
4350
4351         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4352                 return -EFAULT;
4353
4354         return accessor(dev, &attr);
4355 }
4356
4357 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4358                              unsigned long arg)
4359 {
4360         struct kvm_device *dev = filp->private_data;
4361
4362         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4363                 return -EIO;
4364
4365         switch (ioctl) {
4366         case KVM_SET_DEVICE_ATTR:
4367                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4368         case KVM_GET_DEVICE_ATTR:
4369                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4370         case KVM_HAS_DEVICE_ATTR:
4371                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4372         default:
4373                 if (dev->ops->ioctl)
4374                         return dev->ops->ioctl(dev, ioctl, arg);
4375
4376                 return -ENOTTY;
4377         }
4378 }
4379
4380 static int kvm_device_release(struct inode *inode, struct file *filp)
4381 {
4382         struct kvm_device *dev = filp->private_data;
4383         struct kvm *kvm = dev->kvm;
4384
4385         if (dev->ops->release) {
4386                 mutex_lock(&kvm->lock);
4387                 list_del(&dev->vm_node);
4388                 dev->ops->release(dev);
4389                 mutex_unlock(&kvm->lock);
4390         }
4391
4392         kvm_put_kvm(kvm);
4393         return 0;
4394 }
4395
4396 static const struct file_operations kvm_device_fops = {
4397         .unlocked_ioctl = kvm_device_ioctl,
4398         .release = kvm_device_release,
4399         KVM_COMPAT(kvm_device_ioctl),
4400         .mmap = kvm_device_mmap,
4401 };
4402
4403 struct kvm_device *kvm_device_from_filp(struct file *filp)
4404 {
4405         if (filp->f_op != &kvm_device_fops)
4406                 return NULL;
4407
4408         return filp->private_data;
4409 }
4410
4411 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4412 #ifdef CONFIG_KVM_MPIC
4413         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4414         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4415 #endif
4416 };
4417
4418 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4419 {
4420         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4421                 return -ENOSPC;
4422
4423         if (kvm_device_ops_table[type] != NULL)
4424                 return -EEXIST;
4425
4426         kvm_device_ops_table[type] = ops;
4427         return 0;
4428 }
4429
4430 void kvm_unregister_device_ops(u32 type)
4431 {
4432         if (kvm_device_ops_table[type] != NULL)
4433                 kvm_device_ops_table[type] = NULL;
4434 }
4435
4436 static int kvm_ioctl_create_device(struct kvm *kvm,
4437                                    struct kvm_create_device *cd)
4438 {
4439         const struct kvm_device_ops *ops;
4440         struct kvm_device *dev;
4441         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4442         int type;
4443         int ret;
4444
4445         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4446                 return -ENODEV;
4447
4448         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4449         ops = kvm_device_ops_table[type];
4450         if (ops == NULL)
4451                 return -ENODEV;
4452
4453         if (test)
4454                 return 0;
4455
4456         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4457         if (!dev)
4458                 return -ENOMEM;
4459
4460         dev->ops = ops;
4461         dev->kvm = kvm;
4462
4463         mutex_lock(&kvm->lock);
4464         ret = ops->create(dev, type);
4465         if (ret < 0) {
4466                 mutex_unlock(&kvm->lock);
4467                 kfree(dev);
4468                 return ret;
4469         }
4470         list_add(&dev->vm_node, &kvm->devices);
4471         mutex_unlock(&kvm->lock);
4472
4473         if (ops->init)
4474                 ops->init(dev);
4475
4476         kvm_get_kvm(kvm);
4477         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4478         if (ret < 0) {
4479                 kvm_put_kvm_no_destroy(kvm);
4480                 mutex_lock(&kvm->lock);
4481                 list_del(&dev->vm_node);
4482                 if (ops->release)
4483                         ops->release(dev);
4484                 mutex_unlock(&kvm->lock);
4485                 if (ops->destroy)
4486                         ops->destroy(dev);
4487                 return ret;
4488         }
4489
4490         cd->fd = ret;
4491         return 0;
4492 }
4493
4494 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4495 {
4496         switch (arg) {
4497         case KVM_CAP_USER_MEMORY:
4498         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4499         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4500         case KVM_CAP_INTERNAL_ERROR_DATA:
4501 #ifdef CONFIG_HAVE_KVM_MSI
4502         case KVM_CAP_SIGNAL_MSI:
4503 #endif
4504 #ifdef CONFIG_HAVE_KVM_IRQFD
4505         case KVM_CAP_IRQFD:
4506 #endif
4507         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4508         case KVM_CAP_CHECK_EXTENSION_VM:
4509         case KVM_CAP_ENABLE_CAP_VM:
4510         case KVM_CAP_HALT_POLL:
4511                 return 1;
4512 #ifdef CONFIG_KVM_MMIO
4513         case KVM_CAP_COALESCED_MMIO:
4514                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4515         case KVM_CAP_COALESCED_PIO:
4516                 return 1;
4517 #endif
4518 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4519         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4520                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4521 #endif
4522 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4523         case KVM_CAP_IRQ_ROUTING:
4524                 return KVM_MAX_IRQ_ROUTES;
4525 #endif
4526 #if KVM_ADDRESS_SPACE_NUM > 1
4527         case KVM_CAP_MULTI_ADDRESS_SPACE:
4528                 return KVM_ADDRESS_SPACE_NUM;
4529 #endif
4530         case KVM_CAP_NR_MEMSLOTS:
4531                 return KVM_USER_MEM_SLOTS;
4532         case KVM_CAP_DIRTY_LOG_RING:
4533 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4534                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4535 #else
4536                 return 0;
4537 #endif
4538         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4539 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4540                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4541 #else
4542                 return 0;
4543 #endif
4544 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4545         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4546 #endif
4547         case KVM_CAP_BINARY_STATS_FD:
4548         case KVM_CAP_SYSTEM_EVENT_DATA:
4549                 return 1;
4550         default:
4551                 break;
4552         }
4553         return kvm_vm_ioctl_check_extension(kvm, arg);
4554 }
4555
4556 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4557 {
4558         int r;
4559
4560         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4561                 return -EINVAL;
4562
4563         /* the size should be power of 2 */
4564         if (!size || (size & (size - 1)))
4565                 return -EINVAL;
4566
4567         /* Should be bigger to keep the reserved entries, or a page */
4568         if (size < kvm_dirty_ring_get_rsvd_entries() *
4569             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4570                 return -EINVAL;
4571
4572         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4573             sizeof(struct kvm_dirty_gfn))
4574                 return -E2BIG;
4575
4576         /* We only allow it to set once */
4577         if (kvm->dirty_ring_size)
4578                 return -EINVAL;
4579
4580         mutex_lock(&kvm->lock);
4581
4582         if (kvm->created_vcpus) {
4583                 /* We don't allow to change this value after vcpu created */
4584                 r = -EINVAL;
4585         } else {
4586                 kvm->dirty_ring_size = size;
4587                 r = 0;
4588         }
4589
4590         mutex_unlock(&kvm->lock);
4591         return r;
4592 }
4593
4594 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4595 {
4596         unsigned long i;
4597         struct kvm_vcpu *vcpu;
4598         int cleared = 0;
4599
4600         if (!kvm->dirty_ring_size)
4601                 return -EINVAL;
4602
4603         mutex_lock(&kvm->slots_lock);
4604
4605         kvm_for_each_vcpu(i, vcpu, kvm)
4606                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4607
4608         mutex_unlock(&kvm->slots_lock);
4609
4610         if (cleared)
4611                 kvm_flush_remote_tlbs(kvm);
4612
4613         return cleared;
4614 }
4615
4616 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4617                                                   struct kvm_enable_cap *cap)
4618 {
4619         return -EINVAL;
4620 }
4621
4622 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4623 {
4624         int i;
4625
4626         lockdep_assert_held(&kvm->slots_lock);
4627
4628         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4629                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4630                         return false;
4631         }
4632
4633         return true;
4634 }
4635 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4636
4637 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4638                                            struct kvm_enable_cap *cap)
4639 {
4640         switch (cap->cap) {
4641 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4642         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4643                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4644
4645                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4646                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4647
4648                 if (cap->flags || (cap->args[0] & ~allowed_options))
4649                         return -EINVAL;
4650                 kvm->manual_dirty_log_protect = cap->args[0];
4651                 return 0;
4652         }
4653 #endif
4654         case KVM_CAP_HALT_POLL: {
4655                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4656                         return -EINVAL;
4657
4658                 kvm->max_halt_poll_ns = cap->args[0];
4659
4660                 /*
4661                  * Ensure kvm->override_halt_poll_ns does not become visible
4662                  * before kvm->max_halt_poll_ns.
4663                  *
4664                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4665                  */
4666                 smp_wmb();
4667                 kvm->override_halt_poll_ns = true;
4668
4669                 return 0;
4670         }
4671         case KVM_CAP_DIRTY_LOG_RING:
4672         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4673                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4674                         return -EINVAL;
4675
4676                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4677         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4678                 int r = -EINVAL;
4679
4680                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4681                     !kvm->dirty_ring_size || cap->flags)
4682                         return r;
4683
4684                 mutex_lock(&kvm->slots_lock);
4685
4686                 /*
4687                  * For simplicity, allow enabling ring+bitmap if and only if
4688                  * there are no memslots, e.g. to ensure all memslots allocate
4689                  * a bitmap after the capability is enabled.
4690                  */
4691                 if (kvm_are_all_memslots_empty(kvm)) {
4692                         kvm->dirty_ring_with_bitmap = true;
4693                         r = 0;
4694                 }
4695
4696                 mutex_unlock(&kvm->slots_lock);
4697
4698                 return r;
4699         }
4700         default:
4701                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4702         }
4703 }
4704
4705 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4706                               size_t size, loff_t *offset)
4707 {
4708         struct kvm *kvm = file->private_data;
4709
4710         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4711                                 &kvm_vm_stats_desc[0], &kvm->stat,
4712                                 sizeof(kvm->stat), user_buffer, size, offset);
4713 }
4714
4715 static const struct file_operations kvm_vm_stats_fops = {
4716         .read = kvm_vm_stats_read,
4717         .llseek = noop_llseek,
4718 };
4719
4720 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4721 {
4722         int fd;
4723         struct file *file;
4724
4725         fd = get_unused_fd_flags(O_CLOEXEC);
4726         if (fd < 0)
4727                 return fd;
4728
4729         file = anon_inode_getfile("kvm-vm-stats",
4730                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4731         if (IS_ERR(file)) {
4732                 put_unused_fd(fd);
4733                 return PTR_ERR(file);
4734         }
4735         file->f_mode |= FMODE_PREAD;
4736         fd_install(fd, file);
4737
4738         return fd;
4739 }
4740
4741 static long kvm_vm_ioctl(struct file *filp,
4742                            unsigned int ioctl, unsigned long arg)
4743 {
4744         struct kvm *kvm = filp->private_data;
4745         void __user *argp = (void __user *)arg;
4746         int r;
4747
4748         if (kvm->mm != current->mm || kvm->vm_dead)
4749                 return -EIO;
4750         switch (ioctl) {
4751         case KVM_CREATE_VCPU:
4752                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4753                 break;
4754         case KVM_ENABLE_CAP: {
4755                 struct kvm_enable_cap cap;
4756
4757                 r = -EFAULT;
4758                 if (copy_from_user(&cap, argp, sizeof(cap)))
4759                         goto out;
4760                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4761                 break;
4762         }
4763         case KVM_SET_USER_MEMORY_REGION: {
4764                 struct kvm_userspace_memory_region kvm_userspace_mem;
4765
4766                 r = -EFAULT;
4767                 if (copy_from_user(&kvm_userspace_mem, argp,
4768                                                 sizeof(kvm_userspace_mem)))
4769                         goto out;
4770
4771                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4772                 break;
4773         }
4774         case KVM_GET_DIRTY_LOG: {
4775                 struct kvm_dirty_log log;
4776
4777                 r = -EFAULT;
4778                 if (copy_from_user(&log, argp, sizeof(log)))
4779                         goto out;
4780                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4781                 break;
4782         }
4783 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4784         case KVM_CLEAR_DIRTY_LOG: {
4785                 struct kvm_clear_dirty_log log;
4786
4787                 r = -EFAULT;
4788                 if (copy_from_user(&log, argp, sizeof(log)))
4789                         goto out;
4790                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4791                 break;
4792         }
4793 #endif
4794 #ifdef CONFIG_KVM_MMIO
4795         case KVM_REGISTER_COALESCED_MMIO: {
4796                 struct kvm_coalesced_mmio_zone zone;
4797
4798                 r = -EFAULT;
4799                 if (copy_from_user(&zone, argp, sizeof(zone)))
4800                         goto out;
4801                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4802                 break;
4803         }
4804         case KVM_UNREGISTER_COALESCED_MMIO: {
4805                 struct kvm_coalesced_mmio_zone zone;
4806
4807                 r = -EFAULT;
4808                 if (copy_from_user(&zone, argp, sizeof(zone)))
4809                         goto out;
4810                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4811                 break;
4812         }
4813 #endif
4814         case KVM_IRQFD: {
4815                 struct kvm_irqfd data;
4816
4817                 r = -EFAULT;
4818                 if (copy_from_user(&data, argp, sizeof(data)))
4819                         goto out;
4820                 r = kvm_irqfd(kvm, &data);
4821                 break;
4822         }
4823         case KVM_IOEVENTFD: {
4824                 struct kvm_ioeventfd data;
4825
4826                 r = -EFAULT;
4827                 if (copy_from_user(&data, argp, sizeof(data)))
4828                         goto out;
4829                 r = kvm_ioeventfd(kvm, &data);
4830                 break;
4831         }
4832 #ifdef CONFIG_HAVE_KVM_MSI
4833         case KVM_SIGNAL_MSI: {
4834                 struct kvm_msi msi;
4835
4836                 r = -EFAULT;
4837                 if (copy_from_user(&msi, argp, sizeof(msi)))
4838                         goto out;
4839                 r = kvm_send_userspace_msi(kvm, &msi);
4840                 break;
4841         }
4842 #endif
4843 #ifdef __KVM_HAVE_IRQ_LINE
4844         case KVM_IRQ_LINE_STATUS:
4845         case KVM_IRQ_LINE: {
4846                 struct kvm_irq_level irq_event;
4847
4848                 r = -EFAULT;
4849                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4850                         goto out;
4851
4852                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4853                                         ioctl == KVM_IRQ_LINE_STATUS);
4854                 if (r)
4855                         goto out;
4856
4857                 r = -EFAULT;
4858                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4859                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4860                                 goto out;
4861                 }
4862
4863                 r = 0;
4864                 break;
4865         }
4866 #endif
4867 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4868         case KVM_SET_GSI_ROUTING: {
4869                 struct kvm_irq_routing routing;
4870                 struct kvm_irq_routing __user *urouting;
4871                 struct kvm_irq_routing_entry *entries = NULL;
4872
4873                 r = -EFAULT;
4874                 if (copy_from_user(&routing, argp, sizeof(routing)))
4875                         goto out;
4876                 r = -EINVAL;
4877                 if (!kvm_arch_can_set_irq_routing(kvm))
4878                         goto out;
4879                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4880                         goto out;
4881                 if (routing.flags)
4882                         goto out;
4883                 if (routing.nr) {
4884                         urouting = argp;
4885                         entries = vmemdup_user(urouting->entries,
4886                                                array_size(sizeof(*entries),
4887                                                           routing.nr));
4888                         if (IS_ERR(entries)) {
4889                                 r = PTR_ERR(entries);
4890                                 goto out;
4891                         }
4892                 }
4893                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4894                                         routing.flags);
4895                 kvfree(entries);
4896                 break;
4897         }
4898 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4899         case KVM_CREATE_DEVICE: {
4900                 struct kvm_create_device cd;
4901
4902                 r = -EFAULT;
4903                 if (copy_from_user(&cd, argp, sizeof(cd)))
4904                         goto out;
4905
4906                 r = kvm_ioctl_create_device(kvm, &cd);
4907                 if (r)
4908                         goto out;
4909
4910                 r = -EFAULT;
4911                 if (copy_to_user(argp, &cd, sizeof(cd)))
4912                         goto out;
4913
4914                 r = 0;
4915                 break;
4916         }
4917         case KVM_CHECK_EXTENSION:
4918                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4919                 break;
4920         case KVM_RESET_DIRTY_RINGS:
4921                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4922                 break;
4923         case KVM_GET_STATS_FD:
4924                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4925                 break;
4926         default:
4927                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4928         }
4929 out:
4930         return r;
4931 }
4932
4933 #ifdef CONFIG_KVM_COMPAT
4934 struct compat_kvm_dirty_log {
4935         __u32 slot;
4936         __u32 padding1;
4937         union {
4938                 compat_uptr_t dirty_bitmap; /* one bit per page */
4939                 __u64 padding2;
4940         };
4941 };
4942
4943 struct compat_kvm_clear_dirty_log {
4944         __u32 slot;
4945         __u32 num_pages;
4946         __u64 first_page;
4947         union {
4948                 compat_uptr_t dirty_bitmap; /* one bit per page */
4949                 __u64 padding2;
4950         };
4951 };
4952
4953 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4954                                      unsigned long arg)
4955 {
4956         return -ENOTTY;
4957 }
4958
4959 static long kvm_vm_compat_ioctl(struct file *filp,
4960                            unsigned int ioctl, unsigned long arg)
4961 {
4962         struct kvm *kvm = filp->private_data;
4963         int r;
4964
4965         if (kvm->mm != current->mm || kvm->vm_dead)
4966                 return -EIO;
4967
4968         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4969         if (r != -ENOTTY)
4970                 return r;
4971
4972         switch (ioctl) {
4973 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4974         case KVM_CLEAR_DIRTY_LOG: {
4975                 struct compat_kvm_clear_dirty_log compat_log;
4976                 struct kvm_clear_dirty_log log;
4977
4978                 if (copy_from_user(&compat_log, (void __user *)arg,
4979                                    sizeof(compat_log)))
4980                         return -EFAULT;
4981                 log.slot         = compat_log.slot;
4982                 log.num_pages    = compat_log.num_pages;
4983                 log.first_page   = compat_log.first_page;
4984                 log.padding2     = compat_log.padding2;
4985                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4986
4987                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4988                 break;
4989         }
4990 #endif
4991         case KVM_GET_DIRTY_LOG: {
4992                 struct compat_kvm_dirty_log compat_log;
4993                 struct kvm_dirty_log log;
4994
4995                 if (copy_from_user(&compat_log, (void __user *)arg,
4996                                    sizeof(compat_log)))
4997                         return -EFAULT;
4998                 log.slot         = compat_log.slot;
4999                 log.padding1     = compat_log.padding1;
5000                 log.padding2     = compat_log.padding2;
5001                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5002
5003                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5004                 break;
5005         }
5006         default:
5007                 r = kvm_vm_ioctl(filp, ioctl, arg);
5008         }
5009         return r;
5010 }
5011 #endif
5012
5013 static const struct file_operations kvm_vm_fops = {
5014         .release        = kvm_vm_release,
5015         .unlocked_ioctl = kvm_vm_ioctl,
5016         .llseek         = noop_llseek,
5017         KVM_COMPAT(kvm_vm_compat_ioctl),
5018 };
5019
5020 bool file_is_kvm(struct file *file)
5021 {
5022         return file && file->f_op == &kvm_vm_fops;
5023 }
5024 EXPORT_SYMBOL_GPL(file_is_kvm);
5025
5026 static int kvm_dev_ioctl_create_vm(unsigned long type)
5027 {
5028         char fdname[ITOA_MAX_LEN + 1];
5029         int r, fd;
5030         struct kvm *kvm;
5031         struct file *file;
5032
5033         fd = get_unused_fd_flags(O_CLOEXEC);
5034         if (fd < 0)
5035                 return fd;
5036
5037         snprintf(fdname, sizeof(fdname), "%d", fd);
5038
5039         kvm = kvm_create_vm(type, fdname);
5040         if (IS_ERR(kvm)) {
5041                 r = PTR_ERR(kvm);
5042                 goto put_fd;
5043         }
5044
5045         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5046         if (IS_ERR(file)) {
5047                 r = PTR_ERR(file);
5048                 goto put_kvm;
5049         }
5050
5051         /*
5052          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5053          * already set, with ->release() being kvm_vm_release().  In error
5054          * cases it will be called by the final fput(file) and will take
5055          * care of doing kvm_put_kvm(kvm).
5056          */
5057         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5058
5059         fd_install(fd, file);
5060         return fd;
5061
5062 put_kvm:
5063         kvm_put_kvm(kvm);
5064 put_fd:
5065         put_unused_fd(fd);
5066         return r;
5067 }
5068
5069 static long kvm_dev_ioctl(struct file *filp,
5070                           unsigned int ioctl, unsigned long arg)
5071 {
5072         int r = -EINVAL;
5073
5074         switch (ioctl) {
5075         case KVM_GET_API_VERSION:
5076                 if (arg)
5077                         goto out;
5078                 r = KVM_API_VERSION;
5079                 break;
5080         case KVM_CREATE_VM:
5081                 r = kvm_dev_ioctl_create_vm(arg);
5082                 break;
5083         case KVM_CHECK_EXTENSION:
5084                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5085                 break;
5086         case KVM_GET_VCPU_MMAP_SIZE:
5087                 if (arg)
5088                         goto out;
5089                 r = PAGE_SIZE;     /* struct kvm_run */
5090 #ifdef CONFIG_X86
5091                 r += PAGE_SIZE;    /* pio data page */
5092 #endif
5093 #ifdef CONFIG_KVM_MMIO
5094                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5095 #endif
5096                 break;
5097         case KVM_TRACE_ENABLE:
5098         case KVM_TRACE_PAUSE:
5099         case KVM_TRACE_DISABLE:
5100                 r = -EOPNOTSUPP;
5101                 break;
5102         default:
5103                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5104         }
5105 out:
5106         return r;
5107 }
5108
5109 static struct file_operations kvm_chardev_ops = {
5110         .unlocked_ioctl = kvm_dev_ioctl,
5111         .llseek         = noop_llseek,
5112         KVM_COMPAT(kvm_dev_ioctl),
5113 };
5114
5115 static struct miscdevice kvm_dev = {
5116         KVM_MINOR,
5117         "kvm",
5118         &kvm_chardev_ops,
5119 };
5120
5121 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5122 __visible bool kvm_rebooting;
5123 EXPORT_SYMBOL_GPL(kvm_rebooting);
5124
5125 static DEFINE_PER_CPU(bool, hardware_enabled);
5126 static int kvm_usage_count;
5127
5128 static int __hardware_enable_nolock(void)
5129 {
5130         if (__this_cpu_read(hardware_enabled))
5131                 return 0;
5132
5133         if (kvm_arch_hardware_enable()) {
5134                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5135                         raw_smp_processor_id());
5136                 return -EIO;
5137         }
5138
5139         __this_cpu_write(hardware_enabled, true);
5140         return 0;
5141 }
5142
5143 static void hardware_enable_nolock(void *failed)
5144 {
5145         if (__hardware_enable_nolock())
5146                 atomic_inc(failed);
5147 }
5148
5149 static int kvm_online_cpu(unsigned int cpu)
5150 {
5151         int ret = 0;
5152
5153         /*
5154          * Abort the CPU online process if hardware virtualization cannot
5155          * be enabled. Otherwise running VMs would encounter unrecoverable
5156          * errors when scheduled to this CPU.
5157          */
5158         mutex_lock(&kvm_lock);
5159         if (kvm_usage_count)
5160                 ret = __hardware_enable_nolock();
5161         mutex_unlock(&kvm_lock);
5162         return ret;
5163 }
5164
5165 static void hardware_disable_nolock(void *junk)
5166 {
5167         /*
5168          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5169          * hardware, not just CPUs that successfully enabled hardware!
5170          */
5171         if (!__this_cpu_read(hardware_enabled))
5172                 return;
5173
5174         kvm_arch_hardware_disable();
5175
5176         __this_cpu_write(hardware_enabled, false);
5177 }
5178
5179 static int kvm_offline_cpu(unsigned int cpu)
5180 {
5181         mutex_lock(&kvm_lock);
5182         if (kvm_usage_count)
5183                 hardware_disable_nolock(NULL);
5184         mutex_unlock(&kvm_lock);
5185         return 0;
5186 }
5187
5188 static void hardware_disable_all_nolock(void)
5189 {
5190         BUG_ON(!kvm_usage_count);
5191
5192         kvm_usage_count--;
5193         if (!kvm_usage_count)
5194                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5195 }
5196
5197 static void hardware_disable_all(void)
5198 {
5199         cpus_read_lock();
5200         mutex_lock(&kvm_lock);
5201         hardware_disable_all_nolock();
5202         mutex_unlock(&kvm_lock);
5203         cpus_read_unlock();
5204 }
5205
5206 static int hardware_enable_all(void)
5207 {
5208         atomic_t failed = ATOMIC_INIT(0);
5209         int r;
5210
5211         /*
5212          * Do not enable hardware virtualization if the system is going down.
5213          * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5214          * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5215          * after kvm_reboot() is called.  Note, this relies on system_state
5216          * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5217          * hook instead of registering a dedicated reboot notifier (the latter
5218          * runs before system_state is updated).
5219          */
5220         if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5221             system_state == SYSTEM_RESTART)
5222                 return -EBUSY;
5223
5224         /*
5225          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5226          * is called, and so on_each_cpu() between them includes the CPU that
5227          * is being onlined.  As a result, hardware_enable_nolock() may get
5228          * invoked before kvm_online_cpu(), which also enables hardware if the
5229          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5230          * enable hardware multiple times.
5231          */
5232         cpus_read_lock();
5233         mutex_lock(&kvm_lock);
5234
5235         r = 0;
5236
5237         kvm_usage_count++;
5238         if (kvm_usage_count == 1) {
5239                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5240
5241                 if (atomic_read(&failed)) {
5242                         hardware_disable_all_nolock();
5243                         r = -EBUSY;
5244                 }
5245         }
5246
5247         mutex_unlock(&kvm_lock);
5248         cpus_read_unlock();
5249
5250         return r;
5251 }
5252
5253 static void kvm_shutdown(void)
5254 {
5255         /*
5256          * Disable hardware virtualization and set kvm_rebooting to indicate
5257          * that KVM has asynchronously disabled hardware virtualization, i.e.
5258          * that relevant errors and exceptions aren't entirely unexpected.
5259          * Some flavors of hardware virtualization need to be disabled before
5260          * transferring control to firmware (to perform shutdown/reboot), e.g.
5261          * on x86, virtualization can block INIT interrupts, which are used by
5262          * firmware to pull APs back under firmware control.  Note, this path
5263          * is used for both shutdown and reboot scenarios, i.e. neither name is
5264          * 100% comprehensive.
5265          */
5266         pr_info("kvm: exiting hardware virtualization\n");
5267         kvm_rebooting = true;
5268         on_each_cpu(hardware_disable_nolock, NULL, 1);
5269 }
5270
5271 static int kvm_suspend(void)
5272 {
5273         /*
5274          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5275          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5276          * is stable.  Assert that kvm_lock is not held to ensure the system
5277          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5278          * can be preempted, but the task cannot be frozen until it has dropped
5279          * all locks (userspace tasks are frozen via a fake signal).
5280          */
5281         lockdep_assert_not_held(&kvm_lock);
5282         lockdep_assert_irqs_disabled();
5283
5284         if (kvm_usage_count)
5285                 hardware_disable_nolock(NULL);
5286         return 0;
5287 }
5288
5289 static void kvm_resume(void)
5290 {
5291         lockdep_assert_not_held(&kvm_lock);
5292         lockdep_assert_irqs_disabled();
5293
5294         if (kvm_usage_count)
5295                 WARN_ON_ONCE(__hardware_enable_nolock());
5296 }
5297
5298 static struct syscore_ops kvm_syscore_ops = {
5299         .suspend = kvm_suspend,
5300         .resume = kvm_resume,
5301         .shutdown = kvm_shutdown,
5302 };
5303 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5304 static int hardware_enable_all(void)
5305 {
5306         return 0;
5307 }
5308
5309 static void hardware_disable_all(void)
5310 {
5311
5312 }
5313 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5314
5315 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5316 {
5317         if (dev->ops->destructor)
5318                 dev->ops->destructor(dev);
5319 }
5320
5321 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5322 {
5323         int i;
5324
5325         for (i = 0; i < bus->dev_count; i++) {
5326                 struct kvm_io_device *pos = bus->range[i].dev;
5327
5328                 kvm_iodevice_destructor(pos);
5329         }
5330         kfree(bus);
5331 }
5332
5333 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5334                                  const struct kvm_io_range *r2)
5335 {
5336         gpa_t addr1 = r1->addr;
5337         gpa_t addr2 = r2->addr;
5338
5339         if (addr1 < addr2)
5340                 return -1;
5341
5342         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5343          * accept any overlapping write.  Any order is acceptable for
5344          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5345          * we process all of them.
5346          */
5347         if (r2->len) {
5348                 addr1 += r1->len;
5349                 addr2 += r2->len;
5350         }
5351
5352         if (addr1 > addr2)
5353                 return 1;
5354
5355         return 0;
5356 }
5357
5358 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5359 {
5360         return kvm_io_bus_cmp(p1, p2);
5361 }
5362
5363 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5364                              gpa_t addr, int len)
5365 {
5366         struct kvm_io_range *range, key;
5367         int off;
5368
5369         key = (struct kvm_io_range) {
5370                 .addr = addr,
5371                 .len = len,
5372         };
5373
5374         range = bsearch(&key, bus->range, bus->dev_count,
5375                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5376         if (range == NULL)
5377                 return -ENOENT;
5378
5379         off = range - bus->range;
5380
5381         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5382                 off--;
5383
5384         return off;
5385 }
5386
5387 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5388                               struct kvm_io_range *range, const void *val)
5389 {
5390         int idx;
5391
5392         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5393         if (idx < 0)
5394                 return -EOPNOTSUPP;
5395
5396         while (idx < bus->dev_count &&
5397                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5398                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5399                                         range->len, val))
5400                         return idx;
5401                 idx++;
5402         }
5403
5404         return -EOPNOTSUPP;
5405 }
5406
5407 /* kvm_io_bus_write - called under kvm->slots_lock */
5408 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5409                      int len, const void *val)
5410 {
5411         struct kvm_io_bus *bus;
5412         struct kvm_io_range range;
5413         int r;
5414
5415         range = (struct kvm_io_range) {
5416                 .addr = addr,
5417                 .len = len,
5418         };
5419
5420         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5421         if (!bus)
5422                 return -ENOMEM;
5423         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5424         return r < 0 ? r : 0;
5425 }
5426 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5427
5428 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5429 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5430                             gpa_t addr, int len, const void *val, long cookie)
5431 {
5432         struct kvm_io_bus *bus;
5433         struct kvm_io_range range;
5434
5435         range = (struct kvm_io_range) {
5436                 .addr = addr,
5437                 .len = len,
5438         };
5439
5440         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5441         if (!bus)
5442                 return -ENOMEM;
5443
5444         /* First try the device referenced by cookie. */
5445         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5446             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5447                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5448                                         val))
5449                         return cookie;
5450
5451         /*
5452          * cookie contained garbage; fall back to search and return the
5453          * correct cookie value.
5454          */
5455         return __kvm_io_bus_write(vcpu, bus, &range, val);
5456 }
5457
5458 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5459                              struct kvm_io_range *range, void *val)
5460 {
5461         int idx;
5462
5463         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5464         if (idx < 0)
5465                 return -EOPNOTSUPP;
5466
5467         while (idx < bus->dev_count &&
5468                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5469                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5470                                        range->len, val))
5471                         return idx;
5472                 idx++;
5473         }
5474
5475         return -EOPNOTSUPP;
5476 }
5477
5478 /* kvm_io_bus_read - called under kvm->slots_lock */
5479 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5480                     int len, void *val)
5481 {
5482         struct kvm_io_bus *bus;
5483         struct kvm_io_range range;
5484         int r;
5485
5486         range = (struct kvm_io_range) {
5487                 .addr = addr,
5488                 .len = len,
5489         };
5490
5491         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5492         if (!bus)
5493                 return -ENOMEM;
5494         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5495         return r < 0 ? r : 0;
5496 }
5497
5498 /* Caller must hold slots_lock. */
5499 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5500                             int len, struct kvm_io_device *dev)
5501 {
5502         int i;
5503         struct kvm_io_bus *new_bus, *bus;
5504         struct kvm_io_range range;
5505
5506         bus = kvm_get_bus(kvm, bus_idx);
5507         if (!bus)
5508                 return -ENOMEM;
5509
5510         /* exclude ioeventfd which is limited by maximum fd */
5511         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5512                 return -ENOSPC;
5513
5514         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5515                           GFP_KERNEL_ACCOUNT);
5516         if (!new_bus)
5517                 return -ENOMEM;
5518
5519         range = (struct kvm_io_range) {
5520                 .addr = addr,
5521                 .len = len,
5522                 .dev = dev,
5523         };
5524
5525         for (i = 0; i < bus->dev_count; i++)
5526                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5527                         break;
5528
5529         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5530         new_bus->dev_count++;
5531         new_bus->range[i] = range;
5532         memcpy(new_bus->range + i + 1, bus->range + i,
5533                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5534         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5535         synchronize_srcu_expedited(&kvm->srcu);
5536         kfree(bus);
5537
5538         return 0;
5539 }
5540
5541 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5542                               struct kvm_io_device *dev)
5543 {
5544         int i;
5545         struct kvm_io_bus *new_bus, *bus;
5546
5547         lockdep_assert_held(&kvm->slots_lock);
5548
5549         bus = kvm_get_bus(kvm, bus_idx);
5550         if (!bus)
5551                 return 0;
5552
5553         for (i = 0; i < bus->dev_count; i++) {
5554                 if (bus->range[i].dev == dev) {
5555                         break;
5556                 }
5557         }
5558
5559         if (i == bus->dev_count)
5560                 return 0;
5561
5562         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5563                           GFP_KERNEL_ACCOUNT);
5564         if (new_bus) {
5565                 memcpy(new_bus, bus, struct_size(bus, range, i));
5566                 new_bus->dev_count--;
5567                 memcpy(new_bus->range + i, bus->range + i + 1,
5568                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5569         }
5570
5571         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5572         synchronize_srcu_expedited(&kvm->srcu);
5573
5574         /*
5575          * If NULL bus is installed, destroy the old bus, including all the
5576          * attached devices. Otherwise, destroy the caller's device only.
5577          */
5578         if (!new_bus) {
5579                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5580                 kvm_io_bus_destroy(bus);
5581                 return -ENOMEM;
5582         }
5583
5584         kvm_iodevice_destructor(dev);
5585         kfree(bus);
5586         return 0;
5587 }
5588
5589 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5590                                          gpa_t addr)
5591 {
5592         struct kvm_io_bus *bus;
5593         int dev_idx, srcu_idx;
5594         struct kvm_io_device *iodev = NULL;
5595
5596         srcu_idx = srcu_read_lock(&kvm->srcu);
5597
5598         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5599         if (!bus)
5600                 goto out_unlock;
5601
5602         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5603         if (dev_idx < 0)
5604                 goto out_unlock;
5605
5606         iodev = bus->range[dev_idx].dev;
5607
5608 out_unlock:
5609         srcu_read_unlock(&kvm->srcu, srcu_idx);
5610
5611         return iodev;
5612 }
5613 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5614
5615 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5616                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5617                            const char *fmt)
5618 {
5619         int ret;
5620         struct kvm_stat_data *stat_data = inode->i_private;
5621
5622         /*
5623          * The debugfs files are a reference to the kvm struct which
5624         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5625         * avoids the race between open and the removal of the debugfs directory.
5626          */
5627         if (!kvm_get_kvm_safe(stat_data->kvm))
5628                 return -ENOENT;
5629
5630         ret = simple_attr_open(inode, file, get,
5631                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
5632                                ? set : NULL, fmt);
5633         if (ret)
5634                 kvm_put_kvm(stat_data->kvm);
5635
5636         return ret;
5637 }
5638
5639 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5640 {
5641         struct kvm_stat_data *stat_data = inode->i_private;
5642
5643         simple_attr_release(inode, file);
5644         kvm_put_kvm(stat_data->kvm);
5645
5646         return 0;
5647 }
5648
5649 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5650 {
5651         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5652
5653         return 0;
5654 }
5655
5656 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5657 {
5658         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5659
5660         return 0;
5661 }
5662
5663 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5664 {
5665         unsigned long i;
5666         struct kvm_vcpu *vcpu;
5667
5668         *val = 0;
5669
5670         kvm_for_each_vcpu(i, vcpu, kvm)
5671                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5672
5673         return 0;
5674 }
5675
5676 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5677 {
5678         unsigned long i;
5679         struct kvm_vcpu *vcpu;
5680
5681         kvm_for_each_vcpu(i, vcpu, kvm)
5682                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5683
5684         return 0;
5685 }
5686
5687 static int kvm_stat_data_get(void *data, u64 *val)
5688 {
5689         int r = -EFAULT;
5690         struct kvm_stat_data *stat_data = data;
5691
5692         switch (stat_data->kind) {
5693         case KVM_STAT_VM:
5694                 r = kvm_get_stat_per_vm(stat_data->kvm,
5695                                         stat_data->desc->desc.offset, val);
5696                 break;
5697         case KVM_STAT_VCPU:
5698                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5699                                           stat_data->desc->desc.offset, val);
5700                 break;
5701         }
5702
5703         return r;
5704 }
5705
5706 static int kvm_stat_data_clear(void *data, u64 val)
5707 {
5708         int r = -EFAULT;
5709         struct kvm_stat_data *stat_data = data;
5710
5711         if (val)
5712                 return -EINVAL;
5713
5714         switch (stat_data->kind) {
5715         case KVM_STAT_VM:
5716                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5717                                           stat_data->desc->desc.offset);
5718                 break;
5719         case KVM_STAT_VCPU:
5720                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5721                                             stat_data->desc->desc.offset);
5722                 break;
5723         }
5724
5725         return r;
5726 }
5727
5728 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5729 {
5730         __simple_attr_check_format("%llu\n", 0ull);
5731         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5732                                 kvm_stat_data_clear, "%llu\n");
5733 }
5734
5735 static const struct file_operations stat_fops_per_vm = {
5736         .owner = THIS_MODULE,
5737         .open = kvm_stat_data_open,
5738         .release = kvm_debugfs_release,
5739         .read = simple_attr_read,
5740         .write = simple_attr_write,
5741         .llseek = no_llseek,
5742 };
5743
5744 static int vm_stat_get(void *_offset, u64 *val)
5745 {
5746         unsigned offset = (long)_offset;
5747         struct kvm *kvm;
5748         u64 tmp_val;
5749
5750         *val = 0;
5751         mutex_lock(&kvm_lock);
5752         list_for_each_entry(kvm, &vm_list, vm_list) {
5753                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5754                 *val += tmp_val;
5755         }
5756         mutex_unlock(&kvm_lock);
5757         return 0;
5758 }
5759
5760 static int vm_stat_clear(void *_offset, u64 val)
5761 {
5762         unsigned offset = (long)_offset;
5763         struct kvm *kvm;
5764
5765         if (val)
5766                 return -EINVAL;
5767
5768         mutex_lock(&kvm_lock);
5769         list_for_each_entry(kvm, &vm_list, vm_list) {
5770                 kvm_clear_stat_per_vm(kvm, offset);
5771         }
5772         mutex_unlock(&kvm_lock);
5773
5774         return 0;
5775 }
5776
5777 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5778 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5779
5780 static int vcpu_stat_get(void *_offset, u64 *val)
5781 {
5782         unsigned offset = (long)_offset;
5783         struct kvm *kvm;
5784         u64 tmp_val;
5785
5786         *val = 0;
5787         mutex_lock(&kvm_lock);
5788         list_for_each_entry(kvm, &vm_list, vm_list) {
5789                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5790                 *val += tmp_val;
5791         }
5792         mutex_unlock(&kvm_lock);
5793         return 0;
5794 }
5795
5796 static int vcpu_stat_clear(void *_offset, u64 val)
5797 {
5798         unsigned offset = (long)_offset;
5799         struct kvm *kvm;
5800
5801         if (val)
5802                 return -EINVAL;
5803
5804         mutex_lock(&kvm_lock);
5805         list_for_each_entry(kvm, &vm_list, vm_list) {
5806                 kvm_clear_stat_per_vcpu(kvm, offset);
5807         }
5808         mutex_unlock(&kvm_lock);
5809
5810         return 0;
5811 }
5812
5813 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5814                         "%llu\n");
5815 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5816
5817 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5818 {
5819         struct kobj_uevent_env *env;
5820         unsigned long long created, active;
5821
5822         if (!kvm_dev.this_device || !kvm)
5823                 return;
5824
5825         mutex_lock(&kvm_lock);
5826         if (type == KVM_EVENT_CREATE_VM) {
5827                 kvm_createvm_count++;
5828                 kvm_active_vms++;
5829         } else if (type == KVM_EVENT_DESTROY_VM) {
5830                 kvm_active_vms--;
5831         }
5832         created = kvm_createvm_count;
5833         active = kvm_active_vms;
5834         mutex_unlock(&kvm_lock);
5835
5836         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5837         if (!env)
5838                 return;
5839
5840         add_uevent_var(env, "CREATED=%llu", created);
5841         add_uevent_var(env, "COUNT=%llu", active);
5842
5843         if (type == KVM_EVENT_CREATE_VM) {
5844                 add_uevent_var(env, "EVENT=create");
5845                 kvm->userspace_pid = task_pid_nr(current);
5846         } else if (type == KVM_EVENT_DESTROY_VM) {
5847                 add_uevent_var(env, "EVENT=destroy");
5848         }
5849         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5850
5851         if (!IS_ERR(kvm->debugfs_dentry)) {
5852                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5853
5854                 if (p) {
5855                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5856                         if (!IS_ERR(tmp))
5857                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5858                         kfree(p);
5859                 }
5860         }
5861         /* no need for checks, since we are adding at most only 5 keys */
5862         env->envp[env->envp_idx++] = NULL;
5863         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5864         kfree(env);
5865 }
5866
5867 static void kvm_init_debug(void)
5868 {
5869         const struct file_operations *fops;
5870         const struct _kvm_stats_desc *pdesc;
5871         int i;
5872
5873         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5874
5875         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5876                 pdesc = &kvm_vm_stats_desc[i];
5877                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5878                         fops = &vm_stat_fops;
5879                 else
5880                         fops = &vm_stat_readonly_fops;
5881                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5882                                 kvm_debugfs_dir,
5883                                 (void *)(long)pdesc->desc.offset, fops);
5884         }
5885
5886         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5887                 pdesc = &kvm_vcpu_stats_desc[i];
5888                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5889                         fops = &vcpu_stat_fops;
5890                 else
5891                         fops = &vcpu_stat_readonly_fops;
5892                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5893                                 kvm_debugfs_dir,
5894                                 (void *)(long)pdesc->desc.offset, fops);
5895         }
5896 }
5897
5898 static inline
5899 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5900 {
5901         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5902 }
5903
5904 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5905 {
5906         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5907
5908         WRITE_ONCE(vcpu->preempted, false);
5909         WRITE_ONCE(vcpu->ready, false);
5910
5911         __this_cpu_write(kvm_running_vcpu, vcpu);
5912         kvm_arch_sched_in(vcpu, cpu);
5913         kvm_arch_vcpu_load(vcpu, cpu);
5914 }
5915
5916 static void kvm_sched_out(struct preempt_notifier *pn,
5917                           struct task_struct *next)
5918 {
5919         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5920
5921         if (current->on_rq) {
5922                 WRITE_ONCE(vcpu->preempted, true);
5923                 WRITE_ONCE(vcpu->ready, true);
5924         }
5925         kvm_arch_vcpu_put(vcpu);
5926         __this_cpu_write(kvm_running_vcpu, NULL);
5927 }
5928
5929 /**
5930  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5931  *
5932  * We can disable preemption locally around accessing the per-CPU variable,
5933  * and use the resolved vcpu pointer after enabling preemption again,
5934  * because even if the current thread is migrated to another CPU, reading
5935  * the per-CPU value later will give us the same value as we update the
5936  * per-CPU variable in the preempt notifier handlers.
5937  */
5938 struct kvm_vcpu *kvm_get_running_vcpu(void)
5939 {
5940         struct kvm_vcpu *vcpu;
5941
5942         preempt_disable();
5943         vcpu = __this_cpu_read(kvm_running_vcpu);
5944         preempt_enable();
5945
5946         return vcpu;
5947 }
5948 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5949
5950 /**
5951  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5952  */
5953 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5954 {
5955         return &kvm_running_vcpu;
5956 }
5957
5958 #ifdef CONFIG_GUEST_PERF_EVENTS
5959 static unsigned int kvm_guest_state(void)
5960 {
5961         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5962         unsigned int state;
5963
5964         if (!kvm_arch_pmi_in_guest(vcpu))
5965                 return 0;
5966
5967         state = PERF_GUEST_ACTIVE;
5968         if (!kvm_arch_vcpu_in_kernel(vcpu))
5969                 state |= PERF_GUEST_USER;
5970
5971         return state;
5972 }
5973
5974 static unsigned long kvm_guest_get_ip(void)
5975 {
5976         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5977
5978         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5979         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5980                 return 0;
5981
5982         return kvm_arch_vcpu_get_ip(vcpu);
5983 }
5984
5985 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5986         .state                  = kvm_guest_state,
5987         .get_ip                 = kvm_guest_get_ip,
5988         .handle_intel_pt_intr   = NULL,
5989 };
5990
5991 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5992 {
5993         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5994         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5995 }
5996 void kvm_unregister_perf_callbacks(void)
5997 {
5998         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5999 }
6000 #endif
6001
6002 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6003 {
6004         int r;
6005         int cpu;
6006
6007 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6008         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6009                                       kvm_online_cpu, kvm_offline_cpu);
6010         if (r)
6011                 return r;
6012
6013         register_syscore_ops(&kvm_syscore_ops);
6014 #endif
6015
6016         /* A kmem cache lets us meet the alignment requirements of fx_save. */
6017         if (!vcpu_align)
6018                 vcpu_align = __alignof__(struct kvm_vcpu);
6019         kvm_vcpu_cache =
6020                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6021                                            SLAB_ACCOUNT,
6022                                            offsetof(struct kvm_vcpu, arch),
6023                                            offsetofend(struct kvm_vcpu, stats_id)
6024                                            - offsetof(struct kvm_vcpu, arch),
6025                                            NULL);
6026         if (!kvm_vcpu_cache) {
6027                 r = -ENOMEM;
6028                 goto err_vcpu_cache;
6029         }
6030
6031         for_each_possible_cpu(cpu) {
6032                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6033                                             GFP_KERNEL, cpu_to_node(cpu))) {
6034                         r = -ENOMEM;
6035                         goto err_cpu_kick_mask;
6036                 }
6037         }
6038
6039         r = kvm_irqfd_init();
6040         if (r)
6041                 goto err_irqfd;
6042
6043         r = kvm_async_pf_init();
6044         if (r)
6045                 goto err_async_pf;
6046
6047         kvm_chardev_ops.owner = module;
6048
6049         kvm_preempt_ops.sched_in = kvm_sched_in;
6050         kvm_preempt_ops.sched_out = kvm_sched_out;
6051
6052         kvm_init_debug();
6053
6054         r = kvm_vfio_ops_init();
6055         if (WARN_ON_ONCE(r))
6056                 goto err_vfio;
6057
6058         /*
6059          * Registration _must_ be the very last thing done, as this exposes
6060          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6061          */
6062         r = misc_register(&kvm_dev);
6063         if (r) {
6064                 pr_err("kvm: misc device register failed\n");
6065                 goto err_register;
6066         }
6067
6068         return 0;
6069
6070 err_register:
6071         kvm_vfio_ops_exit();
6072 err_vfio:
6073         kvm_async_pf_deinit();
6074 err_async_pf:
6075         kvm_irqfd_exit();
6076 err_irqfd:
6077 err_cpu_kick_mask:
6078         for_each_possible_cpu(cpu)
6079                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6080         kmem_cache_destroy(kvm_vcpu_cache);
6081 err_vcpu_cache:
6082 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6083         unregister_syscore_ops(&kvm_syscore_ops);
6084         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6085 #endif
6086         return r;
6087 }
6088 EXPORT_SYMBOL_GPL(kvm_init);
6089
6090 void kvm_exit(void)
6091 {
6092         int cpu;
6093
6094         /*
6095          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6096          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6097          * to KVM while the module is being stopped.
6098          */
6099         misc_deregister(&kvm_dev);
6100
6101         debugfs_remove_recursive(kvm_debugfs_dir);
6102         for_each_possible_cpu(cpu)
6103                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6104         kmem_cache_destroy(kvm_vcpu_cache);
6105         kvm_vfio_ops_exit();
6106         kvm_async_pf_deinit();
6107 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6108         unregister_syscore_ops(&kvm_syscore_ops);
6109         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6110 #endif
6111         kvm_irqfd_exit();
6112 }
6113 EXPORT_SYMBOL_GPL(kvm_exit);
6114
6115 struct kvm_vm_worker_thread_context {
6116         struct kvm *kvm;
6117         struct task_struct *parent;
6118         struct completion init_done;
6119         kvm_vm_thread_fn_t thread_fn;
6120         uintptr_t data;
6121         int err;
6122 };
6123
6124 static int kvm_vm_worker_thread(void *context)
6125 {
6126         /*
6127          * The init_context is allocated on the stack of the parent thread, so
6128          * we have to locally copy anything that is needed beyond initialization
6129          */
6130         struct kvm_vm_worker_thread_context *init_context = context;
6131         struct task_struct *parent;
6132         struct kvm *kvm = init_context->kvm;
6133         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6134         uintptr_t data = init_context->data;
6135         int err;
6136
6137         err = kthread_park(current);
6138         /* kthread_park(current) is never supposed to return an error */
6139         WARN_ON(err != 0);
6140         if (err)
6141                 goto init_complete;
6142
6143         err = cgroup_attach_task_all(init_context->parent, current);
6144         if (err) {
6145                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6146                         __func__, err);
6147                 goto init_complete;
6148         }
6149
6150         set_user_nice(current, task_nice(init_context->parent));
6151
6152 init_complete:
6153         init_context->err = err;
6154         complete(&init_context->init_done);
6155         init_context = NULL;
6156
6157         if (err)
6158                 goto out;
6159
6160         /* Wait to be woken up by the spawner before proceeding. */
6161         kthread_parkme();
6162
6163         if (!kthread_should_stop())
6164                 err = thread_fn(kvm, data);
6165
6166 out:
6167         /*
6168          * Move kthread back to its original cgroup to prevent it lingering in
6169          * the cgroup of the VM process, after the latter finishes its
6170          * execution.
6171          *
6172          * kthread_stop() waits on the 'exited' completion condition which is
6173          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6174          * kthread is removed from the cgroup in the cgroup_exit() which is
6175          * called after the exit_mm(). This causes the kthread_stop() to return
6176          * before the kthread actually quits the cgroup.
6177          */
6178         rcu_read_lock();
6179         parent = rcu_dereference(current->real_parent);
6180         get_task_struct(parent);
6181         rcu_read_unlock();
6182         cgroup_attach_task_all(parent, current);
6183         put_task_struct(parent);
6184
6185         return err;
6186 }
6187
6188 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6189                                 uintptr_t data, const char *name,
6190                                 struct task_struct **thread_ptr)
6191 {
6192         struct kvm_vm_worker_thread_context init_context = {};
6193         struct task_struct *thread;
6194
6195         *thread_ptr = NULL;
6196         init_context.kvm = kvm;
6197         init_context.parent = current;
6198         init_context.thread_fn = thread_fn;
6199         init_context.data = data;
6200         init_completion(&init_context.init_done);
6201
6202         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6203                              "%s-%d", name, task_pid_nr(current));
6204         if (IS_ERR(thread))
6205                 return PTR_ERR(thread);
6206
6207         /* kthread_run is never supposed to return NULL */
6208         WARN_ON(thread == NULL);
6209
6210         wait_for_completion(&init_context.init_done);
6211
6212         if (!init_context.err)
6213                 *thread_ptr = thread;
6214
6215         return init_context.err;
6216 }