1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <kvm/iodev.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
106 static struct kmem_cache *kvm_vcpu_cache;
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 #define KVM_COMPAT(c) .compat_ioctl = (c)
125 * For architectures that don't implement a compat infrastructure,
126 * adopt a double line of defense:
127 * - Prevent a compat task from opening /dev/kvm
128 * - If the open has been done by a 64bit task, and the KVM fd
129 * passed to a compat task, let the ioctls fail.
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132 unsigned long arg) { return -EINVAL; }
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 return is_compat_task() ? -ENODEV : 0;
138 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
139 .open = kvm_no_compat_open
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 unsigned long start, unsigned long end)
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 * The metadata used by is_zone_device_page() to determine whether or
166 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167 * the device has been pinned, e.g. by get_user_pages(). WARN if the
168 * page_count() is zero to help detect bad usage of this helper.
170 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173 return is_zone_device_page(pfn_to_page(pfn));
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180 * perspective they are "normal" pages, albeit with slightly different
184 return PageReserved(pfn_to_page(pfn)) &&
186 !kvm_is_zone_device_pfn(pfn);
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 struct page *page = pfn_to_page(pfn);
195 if (!PageTransCompoundMap(page))
198 return is_transparent_hugepage(compound_head(page));
202 * Switches to specified vcpu, until a matching vcpu_put()
204 void vcpu_load(struct kvm_vcpu *vcpu)
208 __this_cpu_write(kvm_running_vcpu, vcpu);
209 preempt_notifier_register(&vcpu->preempt_notifier);
210 kvm_arch_vcpu_load(vcpu, cpu);
213 EXPORT_SYMBOL_GPL(vcpu_load);
215 void vcpu_put(struct kvm_vcpu *vcpu)
218 kvm_arch_vcpu_put(vcpu);
219 preempt_notifier_unregister(&vcpu->preempt_notifier);
220 __this_cpu_write(kvm_running_vcpu, NULL);
223 EXPORT_SYMBOL_GPL(vcpu_put);
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231 * We need to wait for the VCPU to reenable interrupts and get out of
232 * READING_SHADOW_PAGE_TABLES mode.
234 if (req & KVM_REQUEST_WAIT)
235 return mode != OUTSIDE_GUEST_MODE;
238 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 return mode == IN_GUEST_MODE;
243 static void ack_flush(void *_completed)
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 cpus = cpu_online_mask;
252 if (cpumask_empty(cpus))
255 smp_call_function_many(cpus, ack_flush, NULL, wait);
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260 struct kvm_vcpu *except,
261 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
264 struct kvm_vcpu *vcpu;
269 kvm_for_each_vcpu(i, vcpu, kvm) {
270 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
274 kvm_make_request(req, vcpu);
277 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280 if (tmp != NULL && cpu != -1 && cpu != me &&
281 kvm_request_needs_ipi(vcpu, req))
282 __cpumask_set_cpu(cpu, tmp);
285 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292 struct kvm_vcpu *except)
297 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301 free_cpumask_var(cpus);
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 return kvm_make_all_cpus_request_except(kvm, req, NULL);
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315 * kvm_make_all_cpus_request.
317 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320 * We want to publish modifications to the page tables before reading
321 * mode. Pairs with a memory barrier in arch-specific code.
322 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323 * and smp_mb in walk_shadow_page_lockless_begin/end.
324 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
326 * There is already an smp_mb__after_atomic() before
327 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 if (!kvm_arch_flush_remote_tlb(kvm)
331 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332 ++kvm->stat.remote_tlb_flush;
333 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 void kvm_reload_remote_mmus(struct kvm *kvm)
340 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347 gfp_flags |= mc->gfp_zero;
350 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
352 return (void *)__get_free_page(gfp_flags);
355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
359 if (mc->nobjs >= min)
361 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
362 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
364 return mc->nobjs >= min ? 0 : -ENOMEM;
365 mc->objects[mc->nobjs++] = obj;
370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
379 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
381 free_page((unsigned long)mc->objects[--mc->nobjs]);
385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
389 if (WARN_ON(!mc->nobjs))
390 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
392 p = mc->objects[--mc->nobjs];
398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
400 mutex_init(&vcpu->mutex);
405 rcuwait_init(&vcpu->wait);
406 kvm_async_pf_vcpu_init(vcpu);
409 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
411 kvm_vcpu_set_in_spin_loop(vcpu, false);
412 kvm_vcpu_set_dy_eligible(vcpu, false);
413 vcpu->preempted = false;
415 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
420 kvm_arch_vcpu_destroy(vcpu);
423 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
424 * the vcpu->pid pointer, and at destruction time all file descriptors
427 put_pid(rcu_dereference_protected(vcpu->pid, 1));
429 free_page((unsigned long)vcpu->run);
430 kmem_cache_free(kvm_vcpu_cache, vcpu);
432 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
434 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
435 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
437 return container_of(mn, struct kvm, mmu_notifier);
440 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
441 struct mm_struct *mm,
442 unsigned long start, unsigned long end)
444 struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 idx = srcu_read_lock(&kvm->srcu);
448 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
449 srcu_read_unlock(&kvm->srcu, idx);
452 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
453 struct mm_struct *mm,
454 unsigned long address,
457 struct kvm *kvm = mmu_notifier_to_kvm(mn);
460 idx = srcu_read_lock(&kvm->srcu);
461 spin_lock(&kvm->mmu_lock);
462 kvm->mmu_notifier_seq++;
464 if (kvm_set_spte_hva(kvm, address, pte))
465 kvm_flush_remote_tlbs(kvm);
467 spin_unlock(&kvm->mmu_lock);
468 srcu_read_unlock(&kvm->srcu, idx);
471 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
472 const struct mmu_notifier_range *range)
474 struct kvm *kvm = mmu_notifier_to_kvm(mn);
475 int need_tlb_flush = 0, idx;
477 idx = srcu_read_lock(&kvm->srcu);
478 spin_lock(&kvm->mmu_lock);
480 * The count increase must become visible at unlock time as no
481 * spte can be established without taking the mmu_lock and
482 * count is also read inside the mmu_lock critical section.
484 kvm->mmu_notifier_count++;
485 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
486 need_tlb_flush |= kvm->tlbs_dirty;
487 /* we've to flush the tlb before the pages can be freed */
489 kvm_flush_remote_tlbs(kvm);
491 spin_unlock(&kvm->mmu_lock);
492 srcu_read_unlock(&kvm->srcu, idx);
497 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
498 const struct mmu_notifier_range *range)
500 struct kvm *kvm = mmu_notifier_to_kvm(mn);
502 spin_lock(&kvm->mmu_lock);
504 * This sequence increase will notify the kvm page fault that
505 * the page that is going to be mapped in the spte could have
508 kvm->mmu_notifier_seq++;
511 * The above sequence increase must be visible before the
512 * below count decrease, which is ensured by the smp_wmb above
513 * in conjunction with the smp_rmb in mmu_notifier_retry().
515 kvm->mmu_notifier_count--;
516 spin_unlock(&kvm->mmu_lock);
518 BUG_ON(kvm->mmu_notifier_count < 0);
521 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
522 struct mm_struct *mm,
526 struct kvm *kvm = mmu_notifier_to_kvm(mn);
529 idx = srcu_read_lock(&kvm->srcu);
530 spin_lock(&kvm->mmu_lock);
532 young = kvm_age_hva(kvm, start, end);
534 kvm_flush_remote_tlbs(kvm);
536 spin_unlock(&kvm->mmu_lock);
537 srcu_read_unlock(&kvm->srcu, idx);
542 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
543 struct mm_struct *mm,
547 struct kvm *kvm = mmu_notifier_to_kvm(mn);
550 idx = srcu_read_lock(&kvm->srcu);
551 spin_lock(&kvm->mmu_lock);
553 * Even though we do not flush TLB, this will still adversely
554 * affect performance on pre-Haswell Intel EPT, where there is
555 * no EPT Access Bit to clear so that we have to tear down EPT
556 * tables instead. If we find this unacceptable, we can always
557 * add a parameter to kvm_age_hva so that it effectively doesn't
558 * do anything on clear_young.
560 * Also note that currently we never issue secondary TLB flushes
561 * from clear_young, leaving this job up to the regular system
562 * cadence. If we find this inaccurate, we might come up with a
563 * more sophisticated heuristic later.
565 young = kvm_age_hva(kvm, start, end);
566 spin_unlock(&kvm->mmu_lock);
567 srcu_read_unlock(&kvm->srcu, idx);
572 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
573 struct mm_struct *mm,
574 unsigned long address)
576 struct kvm *kvm = mmu_notifier_to_kvm(mn);
579 idx = srcu_read_lock(&kvm->srcu);
580 spin_lock(&kvm->mmu_lock);
581 young = kvm_test_age_hva(kvm, address);
582 spin_unlock(&kvm->mmu_lock);
583 srcu_read_unlock(&kvm->srcu, idx);
588 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
589 struct mm_struct *mm)
591 struct kvm *kvm = mmu_notifier_to_kvm(mn);
594 idx = srcu_read_lock(&kvm->srcu);
595 kvm_arch_flush_shadow_all(kvm);
596 srcu_read_unlock(&kvm->srcu, idx);
599 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
600 .invalidate_range = kvm_mmu_notifier_invalidate_range,
601 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
602 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
603 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
604 .clear_young = kvm_mmu_notifier_clear_young,
605 .test_young = kvm_mmu_notifier_test_young,
606 .change_pte = kvm_mmu_notifier_change_pte,
607 .release = kvm_mmu_notifier_release,
610 static int kvm_init_mmu_notifier(struct kvm *kvm)
612 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
613 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
616 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
618 static int kvm_init_mmu_notifier(struct kvm *kvm)
623 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
625 static struct kvm_memslots *kvm_alloc_memslots(void)
628 struct kvm_memslots *slots;
630 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
634 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
635 slots->id_to_index[i] = -1;
640 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
642 if (!memslot->dirty_bitmap)
645 kvfree(memslot->dirty_bitmap);
646 memslot->dirty_bitmap = NULL;
649 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
651 kvm_destroy_dirty_bitmap(slot);
653 kvm_arch_free_memslot(kvm, slot);
659 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
661 struct kvm_memory_slot *memslot;
666 kvm_for_each_memslot(memslot, slots)
667 kvm_free_memslot(kvm, memslot);
672 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
676 if (!kvm->debugfs_dentry)
679 debugfs_remove_recursive(kvm->debugfs_dentry);
681 if (kvm->debugfs_stat_data) {
682 for (i = 0; i < kvm_debugfs_num_entries; i++)
683 kfree(kvm->debugfs_stat_data[i]);
684 kfree(kvm->debugfs_stat_data);
688 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
690 char dir_name[ITOA_MAX_LEN * 2];
691 struct kvm_stat_data *stat_data;
692 struct kvm_stats_debugfs_item *p;
694 if (!debugfs_initialized())
697 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
698 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
700 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
701 sizeof(*kvm->debugfs_stat_data),
703 if (!kvm->debugfs_stat_data)
706 for (p = debugfs_entries; p->name; p++) {
707 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
711 stat_data->kvm = kvm;
712 stat_data->dbgfs_item = p;
713 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
714 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
715 kvm->debugfs_dentry, stat_data,
722 * Called after the VM is otherwise initialized, but just before adding it to
725 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
731 * Called just after removing the VM from the vm_list, but before doing any
734 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
738 static struct kvm *kvm_create_vm(unsigned long type)
740 struct kvm *kvm = kvm_arch_alloc_vm();
745 return ERR_PTR(-ENOMEM);
747 spin_lock_init(&kvm->mmu_lock);
749 kvm->mm = current->mm;
750 kvm_eventfd_init(kvm);
751 mutex_init(&kvm->lock);
752 mutex_init(&kvm->irq_lock);
753 mutex_init(&kvm->slots_lock);
754 INIT_LIST_HEAD(&kvm->devices);
756 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
758 if (init_srcu_struct(&kvm->srcu))
759 goto out_err_no_srcu;
760 if (init_srcu_struct(&kvm->irq_srcu))
761 goto out_err_no_irq_srcu;
763 refcount_set(&kvm->users_count, 1);
764 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
765 struct kvm_memslots *slots = kvm_alloc_memslots();
768 goto out_err_no_arch_destroy_vm;
769 /* Generations must be different for each address space. */
770 slots->generation = i;
771 rcu_assign_pointer(kvm->memslots[i], slots);
774 for (i = 0; i < KVM_NR_BUSES; i++) {
775 rcu_assign_pointer(kvm->buses[i],
776 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
778 goto out_err_no_arch_destroy_vm;
781 kvm->max_halt_poll_ns = halt_poll_ns;
783 r = kvm_arch_init_vm(kvm, type);
785 goto out_err_no_arch_destroy_vm;
787 r = hardware_enable_all();
789 goto out_err_no_disable;
791 #ifdef CONFIG_HAVE_KVM_IRQFD
792 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
795 r = kvm_init_mmu_notifier(kvm);
797 goto out_err_no_mmu_notifier;
799 r = kvm_arch_post_init_vm(kvm);
803 mutex_lock(&kvm_lock);
804 list_add(&kvm->vm_list, &vm_list);
805 mutex_unlock(&kvm_lock);
807 preempt_notifier_inc();
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813 if (kvm->mmu_notifier.ops)
814 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
816 out_err_no_mmu_notifier:
817 hardware_disable_all();
819 kvm_arch_destroy_vm(kvm);
820 out_err_no_arch_destroy_vm:
821 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
822 for (i = 0; i < KVM_NR_BUSES; i++)
823 kfree(kvm_get_bus(kvm, i));
824 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
825 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
826 cleanup_srcu_struct(&kvm->irq_srcu);
828 cleanup_srcu_struct(&kvm->srcu);
830 kvm_arch_free_vm(kvm);
835 static void kvm_destroy_devices(struct kvm *kvm)
837 struct kvm_device *dev, *tmp;
840 * We do not need to take the kvm->lock here, because nobody else
841 * has a reference to the struct kvm at this point and therefore
842 * cannot access the devices list anyhow.
844 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
845 list_del(&dev->vm_node);
846 dev->ops->destroy(dev);
850 static void kvm_destroy_vm(struct kvm *kvm)
853 struct mm_struct *mm = kvm->mm;
855 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
856 kvm_destroy_vm_debugfs(kvm);
857 kvm_arch_sync_events(kvm);
858 mutex_lock(&kvm_lock);
859 list_del(&kvm->vm_list);
860 mutex_unlock(&kvm_lock);
861 kvm_arch_pre_destroy_vm(kvm);
863 kvm_free_irq_routing(kvm);
864 for (i = 0; i < KVM_NR_BUSES; i++) {
865 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
868 kvm_io_bus_destroy(bus);
869 kvm->buses[i] = NULL;
871 kvm_coalesced_mmio_free(kvm);
872 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
873 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
875 kvm_arch_flush_shadow_all(kvm);
877 kvm_arch_destroy_vm(kvm);
878 kvm_destroy_devices(kvm);
879 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
880 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
881 cleanup_srcu_struct(&kvm->irq_srcu);
882 cleanup_srcu_struct(&kvm->srcu);
883 kvm_arch_free_vm(kvm);
884 preempt_notifier_dec();
885 hardware_disable_all();
889 void kvm_get_kvm(struct kvm *kvm)
891 refcount_inc(&kvm->users_count);
893 EXPORT_SYMBOL_GPL(kvm_get_kvm);
895 void kvm_put_kvm(struct kvm *kvm)
897 if (refcount_dec_and_test(&kvm->users_count))
900 EXPORT_SYMBOL_GPL(kvm_put_kvm);
903 * Used to put a reference that was taken on behalf of an object associated
904 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
905 * of the new file descriptor fails and the reference cannot be transferred to
906 * its final owner. In such cases, the caller is still actively using @kvm and
907 * will fail miserably if the refcount unexpectedly hits zero.
909 void kvm_put_kvm_no_destroy(struct kvm *kvm)
911 WARN_ON(refcount_dec_and_test(&kvm->users_count));
913 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
915 static int kvm_vm_release(struct inode *inode, struct file *filp)
917 struct kvm *kvm = filp->private_data;
919 kvm_irqfd_release(kvm);
926 * Allocation size is twice as large as the actual dirty bitmap size.
927 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
929 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
931 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
933 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
934 if (!memslot->dirty_bitmap)
941 * Delete a memslot by decrementing the number of used slots and shifting all
942 * other entries in the array forward one spot.
944 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
945 struct kvm_memory_slot *memslot)
947 struct kvm_memory_slot *mslots = slots->memslots;
950 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
955 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
956 atomic_set(&slots->lru_slot, 0);
958 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
959 mslots[i] = mslots[i + 1];
960 slots->id_to_index[mslots[i].id] = i;
962 mslots[i] = *memslot;
963 slots->id_to_index[memslot->id] = -1;
967 * "Insert" a new memslot by incrementing the number of used slots. Returns
968 * the new slot's initial index into the memslots array.
970 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
972 return slots->used_slots++;
976 * Move a changed memslot backwards in the array by shifting existing slots
977 * with a higher GFN toward the front of the array. Note, the changed memslot
978 * itself is not preserved in the array, i.e. not swapped at this time, only
979 * its new index into the array is tracked. Returns the changed memslot's
980 * current index into the memslots array.
982 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
983 struct kvm_memory_slot *memslot)
985 struct kvm_memory_slot *mslots = slots->memslots;
988 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
989 WARN_ON_ONCE(!slots->used_slots))
993 * Move the target memslot backward in the array by shifting existing
994 * memslots with a higher GFN (than the target memslot) towards the
995 * front of the array.
997 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
998 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1001 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1003 /* Shift the next memslot forward one and update its index. */
1004 mslots[i] = mslots[i + 1];
1005 slots->id_to_index[mslots[i].id] = i;
1011 * Move a changed memslot forwards in the array by shifting existing slots with
1012 * a lower GFN toward the back of the array. Note, the changed memslot itself
1013 * is not preserved in the array, i.e. not swapped at this time, only its new
1014 * index into the array is tracked. Returns the changed memslot's final index
1015 * into the memslots array.
1017 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1018 struct kvm_memory_slot *memslot,
1021 struct kvm_memory_slot *mslots = slots->memslots;
1024 for (i = start; i > 0; i--) {
1025 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1028 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1030 /* Shift the next memslot back one and update its index. */
1031 mslots[i] = mslots[i - 1];
1032 slots->id_to_index[mslots[i].id] = i;
1038 * Re-sort memslots based on their GFN to account for an added, deleted, or
1039 * moved memslot. Sorting memslots by GFN allows using a binary search during
1042 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1043 * at memslots[0] has the highest GFN.
1045 * The sorting algorithm takes advantage of having initially sorted memslots
1046 * and knowing the position of the changed memslot. Sorting is also optimized
1047 * by not swapping the updated memslot and instead only shifting other memslots
1048 * and tracking the new index for the update memslot. Only once its final
1049 * index is known is the updated memslot copied into its position in the array.
1051 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1052 * the end of the array.
1054 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1055 * end of the array and then it forward to its correct location.
1057 * - When moving a memslot, the algorithm first moves the updated memslot
1058 * backward to handle the scenario where the memslot's GFN was changed to a
1059 * lower value. update_memslots() then falls through and runs the same flow
1060 * as creating a memslot to move the memslot forward to handle the scenario
1061 * where its GFN was changed to a higher value.
1063 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1064 * historical reasons. Originally, invalid memslots where denoted by having
1065 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1066 * to the end of the array. The current algorithm uses dedicated logic to
1067 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1069 * The other historical motiviation for highest->lowest was to improve the
1070 * performance of memslot lookup. KVM originally used a linear search starting
1071 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1072 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1073 * single memslot above the 4gb boundary. As the largest memslot is also the
1074 * most likely to be referenced, sorting it to the front of the array was
1075 * advantageous. The current binary search starts from the middle of the array
1076 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1078 static void update_memslots(struct kvm_memslots *slots,
1079 struct kvm_memory_slot *memslot,
1080 enum kvm_mr_change change)
1084 if (change == KVM_MR_DELETE) {
1085 kvm_memslot_delete(slots, memslot);
1087 if (change == KVM_MR_CREATE)
1088 i = kvm_memslot_insert_back(slots);
1090 i = kvm_memslot_move_backward(slots, memslot);
1091 i = kvm_memslot_move_forward(slots, memslot, i);
1094 * Copy the memslot to its new position in memslots and update
1095 * its index accordingly.
1097 slots->memslots[i] = *memslot;
1098 slots->id_to_index[memslot->id] = i;
1102 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1104 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1106 #ifdef __KVM_HAVE_READONLY_MEM
1107 valid_flags |= KVM_MEM_READONLY;
1110 if (mem->flags & ~valid_flags)
1116 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1117 int as_id, struct kvm_memslots *slots)
1119 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1120 u64 gen = old_memslots->generation;
1122 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1123 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1125 rcu_assign_pointer(kvm->memslots[as_id], slots);
1126 synchronize_srcu_expedited(&kvm->srcu);
1129 * Increment the new memslot generation a second time, dropping the
1130 * update in-progress flag and incrementing the generation based on
1131 * the number of address spaces. This provides a unique and easily
1132 * identifiable generation number while the memslots are in flux.
1134 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1137 * Generations must be unique even across address spaces. We do not need
1138 * a global counter for that, instead the generation space is evenly split
1139 * across address spaces. For example, with two address spaces, address
1140 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1141 * use generations 1, 3, 5, ...
1143 gen += KVM_ADDRESS_SPACE_NUM;
1145 kvm_arch_memslots_updated(kvm, gen);
1147 slots->generation = gen;
1149 return old_memslots;
1153 * Note, at a minimum, the current number of used slots must be allocated, even
1154 * when deleting a memslot, as we need a complete duplicate of the memslots for
1155 * use when invalidating a memslot prior to deleting/moving the memslot.
1157 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1158 enum kvm_mr_change change)
1160 struct kvm_memslots *slots;
1161 size_t old_size, new_size;
1163 old_size = sizeof(struct kvm_memslots) +
1164 (sizeof(struct kvm_memory_slot) * old->used_slots);
1166 if (change == KVM_MR_CREATE)
1167 new_size = old_size + sizeof(struct kvm_memory_slot);
1169 new_size = old_size;
1171 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1173 memcpy(slots, old, old_size);
1178 static int kvm_set_memslot(struct kvm *kvm,
1179 const struct kvm_userspace_memory_region *mem,
1180 struct kvm_memory_slot *old,
1181 struct kvm_memory_slot *new, int as_id,
1182 enum kvm_mr_change change)
1184 struct kvm_memory_slot *slot;
1185 struct kvm_memslots *slots;
1188 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1192 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1194 * Note, the INVALID flag needs to be in the appropriate entry
1195 * in the freshly allocated memslots, not in @old or @new.
1197 slot = id_to_memslot(slots, old->id);
1198 slot->flags |= KVM_MEMSLOT_INVALID;
1201 * We can re-use the old memslots, the only difference from the
1202 * newly installed memslots is the invalid flag, which will get
1203 * dropped by update_memslots anyway. We'll also revert to the
1204 * old memslots if preparing the new memory region fails.
1206 slots = install_new_memslots(kvm, as_id, slots);
1208 /* From this point no new shadow pages pointing to a deleted,
1209 * or moved, memslot will be created.
1211 * validation of sp->gfn happens in:
1212 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1213 * - kvm_is_visible_gfn (mmu_check_root)
1215 kvm_arch_flush_shadow_memslot(kvm, slot);
1218 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1222 update_memslots(slots, new, change);
1223 slots = install_new_memslots(kvm, as_id, slots);
1225 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1231 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1232 slots = install_new_memslots(kvm, as_id, slots);
1237 static int kvm_delete_memslot(struct kvm *kvm,
1238 const struct kvm_userspace_memory_region *mem,
1239 struct kvm_memory_slot *old, int as_id)
1241 struct kvm_memory_slot new;
1247 memset(&new, 0, sizeof(new));
1250 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1254 kvm_free_memslot(kvm, old);
1259 * Allocate some memory and give it an address in the guest physical address
1262 * Discontiguous memory is allowed, mostly for framebuffers.
1264 * Must be called holding kvm->slots_lock for write.
1266 int __kvm_set_memory_region(struct kvm *kvm,
1267 const struct kvm_userspace_memory_region *mem)
1269 struct kvm_memory_slot old, new;
1270 struct kvm_memory_slot *tmp;
1271 enum kvm_mr_change change;
1275 r = check_memory_region_flags(mem);
1279 as_id = mem->slot >> 16;
1280 id = (u16)mem->slot;
1282 /* General sanity checks */
1283 if (mem->memory_size & (PAGE_SIZE - 1))
1285 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1287 /* We can read the guest memory with __xxx_user() later on. */
1288 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1289 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1292 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1294 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1298 * Make a full copy of the old memslot, the pointer will become stale
1299 * when the memslots are re-sorted by update_memslots(), and the old
1300 * memslot needs to be referenced after calling update_memslots(), e.g.
1301 * to free its resources and for arch specific behavior.
1303 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1308 memset(&old, 0, sizeof(old));
1312 if (!mem->memory_size)
1313 return kvm_delete_memslot(kvm, mem, &old, as_id);
1316 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1317 new.npages = mem->memory_size >> PAGE_SHIFT;
1318 new.flags = mem->flags;
1319 new.userspace_addr = mem->userspace_addr;
1321 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1325 change = KVM_MR_CREATE;
1326 new.dirty_bitmap = NULL;
1327 memset(&new.arch, 0, sizeof(new.arch));
1328 } else { /* Modify an existing slot. */
1329 if ((new.userspace_addr != old.userspace_addr) ||
1330 (new.npages != old.npages) ||
1331 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1334 if (new.base_gfn != old.base_gfn)
1335 change = KVM_MR_MOVE;
1336 else if (new.flags != old.flags)
1337 change = KVM_MR_FLAGS_ONLY;
1338 else /* Nothing to change. */
1341 /* Copy dirty_bitmap and arch from the current memslot. */
1342 new.dirty_bitmap = old.dirty_bitmap;
1343 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1346 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1347 /* Check for overlaps */
1348 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1351 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1352 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1357 /* Allocate/free page dirty bitmap as needed */
1358 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1359 new.dirty_bitmap = NULL;
1360 else if (!new.dirty_bitmap) {
1361 r = kvm_alloc_dirty_bitmap(&new);
1365 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1366 bitmap_set(new.dirty_bitmap, 0, new.npages);
1369 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1373 if (old.dirty_bitmap && !new.dirty_bitmap)
1374 kvm_destroy_dirty_bitmap(&old);
1378 if (new.dirty_bitmap && !old.dirty_bitmap)
1379 kvm_destroy_dirty_bitmap(&new);
1382 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1384 int kvm_set_memory_region(struct kvm *kvm,
1385 const struct kvm_userspace_memory_region *mem)
1389 mutex_lock(&kvm->slots_lock);
1390 r = __kvm_set_memory_region(kvm, mem);
1391 mutex_unlock(&kvm->slots_lock);
1394 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1396 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1397 struct kvm_userspace_memory_region *mem)
1399 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1402 return kvm_set_memory_region(kvm, mem);
1405 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1407 * kvm_get_dirty_log - get a snapshot of dirty pages
1408 * @kvm: pointer to kvm instance
1409 * @log: slot id and address to which we copy the log
1410 * @is_dirty: set to '1' if any dirty pages were found
1411 * @memslot: set to the associated memslot, always valid on success
1413 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1414 int *is_dirty, struct kvm_memory_slot **memslot)
1416 struct kvm_memslots *slots;
1419 unsigned long any = 0;
1424 as_id = log->slot >> 16;
1425 id = (u16)log->slot;
1426 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1429 slots = __kvm_memslots(kvm, as_id);
1430 *memslot = id_to_memslot(slots, id);
1431 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1434 kvm_arch_sync_dirty_log(kvm, *memslot);
1436 n = kvm_dirty_bitmap_bytes(*memslot);
1438 for (i = 0; !any && i < n/sizeof(long); ++i)
1439 any = (*memslot)->dirty_bitmap[i];
1441 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1448 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1450 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1452 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1453 * and reenable dirty page tracking for the corresponding pages.
1454 * @kvm: pointer to kvm instance
1455 * @log: slot id and address to which we copy the log
1457 * We need to keep it in mind that VCPU threads can write to the bitmap
1458 * concurrently. So, to avoid losing track of dirty pages we keep the
1461 * 1. Take a snapshot of the bit and clear it if needed.
1462 * 2. Write protect the corresponding page.
1463 * 3. Copy the snapshot to the userspace.
1464 * 4. Upon return caller flushes TLB's if needed.
1466 * Between 2 and 4, the guest may write to the page using the remaining TLB
1467 * entry. This is not a problem because the page is reported dirty using
1468 * the snapshot taken before and step 4 ensures that writes done after
1469 * exiting to userspace will be logged for the next call.
1472 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1474 struct kvm_memslots *slots;
1475 struct kvm_memory_slot *memslot;
1478 unsigned long *dirty_bitmap;
1479 unsigned long *dirty_bitmap_buffer;
1482 as_id = log->slot >> 16;
1483 id = (u16)log->slot;
1484 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1487 slots = __kvm_memslots(kvm, as_id);
1488 memslot = id_to_memslot(slots, id);
1489 if (!memslot || !memslot->dirty_bitmap)
1492 dirty_bitmap = memslot->dirty_bitmap;
1494 kvm_arch_sync_dirty_log(kvm, memslot);
1496 n = kvm_dirty_bitmap_bytes(memslot);
1498 if (kvm->manual_dirty_log_protect) {
1500 * Unlike kvm_get_dirty_log, we always return false in *flush,
1501 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1502 * is some code duplication between this function and
1503 * kvm_get_dirty_log, but hopefully all architecture
1504 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1505 * can be eliminated.
1507 dirty_bitmap_buffer = dirty_bitmap;
1509 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1510 memset(dirty_bitmap_buffer, 0, n);
1512 spin_lock(&kvm->mmu_lock);
1513 for (i = 0; i < n / sizeof(long); i++) {
1517 if (!dirty_bitmap[i])
1521 mask = xchg(&dirty_bitmap[i], 0);
1522 dirty_bitmap_buffer[i] = mask;
1524 offset = i * BITS_PER_LONG;
1525 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1528 spin_unlock(&kvm->mmu_lock);
1532 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1534 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1541 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1542 * @kvm: kvm instance
1543 * @log: slot id and address to which we copy the log
1545 * Steps 1-4 below provide general overview of dirty page logging. See
1546 * kvm_get_dirty_log_protect() function description for additional details.
1548 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1549 * always flush the TLB (step 4) even if previous step failed and the dirty
1550 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1551 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1552 * writes will be marked dirty for next log read.
1554 * 1. Take a snapshot of the bit and clear it if needed.
1555 * 2. Write protect the corresponding page.
1556 * 3. Copy the snapshot to the userspace.
1557 * 4. Flush TLB's if needed.
1559 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1560 struct kvm_dirty_log *log)
1564 mutex_lock(&kvm->slots_lock);
1566 r = kvm_get_dirty_log_protect(kvm, log);
1568 mutex_unlock(&kvm->slots_lock);
1573 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1574 * and reenable dirty page tracking for the corresponding pages.
1575 * @kvm: pointer to kvm instance
1576 * @log: slot id and address from which to fetch the bitmap of dirty pages
1578 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1579 struct kvm_clear_dirty_log *log)
1581 struct kvm_memslots *slots;
1582 struct kvm_memory_slot *memslot;
1586 unsigned long *dirty_bitmap;
1587 unsigned long *dirty_bitmap_buffer;
1590 as_id = log->slot >> 16;
1591 id = (u16)log->slot;
1592 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1595 if (log->first_page & 63)
1598 slots = __kvm_memslots(kvm, as_id);
1599 memslot = id_to_memslot(slots, id);
1600 if (!memslot || !memslot->dirty_bitmap)
1603 dirty_bitmap = memslot->dirty_bitmap;
1605 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1607 if (log->first_page > memslot->npages ||
1608 log->num_pages > memslot->npages - log->first_page ||
1609 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1612 kvm_arch_sync_dirty_log(kvm, memslot);
1615 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1616 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1619 spin_lock(&kvm->mmu_lock);
1620 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1621 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1622 i++, offset += BITS_PER_LONG) {
1623 unsigned long mask = *dirty_bitmap_buffer++;
1624 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1628 mask &= atomic_long_fetch_andnot(mask, p);
1631 * mask contains the bits that really have been cleared. This
1632 * never includes any bits beyond the length of the memslot (if
1633 * the length is not aligned to 64 pages), therefore it is not
1634 * a problem if userspace sets them in log->dirty_bitmap.
1638 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1642 spin_unlock(&kvm->mmu_lock);
1645 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1650 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1651 struct kvm_clear_dirty_log *log)
1655 mutex_lock(&kvm->slots_lock);
1657 r = kvm_clear_dirty_log_protect(kvm, log);
1659 mutex_unlock(&kvm->slots_lock);
1662 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1664 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1666 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1668 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1670 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1672 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1674 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1676 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1678 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1680 return kvm_is_visible_memslot(memslot);
1682 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1684 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1686 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1688 return kvm_is_visible_memslot(memslot);
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1692 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1694 struct vm_area_struct *vma;
1695 unsigned long addr, size;
1699 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1700 if (kvm_is_error_hva(addr))
1703 mmap_read_lock(current->mm);
1704 vma = find_vma(current->mm, addr);
1708 size = vma_kernel_pagesize(vma);
1711 mmap_read_unlock(current->mm);
1716 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1718 return slot->flags & KVM_MEM_READONLY;
1721 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1722 gfn_t *nr_pages, bool write)
1724 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1725 return KVM_HVA_ERR_BAD;
1727 if (memslot_is_readonly(slot) && write)
1728 return KVM_HVA_ERR_RO_BAD;
1731 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1733 return __gfn_to_hva_memslot(slot, gfn);
1736 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1739 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1742 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1745 return gfn_to_hva_many(slot, gfn, NULL);
1747 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1749 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1751 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1753 EXPORT_SYMBOL_GPL(gfn_to_hva);
1755 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1757 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1759 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1762 * Return the hva of a @gfn and the R/W attribute if possible.
1764 * @slot: the kvm_memory_slot which contains @gfn
1765 * @gfn: the gfn to be translated
1766 * @writable: used to return the read/write attribute of the @slot if the hva
1767 * is valid and @writable is not NULL
1769 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1770 gfn_t gfn, bool *writable)
1772 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1774 if (!kvm_is_error_hva(hva) && writable)
1775 *writable = !memslot_is_readonly(slot);
1780 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1782 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1787 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1789 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1791 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1794 static inline int check_user_page_hwpoison(unsigned long addr)
1796 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1798 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1799 return rc == -EHWPOISON;
1803 * The fast path to get the writable pfn which will be stored in @pfn,
1804 * true indicates success, otherwise false is returned. It's also the
1805 * only part that runs if we can in atomic context.
1807 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1808 bool *writable, kvm_pfn_t *pfn)
1810 struct page *page[1];
1813 * Fast pin a writable pfn only if it is a write fault request
1814 * or the caller allows to map a writable pfn for a read fault
1817 if (!(write_fault || writable))
1820 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1821 *pfn = page_to_pfn(page[0]);
1832 * The slow path to get the pfn of the specified host virtual address,
1833 * 1 indicates success, -errno is returned if error is detected.
1835 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1836 bool *writable, kvm_pfn_t *pfn)
1838 unsigned int flags = FOLL_HWPOISON;
1845 *writable = write_fault;
1848 flags |= FOLL_WRITE;
1850 flags |= FOLL_NOWAIT;
1852 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1856 /* map read fault as writable if possible */
1857 if (unlikely(!write_fault) && writable) {
1860 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1866 *pfn = page_to_pfn(page);
1870 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1872 if (unlikely(!(vma->vm_flags & VM_READ)))
1875 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1881 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1882 unsigned long addr, bool *async,
1883 bool write_fault, bool *writable,
1889 r = follow_pfn(vma, addr, &pfn);
1892 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1893 * not call the fault handler, so do it here.
1895 bool unlocked = false;
1896 r = fixup_user_fault(current->mm, addr,
1897 (write_fault ? FAULT_FLAG_WRITE : 0),
1904 r = follow_pfn(vma, addr, &pfn);
1914 * Get a reference here because callers of *hva_to_pfn* and
1915 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1916 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1917 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1918 * simply do nothing for reserved pfns.
1920 * Whoever called remap_pfn_range is also going to call e.g.
1921 * unmap_mapping_range before the underlying pages are freed,
1922 * causing a call to our MMU notifier.
1931 * Pin guest page in memory and return its pfn.
1932 * @addr: host virtual address which maps memory to the guest
1933 * @atomic: whether this function can sleep
1934 * @async: whether this function need to wait IO complete if the
1935 * host page is not in the memory
1936 * @write_fault: whether we should get a writable host page
1937 * @writable: whether it allows to map a writable host page for !@write_fault
1939 * The function will map a writable host page for these two cases:
1940 * 1): @write_fault = true
1941 * 2): @write_fault = false && @writable, @writable will tell the caller
1942 * whether the mapping is writable.
1944 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1945 bool write_fault, bool *writable)
1947 struct vm_area_struct *vma;
1951 /* we can do it either atomically or asynchronously, not both */
1952 BUG_ON(atomic && async);
1954 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1958 return KVM_PFN_ERR_FAULT;
1960 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1964 mmap_read_lock(current->mm);
1965 if (npages == -EHWPOISON ||
1966 (!async && check_user_page_hwpoison(addr))) {
1967 pfn = KVM_PFN_ERR_HWPOISON;
1972 vma = find_vma_intersection(current->mm, addr, addr + 1);
1975 pfn = KVM_PFN_ERR_FAULT;
1976 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1977 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1981 pfn = KVM_PFN_ERR_FAULT;
1983 if (async && vma_is_valid(vma, write_fault))
1985 pfn = KVM_PFN_ERR_FAULT;
1988 mmap_read_unlock(current->mm);
1992 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1993 bool atomic, bool *async, bool write_fault,
1996 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1998 if (addr == KVM_HVA_ERR_RO_BAD) {
2001 return KVM_PFN_ERR_RO_FAULT;
2004 if (kvm_is_error_hva(addr)) {
2007 return KVM_PFN_NOSLOT;
2010 /* Do not map writable pfn in the readonly memslot. */
2011 if (writable && memslot_is_readonly(slot)) {
2016 return hva_to_pfn(addr, atomic, async, write_fault,
2019 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2021 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2024 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2025 write_fault, writable);
2027 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2029 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2031 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2033 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2035 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2037 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2039 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2041 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2043 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2045 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2047 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2049 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2051 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2053 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2055 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2057 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2059 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2060 struct page **pages, int nr_pages)
2065 addr = gfn_to_hva_many(slot, gfn, &entry);
2066 if (kvm_is_error_hva(addr))
2069 if (entry < nr_pages)
2072 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2074 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2076 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2078 if (is_error_noslot_pfn(pfn))
2079 return KVM_ERR_PTR_BAD_PAGE;
2081 if (kvm_is_reserved_pfn(pfn)) {
2083 return KVM_ERR_PTR_BAD_PAGE;
2086 return pfn_to_page(pfn);
2089 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2093 pfn = gfn_to_pfn(kvm, gfn);
2095 return kvm_pfn_to_page(pfn);
2097 EXPORT_SYMBOL_GPL(gfn_to_page);
2099 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2105 cache->pfn = cache->gfn = 0;
2108 kvm_release_pfn_dirty(pfn);
2110 kvm_release_pfn_clean(pfn);
2113 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2114 struct gfn_to_pfn_cache *cache, u64 gen)
2116 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2118 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2120 cache->dirty = false;
2121 cache->generation = gen;
2124 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2125 struct kvm_host_map *map,
2126 struct gfn_to_pfn_cache *cache,
2131 struct page *page = KVM_UNMAPPED_PAGE;
2132 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2133 u64 gen = slots->generation;
2139 if (!cache->pfn || cache->gfn != gfn ||
2140 cache->generation != gen) {
2143 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2149 pfn = gfn_to_pfn_memslot(slot, gfn);
2151 if (is_error_noslot_pfn(pfn))
2154 if (pfn_valid(pfn)) {
2155 page = pfn_to_page(pfn);
2157 hva = kmap_atomic(page);
2160 #ifdef CONFIG_HAS_IOMEM
2161 } else if (!atomic) {
2162 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2179 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2180 struct gfn_to_pfn_cache *cache, bool atomic)
2182 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2185 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2187 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2189 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2192 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2194 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2195 struct kvm_host_map *map,
2196 struct gfn_to_pfn_cache *cache,
2197 bool dirty, bool atomic)
2205 if (map->page != KVM_UNMAPPED_PAGE) {
2207 kunmap_atomic(map->hva);
2211 #ifdef CONFIG_HAS_IOMEM
2215 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2219 mark_page_dirty_in_slot(memslot, map->gfn);
2222 cache->dirty |= dirty;
2224 kvm_release_pfn(map->pfn, dirty, NULL);
2230 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2231 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2233 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2234 cache, dirty, atomic);
2237 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2239 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2241 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2244 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2246 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2250 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2252 return kvm_pfn_to_page(pfn);
2254 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2256 void kvm_release_page_clean(struct page *page)
2258 WARN_ON(is_error_page(page));
2260 kvm_release_pfn_clean(page_to_pfn(page));
2262 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2264 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2266 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2267 put_page(pfn_to_page(pfn));
2269 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2271 void kvm_release_page_dirty(struct page *page)
2273 WARN_ON(is_error_page(page));
2275 kvm_release_pfn_dirty(page_to_pfn(page));
2277 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2279 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2281 kvm_set_pfn_dirty(pfn);
2282 kvm_release_pfn_clean(pfn);
2284 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2286 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2288 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2289 SetPageDirty(pfn_to_page(pfn));
2291 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2293 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2295 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2296 mark_page_accessed(pfn_to_page(pfn));
2298 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2300 void kvm_get_pfn(kvm_pfn_t pfn)
2302 if (!kvm_is_reserved_pfn(pfn))
2303 get_page(pfn_to_page(pfn));
2305 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2307 static int next_segment(unsigned long len, int offset)
2309 if (len > PAGE_SIZE - offset)
2310 return PAGE_SIZE - offset;
2315 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2316 void *data, int offset, int len)
2321 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2322 if (kvm_is_error_hva(addr))
2324 r = __copy_from_user(data, (void __user *)addr + offset, len);
2330 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2333 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2335 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2337 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2339 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2340 int offset, int len)
2342 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2346 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2348 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2350 gfn_t gfn = gpa >> PAGE_SHIFT;
2352 int offset = offset_in_page(gpa);
2355 while ((seg = next_segment(len, offset)) != 0) {
2356 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2366 EXPORT_SYMBOL_GPL(kvm_read_guest);
2368 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2370 gfn_t gfn = gpa >> PAGE_SHIFT;
2372 int offset = offset_in_page(gpa);
2375 while ((seg = next_segment(len, offset)) != 0) {
2376 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2386 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2388 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2389 void *data, int offset, unsigned long len)
2394 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2395 if (kvm_is_error_hva(addr))
2397 pagefault_disable();
2398 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2405 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2406 void *data, unsigned long len)
2408 gfn_t gfn = gpa >> PAGE_SHIFT;
2409 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2410 int offset = offset_in_page(gpa);
2412 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2414 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2416 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2417 const void *data, int offset, int len)
2422 addr = gfn_to_hva_memslot(memslot, gfn);
2423 if (kvm_is_error_hva(addr))
2425 r = __copy_to_user((void __user *)addr + offset, data, len);
2428 mark_page_dirty_in_slot(memslot, gfn);
2432 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2433 const void *data, int offset, int len)
2435 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2437 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2439 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2441 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2442 const void *data, int offset, int len)
2444 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2446 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2448 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2450 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2453 gfn_t gfn = gpa >> PAGE_SHIFT;
2455 int offset = offset_in_page(gpa);
2458 while ((seg = next_segment(len, offset)) != 0) {
2459 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2469 EXPORT_SYMBOL_GPL(kvm_write_guest);
2471 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2474 gfn_t gfn = gpa >> PAGE_SHIFT;
2476 int offset = offset_in_page(gpa);
2479 while ((seg = next_segment(len, offset)) != 0) {
2480 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2490 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2492 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2493 struct gfn_to_hva_cache *ghc,
2494 gpa_t gpa, unsigned long len)
2496 int offset = offset_in_page(gpa);
2497 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2498 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2499 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2500 gfn_t nr_pages_avail;
2502 /* Update ghc->generation before performing any error checks. */
2503 ghc->generation = slots->generation;
2505 if (start_gfn > end_gfn) {
2506 ghc->hva = KVM_HVA_ERR_BAD;
2511 * If the requested region crosses two memslots, we still
2512 * verify that the entire region is valid here.
2514 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2515 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2516 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2518 if (kvm_is_error_hva(ghc->hva))
2522 /* Use the slow path for cross page reads and writes. */
2523 if (nr_pages_needed == 1)
2526 ghc->memslot = NULL;
2533 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2534 gpa_t gpa, unsigned long len)
2536 struct kvm_memslots *slots = kvm_memslots(kvm);
2537 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2539 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2541 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2542 void *data, unsigned int offset,
2545 struct kvm_memslots *slots = kvm_memslots(kvm);
2547 gpa_t gpa = ghc->gpa + offset;
2549 BUG_ON(len + offset > ghc->len);
2551 if (slots->generation != ghc->generation) {
2552 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2556 if (kvm_is_error_hva(ghc->hva))
2559 if (unlikely(!ghc->memslot))
2560 return kvm_write_guest(kvm, gpa, data, len);
2562 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2565 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2569 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2571 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2572 void *data, unsigned long len)
2574 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2576 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2578 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2579 void *data, unsigned int offset,
2582 struct kvm_memslots *slots = kvm_memslots(kvm);
2584 gpa_t gpa = ghc->gpa + offset;
2586 BUG_ON(len + offset > ghc->len);
2588 if (slots->generation != ghc->generation) {
2589 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2593 if (kvm_is_error_hva(ghc->hva))
2596 if (unlikely(!ghc->memslot))
2597 return kvm_read_guest(kvm, gpa, data, len);
2599 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2605 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2607 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2608 void *data, unsigned long len)
2610 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2612 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2614 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2616 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2618 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2620 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2622 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2624 gfn_t gfn = gpa >> PAGE_SHIFT;
2626 int offset = offset_in_page(gpa);
2629 while ((seg = next_segment(len, offset)) != 0) {
2630 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2639 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2641 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2644 if (memslot && memslot->dirty_bitmap) {
2645 unsigned long rel_gfn = gfn - memslot->base_gfn;
2647 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2651 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2653 struct kvm_memory_slot *memslot;
2655 memslot = gfn_to_memslot(kvm, gfn);
2656 mark_page_dirty_in_slot(memslot, gfn);
2658 EXPORT_SYMBOL_GPL(mark_page_dirty);
2660 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2662 struct kvm_memory_slot *memslot;
2664 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2665 mark_page_dirty_in_slot(memslot, gfn);
2667 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2669 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2671 if (!vcpu->sigset_active)
2675 * This does a lockless modification of ->real_blocked, which is fine
2676 * because, only current can change ->real_blocked and all readers of
2677 * ->real_blocked don't care as long ->real_blocked is always a subset
2680 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
2683 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2685 if (!vcpu->sigset_active)
2688 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
2689 sigemptyset(¤t->real_blocked);
2692 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2694 unsigned int old, val, grow, grow_start;
2696 old = val = vcpu->halt_poll_ns;
2697 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2698 grow = READ_ONCE(halt_poll_ns_grow);
2703 if (val < grow_start)
2706 if (val > halt_poll_ns)
2709 vcpu->halt_poll_ns = val;
2711 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2714 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2716 unsigned int old, val, shrink;
2718 old = val = vcpu->halt_poll_ns;
2719 shrink = READ_ONCE(halt_poll_ns_shrink);
2725 vcpu->halt_poll_ns = val;
2726 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2729 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2732 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2734 if (kvm_arch_vcpu_runnable(vcpu)) {
2735 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2738 if (kvm_cpu_has_pending_timer(vcpu))
2740 if (signal_pending(current))
2745 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2750 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2753 vcpu->stat.halt_poll_fail_ns += poll_ns;
2755 vcpu->stat.halt_poll_success_ns += poll_ns;
2759 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2761 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2763 ktime_t start, cur, poll_end;
2764 bool waited = false;
2767 kvm_arch_vcpu_blocking(vcpu);
2769 start = cur = poll_end = ktime_get();
2770 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2771 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2773 ++vcpu->stat.halt_attempted_poll;
2776 * This sets KVM_REQ_UNHALT if an interrupt
2779 if (kvm_vcpu_check_block(vcpu) < 0) {
2780 ++vcpu->stat.halt_successful_poll;
2781 if (!vcpu_valid_wakeup(vcpu))
2782 ++vcpu->stat.halt_poll_invalid;
2785 poll_end = cur = ktime_get();
2786 } while (single_task_running() && ktime_before(cur, stop));
2789 prepare_to_rcuwait(&vcpu->wait);
2791 set_current_state(TASK_INTERRUPTIBLE);
2793 if (kvm_vcpu_check_block(vcpu) < 0)
2799 finish_rcuwait(&vcpu->wait);
2802 kvm_arch_vcpu_unblocking(vcpu);
2803 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2805 update_halt_poll_stats(
2806 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2808 if (!kvm_arch_no_poll(vcpu)) {
2809 if (!vcpu_valid_wakeup(vcpu)) {
2810 shrink_halt_poll_ns(vcpu);
2811 } else if (vcpu->kvm->max_halt_poll_ns) {
2812 if (block_ns <= vcpu->halt_poll_ns)
2814 /* we had a long block, shrink polling */
2815 else if (vcpu->halt_poll_ns &&
2816 block_ns > vcpu->kvm->max_halt_poll_ns)
2817 shrink_halt_poll_ns(vcpu);
2818 /* we had a short halt and our poll time is too small */
2819 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2820 block_ns < vcpu->kvm->max_halt_poll_ns)
2821 grow_halt_poll_ns(vcpu);
2823 vcpu->halt_poll_ns = 0;
2827 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2828 kvm_arch_vcpu_block_finish(vcpu);
2830 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2832 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2834 struct rcuwait *waitp;
2836 waitp = kvm_arch_vcpu_get_wait(vcpu);
2837 if (rcuwait_wake_up(waitp)) {
2838 WRITE_ONCE(vcpu->ready, true);
2839 ++vcpu->stat.halt_wakeup;
2845 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2849 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2851 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2854 int cpu = vcpu->cpu;
2856 if (kvm_vcpu_wake_up(vcpu))
2860 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2861 if (kvm_arch_vcpu_should_kick(vcpu))
2862 smp_send_reschedule(cpu);
2865 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2866 #endif /* !CONFIG_S390 */
2868 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2871 struct task_struct *task = NULL;
2875 pid = rcu_dereference(target->pid);
2877 task = get_pid_task(pid, PIDTYPE_PID);
2881 ret = yield_to(task, 1);
2882 put_task_struct(task);
2886 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2889 * Helper that checks whether a VCPU is eligible for directed yield.
2890 * Most eligible candidate to yield is decided by following heuristics:
2892 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2893 * (preempted lock holder), indicated by @in_spin_loop.
2894 * Set at the beginning and cleared at the end of interception/PLE handler.
2896 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2897 * chance last time (mostly it has become eligible now since we have probably
2898 * yielded to lockholder in last iteration. This is done by toggling
2899 * @dy_eligible each time a VCPU checked for eligibility.)
2901 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2902 * to preempted lock-holder could result in wrong VCPU selection and CPU
2903 * burning. Giving priority for a potential lock-holder increases lock
2906 * Since algorithm is based on heuristics, accessing another VCPU data without
2907 * locking does not harm. It may result in trying to yield to same VCPU, fail
2908 * and continue with next VCPU and so on.
2910 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2912 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2915 eligible = !vcpu->spin_loop.in_spin_loop ||
2916 vcpu->spin_loop.dy_eligible;
2918 if (vcpu->spin_loop.in_spin_loop)
2919 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2928 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2929 * a vcpu_load/vcpu_put pair. However, for most architectures
2930 * kvm_arch_vcpu_runnable does not require vcpu_load.
2932 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2934 return kvm_arch_vcpu_runnable(vcpu);
2937 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2939 if (kvm_arch_dy_runnable(vcpu))
2942 #ifdef CONFIG_KVM_ASYNC_PF
2943 if (!list_empty_careful(&vcpu->async_pf.done))
2950 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2952 struct kvm *kvm = me->kvm;
2953 struct kvm_vcpu *vcpu;
2954 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2960 kvm_vcpu_set_in_spin_loop(me, true);
2962 * We boost the priority of a VCPU that is runnable but not
2963 * currently running, because it got preempted by something
2964 * else and called schedule in __vcpu_run. Hopefully that
2965 * VCPU is holding the lock that we need and will release it.
2966 * We approximate round-robin by starting at the last boosted VCPU.
2968 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2969 kvm_for_each_vcpu(i, vcpu, kvm) {
2970 if (!pass && i <= last_boosted_vcpu) {
2971 i = last_boosted_vcpu;
2973 } else if (pass && i > last_boosted_vcpu)
2975 if (!READ_ONCE(vcpu->ready))
2979 if (rcuwait_active(&vcpu->wait) &&
2980 !vcpu_dy_runnable(vcpu))
2982 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2983 !kvm_arch_vcpu_in_kernel(vcpu))
2985 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2988 yielded = kvm_vcpu_yield_to(vcpu);
2990 kvm->last_boosted_vcpu = i;
2992 } else if (yielded < 0) {
2999 kvm_vcpu_set_in_spin_loop(me, false);
3001 /* Ensure vcpu is not eligible during next spinloop */
3002 kvm_vcpu_set_dy_eligible(me, false);
3004 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3006 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3008 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3011 if (vmf->pgoff == 0)
3012 page = virt_to_page(vcpu->run);
3014 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3015 page = virt_to_page(vcpu->arch.pio_data);
3017 #ifdef CONFIG_KVM_MMIO
3018 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3019 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3022 return kvm_arch_vcpu_fault(vcpu, vmf);
3028 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3029 .fault = kvm_vcpu_fault,
3032 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3034 vma->vm_ops = &kvm_vcpu_vm_ops;
3038 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3040 struct kvm_vcpu *vcpu = filp->private_data;
3042 kvm_put_kvm(vcpu->kvm);
3046 static struct file_operations kvm_vcpu_fops = {
3047 .release = kvm_vcpu_release,
3048 .unlocked_ioctl = kvm_vcpu_ioctl,
3049 .mmap = kvm_vcpu_mmap,
3050 .llseek = noop_llseek,
3051 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3055 * Allocates an inode for the vcpu.
3057 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3059 char name[8 + 1 + ITOA_MAX_LEN + 1];
3061 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3062 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3065 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3067 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3068 struct dentry *debugfs_dentry;
3069 char dir_name[ITOA_MAX_LEN * 2];
3071 if (!debugfs_initialized())
3074 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3075 debugfs_dentry = debugfs_create_dir(dir_name,
3076 vcpu->kvm->debugfs_dentry);
3078 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3083 * Creates some virtual cpus. Good luck creating more than one.
3085 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3088 struct kvm_vcpu *vcpu;
3091 if (id >= KVM_MAX_VCPU_ID)
3094 mutex_lock(&kvm->lock);
3095 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3096 mutex_unlock(&kvm->lock);
3100 kvm->created_vcpus++;
3101 mutex_unlock(&kvm->lock);
3103 r = kvm_arch_vcpu_precreate(kvm, id);
3105 goto vcpu_decrement;
3107 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3110 goto vcpu_decrement;
3113 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3114 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3119 vcpu->run = page_address(page);
3121 kvm_vcpu_init(vcpu, kvm, id);
3123 r = kvm_arch_vcpu_create(vcpu);
3125 goto vcpu_free_run_page;
3127 mutex_lock(&kvm->lock);
3128 if (kvm_get_vcpu_by_id(kvm, id)) {
3130 goto unlock_vcpu_destroy;
3133 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3134 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3136 /* Now it's all set up, let userspace reach it */
3138 r = create_vcpu_fd(vcpu);
3140 kvm_put_kvm_no_destroy(kvm);
3141 goto unlock_vcpu_destroy;
3144 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3147 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3148 * before kvm->online_vcpu's incremented value.
3151 atomic_inc(&kvm->online_vcpus);
3153 mutex_unlock(&kvm->lock);
3154 kvm_arch_vcpu_postcreate(vcpu);
3155 kvm_create_vcpu_debugfs(vcpu);
3158 unlock_vcpu_destroy:
3159 mutex_unlock(&kvm->lock);
3160 kvm_arch_vcpu_destroy(vcpu);
3162 free_page((unsigned long)vcpu->run);
3164 kmem_cache_free(kvm_vcpu_cache, vcpu);
3166 mutex_lock(&kvm->lock);
3167 kvm->created_vcpus--;
3168 mutex_unlock(&kvm->lock);
3172 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3175 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3176 vcpu->sigset_active = 1;
3177 vcpu->sigset = *sigset;
3179 vcpu->sigset_active = 0;
3183 static long kvm_vcpu_ioctl(struct file *filp,
3184 unsigned int ioctl, unsigned long arg)
3186 struct kvm_vcpu *vcpu = filp->private_data;
3187 void __user *argp = (void __user *)arg;
3189 struct kvm_fpu *fpu = NULL;
3190 struct kvm_sregs *kvm_sregs = NULL;
3192 if (vcpu->kvm->mm != current->mm)
3195 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3199 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3200 * execution; mutex_lock() would break them.
3202 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3203 if (r != -ENOIOCTLCMD)
3206 if (mutex_lock_killable(&vcpu->mutex))
3214 oldpid = rcu_access_pointer(vcpu->pid);
3215 if (unlikely(oldpid != task_pid(current))) {
3216 /* The thread running this VCPU changed. */
3219 r = kvm_arch_vcpu_run_pid_change(vcpu);
3223 newpid = get_task_pid(current, PIDTYPE_PID);
3224 rcu_assign_pointer(vcpu->pid, newpid);
3229 r = kvm_arch_vcpu_ioctl_run(vcpu);
3230 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3233 case KVM_GET_REGS: {
3234 struct kvm_regs *kvm_regs;
3237 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3240 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3244 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3251 case KVM_SET_REGS: {
3252 struct kvm_regs *kvm_regs;
3254 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3255 if (IS_ERR(kvm_regs)) {
3256 r = PTR_ERR(kvm_regs);
3259 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3263 case KVM_GET_SREGS: {
3264 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3265 GFP_KERNEL_ACCOUNT);
3269 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3273 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3278 case KVM_SET_SREGS: {
3279 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3280 if (IS_ERR(kvm_sregs)) {
3281 r = PTR_ERR(kvm_sregs);
3285 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3288 case KVM_GET_MP_STATE: {
3289 struct kvm_mp_state mp_state;
3291 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3295 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3300 case KVM_SET_MP_STATE: {
3301 struct kvm_mp_state mp_state;
3304 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3306 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3309 case KVM_TRANSLATE: {
3310 struct kvm_translation tr;
3313 if (copy_from_user(&tr, argp, sizeof(tr)))
3315 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3319 if (copy_to_user(argp, &tr, sizeof(tr)))
3324 case KVM_SET_GUEST_DEBUG: {
3325 struct kvm_guest_debug dbg;
3328 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3330 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3333 case KVM_SET_SIGNAL_MASK: {
3334 struct kvm_signal_mask __user *sigmask_arg = argp;
3335 struct kvm_signal_mask kvm_sigmask;
3336 sigset_t sigset, *p;
3341 if (copy_from_user(&kvm_sigmask, argp,
3342 sizeof(kvm_sigmask)))
3345 if (kvm_sigmask.len != sizeof(sigset))
3348 if (copy_from_user(&sigset, sigmask_arg->sigset,
3353 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3357 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3361 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3365 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3371 fpu = memdup_user(argp, sizeof(*fpu));
3377 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3381 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3384 mutex_unlock(&vcpu->mutex);
3390 #ifdef CONFIG_KVM_COMPAT
3391 static long kvm_vcpu_compat_ioctl(struct file *filp,
3392 unsigned int ioctl, unsigned long arg)
3394 struct kvm_vcpu *vcpu = filp->private_data;
3395 void __user *argp = compat_ptr(arg);
3398 if (vcpu->kvm->mm != current->mm)
3402 case KVM_SET_SIGNAL_MASK: {
3403 struct kvm_signal_mask __user *sigmask_arg = argp;
3404 struct kvm_signal_mask kvm_sigmask;
3409 if (copy_from_user(&kvm_sigmask, argp,
3410 sizeof(kvm_sigmask)))
3413 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3416 if (get_compat_sigset(&sigset,
3417 (compat_sigset_t __user *)sigmask_arg->sigset))
3419 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3421 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3425 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3433 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3435 struct kvm_device *dev = filp->private_data;
3438 return dev->ops->mmap(dev, vma);
3443 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3444 int (*accessor)(struct kvm_device *dev,
3445 struct kvm_device_attr *attr),
3448 struct kvm_device_attr attr;
3453 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3456 return accessor(dev, &attr);
3459 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3462 struct kvm_device *dev = filp->private_data;
3464 if (dev->kvm->mm != current->mm)
3468 case KVM_SET_DEVICE_ATTR:
3469 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3470 case KVM_GET_DEVICE_ATTR:
3471 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3472 case KVM_HAS_DEVICE_ATTR:
3473 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3475 if (dev->ops->ioctl)
3476 return dev->ops->ioctl(dev, ioctl, arg);
3482 static int kvm_device_release(struct inode *inode, struct file *filp)
3484 struct kvm_device *dev = filp->private_data;
3485 struct kvm *kvm = dev->kvm;
3487 if (dev->ops->release) {
3488 mutex_lock(&kvm->lock);
3489 list_del(&dev->vm_node);
3490 dev->ops->release(dev);
3491 mutex_unlock(&kvm->lock);
3498 static const struct file_operations kvm_device_fops = {
3499 .unlocked_ioctl = kvm_device_ioctl,
3500 .release = kvm_device_release,
3501 KVM_COMPAT(kvm_device_ioctl),
3502 .mmap = kvm_device_mmap,
3505 struct kvm_device *kvm_device_from_filp(struct file *filp)
3507 if (filp->f_op != &kvm_device_fops)
3510 return filp->private_data;
3513 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3514 #ifdef CONFIG_KVM_MPIC
3515 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3516 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3520 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3522 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3525 if (kvm_device_ops_table[type] != NULL)
3528 kvm_device_ops_table[type] = ops;
3532 void kvm_unregister_device_ops(u32 type)
3534 if (kvm_device_ops_table[type] != NULL)
3535 kvm_device_ops_table[type] = NULL;
3538 static int kvm_ioctl_create_device(struct kvm *kvm,
3539 struct kvm_create_device *cd)
3541 const struct kvm_device_ops *ops = NULL;
3542 struct kvm_device *dev;
3543 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3547 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3550 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3551 ops = kvm_device_ops_table[type];
3558 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3565 mutex_lock(&kvm->lock);
3566 ret = ops->create(dev, type);
3568 mutex_unlock(&kvm->lock);
3572 list_add(&dev->vm_node, &kvm->devices);
3573 mutex_unlock(&kvm->lock);
3579 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3581 kvm_put_kvm_no_destroy(kvm);
3582 mutex_lock(&kvm->lock);
3583 list_del(&dev->vm_node);
3584 mutex_unlock(&kvm->lock);
3593 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3596 case KVM_CAP_USER_MEMORY:
3597 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3598 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3599 case KVM_CAP_INTERNAL_ERROR_DATA:
3600 #ifdef CONFIG_HAVE_KVM_MSI
3601 case KVM_CAP_SIGNAL_MSI:
3603 #ifdef CONFIG_HAVE_KVM_IRQFD
3605 case KVM_CAP_IRQFD_RESAMPLE:
3607 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3608 case KVM_CAP_CHECK_EXTENSION_VM:
3609 case KVM_CAP_ENABLE_CAP_VM:
3610 case KVM_CAP_HALT_POLL:
3612 #ifdef CONFIG_KVM_MMIO
3613 case KVM_CAP_COALESCED_MMIO:
3614 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3615 case KVM_CAP_COALESCED_PIO:
3618 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3619 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3620 return KVM_DIRTY_LOG_MANUAL_CAPS;
3622 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3623 case KVM_CAP_IRQ_ROUTING:
3624 return KVM_MAX_IRQ_ROUTES;
3626 #if KVM_ADDRESS_SPACE_NUM > 1
3627 case KVM_CAP_MULTI_ADDRESS_SPACE:
3628 return KVM_ADDRESS_SPACE_NUM;
3630 case KVM_CAP_NR_MEMSLOTS:
3631 return KVM_USER_MEM_SLOTS;
3635 return kvm_vm_ioctl_check_extension(kvm, arg);
3638 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3639 struct kvm_enable_cap *cap)
3644 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3645 struct kvm_enable_cap *cap)
3648 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3649 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3650 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3652 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3653 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3655 if (cap->flags || (cap->args[0] & ~allowed_options))
3657 kvm->manual_dirty_log_protect = cap->args[0];
3661 case KVM_CAP_HALT_POLL: {
3662 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3665 kvm->max_halt_poll_ns = cap->args[0];
3669 return kvm_vm_ioctl_enable_cap(kvm, cap);
3673 static long kvm_vm_ioctl(struct file *filp,
3674 unsigned int ioctl, unsigned long arg)
3676 struct kvm *kvm = filp->private_data;
3677 void __user *argp = (void __user *)arg;
3680 if (kvm->mm != current->mm)
3683 case KVM_CREATE_VCPU:
3684 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3686 case KVM_ENABLE_CAP: {
3687 struct kvm_enable_cap cap;
3690 if (copy_from_user(&cap, argp, sizeof(cap)))
3692 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3695 case KVM_SET_USER_MEMORY_REGION: {
3696 struct kvm_userspace_memory_region kvm_userspace_mem;
3699 if (copy_from_user(&kvm_userspace_mem, argp,
3700 sizeof(kvm_userspace_mem)))
3703 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3706 case KVM_GET_DIRTY_LOG: {
3707 struct kvm_dirty_log log;
3710 if (copy_from_user(&log, argp, sizeof(log)))
3712 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3715 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3716 case KVM_CLEAR_DIRTY_LOG: {
3717 struct kvm_clear_dirty_log log;
3720 if (copy_from_user(&log, argp, sizeof(log)))
3722 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3726 #ifdef CONFIG_KVM_MMIO
3727 case KVM_REGISTER_COALESCED_MMIO: {
3728 struct kvm_coalesced_mmio_zone zone;
3731 if (copy_from_user(&zone, argp, sizeof(zone)))
3733 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3736 case KVM_UNREGISTER_COALESCED_MMIO: {
3737 struct kvm_coalesced_mmio_zone zone;
3740 if (copy_from_user(&zone, argp, sizeof(zone)))
3742 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3747 struct kvm_irqfd data;
3750 if (copy_from_user(&data, argp, sizeof(data)))
3752 r = kvm_irqfd(kvm, &data);
3755 case KVM_IOEVENTFD: {
3756 struct kvm_ioeventfd data;
3759 if (copy_from_user(&data, argp, sizeof(data)))
3761 r = kvm_ioeventfd(kvm, &data);
3764 #ifdef CONFIG_HAVE_KVM_MSI
3765 case KVM_SIGNAL_MSI: {
3769 if (copy_from_user(&msi, argp, sizeof(msi)))
3771 r = kvm_send_userspace_msi(kvm, &msi);
3775 #ifdef __KVM_HAVE_IRQ_LINE
3776 case KVM_IRQ_LINE_STATUS:
3777 case KVM_IRQ_LINE: {
3778 struct kvm_irq_level irq_event;
3781 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3784 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3785 ioctl == KVM_IRQ_LINE_STATUS);
3790 if (ioctl == KVM_IRQ_LINE_STATUS) {
3791 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3799 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3800 case KVM_SET_GSI_ROUTING: {
3801 struct kvm_irq_routing routing;
3802 struct kvm_irq_routing __user *urouting;
3803 struct kvm_irq_routing_entry *entries = NULL;
3806 if (copy_from_user(&routing, argp, sizeof(routing)))
3809 if (!kvm_arch_can_set_irq_routing(kvm))
3811 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3817 entries = vmemdup_user(urouting->entries,
3818 array_size(sizeof(*entries),
3820 if (IS_ERR(entries)) {
3821 r = PTR_ERR(entries);
3825 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3830 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3831 case KVM_CREATE_DEVICE: {
3832 struct kvm_create_device cd;
3835 if (copy_from_user(&cd, argp, sizeof(cd)))
3838 r = kvm_ioctl_create_device(kvm, &cd);
3843 if (copy_to_user(argp, &cd, sizeof(cd)))
3849 case KVM_CHECK_EXTENSION:
3850 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3853 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3859 #ifdef CONFIG_KVM_COMPAT
3860 struct compat_kvm_dirty_log {
3864 compat_uptr_t dirty_bitmap; /* one bit per page */
3869 static long kvm_vm_compat_ioctl(struct file *filp,
3870 unsigned int ioctl, unsigned long arg)
3872 struct kvm *kvm = filp->private_data;
3875 if (kvm->mm != current->mm)
3878 case KVM_GET_DIRTY_LOG: {
3879 struct compat_kvm_dirty_log compat_log;
3880 struct kvm_dirty_log log;
3882 if (copy_from_user(&compat_log, (void __user *)arg,
3883 sizeof(compat_log)))
3885 log.slot = compat_log.slot;
3886 log.padding1 = compat_log.padding1;
3887 log.padding2 = compat_log.padding2;
3888 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3890 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3894 r = kvm_vm_ioctl(filp, ioctl, arg);
3900 static struct file_operations kvm_vm_fops = {
3901 .release = kvm_vm_release,
3902 .unlocked_ioctl = kvm_vm_ioctl,
3903 .llseek = noop_llseek,
3904 KVM_COMPAT(kvm_vm_compat_ioctl),
3907 static int kvm_dev_ioctl_create_vm(unsigned long type)
3913 kvm = kvm_create_vm(type);
3915 return PTR_ERR(kvm);
3916 #ifdef CONFIG_KVM_MMIO
3917 r = kvm_coalesced_mmio_init(kvm);
3921 r = get_unused_fd_flags(O_CLOEXEC);
3925 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3933 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3934 * already set, with ->release() being kvm_vm_release(). In error
3935 * cases it will be called by the final fput(file) and will take
3936 * care of doing kvm_put_kvm(kvm).
3938 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3943 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3945 fd_install(r, file);
3953 static long kvm_dev_ioctl(struct file *filp,
3954 unsigned int ioctl, unsigned long arg)
3959 case KVM_GET_API_VERSION:
3962 r = KVM_API_VERSION;
3965 r = kvm_dev_ioctl_create_vm(arg);
3967 case KVM_CHECK_EXTENSION:
3968 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3970 case KVM_GET_VCPU_MMAP_SIZE:
3973 r = PAGE_SIZE; /* struct kvm_run */
3975 r += PAGE_SIZE; /* pio data page */
3977 #ifdef CONFIG_KVM_MMIO
3978 r += PAGE_SIZE; /* coalesced mmio ring page */
3981 case KVM_TRACE_ENABLE:
3982 case KVM_TRACE_PAUSE:
3983 case KVM_TRACE_DISABLE:
3987 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3993 static struct file_operations kvm_chardev_ops = {
3994 .unlocked_ioctl = kvm_dev_ioctl,
3995 .llseek = noop_llseek,
3996 KVM_COMPAT(kvm_dev_ioctl),
3999 static struct miscdevice kvm_dev = {
4005 static void hardware_enable_nolock(void *junk)
4007 int cpu = raw_smp_processor_id();
4010 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4013 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4015 r = kvm_arch_hardware_enable();
4018 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4019 atomic_inc(&hardware_enable_failed);
4020 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4024 static int kvm_starting_cpu(unsigned int cpu)
4026 raw_spin_lock(&kvm_count_lock);
4027 if (kvm_usage_count)
4028 hardware_enable_nolock(NULL);
4029 raw_spin_unlock(&kvm_count_lock);
4033 static void hardware_disable_nolock(void *junk)
4035 int cpu = raw_smp_processor_id();
4037 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4039 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4040 kvm_arch_hardware_disable();
4043 static int kvm_dying_cpu(unsigned int cpu)
4045 raw_spin_lock(&kvm_count_lock);
4046 if (kvm_usage_count)
4047 hardware_disable_nolock(NULL);
4048 raw_spin_unlock(&kvm_count_lock);
4052 static void hardware_disable_all_nolock(void)
4054 BUG_ON(!kvm_usage_count);
4057 if (!kvm_usage_count)
4058 on_each_cpu(hardware_disable_nolock, NULL, 1);
4061 static void hardware_disable_all(void)
4063 raw_spin_lock(&kvm_count_lock);
4064 hardware_disable_all_nolock();
4065 raw_spin_unlock(&kvm_count_lock);
4068 static int hardware_enable_all(void)
4072 raw_spin_lock(&kvm_count_lock);
4075 if (kvm_usage_count == 1) {
4076 atomic_set(&hardware_enable_failed, 0);
4077 on_each_cpu(hardware_enable_nolock, NULL, 1);
4079 if (atomic_read(&hardware_enable_failed)) {
4080 hardware_disable_all_nolock();
4085 raw_spin_unlock(&kvm_count_lock);
4090 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4094 * Some (well, at least mine) BIOSes hang on reboot if
4097 * And Intel TXT required VMX off for all cpu when system shutdown.
4099 pr_info("kvm: exiting hardware virtualization\n");
4100 kvm_rebooting = true;
4101 on_each_cpu(hardware_disable_nolock, NULL, 1);
4105 static struct notifier_block kvm_reboot_notifier = {
4106 .notifier_call = kvm_reboot,
4110 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4114 for (i = 0; i < bus->dev_count; i++) {
4115 struct kvm_io_device *pos = bus->range[i].dev;
4117 kvm_iodevice_destructor(pos);
4122 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4123 const struct kvm_io_range *r2)
4125 gpa_t addr1 = r1->addr;
4126 gpa_t addr2 = r2->addr;
4131 /* If r2->len == 0, match the exact address. If r2->len != 0,
4132 * accept any overlapping write. Any order is acceptable for
4133 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4134 * we process all of them.
4147 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4149 return kvm_io_bus_cmp(p1, p2);
4152 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4153 gpa_t addr, int len)
4155 struct kvm_io_range *range, key;
4158 key = (struct kvm_io_range) {
4163 range = bsearch(&key, bus->range, bus->dev_count,
4164 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4168 off = range - bus->range;
4170 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4176 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4177 struct kvm_io_range *range, const void *val)
4181 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4185 while (idx < bus->dev_count &&
4186 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4187 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4196 /* kvm_io_bus_write - called under kvm->slots_lock */
4197 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4198 int len, const void *val)
4200 struct kvm_io_bus *bus;
4201 struct kvm_io_range range;
4204 range = (struct kvm_io_range) {
4209 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4212 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4213 return r < 0 ? r : 0;
4215 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4217 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4218 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4219 gpa_t addr, int len, const void *val, long cookie)
4221 struct kvm_io_bus *bus;
4222 struct kvm_io_range range;
4224 range = (struct kvm_io_range) {
4229 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4233 /* First try the device referenced by cookie. */
4234 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4235 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4236 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4241 * cookie contained garbage; fall back to search and return the
4242 * correct cookie value.
4244 return __kvm_io_bus_write(vcpu, bus, &range, val);
4247 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4248 struct kvm_io_range *range, void *val)
4252 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4256 while (idx < bus->dev_count &&
4257 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4258 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4267 /* kvm_io_bus_read - called under kvm->slots_lock */
4268 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4271 struct kvm_io_bus *bus;
4272 struct kvm_io_range range;
4275 range = (struct kvm_io_range) {
4280 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4283 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4284 return r < 0 ? r : 0;
4287 /* Caller must hold slots_lock. */
4288 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4289 int len, struct kvm_io_device *dev)
4292 struct kvm_io_bus *new_bus, *bus;
4293 struct kvm_io_range range;
4295 bus = kvm_get_bus(kvm, bus_idx);
4299 /* exclude ioeventfd which is limited by maximum fd */
4300 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4303 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4304 GFP_KERNEL_ACCOUNT);
4308 range = (struct kvm_io_range) {
4314 for (i = 0; i < bus->dev_count; i++)
4315 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4318 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4319 new_bus->dev_count++;
4320 new_bus->range[i] = range;
4321 memcpy(new_bus->range + i + 1, bus->range + i,
4322 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4323 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4324 synchronize_srcu_expedited(&kvm->srcu);
4330 /* Caller must hold slots_lock. */
4331 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4332 struct kvm_io_device *dev)
4335 struct kvm_io_bus *new_bus, *bus;
4337 bus = kvm_get_bus(kvm, bus_idx);
4341 for (i = 0; i < bus->dev_count; i++)
4342 if (bus->range[i].dev == dev) {
4346 if (i == bus->dev_count)
4349 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4350 GFP_KERNEL_ACCOUNT);
4352 pr_err("kvm: failed to shrink bus, removing it completely\n");
4356 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4357 new_bus->dev_count--;
4358 memcpy(new_bus->range + i, bus->range + i + 1,
4359 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4362 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4363 synchronize_srcu_expedited(&kvm->srcu);
4368 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4371 struct kvm_io_bus *bus;
4372 int dev_idx, srcu_idx;
4373 struct kvm_io_device *iodev = NULL;
4375 srcu_idx = srcu_read_lock(&kvm->srcu);
4377 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4381 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4385 iodev = bus->range[dev_idx].dev;
4388 srcu_read_unlock(&kvm->srcu, srcu_idx);
4392 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4394 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4395 int (*get)(void *, u64 *), int (*set)(void *, u64),
4398 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4401 /* The debugfs files are a reference to the kvm struct which
4402 * is still valid when kvm_destroy_vm is called.
4403 * To avoid the race between open and the removal of the debugfs
4404 * directory we test against the users count.
4406 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4409 if (simple_attr_open(inode, file, get,
4410 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4413 kvm_put_kvm(stat_data->kvm);
4420 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4422 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4425 simple_attr_release(inode, file);
4426 kvm_put_kvm(stat_data->kvm);
4431 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4433 *val = *(ulong *)((void *)kvm + offset);
4438 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4440 *(ulong *)((void *)kvm + offset) = 0;
4445 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4448 struct kvm_vcpu *vcpu;
4452 kvm_for_each_vcpu(i, vcpu, kvm)
4453 *val += *(u64 *)((void *)vcpu + offset);
4458 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4461 struct kvm_vcpu *vcpu;
4463 kvm_for_each_vcpu(i, vcpu, kvm)
4464 *(u64 *)((void *)vcpu + offset) = 0;
4469 static int kvm_stat_data_get(void *data, u64 *val)
4472 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4474 switch (stat_data->dbgfs_item->kind) {
4476 r = kvm_get_stat_per_vm(stat_data->kvm,
4477 stat_data->dbgfs_item->offset, val);
4480 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4481 stat_data->dbgfs_item->offset, val);
4488 static int kvm_stat_data_clear(void *data, u64 val)
4491 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4496 switch (stat_data->dbgfs_item->kind) {
4498 r = kvm_clear_stat_per_vm(stat_data->kvm,
4499 stat_data->dbgfs_item->offset);
4502 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4503 stat_data->dbgfs_item->offset);
4510 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4512 __simple_attr_check_format("%llu\n", 0ull);
4513 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4514 kvm_stat_data_clear, "%llu\n");
4517 static const struct file_operations stat_fops_per_vm = {
4518 .owner = THIS_MODULE,
4519 .open = kvm_stat_data_open,
4520 .release = kvm_debugfs_release,
4521 .read = simple_attr_read,
4522 .write = simple_attr_write,
4523 .llseek = no_llseek,
4526 static int vm_stat_get(void *_offset, u64 *val)
4528 unsigned offset = (long)_offset;
4533 mutex_lock(&kvm_lock);
4534 list_for_each_entry(kvm, &vm_list, vm_list) {
4535 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4538 mutex_unlock(&kvm_lock);
4542 static int vm_stat_clear(void *_offset, u64 val)
4544 unsigned offset = (long)_offset;
4550 mutex_lock(&kvm_lock);
4551 list_for_each_entry(kvm, &vm_list, vm_list) {
4552 kvm_clear_stat_per_vm(kvm, offset);
4554 mutex_unlock(&kvm_lock);
4559 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4561 static int vcpu_stat_get(void *_offset, u64 *val)
4563 unsigned offset = (long)_offset;
4568 mutex_lock(&kvm_lock);
4569 list_for_each_entry(kvm, &vm_list, vm_list) {
4570 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4573 mutex_unlock(&kvm_lock);
4577 static int vcpu_stat_clear(void *_offset, u64 val)
4579 unsigned offset = (long)_offset;
4585 mutex_lock(&kvm_lock);
4586 list_for_each_entry(kvm, &vm_list, vm_list) {
4587 kvm_clear_stat_per_vcpu(kvm, offset);
4589 mutex_unlock(&kvm_lock);
4594 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4597 static const struct file_operations *stat_fops[] = {
4598 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4599 [KVM_STAT_VM] = &vm_stat_fops,
4602 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4604 struct kobj_uevent_env *env;
4605 unsigned long long created, active;
4607 if (!kvm_dev.this_device || !kvm)
4610 mutex_lock(&kvm_lock);
4611 if (type == KVM_EVENT_CREATE_VM) {
4612 kvm_createvm_count++;
4614 } else if (type == KVM_EVENT_DESTROY_VM) {
4617 created = kvm_createvm_count;
4618 active = kvm_active_vms;
4619 mutex_unlock(&kvm_lock);
4621 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4625 add_uevent_var(env, "CREATED=%llu", created);
4626 add_uevent_var(env, "COUNT=%llu", active);
4628 if (type == KVM_EVENT_CREATE_VM) {
4629 add_uevent_var(env, "EVENT=create");
4630 kvm->userspace_pid = task_pid_nr(current);
4631 } else if (type == KVM_EVENT_DESTROY_VM) {
4632 add_uevent_var(env, "EVENT=destroy");
4634 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4636 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4637 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4640 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4642 add_uevent_var(env, "STATS_PATH=%s", tmp);
4646 /* no need for checks, since we are adding at most only 5 keys */
4647 env->envp[env->envp_idx++] = NULL;
4648 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4652 static void kvm_init_debug(void)
4654 struct kvm_stats_debugfs_item *p;
4656 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4658 kvm_debugfs_num_entries = 0;
4659 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4660 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4661 kvm_debugfs_dir, (void *)(long)p->offset,
4662 stat_fops[p->kind]);
4666 static int kvm_suspend(void)
4668 if (kvm_usage_count)
4669 hardware_disable_nolock(NULL);
4673 static void kvm_resume(void)
4675 if (kvm_usage_count) {
4676 #ifdef CONFIG_LOCKDEP
4677 WARN_ON(lockdep_is_held(&kvm_count_lock));
4679 hardware_enable_nolock(NULL);
4683 static struct syscore_ops kvm_syscore_ops = {
4684 .suspend = kvm_suspend,
4685 .resume = kvm_resume,
4689 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4691 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4694 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4696 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4698 WRITE_ONCE(vcpu->preempted, false);
4699 WRITE_ONCE(vcpu->ready, false);
4701 __this_cpu_write(kvm_running_vcpu, vcpu);
4702 kvm_arch_sched_in(vcpu, cpu);
4703 kvm_arch_vcpu_load(vcpu, cpu);
4706 static void kvm_sched_out(struct preempt_notifier *pn,
4707 struct task_struct *next)
4709 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4711 if (current->state == TASK_RUNNING) {
4712 WRITE_ONCE(vcpu->preempted, true);
4713 WRITE_ONCE(vcpu->ready, true);
4715 kvm_arch_vcpu_put(vcpu);
4716 __this_cpu_write(kvm_running_vcpu, NULL);
4720 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4722 * We can disable preemption locally around accessing the per-CPU variable,
4723 * and use the resolved vcpu pointer after enabling preemption again,
4724 * because even if the current thread is migrated to another CPU, reading
4725 * the per-CPU value later will give us the same value as we update the
4726 * per-CPU variable in the preempt notifier handlers.
4728 struct kvm_vcpu *kvm_get_running_vcpu(void)
4730 struct kvm_vcpu *vcpu;
4733 vcpu = __this_cpu_read(kvm_running_vcpu);
4738 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4741 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4743 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4745 return &kvm_running_vcpu;
4748 struct kvm_cpu_compat_check {
4753 static void check_processor_compat(void *data)
4755 struct kvm_cpu_compat_check *c = data;
4757 *c->ret = kvm_arch_check_processor_compat(c->opaque);
4760 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4761 struct module *module)
4763 struct kvm_cpu_compat_check c;
4767 r = kvm_arch_init(opaque);
4772 * kvm_arch_init makes sure there's at most one caller
4773 * for architectures that support multiple implementations,
4774 * like intel and amd on x86.
4775 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4776 * conflicts in case kvm is already setup for another implementation.
4778 r = kvm_irqfd_init();
4782 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4787 r = kvm_arch_hardware_setup(opaque);
4793 for_each_online_cpu(cpu) {
4794 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4799 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4800 kvm_starting_cpu, kvm_dying_cpu);
4803 register_reboot_notifier(&kvm_reboot_notifier);
4805 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4807 vcpu_align = __alignof__(struct kvm_vcpu);
4809 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4811 offsetof(struct kvm_vcpu, arch),
4812 sizeof_field(struct kvm_vcpu, arch),
4814 if (!kvm_vcpu_cache) {
4819 r = kvm_async_pf_init();
4823 kvm_chardev_ops.owner = module;
4824 kvm_vm_fops.owner = module;
4825 kvm_vcpu_fops.owner = module;
4827 r = misc_register(&kvm_dev);
4829 pr_err("kvm: misc device register failed\n");
4833 register_syscore_ops(&kvm_syscore_ops);
4835 kvm_preempt_ops.sched_in = kvm_sched_in;
4836 kvm_preempt_ops.sched_out = kvm_sched_out;
4840 r = kvm_vfio_ops_init();
4846 kvm_async_pf_deinit();
4848 kmem_cache_destroy(kvm_vcpu_cache);
4850 unregister_reboot_notifier(&kvm_reboot_notifier);
4851 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4853 kvm_arch_hardware_unsetup();
4855 free_cpumask_var(cpus_hardware_enabled);
4863 EXPORT_SYMBOL_GPL(kvm_init);
4867 debugfs_remove_recursive(kvm_debugfs_dir);
4868 misc_deregister(&kvm_dev);
4869 kmem_cache_destroy(kvm_vcpu_cache);
4870 kvm_async_pf_deinit();
4871 unregister_syscore_ops(&kvm_syscore_ops);
4872 unregister_reboot_notifier(&kvm_reboot_notifier);
4873 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4874 on_each_cpu(hardware_disable_nolock, NULL, 1);
4875 kvm_arch_hardware_unsetup();
4878 free_cpumask_var(cpus_hardware_enabled);
4879 kvm_vfio_ops_exit();
4881 EXPORT_SYMBOL_GPL(kvm_exit);
4883 struct kvm_vm_worker_thread_context {
4885 struct task_struct *parent;
4886 struct completion init_done;
4887 kvm_vm_thread_fn_t thread_fn;
4892 static int kvm_vm_worker_thread(void *context)
4895 * The init_context is allocated on the stack of the parent thread, so
4896 * we have to locally copy anything that is needed beyond initialization
4898 struct kvm_vm_worker_thread_context *init_context = context;
4899 struct kvm *kvm = init_context->kvm;
4900 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4901 uintptr_t data = init_context->data;
4904 err = kthread_park(current);
4905 /* kthread_park(current) is never supposed to return an error */
4910 err = cgroup_attach_task_all(init_context->parent, current);
4912 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4917 set_user_nice(current, task_nice(init_context->parent));
4920 init_context->err = err;
4921 complete(&init_context->init_done);
4922 init_context = NULL;
4927 /* Wait to be woken up by the spawner before proceeding. */
4930 if (!kthread_should_stop())
4931 err = thread_fn(kvm, data);
4936 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4937 uintptr_t data, const char *name,
4938 struct task_struct **thread_ptr)
4940 struct kvm_vm_worker_thread_context init_context = {};
4941 struct task_struct *thread;
4944 init_context.kvm = kvm;
4945 init_context.parent = current;
4946 init_context.thread_fn = thread_fn;
4947 init_context.data = data;
4948 init_completion(&init_context.init_done);
4950 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4951 "%s-%d", name, task_pid_nr(current));
4953 return PTR_ERR(thread);
4955 /* kthread_run is never supposed to return NULL */
4956 WARN_ON(thread == NULL);
4958 wait_for_completion(&init_context.init_done);
4960 if (!init_context.err)
4961 *thread_ptr = thread;
4963 return init_context.err;