1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <kvm/iodev.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
60 #include "coalesced_mmio.h"
65 #include <trace/events/ipi.h>
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
70 #include <linux/kvm_dirty_ring.h>
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
105 DEFINE_MUTEX(kvm_lock);
108 static struct kmem_cache *kvm_vcpu_cache;
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116 static const struct file_operations stat_fops_per_vm;
118 static struct file_operations kvm_chardev_ops;
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
125 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
139 return is_compat_task() ? -ENODEV : 0;
141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
161 bool kvm_is_zone_device_page(struct page *page)
164 * The metadata used by is_zone_device_page() to determine whether or
165 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166 * the device has been pinned, e.g. by get_user_pages(). WARN if the
167 * page_count() is zero to help detect bad usage of this helper.
169 if (WARN_ON_ONCE(!page_count(page)))
172 return is_zone_device_page(page);
176 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
178 * is likely incomplete, it has been compiled purely through people wanting to
179 * back guest with a certain type of memory and encountering issues.
181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
188 page = pfn_to_page(pfn);
189 if (!PageReserved(page))
192 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193 if (is_zero_pfn(pfn))
197 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198 * perspective they are "normal" pages, albeit with slightly different
201 if (kvm_is_zone_device_page(page))
208 * Switches to specified vcpu, until a matching vcpu_put()
210 void vcpu_load(struct kvm_vcpu *vcpu)
214 __this_cpu_write(kvm_running_vcpu, vcpu);
215 preempt_notifier_register(&vcpu->preempt_notifier);
216 kvm_arch_vcpu_load(vcpu, cpu);
219 EXPORT_SYMBOL_GPL(vcpu_load);
221 void vcpu_put(struct kvm_vcpu *vcpu)
224 kvm_arch_vcpu_put(vcpu);
225 preempt_notifier_unregister(&vcpu->preempt_notifier);
226 __this_cpu_write(kvm_running_vcpu, NULL);
229 EXPORT_SYMBOL_GPL(vcpu_put);
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
234 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
237 * We need to wait for the VCPU to reenable interrupts and get out of
238 * READING_SHADOW_PAGE_TABLES mode.
240 if (req & KVM_REQUEST_WAIT)
241 return mode != OUTSIDE_GUEST_MODE;
244 * Need to kick a running VCPU, but otherwise there is nothing to do.
246 return mode == IN_GUEST_MODE;
249 static void ack_kick(void *_completed)
253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
255 if (cpumask_empty(cpus))
258 smp_call_function_many(cpus, ack_kick, NULL, wait);
262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263 struct cpumask *tmp, int current_cpu)
267 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268 __kvm_make_request(req, vcpu);
270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
274 * Note, the vCPU could get migrated to a different pCPU at any point
275 * after kvm_request_needs_ipi(), which could result in sending an IPI
276 * to the previous pCPU. But, that's OK because the purpose of the IPI
277 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279 * after this point is also OK, as the requirement is only that KVM wait
280 * for vCPUs that were reading SPTEs _before_ any changes were
281 * finalized. See kvm_vcpu_kick() for more details on handling requests.
283 if (kvm_request_needs_ipi(vcpu, req)) {
284 cpu = READ_ONCE(vcpu->cpu);
285 if (cpu != -1 && cpu != current_cpu)
286 __cpumask_set_cpu(cpu, tmp);
290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291 unsigned long *vcpu_bitmap)
293 struct kvm_vcpu *vcpu;
294 struct cpumask *cpus;
300 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
303 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304 vcpu = kvm_get_vcpu(kvm, i);
307 kvm_make_vcpu_request(vcpu, req, cpus, me);
310 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317 struct kvm_vcpu *except)
319 struct kvm_vcpu *vcpu;
320 struct cpumask *cpus;
327 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
330 kvm_for_each_vcpu(i, vcpu, kvm) {
333 kvm_make_vcpu_request(vcpu, req, cpus, me);
336 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
344 return kvm_make_all_cpus_request_except(kvm, req, NULL);
346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
348 void kvm_flush_remote_tlbs(struct kvm *kvm)
350 ++kvm->stat.generic.remote_tlb_flush_requests;
353 * We want to publish modifications to the page tables before reading
354 * mode. Pairs with a memory barrier in arch-specific code.
355 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
356 * and smp_mb in walk_shadow_page_lockless_begin/end.
357 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
359 * There is already an smp_mb__after_atomic() before
360 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
363 if (!kvm_arch_flush_remote_tlbs(kvm)
364 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
365 ++kvm->stat.generic.remote_tlb_flush;
367 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
369 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
371 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
375 * Fall back to a flushing entire TLBs if the architecture range-based
376 * TLB invalidation is unsupported or can't be performed for whatever
379 kvm_flush_remote_tlbs(kvm);
382 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
383 const struct kvm_memory_slot *memslot)
386 * All current use cases for flushing the TLBs for a specific memslot
387 * are related to dirty logging, and many do the TLB flush out of
388 * mmu_lock. The interaction between the various operations on memslot
389 * must be serialized by slots_locks to ensure the TLB flush from one
390 * operation is observed by any other operation on the same memslot.
392 lockdep_assert_held(&kvm->slots_lock);
393 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
396 static void kvm_flush_shadow_all(struct kvm *kvm)
398 kvm_arch_flush_shadow_all(kvm);
399 kvm_arch_guest_memory_reclaimed(kvm);
402 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
403 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
406 gfp_flags |= mc->gfp_zero;
409 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
411 return (void *)__get_free_page(gfp_flags);
414 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
416 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
419 if (mc->nobjs >= min)
422 if (unlikely(!mc->objects)) {
423 if (WARN_ON_ONCE(!capacity))
426 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
430 mc->capacity = capacity;
433 /* It is illegal to request a different capacity across topups. */
434 if (WARN_ON_ONCE(mc->capacity != capacity))
437 while (mc->nobjs < mc->capacity) {
438 obj = mmu_memory_cache_alloc_obj(mc, gfp);
440 return mc->nobjs >= min ? 0 : -ENOMEM;
441 mc->objects[mc->nobjs++] = obj;
446 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
448 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
451 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
456 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
460 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
462 free_page((unsigned long)mc->objects[--mc->nobjs]);
471 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
475 if (WARN_ON(!mc->nobjs))
476 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
478 p = mc->objects[--mc->nobjs];
484 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
486 mutex_init(&vcpu->mutex);
491 #ifndef __KVM_HAVE_ARCH_WQP
492 rcuwait_init(&vcpu->wait);
494 kvm_async_pf_vcpu_init(vcpu);
496 kvm_vcpu_set_in_spin_loop(vcpu, false);
497 kvm_vcpu_set_dy_eligible(vcpu, false);
498 vcpu->preempted = false;
500 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
501 vcpu->last_used_slot = NULL;
503 /* Fill the stats id string for the vcpu */
504 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
505 task_pid_nr(current), id);
508 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
510 kvm_arch_vcpu_destroy(vcpu);
511 kvm_dirty_ring_free(&vcpu->dirty_ring);
514 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
515 * the vcpu->pid pointer, and at destruction time all file descriptors
518 put_pid(rcu_dereference_protected(vcpu->pid, 1));
520 free_page((unsigned long)vcpu->run);
521 kmem_cache_free(kvm_vcpu_cache, vcpu);
524 void kvm_destroy_vcpus(struct kvm *kvm)
527 struct kvm_vcpu *vcpu;
529 kvm_for_each_vcpu(i, vcpu, kvm) {
530 kvm_vcpu_destroy(vcpu);
531 xa_erase(&kvm->vcpu_array, i);
534 atomic_set(&kvm->online_vcpus, 0);
536 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
538 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
539 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
541 return container_of(mn, struct kvm, mmu_notifier);
544 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
546 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
549 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
551 struct kvm_hva_range {
554 union kvm_mmu_notifier_arg arg;
555 hva_handler_t handler;
556 on_lock_fn_t on_lock;
557 on_unlock_fn_t on_unlock;
563 * Use a dedicated stub instead of NULL to indicate that there is no callback
564 * function/handler. The compiler technically can't guarantee that a real
565 * function will have a non-zero address, and so it will generate code to
566 * check for !NULL, whereas comparing against a stub will be elided at compile
567 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
569 static void kvm_null_fn(void)
573 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
575 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
577 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
578 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
579 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
581 node = interval_tree_iter_next(node, start, last)) \
583 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
584 const struct kvm_hva_range *range)
586 bool ret = false, locked = false;
587 struct kvm_gfn_range gfn_range;
588 struct kvm_memory_slot *slot;
589 struct kvm_memslots *slots;
592 if (WARN_ON_ONCE(range->end <= range->start))
595 /* A null handler is allowed if and only if on_lock() is provided. */
596 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
597 IS_KVM_NULL_FN(range->handler)))
600 idx = srcu_read_lock(&kvm->srcu);
602 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
603 struct interval_tree_node *node;
605 slots = __kvm_memslots(kvm, i);
606 kvm_for_each_memslot_in_hva_range(node, slots,
607 range->start, range->end - 1) {
608 unsigned long hva_start, hva_end;
610 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
611 hva_start = max(range->start, slot->userspace_addr);
612 hva_end = min(range->end, slot->userspace_addr +
613 (slot->npages << PAGE_SHIFT));
616 * To optimize for the likely case where the address
617 * range is covered by zero or one memslots, don't
618 * bother making these conditional (to avoid writes on
619 * the second or later invocation of the handler).
621 gfn_range.arg = range->arg;
622 gfn_range.may_block = range->may_block;
625 * {gfn(page) | page intersects with [hva_start, hva_end)} =
626 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
628 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
629 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
630 gfn_range.slot = slot;
635 if (!IS_KVM_NULL_FN(range->on_lock))
636 range->on_lock(kvm, range->start, range->end);
637 if (IS_KVM_NULL_FN(range->handler))
640 ret |= range->handler(kvm, &gfn_range);
644 if (range->flush_on_ret && ret)
645 kvm_flush_remote_tlbs(kvm);
649 if (!IS_KVM_NULL_FN(range->on_unlock))
650 range->on_unlock(kvm);
653 srcu_read_unlock(&kvm->srcu, idx);
655 /* The notifiers are averse to booleans. :-( */
659 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
662 union kvm_mmu_notifier_arg arg,
663 hva_handler_t handler)
665 struct kvm *kvm = mmu_notifier_to_kvm(mn);
666 const struct kvm_hva_range range = {
671 .on_lock = (void *)kvm_null_fn,
672 .on_unlock = (void *)kvm_null_fn,
673 .flush_on_ret = true,
677 return __kvm_handle_hva_range(kvm, &range);
680 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
683 hva_handler_t handler)
685 struct kvm *kvm = mmu_notifier_to_kvm(mn);
686 const struct kvm_hva_range range = {
690 .on_lock = (void *)kvm_null_fn,
691 .on_unlock = (void *)kvm_null_fn,
692 .flush_on_ret = false,
696 return __kvm_handle_hva_range(kvm, &range);
699 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
702 * Skipping invalid memslots is correct if and only change_pte() is
703 * surrounded by invalidate_range_{start,end}(), which is currently
704 * guaranteed by the primary MMU. If that ever changes, KVM needs to
705 * unmap the memslot instead of skipping the memslot to ensure that KVM
706 * doesn't hold references to the old PFN.
708 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
710 if (range->slot->flags & KVM_MEMSLOT_INVALID)
713 return kvm_set_spte_gfn(kvm, range);
716 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
717 struct mm_struct *mm,
718 unsigned long address,
721 struct kvm *kvm = mmu_notifier_to_kvm(mn);
722 const union kvm_mmu_notifier_arg arg = { .pte = pte };
724 trace_kvm_set_spte_hva(address);
727 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
728 * If mmu_invalidate_in_progress is zero, then no in-progress
729 * invalidations, including this one, found a relevant memslot at
730 * start(); rechecking memslots here is unnecessary. Note, a false
731 * positive (count elevated by a different invalidation) is sub-optimal
732 * but functionally ok.
734 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
735 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
738 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
741 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
745 * The count increase must become visible at unlock time as no
746 * spte can be established without taking the mmu_lock and
747 * count is also read inside the mmu_lock critical section.
749 kvm->mmu_invalidate_in_progress++;
750 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
751 kvm->mmu_invalidate_range_start = start;
752 kvm->mmu_invalidate_range_end = end;
755 * Fully tracking multiple concurrent ranges has diminishing
756 * returns. Keep things simple and just find the minimal range
757 * which includes the current and new ranges. As there won't be
758 * enough information to subtract a range after its invalidate
759 * completes, any ranges invalidated concurrently will
760 * accumulate and persist until all outstanding invalidates
763 kvm->mmu_invalidate_range_start =
764 min(kvm->mmu_invalidate_range_start, start);
765 kvm->mmu_invalidate_range_end =
766 max(kvm->mmu_invalidate_range_end, end);
770 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
771 const struct mmu_notifier_range *range)
773 struct kvm *kvm = mmu_notifier_to_kvm(mn);
774 const struct kvm_hva_range hva_range = {
775 .start = range->start,
777 .handler = kvm_unmap_gfn_range,
778 .on_lock = kvm_mmu_invalidate_begin,
779 .on_unlock = kvm_arch_guest_memory_reclaimed,
780 .flush_on_ret = true,
781 .may_block = mmu_notifier_range_blockable(range),
784 trace_kvm_unmap_hva_range(range->start, range->end);
787 * Prevent memslot modification between range_start() and range_end()
788 * so that conditionally locking provides the same result in both
789 * functions. Without that guarantee, the mmu_invalidate_in_progress
790 * adjustments will be imbalanced.
792 * Pairs with the decrement in range_end().
794 spin_lock(&kvm->mn_invalidate_lock);
795 kvm->mn_active_invalidate_count++;
796 spin_unlock(&kvm->mn_invalidate_lock);
799 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
800 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
801 * each cache's lock. There are relatively few caches in existence at
802 * any given time, and the caches themselves can check for hva overlap,
803 * i.e. don't need to rely on memslot overlap checks for performance.
804 * Because this runs without holding mmu_lock, the pfn caches must use
805 * mn_active_invalidate_count (see above) instead of
806 * mmu_invalidate_in_progress.
808 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
809 hva_range.may_block);
811 __kvm_handle_hva_range(kvm, &hva_range);
816 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
820 * This sequence increase will notify the kvm page fault that
821 * the page that is going to be mapped in the spte could have
824 kvm->mmu_invalidate_seq++;
827 * The above sequence increase must be visible before the
828 * below count decrease, which is ensured by the smp_wmb above
829 * in conjunction with the smp_rmb in mmu_invalidate_retry().
831 kvm->mmu_invalidate_in_progress--;
834 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
835 const struct mmu_notifier_range *range)
837 struct kvm *kvm = mmu_notifier_to_kvm(mn);
838 const struct kvm_hva_range hva_range = {
839 .start = range->start,
841 .handler = (void *)kvm_null_fn,
842 .on_lock = kvm_mmu_invalidate_end,
843 .on_unlock = (void *)kvm_null_fn,
844 .flush_on_ret = false,
845 .may_block = mmu_notifier_range_blockable(range),
849 __kvm_handle_hva_range(kvm, &hva_range);
851 /* Pairs with the increment in range_start(). */
852 spin_lock(&kvm->mn_invalidate_lock);
853 wake = (--kvm->mn_active_invalidate_count == 0);
854 spin_unlock(&kvm->mn_invalidate_lock);
857 * There can only be one waiter, since the wait happens under
861 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
863 BUG_ON(kvm->mmu_invalidate_in_progress < 0);
866 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
867 struct mm_struct *mm,
871 trace_kvm_age_hva(start, end);
873 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
877 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
878 struct mm_struct *mm,
882 trace_kvm_age_hva(start, end);
885 * Even though we do not flush TLB, this will still adversely
886 * affect performance on pre-Haswell Intel EPT, where there is
887 * no EPT Access Bit to clear so that we have to tear down EPT
888 * tables instead. If we find this unacceptable, we can always
889 * add a parameter to kvm_age_hva so that it effectively doesn't
890 * do anything on clear_young.
892 * Also note that currently we never issue secondary TLB flushes
893 * from clear_young, leaving this job up to the regular system
894 * cadence. If we find this inaccurate, we might come up with a
895 * more sophisticated heuristic later.
897 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
900 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
901 struct mm_struct *mm,
902 unsigned long address)
904 trace_kvm_test_age_hva(address);
906 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
910 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
911 struct mm_struct *mm)
913 struct kvm *kvm = mmu_notifier_to_kvm(mn);
916 idx = srcu_read_lock(&kvm->srcu);
917 kvm_flush_shadow_all(kvm);
918 srcu_read_unlock(&kvm->srcu, idx);
921 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
922 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
923 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
924 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
925 .clear_young = kvm_mmu_notifier_clear_young,
926 .test_young = kvm_mmu_notifier_test_young,
927 .change_pte = kvm_mmu_notifier_change_pte,
928 .release = kvm_mmu_notifier_release,
931 static int kvm_init_mmu_notifier(struct kvm *kvm)
933 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
934 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
937 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
939 static int kvm_init_mmu_notifier(struct kvm *kvm)
944 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
946 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
947 static int kvm_pm_notifier_call(struct notifier_block *bl,
951 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
953 return kvm_arch_pm_notifier(kvm, state);
956 static void kvm_init_pm_notifier(struct kvm *kvm)
958 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
959 /* Suspend KVM before we suspend ftrace, RCU, etc. */
960 kvm->pm_notifier.priority = INT_MAX;
961 register_pm_notifier(&kvm->pm_notifier);
964 static void kvm_destroy_pm_notifier(struct kvm *kvm)
966 unregister_pm_notifier(&kvm->pm_notifier);
968 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
969 static void kvm_init_pm_notifier(struct kvm *kvm)
973 static void kvm_destroy_pm_notifier(struct kvm *kvm)
976 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
978 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
980 if (!memslot->dirty_bitmap)
983 kvfree(memslot->dirty_bitmap);
984 memslot->dirty_bitmap = NULL;
987 /* This does not remove the slot from struct kvm_memslots data structures */
988 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
990 kvm_destroy_dirty_bitmap(slot);
992 kvm_arch_free_memslot(kvm, slot);
997 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
999 struct hlist_node *idnode;
1000 struct kvm_memory_slot *memslot;
1004 * The same memslot objects live in both active and inactive sets,
1005 * arbitrarily free using index '1' so the second invocation of this
1006 * function isn't operating over a structure with dangling pointers
1007 * (even though this function isn't actually touching them).
1009 if (!slots->node_idx)
1012 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1013 kvm_free_memslot(kvm, memslot);
1016 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1018 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1019 case KVM_STATS_TYPE_INSTANT:
1021 case KVM_STATS_TYPE_CUMULATIVE:
1022 case KVM_STATS_TYPE_PEAK:
1029 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1032 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1033 kvm_vcpu_stats_header.num_desc;
1035 if (IS_ERR(kvm->debugfs_dentry))
1038 debugfs_remove_recursive(kvm->debugfs_dentry);
1040 if (kvm->debugfs_stat_data) {
1041 for (i = 0; i < kvm_debugfs_num_entries; i++)
1042 kfree(kvm->debugfs_stat_data[i]);
1043 kfree(kvm->debugfs_stat_data);
1047 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1049 static DEFINE_MUTEX(kvm_debugfs_lock);
1050 struct dentry *dent;
1051 char dir_name[ITOA_MAX_LEN * 2];
1052 struct kvm_stat_data *stat_data;
1053 const struct _kvm_stats_desc *pdesc;
1054 int i, ret = -ENOMEM;
1055 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1056 kvm_vcpu_stats_header.num_desc;
1058 if (!debugfs_initialized())
1061 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1062 mutex_lock(&kvm_debugfs_lock);
1063 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1065 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1067 mutex_unlock(&kvm_debugfs_lock);
1070 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1071 mutex_unlock(&kvm_debugfs_lock);
1075 kvm->debugfs_dentry = dent;
1076 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1077 sizeof(*kvm->debugfs_stat_data),
1078 GFP_KERNEL_ACCOUNT);
1079 if (!kvm->debugfs_stat_data)
1082 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1083 pdesc = &kvm_vm_stats_desc[i];
1084 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1088 stat_data->kvm = kvm;
1089 stat_data->desc = pdesc;
1090 stat_data->kind = KVM_STAT_VM;
1091 kvm->debugfs_stat_data[i] = stat_data;
1092 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1093 kvm->debugfs_dentry, stat_data,
1097 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1098 pdesc = &kvm_vcpu_stats_desc[i];
1099 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1103 stat_data->kvm = kvm;
1104 stat_data->desc = pdesc;
1105 stat_data->kind = KVM_STAT_VCPU;
1106 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1107 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1108 kvm->debugfs_dentry, stat_data,
1112 ret = kvm_arch_create_vm_debugfs(kvm);
1118 kvm_destroy_vm_debugfs(kvm);
1123 * Called after the VM is otherwise initialized, but just before adding it to
1126 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1132 * Called just after removing the VM from the vm_list, but before doing any
1133 * other destruction.
1135 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1140 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1141 * be setup already, so we can create arch-specific debugfs entries under it.
1142 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1143 * a per-arch destroy interface is not needed.
1145 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1150 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1152 struct kvm *kvm = kvm_arch_alloc_vm();
1153 struct kvm_memslots *slots;
1158 return ERR_PTR(-ENOMEM);
1160 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1161 __module_get(kvm_chardev_ops.owner);
1163 KVM_MMU_LOCK_INIT(kvm);
1164 mmgrab(current->mm);
1165 kvm->mm = current->mm;
1166 kvm_eventfd_init(kvm);
1167 mutex_init(&kvm->lock);
1168 mutex_init(&kvm->irq_lock);
1169 mutex_init(&kvm->slots_lock);
1170 mutex_init(&kvm->slots_arch_lock);
1171 spin_lock_init(&kvm->mn_invalidate_lock);
1172 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1173 xa_init(&kvm->vcpu_array);
1175 INIT_LIST_HEAD(&kvm->gpc_list);
1176 spin_lock_init(&kvm->gpc_lock);
1178 INIT_LIST_HEAD(&kvm->devices);
1179 kvm->max_vcpus = KVM_MAX_VCPUS;
1181 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1184 * Force subsequent debugfs file creations to fail if the VM directory
1185 * is not created (by kvm_create_vm_debugfs()).
1187 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1189 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1190 task_pid_nr(current));
1192 if (init_srcu_struct(&kvm->srcu))
1193 goto out_err_no_srcu;
1194 if (init_srcu_struct(&kvm->irq_srcu))
1195 goto out_err_no_irq_srcu;
1197 refcount_set(&kvm->users_count, 1);
1198 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1199 for (j = 0; j < 2; j++) {
1200 slots = &kvm->__memslots[i][j];
1202 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1203 slots->hva_tree = RB_ROOT_CACHED;
1204 slots->gfn_tree = RB_ROOT;
1205 hash_init(slots->id_hash);
1206 slots->node_idx = j;
1208 /* Generations must be different for each address space. */
1209 slots->generation = i;
1212 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1215 for (i = 0; i < KVM_NR_BUSES; i++) {
1216 rcu_assign_pointer(kvm->buses[i],
1217 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1219 goto out_err_no_arch_destroy_vm;
1222 r = kvm_arch_init_vm(kvm, type);
1224 goto out_err_no_arch_destroy_vm;
1226 r = hardware_enable_all();
1228 goto out_err_no_disable;
1230 #ifdef CONFIG_HAVE_KVM_IRQFD
1231 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1234 r = kvm_init_mmu_notifier(kvm);
1236 goto out_err_no_mmu_notifier;
1238 r = kvm_coalesced_mmio_init(kvm);
1240 goto out_no_coalesced_mmio;
1242 r = kvm_create_vm_debugfs(kvm, fdname);
1244 goto out_err_no_debugfs;
1246 r = kvm_arch_post_init_vm(kvm);
1250 mutex_lock(&kvm_lock);
1251 list_add(&kvm->vm_list, &vm_list);
1252 mutex_unlock(&kvm_lock);
1254 preempt_notifier_inc();
1255 kvm_init_pm_notifier(kvm);
1260 kvm_destroy_vm_debugfs(kvm);
1262 kvm_coalesced_mmio_free(kvm);
1263 out_no_coalesced_mmio:
1264 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1265 if (kvm->mmu_notifier.ops)
1266 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1268 out_err_no_mmu_notifier:
1269 hardware_disable_all();
1271 kvm_arch_destroy_vm(kvm);
1272 out_err_no_arch_destroy_vm:
1273 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1274 for (i = 0; i < KVM_NR_BUSES; i++)
1275 kfree(kvm_get_bus(kvm, i));
1276 cleanup_srcu_struct(&kvm->irq_srcu);
1277 out_err_no_irq_srcu:
1278 cleanup_srcu_struct(&kvm->srcu);
1280 kvm_arch_free_vm(kvm);
1281 mmdrop(current->mm);
1282 module_put(kvm_chardev_ops.owner);
1286 static void kvm_destroy_devices(struct kvm *kvm)
1288 struct kvm_device *dev, *tmp;
1291 * We do not need to take the kvm->lock here, because nobody else
1292 * has a reference to the struct kvm at this point and therefore
1293 * cannot access the devices list anyhow.
1295 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1296 list_del(&dev->vm_node);
1297 dev->ops->destroy(dev);
1301 static void kvm_destroy_vm(struct kvm *kvm)
1304 struct mm_struct *mm = kvm->mm;
1306 kvm_destroy_pm_notifier(kvm);
1307 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1308 kvm_destroy_vm_debugfs(kvm);
1309 kvm_arch_sync_events(kvm);
1310 mutex_lock(&kvm_lock);
1311 list_del(&kvm->vm_list);
1312 mutex_unlock(&kvm_lock);
1313 kvm_arch_pre_destroy_vm(kvm);
1315 kvm_free_irq_routing(kvm);
1316 for (i = 0; i < KVM_NR_BUSES; i++) {
1317 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1320 kvm_io_bus_destroy(bus);
1321 kvm->buses[i] = NULL;
1323 kvm_coalesced_mmio_free(kvm);
1324 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1325 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1327 * At this point, pending calls to invalidate_range_start()
1328 * have completed but no more MMU notifiers will run, so
1329 * mn_active_invalidate_count may remain unbalanced.
1330 * No threads can be waiting in kvm_swap_active_memslots() as the
1331 * last reference on KVM has been dropped, but freeing
1332 * memslots would deadlock without this manual intervention.
1334 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1335 kvm->mn_active_invalidate_count = 0;
1337 kvm_flush_shadow_all(kvm);
1339 kvm_arch_destroy_vm(kvm);
1340 kvm_destroy_devices(kvm);
1341 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1342 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1343 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1345 cleanup_srcu_struct(&kvm->irq_srcu);
1346 cleanup_srcu_struct(&kvm->srcu);
1347 kvm_arch_free_vm(kvm);
1348 preempt_notifier_dec();
1349 hardware_disable_all();
1351 module_put(kvm_chardev_ops.owner);
1354 void kvm_get_kvm(struct kvm *kvm)
1356 refcount_inc(&kvm->users_count);
1358 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1361 * Make sure the vm is not during destruction, which is a safe version of
1362 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1364 bool kvm_get_kvm_safe(struct kvm *kvm)
1366 return refcount_inc_not_zero(&kvm->users_count);
1368 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1370 void kvm_put_kvm(struct kvm *kvm)
1372 if (refcount_dec_and_test(&kvm->users_count))
1373 kvm_destroy_vm(kvm);
1375 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1378 * Used to put a reference that was taken on behalf of an object associated
1379 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1380 * of the new file descriptor fails and the reference cannot be transferred to
1381 * its final owner. In such cases, the caller is still actively using @kvm and
1382 * will fail miserably if the refcount unexpectedly hits zero.
1384 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1386 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1388 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1390 static int kvm_vm_release(struct inode *inode, struct file *filp)
1392 struct kvm *kvm = filp->private_data;
1394 kvm_irqfd_release(kvm);
1401 * Allocation size is twice as large as the actual dirty bitmap size.
1402 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1404 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1406 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1408 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1409 if (!memslot->dirty_bitmap)
1415 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1417 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1418 int node_idx_inactive = active->node_idx ^ 1;
1420 return &kvm->__memslots[as_id][node_idx_inactive];
1424 * Helper to get the address space ID when one of memslot pointers may be NULL.
1425 * This also serves as a sanity that at least one of the pointers is non-NULL,
1426 * and that their address space IDs don't diverge.
1428 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1429 struct kvm_memory_slot *b)
1431 if (WARN_ON_ONCE(!a && !b))
1439 WARN_ON_ONCE(a->as_id != b->as_id);
1443 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1444 struct kvm_memory_slot *slot)
1446 struct rb_root *gfn_tree = &slots->gfn_tree;
1447 struct rb_node **node, *parent;
1448 int idx = slots->node_idx;
1451 for (node = &gfn_tree->rb_node; *node; ) {
1452 struct kvm_memory_slot *tmp;
1454 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1456 if (slot->base_gfn < tmp->base_gfn)
1457 node = &(*node)->rb_left;
1458 else if (slot->base_gfn > tmp->base_gfn)
1459 node = &(*node)->rb_right;
1464 rb_link_node(&slot->gfn_node[idx], parent, node);
1465 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1468 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1469 struct kvm_memory_slot *slot)
1471 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1474 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1475 struct kvm_memory_slot *old,
1476 struct kvm_memory_slot *new)
1478 int idx = slots->node_idx;
1480 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1482 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1487 * Replace @old with @new in the inactive memslots.
1489 * With NULL @old this simply adds @new.
1490 * With NULL @new this simply removes @old.
1492 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1495 static void kvm_replace_memslot(struct kvm *kvm,
1496 struct kvm_memory_slot *old,
1497 struct kvm_memory_slot *new)
1499 int as_id = kvm_memslots_get_as_id(old, new);
1500 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1501 int idx = slots->node_idx;
1504 hash_del(&old->id_node[idx]);
1505 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1507 if ((long)old == atomic_long_read(&slots->last_used_slot))
1508 atomic_long_set(&slots->last_used_slot, (long)new);
1511 kvm_erase_gfn_node(slots, old);
1517 * Initialize @new's hva range. Do this even when replacing an @old
1518 * slot, kvm_copy_memslot() deliberately does not touch node data.
1520 new->hva_node[idx].start = new->userspace_addr;
1521 new->hva_node[idx].last = new->userspace_addr +
1522 (new->npages << PAGE_SHIFT) - 1;
1525 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1526 * hva_node needs to be swapped with remove+insert even though hva can't
1527 * change when replacing an existing slot.
1529 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1530 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1533 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1534 * switch the node in the gfn tree instead of removing the old and
1535 * inserting the new as two separate operations. Replacement is a
1536 * single O(1) operation versus two O(log(n)) operations for
1539 if (old && old->base_gfn == new->base_gfn) {
1540 kvm_replace_gfn_node(slots, old, new);
1543 kvm_erase_gfn_node(slots, old);
1544 kvm_insert_gfn_node(slots, new);
1548 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1550 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1552 #ifdef __KVM_HAVE_READONLY_MEM
1553 valid_flags |= KVM_MEM_READONLY;
1556 if (mem->flags & ~valid_flags)
1562 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1564 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1566 /* Grab the generation from the activate memslots. */
1567 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1569 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1570 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1573 * Do not store the new memslots while there are invalidations in
1574 * progress, otherwise the locking in invalidate_range_start and
1575 * invalidate_range_end will be unbalanced.
1577 spin_lock(&kvm->mn_invalidate_lock);
1578 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1579 while (kvm->mn_active_invalidate_count) {
1580 set_current_state(TASK_UNINTERRUPTIBLE);
1581 spin_unlock(&kvm->mn_invalidate_lock);
1583 spin_lock(&kvm->mn_invalidate_lock);
1585 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1586 rcu_assign_pointer(kvm->memslots[as_id], slots);
1587 spin_unlock(&kvm->mn_invalidate_lock);
1590 * Acquired in kvm_set_memslot. Must be released before synchronize
1591 * SRCU below in order to avoid deadlock with another thread
1592 * acquiring the slots_arch_lock in an srcu critical section.
1594 mutex_unlock(&kvm->slots_arch_lock);
1596 synchronize_srcu_expedited(&kvm->srcu);
1599 * Increment the new memslot generation a second time, dropping the
1600 * update in-progress flag and incrementing the generation based on
1601 * the number of address spaces. This provides a unique and easily
1602 * identifiable generation number while the memslots are in flux.
1604 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1607 * Generations must be unique even across address spaces. We do not need
1608 * a global counter for that, instead the generation space is evenly split
1609 * across address spaces. For example, with two address spaces, address
1610 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1611 * use generations 1, 3, 5, ...
1613 gen += KVM_ADDRESS_SPACE_NUM;
1615 kvm_arch_memslots_updated(kvm, gen);
1617 slots->generation = gen;
1620 static int kvm_prepare_memory_region(struct kvm *kvm,
1621 const struct kvm_memory_slot *old,
1622 struct kvm_memory_slot *new,
1623 enum kvm_mr_change change)
1628 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1629 * will be freed on "commit". If logging is enabled in both old and
1630 * new, reuse the existing bitmap. If logging is enabled only in the
1631 * new and KVM isn't using a ring buffer, allocate and initialize a
1634 if (change != KVM_MR_DELETE) {
1635 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1636 new->dirty_bitmap = NULL;
1637 else if (old && old->dirty_bitmap)
1638 new->dirty_bitmap = old->dirty_bitmap;
1639 else if (kvm_use_dirty_bitmap(kvm)) {
1640 r = kvm_alloc_dirty_bitmap(new);
1644 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1645 bitmap_set(new->dirty_bitmap, 0, new->npages);
1649 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1651 /* Free the bitmap on failure if it was allocated above. */
1652 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1653 kvm_destroy_dirty_bitmap(new);
1658 static void kvm_commit_memory_region(struct kvm *kvm,
1659 struct kvm_memory_slot *old,
1660 const struct kvm_memory_slot *new,
1661 enum kvm_mr_change change)
1663 int old_flags = old ? old->flags : 0;
1664 int new_flags = new ? new->flags : 0;
1666 * Update the total number of memslot pages before calling the arch
1667 * hook so that architectures can consume the result directly.
1669 if (change == KVM_MR_DELETE)
1670 kvm->nr_memslot_pages -= old->npages;
1671 else if (change == KVM_MR_CREATE)
1672 kvm->nr_memslot_pages += new->npages;
1674 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1675 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1676 atomic_set(&kvm->nr_memslots_dirty_logging,
1677 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1680 kvm_arch_commit_memory_region(kvm, old, new, change);
1684 /* Nothing more to do. */
1687 /* Free the old memslot and all its metadata. */
1688 kvm_free_memslot(kvm, old);
1691 case KVM_MR_FLAGS_ONLY:
1693 * Free the dirty bitmap as needed; the below check encompasses
1694 * both the flags and whether a ring buffer is being used)
1696 if (old->dirty_bitmap && !new->dirty_bitmap)
1697 kvm_destroy_dirty_bitmap(old);
1700 * The final quirk. Free the detached, old slot, but only its
1701 * memory, not any metadata. Metadata, including arch specific
1702 * data, may be reused by @new.
1712 * Activate @new, which must be installed in the inactive slots by the caller,
1713 * by swapping the active slots and then propagating @new to @old once @old is
1714 * unreachable and can be safely modified.
1716 * With NULL @old this simply adds @new to @active (while swapping the sets).
1717 * With NULL @new this simply removes @old from @active and frees it
1718 * (while also swapping the sets).
1720 static void kvm_activate_memslot(struct kvm *kvm,
1721 struct kvm_memory_slot *old,
1722 struct kvm_memory_slot *new)
1724 int as_id = kvm_memslots_get_as_id(old, new);
1726 kvm_swap_active_memslots(kvm, as_id);
1728 /* Propagate the new memslot to the now inactive memslots. */
1729 kvm_replace_memslot(kvm, old, new);
1732 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1733 const struct kvm_memory_slot *src)
1735 dest->base_gfn = src->base_gfn;
1736 dest->npages = src->npages;
1737 dest->dirty_bitmap = src->dirty_bitmap;
1738 dest->arch = src->arch;
1739 dest->userspace_addr = src->userspace_addr;
1740 dest->flags = src->flags;
1742 dest->as_id = src->as_id;
1745 static void kvm_invalidate_memslot(struct kvm *kvm,
1746 struct kvm_memory_slot *old,
1747 struct kvm_memory_slot *invalid_slot)
1750 * Mark the current slot INVALID. As with all memslot modifications,
1751 * this must be done on an unreachable slot to avoid modifying the
1752 * current slot in the active tree.
1754 kvm_copy_memslot(invalid_slot, old);
1755 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1756 kvm_replace_memslot(kvm, old, invalid_slot);
1759 * Activate the slot that is now marked INVALID, but don't propagate
1760 * the slot to the now inactive slots. The slot is either going to be
1761 * deleted or recreated as a new slot.
1763 kvm_swap_active_memslots(kvm, old->as_id);
1766 * From this point no new shadow pages pointing to a deleted, or moved,
1767 * memslot will be created. Validation of sp->gfn happens in:
1768 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1769 * - kvm_is_visible_gfn (mmu_check_root)
1771 kvm_arch_flush_shadow_memslot(kvm, old);
1772 kvm_arch_guest_memory_reclaimed(kvm);
1774 /* Was released by kvm_swap_active_memslots(), reacquire. */
1775 mutex_lock(&kvm->slots_arch_lock);
1778 * Copy the arch-specific field of the newly-installed slot back to the
1779 * old slot as the arch data could have changed between releasing
1780 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1781 * above. Writers are required to retrieve memslots *after* acquiring
1782 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1784 old->arch = invalid_slot->arch;
1787 static void kvm_create_memslot(struct kvm *kvm,
1788 struct kvm_memory_slot *new)
1790 /* Add the new memslot to the inactive set and activate. */
1791 kvm_replace_memslot(kvm, NULL, new);
1792 kvm_activate_memslot(kvm, NULL, new);
1795 static void kvm_delete_memslot(struct kvm *kvm,
1796 struct kvm_memory_slot *old,
1797 struct kvm_memory_slot *invalid_slot)
1800 * Remove the old memslot (in the inactive memslots) by passing NULL as
1801 * the "new" slot, and for the invalid version in the active slots.
1803 kvm_replace_memslot(kvm, old, NULL);
1804 kvm_activate_memslot(kvm, invalid_slot, NULL);
1807 static void kvm_move_memslot(struct kvm *kvm,
1808 struct kvm_memory_slot *old,
1809 struct kvm_memory_slot *new,
1810 struct kvm_memory_slot *invalid_slot)
1813 * Replace the old memslot in the inactive slots, and then swap slots
1814 * and replace the current INVALID with the new as well.
1816 kvm_replace_memslot(kvm, old, new);
1817 kvm_activate_memslot(kvm, invalid_slot, new);
1820 static void kvm_update_flags_memslot(struct kvm *kvm,
1821 struct kvm_memory_slot *old,
1822 struct kvm_memory_slot *new)
1825 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1826 * an intermediate step. Instead, the old memslot is simply replaced
1827 * with a new, updated copy in both memslot sets.
1829 kvm_replace_memslot(kvm, old, new);
1830 kvm_activate_memslot(kvm, old, new);
1833 static int kvm_set_memslot(struct kvm *kvm,
1834 struct kvm_memory_slot *old,
1835 struct kvm_memory_slot *new,
1836 enum kvm_mr_change change)
1838 struct kvm_memory_slot *invalid_slot;
1842 * Released in kvm_swap_active_memslots().
1844 * Must be held from before the current memslots are copied until after
1845 * the new memslots are installed with rcu_assign_pointer, then
1846 * released before the synchronize srcu in kvm_swap_active_memslots().
1848 * When modifying memslots outside of the slots_lock, must be held
1849 * before reading the pointer to the current memslots until after all
1850 * changes to those memslots are complete.
1852 * These rules ensure that installing new memslots does not lose
1853 * changes made to the previous memslots.
1855 mutex_lock(&kvm->slots_arch_lock);
1858 * Invalidate the old slot if it's being deleted or moved. This is
1859 * done prior to actually deleting/moving the memslot to allow vCPUs to
1860 * continue running by ensuring there are no mappings or shadow pages
1861 * for the memslot when it is deleted/moved. Without pre-invalidation
1862 * (and without a lock), a window would exist between effecting the
1863 * delete/move and committing the changes in arch code where KVM or a
1864 * guest could access a non-existent memslot.
1866 * Modifications are done on a temporary, unreachable slot. The old
1867 * slot needs to be preserved in case a later step fails and the
1868 * invalidation needs to be reverted.
1870 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1871 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1872 if (!invalid_slot) {
1873 mutex_unlock(&kvm->slots_arch_lock);
1876 kvm_invalidate_memslot(kvm, old, invalid_slot);
1879 r = kvm_prepare_memory_region(kvm, old, new, change);
1882 * For DELETE/MOVE, revert the above INVALID change. No
1883 * modifications required since the original slot was preserved
1884 * in the inactive slots. Changing the active memslots also
1885 * release slots_arch_lock.
1887 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1888 kvm_activate_memslot(kvm, invalid_slot, old);
1889 kfree(invalid_slot);
1891 mutex_unlock(&kvm->slots_arch_lock);
1897 * For DELETE and MOVE, the working slot is now active as the INVALID
1898 * version of the old slot. MOVE is particularly special as it reuses
1899 * the old slot and returns a copy of the old slot (in working_slot).
1900 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1901 * old slot is detached but otherwise preserved.
1903 if (change == KVM_MR_CREATE)
1904 kvm_create_memslot(kvm, new);
1905 else if (change == KVM_MR_DELETE)
1906 kvm_delete_memslot(kvm, old, invalid_slot);
1907 else if (change == KVM_MR_MOVE)
1908 kvm_move_memslot(kvm, old, new, invalid_slot);
1909 else if (change == KVM_MR_FLAGS_ONLY)
1910 kvm_update_flags_memslot(kvm, old, new);
1914 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1915 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1916 kfree(invalid_slot);
1919 * No need to refresh new->arch, changes after dropping slots_arch_lock
1920 * will directly hit the final, active memslot. Architectures are
1921 * responsible for knowing that new->arch may be stale.
1923 kvm_commit_memory_region(kvm, old, new, change);
1928 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1929 gfn_t start, gfn_t end)
1931 struct kvm_memslot_iter iter;
1933 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1934 if (iter.slot->id != id)
1942 * Allocate some memory and give it an address in the guest physical address
1945 * Discontiguous memory is allowed, mostly for framebuffers.
1947 * Must be called holding kvm->slots_lock for write.
1949 int __kvm_set_memory_region(struct kvm *kvm,
1950 const struct kvm_userspace_memory_region *mem)
1952 struct kvm_memory_slot *old, *new;
1953 struct kvm_memslots *slots;
1954 enum kvm_mr_change change;
1955 unsigned long npages;
1960 r = check_memory_region_flags(mem);
1964 as_id = mem->slot >> 16;
1965 id = (u16)mem->slot;
1967 /* General sanity checks */
1968 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1969 (mem->memory_size != (unsigned long)mem->memory_size))
1971 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1973 /* We can read the guest memory with __xxx_user() later on. */
1974 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1975 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1976 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1979 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1981 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1983 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1986 slots = __kvm_memslots(kvm, as_id);
1989 * Note, the old memslot (and the pointer itself!) may be invalidated
1990 * and/or destroyed by kvm_set_memslot().
1992 old = id_to_memslot(slots, id);
1994 if (!mem->memory_size) {
1995 if (!old || !old->npages)
1998 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2001 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2004 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2005 npages = (mem->memory_size >> PAGE_SHIFT);
2007 if (!old || !old->npages) {
2008 change = KVM_MR_CREATE;
2011 * To simplify KVM internals, the total number of pages across
2012 * all memslots must fit in an unsigned long.
2014 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2016 } else { /* Modify an existing slot. */
2017 if ((mem->userspace_addr != old->userspace_addr) ||
2018 (npages != old->npages) ||
2019 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2022 if (base_gfn != old->base_gfn)
2023 change = KVM_MR_MOVE;
2024 else if (mem->flags != old->flags)
2025 change = KVM_MR_FLAGS_ONLY;
2026 else /* Nothing to change. */
2030 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2031 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2034 /* Allocate a slot that will persist in the memslot. */
2035 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2041 new->base_gfn = base_gfn;
2042 new->npages = npages;
2043 new->flags = mem->flags;
2044 new->userspace_addr = mem->userspace_addr;
2046 r = kvm_set_memslot(kvm, old, new, change);
2051 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2053 int kvm_set_memory_region(struct kvm *kvm,
2054 const struct kvm_userspace_memory_region *mem)
2058 mutex_lock(&kvm->slots_lock);
2059 r = __kvm_set_memory_region(kvm, mem);
2060 mutex_unlock(&kvm->slots_lock);
2063 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2065 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2066 struct kvm_userspace_memory_region *mem)
2068 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2071 return kvm_set_memory_region(kvm, mem);
2074 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2076 * kvm_get_dirty_log - get a snapshot of dirty pages
2077 * @kvm: pointer to kvm instance
2078 * @log: slot id and address to which we copy the log
2079 * @is_dirty: set to '1' if any dirty pages were found
2080 * @memslot: set to the associated memslot, always valid on success
2082 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2083 int *is_dirty, struct kvm_memory_slot **memslot)
2085 struct kvm_memslots *slots;
2088 unsigned long any = 0;
2090 /* Dirty ring tracking may be exclusive to dirty log tracking */
2091 if (!kvm_use_dirty_bitmap(kvm))
2097 as_id = log->slot >> 16;
2098 id = (u16)log->slot;
2099 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2102 slots = __kvm_memslots(kvm, as_id);
2103 *memslot = id_to_memslot(slots, id);
2104 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2107 kvm_arch_sync_dirty_log(kvm, *memslot);
2109 n = kvm_dirty_bitmap_bytes(*memslot);
2111 for (i = 0; !any && i < n/sizeof(long); ++i)
2112 any = (*memslot)->dirty_bitmap[i];
2114 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2121 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2123 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2125 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2126 * and reenable dirty page tracking for the corresponding pages.
2127 * @kvm: pointer to kvm instance
2128 * @log: slot id and address to which we copy the log
2130 * We need to keep it in mind that VCPU threads can write to the bitmap
2131 * concurrently. So, to avoid losing track of dirty pages we keep the
2134 * 1. Take a snapshot of the bit and clear it if needed.
2135 * 2. Write protect the corresponding page.
2136 * 3. Copy the snapshot to the userspace.
2137 * 4. Upon return caller flushes TLB's if needed.
2139 * Between 2 and 4, the guest may write to the page using the remaining TLB
2140 * entry. This is not a problem because the page is reported dirty using
2141 * the snapshot taken before and step 4 ensures that writes done after
2142 * exiting to userspace will be logged for the next call.
2145 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2147 struct kvm_memslots *slots;
2148 struct kvm_memory_slot *memslot;
2151 unsigned long *dirty_bitmap;
2152 unsigned long *dirty_bitmap_buffer;
2155 /* Dirty ring tracking may be exclusive to dirty log tracking */
2156 if (!kvm_use_dirty_bitmap(kvm))
2159 as_id = log->slot >> 16;
2160 id = (u16)log->slot;
2161 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2164 slots = __kvm_memslots(kvm, as_id);
2165 memslot = id_to_memslot(slots, id);
2166 if (!memslot || !memslot->dirty_bitmap)
2169 dirty_bitmap = memslot->dirty_bitmap;
2171 kvm_arch_sync_dirty_log(kvm, memslot);
2173 n = kvm_dirty_bitmap_bytes(memslot);
2175 if (kvm->manual_dirty_log_protect) {
2177 * Unlike kvm_get_dirty_log, we always return false in *flush,
2178 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2179 * is some code duplication between this function and
2180 * kvm_get_dirty_log, but hopefully all architecture
2181 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2182 * can be eliminated.
2184 dirty_bitmap_buffer = dirty_bitmap;
2186 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2187 memset(dirty_bitmap_buffer, 0, n);
2190 for (i = 0; i < n / sizeof(long); i++) {
2194 if (!dirty_bitmap[i])
2198 mask = xchg(&dirty_bitmap[i], 0);
2199 dirty_bitmap_buffer[i] = mask;
2201 offset = i * BITS_PER_LONG;
2202 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2205 KVM_MMU_UNLOCK(kvm);
2209 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2211 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2218 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2219 * @kvm: kvm instance
2220 * @log: slot id and address to which we copy the log
2222 * Steps 1-4 below provide general overview of dirty page logging. See
2223 * kvm_get_dirty_log_protect() function description for additional details.
2225 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2226 * always flush the TLB (step 4) even if previous step failed and the dirty
2227 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2228 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2229 * writes will be marked dirty for next log read.
2231 * 1. Take a snapshot of the bit and clear it if needed.
2232 * 2. Write protect the corresponding page.
2233 * 3. Copy the snapshot to the userspace.
2234 * 4. Flush TLB's if needed.
2236 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2237 struct kvm_dirty_log *log)
2241 mutex_lock(&kvm->slots_lock);
2243 r = kvm_get_dirty_log_protect(kvm, log);
2245 mutex_unlock(&kvm->slots_lock);
2250 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2251 * and reenable dirty page tracking for the corresponding pages.
2252 * @kvm: pointer to kvm instance
2253 * @log: slot id and address from which to fetch the bitmap of dirty pages
2255 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2256 struct kvm_clear_dirty_log *log)
2258 struct kvm_memslots *slots;
2259 struct kvm_memory_slot *memslot;
2263 unsigned long *dirty_bitmap;
2264 unsigned long *dirty_bitmap_buffer;
2267 /* Dirty ring tracking may be exclusive to dirty log tracking */
2268 if (!kvm_use_dirty_bitmap(kvm))
2271 as_id = log->slot >> 16;
2272 id = (u16)log->slot;
2273 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2276 if (log->first_page & 63)
2279 slots = __kvm_memslots(kvm, as_id);
2280 memslot = id_to_memslot(slots, id);
2281 if (!memslot || !memslot->dirty_bitmap)
2284 dirty_bitmap = memslot->dirty_bitmap;
2286 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2288 if (log->first_page > memslot->npages ||
2289 log->num_pages > memslot->npages - log->first_page ||
2290 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2293 kvm_arch_sync_dirty_log(kvm, memslot);
2296 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2297 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2301 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2302 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2303 i++, offset += BITS_PER_LONG) {
2304 unsigned long mask = *dirty_bitmap_buffer++;
2305 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2309 mask &= atomic_long_fetch_andnot(mask, p);
2312 * mask contains the bits that really have been cleared. This
2313 * never includes any bits beyond the length of the memslot (if
2314 * the length is not aligned to 64 pages), therefore it is not
2315 * a problem if userspace sets them in log->dirty_bitmap.
2319 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2323 KVM_MMU_UNLOCK(kvm);
2326 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2331 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2332 struct kvm_clear_dirty_log *log)
2336 mutex_lock(&kvm->slots_lock);
2338 r = kvm_clear_dirty_log_protect(kvm, log);
2340 mutex_unlock(&kvm->slots_lock);
2343 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2345 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2347 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2349 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2351 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2353 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2354 u64 gen = slots->generation;
2355 struct kvm_memory_slot *slot;
2358 * This also protects against using a memslot from a different address space,
2359 * since different address spaces have different generation numbers.
2361 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2362 vcpu->last_used_slot = NULL;
2363 vcpu->last_used_slot_gen = gen;
2366 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2371 * Fall back to searching all memslots. We purposely use
2372 * search_memslots() instead of __gfn_to_memslot() to avoid
2373 * thrashing the VM-wide last_used_slot in kvm_memslots.
2375 slot = search_memslots(slots, gfn, false);
2377 vcpu->last_used_slot = slot;
2384 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2386 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2388 return kvm_is_visible_memslot(memslot);
2390 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2392 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2394 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2396 return kvm_is_visible_memslot(memslot);
2398 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2400 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2402 struct vm_area_struct *vma;
2403 unsigned long addr, size;
2407 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2408 if (kvm_is_error_hva(addr))
2411 mmap_read_lock(current->mm);
2412 vma = find_vma(current->mm, addr);
2416 size = vma_kernel_pagesize(vma);
2419 mmap_read_unlock(current->mm);
2424 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2426 return slot->flags & KVM_MEM_READONLY;
2429 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2430 gfn_t *nr_pages, bool write)
2432 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2433 return KVM_HVA_ERR_BAD;
2435 if (memslot_is_readonly(slot) && write)
2436 return KVM_HVA_ERR_RO_BAD;
2439 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2441 return __gfn_to_hva_memslot(slot, gfn);
2444 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2447 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2450 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2453 return gfn_to_hva_many(slot, gfn, NULL);
2455 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2457 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2459 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2461 EXPORT_SYMBOL_GPL(gfn_to_hva);
2463 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2465 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2467 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2470 * Return the hva of a @gfn and the R/W attribute if possible.
2472 * @slot: the kvm_memory_slot which contains @gfn
2473 * @gfn: the gfn to be translated
2474 * @writable: used to return the read/write attribute of the @slot if the hva
2475 * is valid and @writable is not NULL
2477 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2478 gfn_t gfn, bool *writable)
2480 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2482 if (!kvm_is_error_hva(hva) && writable)
2483 *writable = !memslot_is_readonly(slot);
2488 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2490 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2492 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2495 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2497 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2499 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2502 static inline int check_user_page_hwpoison(unsigned long addr)
2504 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2506 rc = get_user_pages(addr, 1, flags, NULL);
2507 return rc == -EHWPOISON;
2511 * The fast path to get the writable pfn which will be stored in @pfn,
2512 * true indicates success, otherwise false is returned. It's also the
2513 * only part that runs if we can in atomic context.
2515 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2516 bool *writable, kvm_pfn_t *pfn)
2518 struct page *page[1];
2521 * Fast pin a writable pfn only if it is a write fault request
2522 * or the caller allows to map a writable pfn for a read fault
2525 if (!(write_fault || writable))
2528 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2529 *pfn = page_to_pfn(page[0]);
2540 * The slow path to get the pfn of the specified host virtual address,
2541 * 1 indicates success, -errno is returned if error is detected.
2543 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2544 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2547 * When a VCPU accesses a page that is not mapped into the secondary
2548 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2549 * make progress. We always want to honor NUMA hinting faults in that
2550 * case, because GUP usage corresponds to memory accesses from the VCPU.
2551 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2552 * mapped into the secondary MMU and gets accessed by a VCPU.
2554 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2555 * implicitly honor NUMA hinting faults and don't need this flag.
2557 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2564 *writable = write_fault;
2567 flags |= FOLL_WRITE;
2569 flags |= FOLL_NOWAIT;
2571 flags |= FOLL_INTERRUPTIBLE;
2573 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2577 /* map read fault as writable if possible */
2578 if (unlikely(!write_fault) && writable) {
2581 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2587 *pfn = page_to_pfn(page);
2591 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2593 if (unlikely(!(vma->vm_flags & VM_READ)))
2596 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2602 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2604 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2609 return get_page_unless_zero(page);
2612 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2613 unsigned long addr, bool write_fault,
2614 bool *writable, kvm_pfn_t *p_pfn)
2622 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2625 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2626 * not call the fault handler, so do it here.
2628 bool unlocked = false;
2629 r = fixup_user_fault(current->mm, addr,
2630 (write_fault ? FAULT_FLAG_WRITE : 0),
2637 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2642 pte = ptep_get(ptep);
2644 if (write_fault && !pte_write(pte)) {
2645 pfn = KVM_PFN_ERR_RO_FAULT;
2650 *writable = pte_write(pte);
2654 * Get a reference here because callers of *hva_to_pfn* and
2655 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2656 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2657 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2658 * simply do nothing for reserved pfns.
2660 * Whoever called remap_pfn_range is also going to call e.g.
2661 * unmap_mapping_range before the underlying pages are freed,
2662 * causing a call to our MMU notifier.
2664 * Certain IO or PFNMAP mappings can be backed with valid
2665 * struct pages, but be allocated without refcounting e.g.,
2666 * tail pages of non-compound higher order allocations, which
2667 * would then underflow the refcount when the caller does the
2668 * required put_page. Don't allow those pages here.
2670 if (!kvm_try_get_pfn(pfn))
2674 pte_unmap_unlock(ptep, ptl);
2681 * Pin guest page in memory and return its pfn.
2682 * @addr: host virtual address which maps memory to the guest
2683 * @atomic: whether this function can sleep
2684 * @interruptible: whether the process can be interrupted by non-fatal signals
2685 * @async: whether this function need to wait IO complete if the
2686 * host page is not in the memory
2687 * @write_fault: whether we should get a writable host page
2688 * @writable: whether it allows to map a writable host page for !@write_fault
2690 * The function will map a writable host page for these two cases:
2691 * 1): @write_fault = true
2692 * 2): @write_fault = false && @writable, @writable will tell the caller
2693 * whether the mapping is writable.
2695 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2696 bool *async, bool write_fault, bool *writable)
2698 struct vm_area_struct *vma;
2702 /* we can do it either atomically or asynchronously, not both */
2703 BUG_ON(atomic && async);
2705 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2709 return KVM_PFN_ERR_FAULT;
2711 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2715 if (npages == -EINTR)
2716 return KVM_PFN_ERR_SIGPENDING;
2718 mmap_read_lock(current->mm);
2719 if (npages == -EHWPOISON ||
2720 (!async && check_user_page_hwpoison(addr))) {
2721 pfn = KVM_PFN_ERR_HWPOISON;
2726 vma = vma_lookup(current->mm, addr);
2729 pfn = KVM_PFN_ERR_FAULT;
2730 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2731 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2735 pfn = KVM_PFN_ERR_FAULT;
2737 if (async && vma_is_valid(vma, write_fault))
2739 pfn = KVM_PFN_ERR_FAULT;
2742 mmap_read_unlock(current->mm);
2746 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2747 bool atomic, bool interruptible, bool *async,
2748 bool write_fault, bool *writable, hva_t *hva)
2750 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2755 if (addr == KVM_HVA_ERR_RO_BAD) {
2758 return KVM_PFN_ERR_RO_FAULT;
2761 if (kvm_is_error_hva(addr)) {
2764 return KVM_PFN_NOSLOT;
2767 /* Do not map writable pfn in the readonly memslot. */
2768 if (writable && memslot_is_readonly(slot)) {
2773 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2776 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2778 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2781 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2782 NULL, write_fault, writable, NULL);
2784 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2786 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2788 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2791 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2793 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2795 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2798 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2800 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2802 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2804 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2806 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2808 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2810 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2812 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2814 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2816 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2818 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2819 struct page **pages, int nr_pages)
2824 addr = gfn_to_hva_many(slot, gfn, &entry);
2825 if (kvm_is_error_hva(addr))
2828 if (entry < nr_pages)
2831 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2833 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2836 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2837 * backed by 'struct page'. A valid example is if the backing memslot is
2838 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2839 * been elevated by gfn_to_pfn().
2841 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2846 pfn = gfn_to_pfn(kvm, gfn);
2848 if (is_error_noslot_pfn(pfn))
2849 return KVM_ERR_PTR_BAD_PAGE;
2851 page = kvm_pfn_to_refcounted_page(pfn);
2853 return KVM_ERR_PTR_BAD_PAGE;
2857 EXPORT_SYMBOL_GPL(gfn_to_page);
2859 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2862 kvm_release_pfn_dirty(pfn);
2864 kvm_release_pfn_clean(pfn);
2867 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2871 struct page *page = KVM_UNMAPPED_PAGE;
2876 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2877 if (is_error_noslot_pfn(pfn))
2880 if (pfn_valid(pfn)) {
2881 page = pfn_to_page(pfn);
2883 #ifdef CONFIG_HAS_IOMEM
2885 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2899 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2901 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2909 if (map->page != KVM_UNMAPPED_PAGE)
2911 #ifdef CONFIG_HAS_IOMEM
2917 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2919 kvm_release_pfn(map->pfn, dirty);
2924 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2926 static bool kvm_is_ad_tracked_page(struct page *page)
2929 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2930 * touched (e.g. set dirty) except by its owner".
2932 return !PageReserved(page);
2935 static void kvm_set_page_dirty(struct page *page)
2937 if (kvm_is_ad_tracked_page(page))
2941 static void kvm_set_page_accessed(struct page *page)
2943 if (kvm_is_ad_tracked_page(page))
2944 mark_page_accessed(page);
2947 void kvm_release_page_clean(struct page *page)
2949 WARN_ON(is_error_page(page));
2951 kvm_set_page_accessed(page);
2954 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2956 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2960 if (is_error_noslot_pfn(pfn))
2963 page = kvm_pfn_to_refcounted_page(pfn);
2967 kvm_release_page_clean(page);
2969 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2971 void kvm_release_page_dirty(struct page *page)
2973 WARN_ON(is_error_page(page));
2975 kvm_set_page_dirty(page);
2976 kvm_release_page_clean(page);
2978 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2980 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2984 if (is_error_noslot_pfn(pfn))
2987 page = kvm_pfn_to_refcounted_page(pfn);
2991 kvm_release_page_dirty(page);
2993 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2996 * Note, checking for an error/noslot pfn is the caller's responsibility when
2997 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
2998 * "set" helpers are not to be used when the pfn might point at garbage.
3000 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3002 if (WARN_ON(is_error_noslot_pfn(pfn)))
3006 kvm_set_page_dirty(pfn_to_page(pfn));
3008 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3010 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3012 if (WARN_ON(is_error_noslot_pfn(pfn)))
3016 kvm_set_page_accessed(pfn_to_page(pfn));
3018 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3020 static int next_segment(unsigned long len, int offset)
3022 if (len > PAGE_SIZE - offset)
3023 return PAGE_SIZE - offset;
3028 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3029 void *data, int offset, int len)
3034 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3035 if (kvm_is_error_hva(addr))
3037 r = __copy_from_user(data, (void __user *)addr + offset, len);
3043 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3046 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3048 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3050 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3052 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3053 int offset, int len)
3055 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3057 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3059 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3061 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3063 gfn_t gfn = gpa >> PAGE_SHIFT;
3065 int offset = offset_in_page(gpa);
3068 while ((seg = next_segment(len, offset)) != 0) {
3069 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3079 EXPORT_SYMBOL_GPL(kvm_read_guest);
3081 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3083 gfn_t gfn = gpa >> PAGE_SHIFT;
3085 int offset = offset_in_page(gpa);
3088 while ((seg = next_segment(len, offset)) != 0) {
3089 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3099 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3101 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3102 void *data, int offset, unsigned long len)
3107 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3108 if (kvm_is_error_hva(addr))
3110 pagefault_disable();
3111 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3118 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3119 void *data, unsigned long len)
3121 gfn_t gfn = gpa >> PAGE_SHIFT;
3122 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3123 int offset = offset_in_page(gpa);
3125 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3127 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3129 static int __kvm_write_guest_page(struct kvm *kvm,
3130 struct kvm_memory_slot *memslot, gfn_t gfn,
3131 const void *data, int offset, int len)
3136 addr = gfn_to_hva_memslot(memslot, gfn);
3137 if (kvm_is_error_hva(addr))
3139 r = __copy_to_user((void __user *)addr + offset, data, len);
3142 mark_page_dirty_in_slot(kvm, memslot, gfn);
3146 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3147 const void *data, int offset, int len)
3149 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3151 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3153 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3155 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3156 const void *data, int offset, int len)
3158 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3160 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3162 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3164 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3167 gfn_t gfn = gpa >> PAGE_SHIFT;
3169 int offset = offset_in_page(gpa);
3172 while ((seg = next_segment(len, offset)) != 0) {
3173 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3183 EXPORT_SYMBOL_GPL(kvm_write_guest);
3185 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3188 gfn_t gfn = gpa >> PAGE_SHIFT;
3190 int offset = offset_in_page(gpa);
3193 while ((seg = next_segment(len, offset)) != 0) {
3194 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3204 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3206 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3207 struct gfn_to_hva_cache *ghc,
3208 gpa_t gpa, unsigned long len)
3210 int offset = offset_in_page(gpa);
3211 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3212 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3213 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3214 gfn_t nr_pages_avail;
3216 /* Update ghc->generation before performing any error checks. */
3217 ghc->generation = slots->generation;
3219 if (start_gfn > end_gfn) {
3220 ghc->hva = KVM_HVA_ERR_BAD;
3225 * If the requested region crosses two memslots, we still
3226 * verify that the entire region is valid here.
3228 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3229 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3230 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3232 if (kvm_is_error_hva(ghc->hva))
3236 /* Use the slow path for cross page reads and writes. */
3237 if (nr_pages_needed == 1)
3240 ghc->memslot = NULL;
3247 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3248 gpa_t gpa, unsigned long len)
3250 struct kvm_memslots *slots = kvm_memslots(kvm);
3251 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3253 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3255 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3256 void *data, unsigned int offset,
3259 struct kvm_memslots *slots = kvm_memslots(kvm);
3261 gpa_t gpa = ghc->gpa + offset;
3263 if (WARN_ON_ONCE(len + offset > ghc->len))
3266 if (slots->generation != ghc->generation) {
3267 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3271 if (kvm_is_error_hva(ghc->hva))
3274 if (unlikely(!ghc->memslot))
3275 return kvm_write_guest(kvm, gpa, data, len);
3277 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3280 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3284 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3286 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3287 void *data, unsigned long len)
3289 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3291 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3293 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3294 void *data, unsigned int offset,
3297 struct kvm_memslots *slots = kvm_memslots(kvm);
3299 gpa_t gpa = ghc->gpa + offset;
3301 if (WARN_ON_ONCE(len + offset > ghc->len))
3304 if (slots->generation != ghc->generation) {
3305 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3309 if (kvm_is_error_hva(ghc->hva))
3312 if (unlikely(!ghc->memslot))
3313 return kvm_read_guest(kvm, gpa, data, len);
3315 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3321 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3323 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3324 void *data, unsigned long len)
3326 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3328 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3330 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3332 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3333 gfn_t gfn = gpa >> PAGE_SHIFT;
3335 int offset = offset_in_page(gpa);
3338 while ((seg = next_segment(len, offset)) != 0) {
3339 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3348 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3350 void mark_page_dirty_in_slot(struct kvm *kvm,
3351 const struct kvm_memory_slot *memslot,
3354 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3356 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3357 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3360 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3363 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3364 unsigned long rel_gfn = gfn - memslot->base_gfn;
3365 u32 slot = (memslot->as_id << 16) | memslot->id;
3367 if (kvm->dirty_ring_size && vcpu)
3368 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3369 else if (memslot->dirty_bitmap)
3370 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3373 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3375 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3377 struct kvm_memory_slot *memslot;
3379 memslot = gfn_to_memslot(kvm, gfn);
3380 mark_page_dirty_in_slot(kvm, memslot, gfn);
3382 EXPORT_SYMBOL_GPL(mark_page_dirty);
3384 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3386 struct kvm_memory_slot *memslot;
3388 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3389 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3391 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3393 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3395 if (!vcpu->sigset_active)
3399 * This does a lockless modification of ->real_blocked, which is fine
3400 * because, only current can change ->real_blocked and all readers of
3401 * ->real_blocked don't care as long ->real_blocked is always a subset
3404 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3407 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3409 if (!vcpu->sigset_active)
3412 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3413 sigemptyset(¤t->real_blocked);
3416 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3418 unsigned int old, val, grow, grow_start;
3420 old = val = vcpu->halt_poll_ns;
3421 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3422 grow = READ_ONCE(halt_poll_ns_grow);
3427 if (val < grow_start)
3430 vcpu->halt_poll_ns = val;
3432 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3435 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3437 unsigned int old, val, shrink, grow_start;
3439 old = val = vcpu->halt_poll_ns;
3440 shrink = READ_ONCE(halt_poll_ns_shrink);
3441 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3447 if (val < grow_start)
3450 vcpu->halt_poll_ns = val;
3451 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3454 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3457 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3459 if (kvm_arch_vcpu_runnable(vcpu))
3461 if (kvm_cpu_has_pending_timer(vcpu))
3463 if (signal_pending(current))
3465 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3470 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3475 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3476 * pending. This is mostly used when halting a vCPU, but may also be used
3477 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3479 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3481 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3482 bool waited = false;
3484 vcpu->stat.generic.blocking = 1;
3487 kvm_arch_vcpu_blocking(vcpu);
3488 prepare_to_rcuwait(wait);
3492 set_current_state(TASK_INTERRUPTIBLE);
3494 if (kvm_vcpu_check_block(vcpu) < 0)
3502 finish_rcuwait(wait);
3503 kvm_arch_vcpu_unblocking(vcpu);
3506 vcpu->stat.generic.blocking = 0;
3511 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3512 ktime_t end, bool success)
3514 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3515 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3517 ++vcpu->stat.generic.halt_attempted_poll;
3520 ++vcpu->stat.generic.halt_successful_poll;
3522 if (!vcpu_valid_wakeup(vcpu))
3523 ++vcpu->stat.generic.halt_poll_invalid;
3525 stats->halt_poll_success_ns += poll_ns;
3526 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3528 stats->halt_poll_fail_ns += poll_ns;
3529 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3533 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3535 struct kvm *kvm = vcpu->kvm;
3537 if (kvm->override_halt_poll_ns) {
3539 * Ensure kvm->max_halt_poll_ns is not read before
3540 * kvm->override_halt_poll_ns.
3542 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3545 return READ_ONCE(kvm->max_halt_poll_ns);
3548 return READ_ONCE(halt_poll_ns);
3552 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3553 * polling is enabled, busy wait for a short time before blocking to avoid the
3554 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3557 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3559 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3560 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3561 ktime_t start, cur, poll_end;
3562 bool waited = false;
3566 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3567 vcpu->halt_poll_ns = max_halt_poll_ns;
3569 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3571 start = cur = poll_end = ktime_get();
3573 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3576 if (kvm_vcpu_check_block(vcpu) < 0)
3579 poll_end = cur = ktime_get();
3580 } while (kvm_vcpu_can_poll(cur, stop));
3583 waited = kvm_vcpu_block(vcpu);
3587 vcpu->stat.generic.halt_wait_ns +=
3588 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3589 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3590 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3593 /* The total time the vCPU was "halted", including polling time. */
3594 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3597 * Note, halt-polling is considered successful so long as the vCPU was
3598 * never actually scheduled out, i.e. even if the wake event arrived
3599 * after of the halt-polling loop itself, but before the full wait.
3602 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3604 if (halt_poll_allowed) {
3605 /* Recompute the max halt poll time in case it changed. */
3606 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3608 if (!vcpu_valid_wakeup(vcpu)) {
3609 shrink_halt_poll_ns(vcpu);
3610 } else if (max_halt_poll_ns) {
3611 if (halt_ns <= vcpu->halt_poll_ns)
3613 /* we had a long block, shrink polling */
3614 else if (vcpu->halt_poll_ns &&
3615 halt_ns > max_halt_poll_ns)
3616 shrink_halt_poll_ns(vcpu);
3617 /* we had a short halt and our poll time is too small */
3618 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3619 halt_ns < max_halt_poll_ns)
3620 grow_halt_poll_ns(vcpu);
3622 vcpu->halt_poll_ns = 0;
3626 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3628 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3630 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3632 if (__kvm_vcpu_wake_up(vcpu)) {
3633 WRITE_ONCE(vcpu->ready, true);
3634 ++vcpu->stat.generic.halt_wakeup;
3640 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3644 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3646 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3650 if (kvm_vcpu_wake_up(vcpu))
3655 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3656 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3657 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3658 * within the vCPU thread itself.
3660 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3661 if (vcpu->mode == IN_GUEST_MODE)
3662 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3667 * Note, the vCPU could get migrated to a different pCPU at any point
3668 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3669 * IPI to the previous pCPU. But, that's ok because the purpose of the
3670 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3671 * vCPU also requires it to leave IN_GUEST_MODE.
3673 if (kvm_arch_vcpu_should_kick(vcpu)) {
3674 cpu = READ_ONCE(vcpu->cpu);
3675 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3676 smp_send_reschedule(cpu);
3681 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3682 #endif /* !CONFIG_S390 */
3684 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3687 struct task_struct *task = NULL;
3691 pid = rcu_dereference(target->pid);
3693 task = get_pid_task(pid, PIDTYPE_PID);
3697 ret = yield_to(task, 1);
3698 put_task_struct(task);
3702 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3705 * Helper that checks whether a VCPU is eligible for directed yield.
3706 * Most eligible candidate to yield is decided by following heuristics:
3708 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3709 * (preempted lock holder), indicated by @in_spin_loop.
3710 * Set at the beginning and cleared at the end of interception/PLE handler.
3712 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3713 * chance last time (mostly it has become eligible now since we have probably
3714 * yielded to lockholder in last iteration. This is done by toggling
3715 * @dy_eligible each time a VCPU checked for eligibility.)
3717 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3718 * to preempted lock-holder could result in wrong VCPU selection and CPU
3719 * burning. Giving priority for a potential lock-holder increases lock
3722 * Since algorithm is based on heuristics, accessing another VCPU data without
3723 * locking does not harm. It may result in trying to yield to same VCPU, fail
3724 * and continue with next VCPU and so on.
3726 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3728 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3731 eligible = !vcpu->spin_loop.in_spin_loop ||
3732 vcpu->spin_loop.dy_eligible;
3734 if (vcpu->spin_loop.in_spin_loop)
3735 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3744 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3745 * a vcpu_load/vcpu_put pair. However, for most architectures
3746 * kvm_arch_vcpu_runnable does not require vcpu_load.
3748 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3750 return kvm_arch_vcpu_runnable(vcpu);
3753 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3755 if (kvm_arch_dy_runnable(vcpu))
3758 #ifdef CONFIG_KVM_ASYNC_PF
3759 if (!list_empty_careful(&vcpu->async_pf.done))
3766 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3771 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3773 struct kvm *kvm = me->kvm;
3774 struct kvm_vcpu *vcpu;
3775 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3781 kvm_vcpu_set_in_spin_loop(me, true);
3783 * We boost the priority of a VCPU that is runnable but not
3784 * currently running, because it got preempted by something
3785 * else and called schedule in __vcpu_run. Hopefully that
3786 * VCPU is holding the lock that we need and will release it.
3787 * We approximate round-robin by starting at the last boosted VCPU.
3789 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3790 kvm_for_each_vcpu(i, vcpu, kvm) {
3791 if (!pass && i <= last_boosted_vcpu) {
3792 i = last_boosted_vcpu;
3794 } else if (pass && i > last_boosted_vcpu)
3796 if (!READ_ONCE(vcpu->ready))
3800 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3802 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3803 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3804 !kvm_arch_vcpu_in_kernel(vcpu))
3806 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3809 yielded = kvm_vcpu_yield_to(vcpu);
3811 kvm->last_boosted_vcpu = i;
3813 } else if (yielded < 0) {
3820 kvm_vcpu_set_in_spin_loop(me, false);
3822 /* Ensure vcpu is not eligible during next spinloop */
3823 kvm_vcpu_set_dy_eligible(me, false);
3825 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3827 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3829 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3830 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3831 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3832 kvm->dirty_ring_size / PAGE_SIZE);
3838 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3840 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3843 if (vmf->pgoff == 0)
3844 page = virt_to_page(vcpu->run);
3846 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3847 page = virt_to_page(vcpu->arch.pio_data);
3849 #ifdef CONFIG_KVM_MMIO
3850 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3851 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3853 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3854 page = kvm_dirty_ring_get_page(
3856 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3858 return kvm_arch_vcpu_fault(vcpu, vmf);
3864 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3865 .fault = kvm_vcpu_fault,
3868 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3870 struct kvm_vcpu *vcpu = file->private_data;
3871 unsigned long pages = vma_pages(vma);
3873 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3874 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3875 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3878 vma->vm_ops = &kvm_vcpu_vm_ops;
3882 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3884 struct kvm_vcpu *vcpu = filp->private_data;
3886 kvm_put_kvm(vcpu->kvm);
3890 static const struct file_operations kvm_vcpu_fops = {
3891 .release = kvm_vcpu_release,
3892 .unlocked_ioctl = kvm_vcpu_ioctl,
3893 .mmap = kvm_vcpu_mmap,
3894 .llseek = noop_llseek,
3895 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3899 * Allocates an inode for the vcpu.
3901 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3903 char name[8 + 1 + ITOA_MAX_LEN + 1];
3905 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3906 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3909 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3910 static int vcpu_get_pid(void *data, u64 *val)
3912 struct kvm_vcpu *vcpu = data;
3915 *val = pid_nr(rcu_dereference(vcpu->pid));
3920 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3922 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3924 struct dentry *debugfs_dentry;
3925 char dir_name[ITOA_MAX_LEN * 2];
3927 if (!debugfs_initialized())
3930 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3931 debugfs_dentry = debugfs_create_dir(dir_name,
3932 vcpu->kvm->debugfs_dentry);
3933 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3934 &vcpu_get_pid_fops);
3936 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3941 * Creates some virtual cpus. Good luck creating more than one.
3943 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3946 struct kvm_vcpu *vcpu;
3949 if (id >= KVM_MAX_VCPU_IDS)
3952 mutex_lock(&kvm->lock);
3953 if (kvm->created_vcpus >= kvm->max_vcpus) {
3954 mutex_unlock(&kvm->lock);
3958 r = kvm_arch_vcpu_precreate(kvm, id);
3960 mutex_unlock(&kvm->lock);
3964 kvm->created_vcpus++;
3965 mutex_unlock(&kvm->lock);
3967 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3970 goto vcpu_decrement;
3973 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3974 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3979 vcpu->run = page_address(page);
3981 kvm_vcpu_init(vcpu, kvm, id);
3983 r = kvm_arch_vcpu_create(vcpu);
3985 goto vcpu_free_run_page;
3987 if (kvm->dirty_ring_size) {
3988 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3989 id, kvm->dirty_ring_size);
3991 goto arch_vcpu_destroy;
3994 mutex_lock(&kvm->lock);
3996 #ifdef CONFIG_LOCKDEP
3997 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3998 mutex_lock(&vcpu->mutex);
3999 mutex_unlock(&vcpu->mutex);
4002 if (kvm_get_vcpu_by_id(kvm, id)) {
4004 goto unlock_vcpu_destroy;
4007 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4008 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4010 goto unlock_vcpu_destroy;
4012 /* Now it's all set up, let userspace reach it */
4014 r = create_vcpu_fd(vcpu);
4016 goto kvm_put_xa_release;
4018 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4020 goto kvm_put_xa_release;
4024 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4025 * pointer before kvm->online_vcpu's incremented value.
4028 atomic_inc(&kvm->online_vcpus);
4030 mutex_unlock(&kvm->lock);
4031 kvm_arch_vcpu_postcreate(vcpu);
4032 kvm_create_vcpu_debugfs(vcpu);
4036 kvm_put_kvm_no_destroy(kvm);
4037 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4038 unlock_vcpu_destroy:
4039 mutex_unlock(&kvm->lock);
4040 kvm_dirty_ring_free(&vcpu->dirty_ring);
4042 kvm_arch_vcpu_destroy(vcpu);
4044 free_page((unsigned long)vcpu->run);
4046 kmem_cache_free(kvm_vcpu_cache, vcpu);
4048 mutex_lock(&kvm->lock);
4049 kvm->created_vcpus--;
4050 mutex_unlock(&kvm->lock);
4054 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4057 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4058 vcpu->sigset_active = 1;
4059 vcpu->sigset = *sigset;
4061 vcpu->sigset_active = 0;
4065 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4066 size_t size, loff_t *offset)
4068 struct kvm_vcpu *vcpu = file->private_data;
4070 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4071 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4072 sizeof(vcpu->stat), user_buffer, size, offset);
4075 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4077 struct kvm_vcpu *vcpu = file->private_data;
4079 kvm_put_kvm(vcpu->kvm);
4083 static const struct file_operations kvm_vcpu_stats_fops = {
4084 .read = kvm_vcpu_stats_read,
4085 .release = kvm_vcpu_stats_release,
4086 .llseek = noop_llseek,
4089 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4093 char name[15 + ITOA_MAX_LEN + 1];
4095 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4097 fd = get_unused_fd_flags(O_CLOEXEC);
4101 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4104 return PTR_ERR(file);
4107 kvm_get_kvm(vcpu->kvm);
4109 file->f_mode |= FMODE_PREAD;
4110 fd_install(fd, file);
4115 static long kvm_vcpu_ioctl(struct file *filp,
4116 unsigned int ioctl, unsigned long arg)
4118 struct kvm_vcpu *vcpu = filp->private_data;
4119 void __user *argp = (void __user *)arg;
4121 struct kvm_fpu *fpu = NULL;
4122 struct kvm_sregs *kvm_sregs = NULL;
4124 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4127 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4131 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4132 * execution; mutex_lock() would break them.
4134 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4135 if (r != -ENOIOCTLCMD)
4138 if (mutex_lock_killable(&vcpu->mutex))
4146 oldpid = rcu_access_pointer(vcpu->pid);
4147 if (unlikely(oldpid != task_pid(current))) {
4148 /* The thread running this VCPU changed. */
4151 r = kvm_arch_vcpu_run_pid_change(vcpu);
4155 newpid = get_task_pid(current, PIDTYPE_PID);
4156 rcu_assign_pointer(vcpu->pid, newpid);
4161 r = kvm_arch_vcpu_ioctl_run(vcpu);
4162 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4165 case KVM_GET_REGS: {
4166 struct kvm_regs *kvm_regs;
4169 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4172 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4176 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4183 case KVM_SET_REGS: {
4184 struct kvm_regs *kvm_regs;
4186 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4187 if (IS_ERR(kvm_regs)) {
4188 r = PTR_ERR(kvm_regs);
4191 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4195 case KVM_GET_SREGS: {
4196 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4197 GFP_KERNEL_ACCOUNT);
4201 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4205 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4210 case KVM_SET_SREGS: {
4211 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4212 if (IS_ERR(kvm_sregs)) {
4213 r = PTR_ERR(kvm_sregs);
4217 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4220 case KVM_GET_MP_STATE: {
4221 struct kvm_mp_state mp_state;
4223 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4227 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4232 case KVM_SET_MP_STATE: {
4233 struct kvm_mp_state mp_state;
4236 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4238 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4241 case KVM_TRANSLATE: {
4242 struct kvm_translation tr;
4245 if (copy_from_user(&tr, argp, sizeof(tr)))
4247 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4251 if (copy_to_user(argp, &tr, sizeof(tr)))
4256 case KVM_SET_GUEST_DEBUG: {
4257 struct kvm_guest_debug dbg;
4260 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4262 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4265 case KVM_SET_SIGNAL_MASK: {
4266 struct kvm_signal_mask __user *sigmask_arg = argp;
4267 struct kvm_signal_mask kvm_sigmask;
4268 sigset_t sigset, *p;
4273 if (copy_from_user(&kvm_sigmask, argp,
4274 sizeof(kvm_sigmask)))
4277 if (kvm_sigmask.len != sizeof(sigset))
4280 if (copy_from_user(&sigset, sigmask_arg->sigset,
4285 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4289 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4293 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4297 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4303 fpu = memdup_user(argp, sizeof(*fpu));
4309 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4312 case KVM_GET_STATS_FD: {
4313 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4317 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4320 mutex_unlock(&vcpu->mutex);
4326 #ifdef CONFIG_KVM_COMPAT
4327 static long kvm_vcpu_compat_ioctl(struct file *filp,
4328 unsigned int ioctl, unsigned long arg)
4330 struct kvm_vcpu *vcpu = filp->private_data;
4331 void __user *argp = compat_ptr(arg);
4334 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4338 case KVM_SET_SIGNAL_MASK: {
4339 struct kvm_signal_mask __user *sigmask_arg = argp;
4340 struct kvm_signal_mask kvm_sigmask;
4345 if (copy_from_user(&kvm_sigmask, argp,
4346 sizeof(kvm_sigmask)))
4349 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4352 if (get_compat_sigset(&sigset,
4353 (compat_sigset_t __user *)sigmask_arg->sigset))
4355 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4357 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4361 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4369 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4371 struct kvm_device *dev = filp->private_data;
4374 return dev->ops->mmap(dev, vma);
4379 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4380 int (*accessor)(struct kvm_device *dev,
4381 struct kvm_device_attr *attr),
4384 struct kvm_device_attr attr;
4389 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4392 return accessor(dev, &attr);
4395 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4398 struct kvm_device *dev = filp->private_data;
4400 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4404 case KVM_SET_DEVICE_ATTR:
4405 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4406 case KVM_GET_DEVICE_ATTR:
4407 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4408 case KVM_HAS_DEVICE_ATTR:
4409 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4411 if (dev->ops->ioctl)
4412 return dev->ops->ioctl(dev, ioctl, arg);
4418 static int kvm_device_release(struct inode *inode, struct file *filp)
4420 struct kvm_device *dev = filp->private_data;
4421 struct kvm *kvm = dev->kvm;
4423 if (dev->ops->release) {
4424 mutex_lock(&kvm->lock);
4425 list_del(&dev->vm_node);
4426 dev->ops->release(dev);
4427 mutex_unlock(&kvm->lock);
4434 static const struct file_operations kvm_device_fops = {
4435 .unlocked_ioctl = kvm_device_ioctl,
4436 .release = kvm_device_release,
4437 KVM_COMPAT(kvm_device_ioctl),
4438 .mmap = kvm_device_mmap,
4441 struct kvm_device *kvm_device_from_filp(struct file *filp)
4443 if (filp->f_op != &kvm_device_fops)
4446 return filp->private_data;
4449 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4450 #ifdef CONFIG_KVM_MPIC
4451 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4452 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4456 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4458 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4461 if (kvm_device_ops_table[type] != NULL)
4464 kvm_device_ops_table[type] = ops;
4468 void kvm_unregister_device_ops(u32 type)
4470 if (kvm_device_ops_table[type] != NULL)
4471 kvm_device_ops_table[type] = NULL;
4474 static int kvm_ioctl_create_device(struct kvm *kvm,
4475 struct kvm_create_device *cd)
4477 const struct kvm_device_ops *ops;
4478 struct kvm_device *dev;
4479 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4483 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4486 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4487 ops = kvm_device_ops_table[type];
4494 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4501 mutex_lock(&kvm->lock);
4502 ret = ops->create(dev, type);
4504 mutex_unlock(&kvm->lock);
4508 list_add(&dev->vm_node, &kvm->devices);
4509 mutex_unlock(&kvm->lock);
4515 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4517 kvm_put_kvm_no_destroy(kvm);
4518 mutex_lock(&kvm->lock);
4519 list_del(&dev->vm_node);
4522 mutex_unlock(&kvm->lock);
4532 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4535 case KVM_CAP_USER_MEMORY:
4536 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4537 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4538 case KVM_CAP_INTERNAL_ERROR_DATA:
4539 #ifdef CONFIG_HAVE_KVM_MSI
4540 case KVM_CAP_SIGNAL_MSI:
4542 #ifdef CONFIG_HAVE_KVM_IRQFD
4545 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4546 case KVM_CAP_CHECK_EXTENSION_VM:
4547 case KVM_CAP_ENABLE_CAP_VM:
4548 case KVM_CAP_HALT_POLL:
4550 #ifdef CONFIG_KVM_MMIO
4551 case KVM_CAP_COALESCED_MMIO:
4552 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4553 case KVM_CAP_COALESCED_PIO:
4556 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4557 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4558 return KVM_DIRTY_LOG_MANUAL_CAPS;
4560 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4561 case KVM_CAP_IRQ_ROUTING:
4562 return KVM_MAX_IRQ_ROUTES;
4564 #if KVM_ADDRESS_SPACE_NUM > 1
4565 case KVM_CAP_MULTI_ADDRESS_SPACE:
4566 return KVM_ADDRESS_SPACE_NUM;
4568 case KVM_CAP_NR_MEMSLOTS:
4569 return KVM_USER_MEM_SLOTS;
4570 case KVM_CAP_DIRTY_LOG_RING:
4571 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4572 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4576 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4577 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4578 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4582 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4583 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4585 case KVM_CAP_BINARY_STATS_FD:
4586 case KVM_CAP_SYSTEM_EVENT_DATA:
4591 return kvm_vm_ioctl_check_extension(kvm, arg);
4594 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4598 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4601 /* the size should be power of 2 */
4602 if (!size || (size & (size - 1)))
4605 /* Should be bigger to keep the reserved entries, or a page */
4606 if (size < kvm_dirty_ring_get_rsvd_entries() *
4607 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4610 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4611 sizeof(struct kvm_dirty_gfn))
4614 /* We only allow it to set once */
4615 if (kvm->dirty_ring_size)
4618 mutex_lock(&kvm->lock);
4620 if (kvm->created_vcpus) {
4621 /* We don't allow to change this value after vcpu created */
4624 kvm->dirty_ring_size = size;
4628 mutex_unlock(&kvm->lock);
4632 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4635 struct kvm_vcpu *vcpu;
4638 if (!kvm->dirty_ring_size)
4641 mutex_lock(&kvm->slots_lock);
4643 kvm_for_each_vcpu(i, vcpu, kvm)
4644 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4646 mutex_unlock(&kvm->slots_lock);
4649 kvm_flush_remote_tlbs(kvm);
4654 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4655 struct kvm_enable_cap *cap)
4660 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4664 lockdep_assert_held(&kvm->slots_lock);
4666 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4667 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4673 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4675 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4676 struct kvm_enable_cap *cap)
4679 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4680 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4681 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4683 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4684 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4686 if (cap->flags || (cap->args[0] & ~allowed_options))
4688 kvm->manual_dirty_log_protect = cap->args[0];
4692 case KVM_CAP_HALT_POLL: {
4693 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4696 kvm->max_halt_poll_ns = cap->args[0];
4699 * Ensure kvm->override_halt_poll_ns does not become visible
4700 * before kvm->max_halt_poll_ns.
4702 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4705 kvm->override_halt_poll_ns = true;
4709 case KVM_CAP_DIRTY_LOG_RING:
4710 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4711 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4714 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4715 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4718 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4719 !kvm->dirty_ring_size || cap->flags)
4722 mutex_lock(&kvm->slots_lock);
4725 * For simplicity, allow enabling ring+bitmap if and only if
4726 * there are no memslots, e.g. to ensure all memslots allocate
4727 * a bitmap after the capability is enabled.
4729 if (kvm_are_all_memslots_empty(kvm)) {
4730 kvm->dirty_ring_with_bitmap = true;
4734 mutex_unlock(&kvm->slots_lock);
4739 return kvm_vm_ioctl_enable_cap(kvm, cap);
4743 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4744 size_t size, loff_t *offset)
4746 struct kvm *kvm = file->private_data;
4748 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4749 &kvm_vm_stats_desc[0], &kvm->stat,
4750 sizeof(kvm->stat), user_buffer, size, offset);
4753 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4755 struct kvm *kvm = file->private_data;
4761 static const struct file_operations kvm_vm_stats_fops = {
4762 .read = kvm_vm_stats_read,
4763 .release = kvm_vm_stats_release,
4764 .llseek = noop_llseek,
4767 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4772 fd = get_unused_fd_flags(O_CLOEXEC);
4776 file = anon_inode_getfile("kvm-vm-stats",
4777 &kvm_vm_stats_fops, kvm, O_RDONLY);
4780 return PTR_ERR(file);
4785 file->f_mode |= FMODE_PREAD;
4786 fd_install(fd, file);
4791 static long kvm_vm_ioctl(struct file *filp,
4792 unsigned int ioctl, unsigned long arg)
4794 struct kvm *kvm = filp->private_data;
4795 void __user *argp = (void __user *)arg;
4798 if (kvm->mm != current->mm || kvm->vm_dead)
4801 case KVM_CREATE_VCPU:
4802 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4804 case KVM_ENABLE_CAP: {
4805 struct kvm_enable_cap cap;
4808 if (copy_from_user(&cap, argp, sizeof(cap)))
4810 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4813 case KVM_SET_USER_MEMORY_REGION: {
4814 struct kvm_userspace_memory_region kvm_userspace_mem;
4817 if (copy_from_user(&kvm_userspace_mem, argp,
4818 sizeof(kvm_userspace_mem)))
4821 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4824 case KVM_GET_DIRTY_LOG: {
4825 struct kvm_dirty_log log;
4828 if (copy_from_user(&log, argp, sizeof(log)))
4830 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4833 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4834 case KVM_CLEAR_DIRTY_LOG: {
4835 struct kvm_clear_dirty_log log;
4838 if (copy_from_user(&log, argp, sizeof(log)))
4840 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4844 #ifdef CONFIG_KVM_MMIO
4845 case KVM_REGISTER_COALESCED_MMIO: {
4846 struct kvm_coalesced_mmio_zone zone;
4849 if (copy_from_user(&zone, argp, sizeof(zone)))
4851 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4854 case KVM_UNREGISTER_COALESCED_MMIO: {
4855 struct kvm_coalesced_mmio_zone zone;
4858 if (copy_from_user(&zone, argp, sizeof(zone)))
4860 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4865 struct kvm_irqfd data;
4868 if (copy_from_user(&data, argp, sizeof(data)))
4870 r = kvm_irqfd(kvm, &data);
4873 case KVM_IOEVENTFD: {
4874 struct kvm_ioeventfd data;
4877 if (copy_from_user(&data, argp, sizeof(data)))
4879 r = kvm_ioeventfd(kvm, &data);
4882 #ifdef CONFIG_HAVE_KVM_MSI
4883 case KVM_SIGNAL_MSI: {
4887 if (copy_from_user(&msi, argp, sizeof(msi)))
4889 r = kvm_send_userspace_msi(kvm, &msi);
4893 #ifdef __KVM_HAVE_IRQ_LINE
4894 case KVM_IRQ_LINE_STATUS:
4895 case KVM_IRQ_LINE: {
4896 struct kvm_irq_level irq_event;
4899 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4902 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4903 ioctl == KVM_IRQ_LINE_STATUS);
4908 if (ioctl == KVM_IRQ_LINE_STATUS) {
4909 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4917 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4918 case KVM_SET_GSI_ROUTING: {
4919 struct kvm_irq_routing routing;
4920 struct kvm_irq_routing __user *urouting;
4921 struct kvm_irq_routing_entry *entries = NULL;
4924 if (copy_from_user(&routing, argp, sizeof(routing)))
4927 if (!kvm_arch_can_set_irq_routing(kvm))
4929 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4935 entries = vmemdup_user(urouting->entries,
4936 array_size(sizeof(*entries),
4938 if (IS_ERR(entries)) {
4939 r = PTR_ERR(entries);
4943 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4948 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4949 case KVM_CREATE_DEVICE: {
4950 struct kvm_create_device cd;
4953 if (copy_from_user(&cd, argp, sizeof(cd)))
4956 r = kvm_ioctl_create_device(kvm, &cd);
4961 if (copy_to_user(argp, &cd, sizeof(cd)))
4967 case KVM_CHECK_EXTENSION:
4968 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4970 case KVM_RESET_DIRTY_RINGS:
4971 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4973 case KVM_GET_STATS_FD:
4974 r = kvm_vm_ioctl_get_stats_fd(kvm);
4977 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4983 #ifdef CONFIG_KVM_COMPAT
4984 struct compat_kvm_dirty_log {
4988 compat_uptr_t dirty_bitmap; /* one bit per page */
4993 struct compat_kvm_clear_dirty_log {
4998 compat_uptr_t dirty_bitmap; /* one bit per page */
5003 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5009 static long kvm_vm_compat_ioctl(struct file *filp,
5010 unsigned int ioctl, unsigned long arg)
5012 struct kvm *kvm = filp->private_data;
5015 if (kvm->mm != current->mm || kvm->vm_dead)
5018 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5023 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5024 case KVM_CLEAR_DIRTY_LOG: {
5025 struct compat_kvm_clear_dirty_log compat_log;
5026 struct kvm_clear_dirty_log log;
5028 if (copy_from_user(&compat_log, (void __user *)arg,
5029 sizeof(compat_log)))
5031 log.slot = compat_log.slot;
5032 log.num_pages = compat_log.num_pages;
5033 log.first_page = compat_log.first_page;
5034 log.padding2 = compat_log.padding2;
5035 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5037 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5041 case KVM_GET_DIRTY_LOG: {
5042 struct compat_kvm_dirty_log compat_log;
5043 struct kvm_dirty_log log;
5045 if (copy_from_user(&compat_log, (void __user *)arg,
5046 sizeof(compat_log)))
5048 log.slot = compat_log.slot;
5049 log.padding1 = compat_log.padding1;
5050 log.padding2 = compat_log.padding2;
5051 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5053 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5057 r = kvm_vm_ioctl(filp, ioctl, arg);
5063 static const struct file_operations kvm_vm_fops = {
5064 .release = kvm_vm_release,
5065 .unlocked_ioctl = kvm_vm_ioctl,
5066 .llseek = noop_llseek,
5067 KVM_COMPAT(kvm_vm_compat_ioctl),
5070 bool file_is_kvm(struct file *file)
5072 return file && file->f_op == &kvm_vm_fops;
5074 EXPORT_SYMBOL_GPL(file_is_kvm);
5076 static int kvm_dev_ioctl_create_vm(unsigned long type)
5078 char fdname[ITOA_MAX_LEN + 1];
5083 fd = get_unused_fd_flags(O_CLOEXEC);
5087 snprintf(fdname, sizeof(fdname), "%d", fd);
5089 kvm = kvm_create_vm(type, fdname);
5095 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5102 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5103 * already set, with ->release() being kvm_vm_release(). In error
5104 * cases it will be called by the final fput(file) and will take
5105 * care of doing kvm_put_kvm(kvm).
5107 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5109 fd_install(fd, file);
5119 static long kvm_dev_ioctl(struct file *filp,
5120 unsigned int ioctl, unsigned long arg)
5125 case KVM_GET_API_VERSION:
5128 r = KVM_API_VERSION;
5131 r = kvm_dev_ioctl_create_vm(arg);
5133 case KVM_CHECK_EXTENSION:
5134 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5136 case KVM_GET_VCPU_MMAP_SIZE:
5139 r = PAGE_SIZE; /* struct kvm_run */
5141 r += PAGE_SIZE; /* pio data page */
5143 #ifdef CONFIG_KVM_MMIO
5144 r += PAGE_SIZE; /* coalesced mmio ring page */
5147 case KVM_TRACE_ENABLE:
5148 case KVM_TRACE_PAUSE:
5149 case KVM_TRACE_DISABLE:
5153 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5159 static struct file_operations kvm_chardev_ops = {
5160 .unlocked_ioctl = kvm_dev_ioctl,
5161 .llseek = noop_llseek,
5162 KVM_COMPAT(kvm_dev_ioctl),
5165 static struct miscdevice kvm_dev = {
5171 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5172 __visible bool kvm_rebooting;
5173 EXPORT_SYMBOL_GPL(kvm_rebooting);
5175 static DEFINE_PER_CPU(bool, hardware_enabled);
5176 static int kvm_usage_count;
5178 static int __hardware_enable_nolock(void)
5180 if (__this_cpu_read(hardware_enabled))
5183 if (kvm_arch_hardware_enable()) {
5184 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5185 raw_smp_processor_id());
5189 __this_cpu_write(hardware_enabled, true);
5193 static void hardware_enable_nolock(void *failed)
5195 if (__hardware_enable_nolock())
5199 static int kvm_online_cpu(unsigned int cpu)
5204 * Abort the CPU online process if hardware virtualization cannot
5205 * be enabled. Otherwise running VMs would encounter unrecoverable
5206 * errors when scheduled to this CPU.
5208 mutex_lock(&kvm_lock);
5209 if (kvm_usage_count)
5210 ret = __hardware_enable_nolock();
5211 mutex_unlock(&kvm_lock);
5215 static void hardware_disable_nolock(void *junk)
5218 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5219 * hardware, not just CPUs that successfully enabled hardware!
5221 if (!__this_cpu_read(hardware_enabled))
5224 kvm_arch_hardware_disable();
5226 __this_cpu_write(hardware_enabled, false);
5229 static int kvm_offline_cpu(unsigned int cpu)
5231 mutex_lock(&kvm_lock);
5232 if (kvm_usage_count)
5233 hardware_disable_nolock(NULL);
5234 mutex_unlock(&kvm_lock);
5238 static void hardware_disable_all_nolock(void)
5240 BUG_ON(!kvm_usage_count);
5243 if (!kvm_usage_count)
5244 on_each_cpu(hardware_disable_nolock, NULL, 1);
5247 static void hardware_disable_all(void)
5250 mutex_lock(&kvm_lock);
5251 hardware_disable_all_nolock();
5252 mutex_unlock(&kvm_lock);
5256 static int hardware_enable_all(void)
5258 atomic_t failed = ATOMIC_INIT(0);
5262 * Do not enable hardware virtualization if the system is going down.
5263 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5264 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5265 * after kvm_reboot() is called. Note, this relies on system_state
5266 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5267 * hook instead of registering a dedicated reboot notifier (the latter
5268 * runs before system_state is updated).
5270 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5271 system_state == SYSTEM_RESTART)
5275 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5276 * is called, and so on_each_cpu() between them includes the CPU that
5277 * is being onlined. As a result, hardware_enable_nolock() may get
5278 * invoked before kvm_online_cpu(), which also enables hardware if the
5279 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5280 * enable hardware multiple times.
5283 mutex_lock(&kvm_lock);
5288 if (kvm_usage_count == 1) {
5289 on_each_cpu(hardware_enable_nolock, &failed, 1);
5291 if (atomic_read(&failed)) {
5292 hardware_disable_all_nolock();
5297 mutex_unlock(&kvm_lock);
5303 static void kvm_shutdown(void)
5306 * Disable hardware virtualization and set kvm_rebooting to indicate
5307 * that KVM has asynchronously disabled hardware virtualization, i.e.
5308 * that relevant errors and exceptions aren't entirely unexpected.
5309 * Some flavors of hardware virtualization need to be disabled before
5310 * transferring control to firmware (to perform shutdown/reboot), e.g.
5311 * on x86, virtualization can block INIT interrupts, which are used by
5312 * firmware to pull APs back under firmware control. Note, this path
5313 * is used for both shutdown and reboot scenarios, i.e. neither name is
5314 * 100% comprehensive.
5316 pr_info("kvm: exiting hardware virtualization\n");
5317 kvm_rebooting = true;
5318 on_each_cpu(hardware_disable_nolock, NULL, 1);
5321 static int kvm_suspend(void)
5324 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5325 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5326 * is stable. Assert that kvm_lock is not held to ensure the system
5327 * isn't suspended while KVM is enabling hardware. Hardware enabling
5328 * can be preempted, but the task cannot be frozen until it has dropped
5329 * all locks (userspace tasks are frozen via a fake signal).
5331 lockdep_assert_not_held(&kvm_lock);
5332 lockdep_assert_irqs_disabled();
5334 if (kvm_usage_count)
5335 hardware_disable_nolock(NULL);
5339 static void kvm_resume(void)
5341 lockdep_assert_not_held(&kvm_lock);
5342 lockdep_assert_irqs_disabled();
5344 if (kvm_usage_count)
5345 WARN_ON_ONCE(__hardware_enable_nolock());
5348 static struct syscore_ops kvm_syscore_ops = {
5349 .suspend = kvm_suspend,
5350 .resume = kvm_resume,
5351 .shutdown = kvm_shutdown,
5353 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5354 static int hardware_enable_all(void)
5359 static void hardware_disable_all(void)
5363 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5365 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5367 if (dev->ops->destructor)
5368 dev->ops->destructor(dev);
5371 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5375 for (i = 0; i < bus->dev_count; i++) {
5376 struct kvm_io_device *pos = bus->range[i].dev;
5378 kvm_iodevice_destructor(pos);
5383 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5384 const struct kvm_io_range *r2)
5386 gpa_t addr1 = r1->addr;
5387 gpa_t addr2 = r2->addr;
5392 /* If r2->len == 0, match the exact address. If r2->len != 0,
5393 * accept any overlapping write. Any order is acceptable for
5394 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5395 * we process all of them.
5408 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5410 return kvm_io_bus_cmp(p1, p2);
5413 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5414 gpa_t addr, int len)
5416 struct kvm_io_range *range, key;
5419 key = (struct kvm_io_range) {
5424 range = bsearch(&key, bus->range, bus->dev_count,
5425 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5429 off = range - bus->range;
5431 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5437 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5438 struct kvm_io_range *range, const void *val)
5442 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5446 while (idx < bus->dev_count &&
5447 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5448 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5457 /* kvm_io_bus_write - called under kvm->slots_lock */
5458 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5459 int len, const void *val)
5461 struct kvm_io_bus *bus;
5462 struct kvm_io_range range;
5465 range = (struct kvm_io_range) {
5470 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5473 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5474 return r < 0 ? r : 0;
5476 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5478 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5479 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5480 gpa_t addr, int len, const void *val, long cookie)
5482 struct kvm_io_bus *bus;
5483 struct kvm_io_range range;
5485 range = (struct kvm_io_range) {
5490 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5494 /* First try the device referenced by cookie. */
5495 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5496 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5497 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5502 * cookie contained garbage; fall back to search and return the
5503 * correct cookie value.
5505 return __kvm_io_bus_write(vcpu, bus, &range, val);
5508 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5509 struct kvm_io_range *range, void *val)
5513 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5517 while (idx < bus->dev_count &&
5518 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5519 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5528 /* kvm_io_bus_read - called under kvm->slots_lock */
5529 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5532 struct kvm_io_bus *bus;
5533 struct kvm_io_range range;
5536 range = (struct kvm_io_range) {
5541 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5544 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5545 return r < 0 ? r : 0;
5548 /* Caller must hold slots_lock. */
5549 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5550 int len, struct kvm_io_device *dev)
5553 struct kvm_io_bus *new_bus, *bus;
5554 struct kvm_io_range range;
5556 bus = kvm_get_bus(kvm, bus_idx);
5560 /* exclude ioeventfd which is limited by maximum fd */
5561 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5564 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5565 GFP_KERNEL_ACCOUNT);
5569 range = (struct kvm_io_range) {
5575 for (i = 0; i < bus->dev_count; i++)
5576 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5579 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5580 new_bus->dev_count++;
5581 new_bus->range[i] = range;
5582 memcpy(new_bus->range + i + 1, bus->range + i,
5583 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5584 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5585 synchronize_srcu_expedited(&kvm->srcu);
5591 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5592 struct kvm_io_device *dev)
5595 struct kvm_io_bus *new_bus, *bus;
5597 lockdep_assert_held(&kvm->slots_lock);
5599 bus = kvm_get_bus(kvm, bus_idx);
5603 for (i = 0; i < bus->dev_count; i++) {
5604 if (bus->range[i].dev == dev) {
5609 if (i == bus->dev_count)
5612 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5613 GFP_KERNEL_ACCOUNT);
5615 memcpy(new_bus, bus, struct_size(bus, range, i));
5616 new_bus->dev_count--;
5617 memcpy(new_bus->range + i, bus->range + i + 1,
5618 flex_array_size(new_bus, range, new_bus->dev_count - i));
5621 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5622 synchronize_srcu_expedited(&kvm->srcu);
5625 * If NULL bus is installed, destroy the old bus, including all the
5626 * attached devices. Otherwise, destroy the caller's device only.
5629 pr_err("kvm: failed to shrink bus, removing it completely\n");
5630 kvm_io_bus_destroy(bus);
5634 kvm_iodevice_destructor(dev);
5639 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5642 struct kvm_io_bus *bus;
5643 int dev_idx, srcu_idx;
5644 struct kvm_io_device *iodev = NULL;
5646 srcu_idx = srcu_read_lock(&kvm->srcu);
5648 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5652 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5656 iodev = bus->range[dev_idx].dev;
5659 srcu_read_unlock(&kvm->srcu, srcu_idx);
5663 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5665 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5666 int (*get)(void *, u64 *), int (*set)(void *, u64),
5670 struct kvm_stat_data *stat_data = inode->i_private;
5673 * The debugfs files are a reference to the kvm struct which
5674 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5675 * avoids the race between open and the removal of the debugfs directory.
5677 if (!kvm_get_kvm_safe(stat_data->kvm))
5680 ret = simple_attr_open(inode, file, get,
5681 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5684 kvm_put_kvm(stat_data->kvm);
5689 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5691 struct kvm_stat_data *stat_data = inode->i_private;
5693 simple_attr_release(inode, file);
5694 kvm_put_kvm(stat_data->kvm);
5699 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5701 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5706 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5708 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5713 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5716 struct kvm_vcpu *vcpu;
5720 kvm_for_each_vcpu(i, vcpu, kvm)
5721 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5726 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5729 struct kvm_vcpu *vcpu;
5731 kvm_for_each_vcpu(i, vcpu, kvm)
5732 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5737 static int kvm_stat_data_get(void *data, u64 *val)
5740 struct kvm_stat_data *stat_data = data;
5742 switch (stat_data->kind) {
5744 r = kvm_get_stat_per_vm(stat_data->kvm,
5745 stat_data->desc->desc.offset, val);
5748 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5749 stat_data->desc->desc.offset, val);
5756 static int kvm_stat_data_clear(void *data, u64 val)
5759 struct kvm_stat_data *stat_data = data;
5764 switch (stat_data->kind) {
5766 r = kvm_clear_stat_per_vm(stat_data->kvm,
5767 stat_data->desc->desc.offset);
5770 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5771 stat_data->desc->desc.offset);
5778 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5780 __simple_attr_check_format("%llu\n", 0ull);
5781 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5782 kvm_stat_data_clear, "%llu\n");
5785 static const struct file_operations stat_fops_per_vm = {
5786 .owner = THIS_MODULE,
5787 .open = kvm_stat_data_open,
5788 .release = kvm_debugfs_release,
5789 .read = simple_attr_read,
5790 .write = simple_attr_write,
5791 .llseek = no_llseek,
5794 static int vm_stat_get(void *_offset, u64 *val)
5796 unsigned offset = (long)_offset;
5801 mutex_lock(&kvm_lock);
5802 list_for_each_entry(kvm, &vm_list, vm_list) {
5803 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5806 mutex_unlock(&kvm_lock);
5810 static int vm_stat_clear(void *_offset, u64 val)
5812 unsigned offset = (long)_offset;
5818 mutex_lock(&kvm_lock);
5819 list_for_each_entry(kvm, &vm_list, vm_list) {
5820 kvm_clear_stat_per_vm(kvm, offset);
5822 mutex_unlock(&kvm_lock);
5827 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5828 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5830 static int vcpu_stat_get(void *_offset, u64 *val)
5832 unsigned offset = (long)_offset;
5837 mutex_lock(&kvm_lock);
5838 list_for_each_entry(kvm, &vm_list, vm_list) {
5839 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5842 mutex_unlock(&kvm_lock);
5846 static int vcpu_stat_clear(void *_offset, u64 val)
5848 unsigned offset = (long)_offset;
5854 mutex_lock(&kvm_lock);
5855 list_for_each_entry(kvm, &vm_list, vm_list) {
5856 kvm_clear_stat_per_vcpu(kvm, offset);
5858 mutex_unlock(&kvm_lock);
5863 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5865 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5867 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5869 struct kobj_uevent_env *env;
5870 unsigned long long created, active;
5872 if (!kvm_dev.this_device || !kvm)
5875 mutex_lock(&kvm_lock);
5876 if (type == KVM_EVENT_CREATE_VM) {
5877 kvm_createvm_count++;
5879 } else if (type == KVM_EVENT_DESTROY_VM) {
5882 created = kvm_createvm_count;
5883 active = kvm_active_vms;
5884 mutex_unlock(&kvm_lock);
5886 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5890 add_uevent_var(env, "CREATED=%llu", created);
5891 add_uevent_var(env, "COUNT=%llu", active);
5893 if (type == KVM_EVENT_CREATE_VM) {
5894 add_uevent_var(env, "EVENT=create");
5895 kvm->userspace_pid = task_pid_nr(current);
5896 } else if (type == KVM_EVENT_DESTROY_VM) {
5897 add_uevent_var(env, "EVENT=destroy");
5899 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5901 if (!IS_ERR(kvm->debugfs_dentry)) {
5902 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5905 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5907 add_uevent_var(env, "STATS_PATH=%s", tmp);
5911 /* no need for checks, since we are adding at most only 5 keys */
5912 env->envp[env->envp_idx++] = NULL;
5913 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5917 static void kvm_init_debug(void)
5919 const struct file_operations *fops;
5920 const struct _kvm_stats_desc *pdesc;
5923 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5925 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5926 pdesc = &kvm_vm_stats_desc[i];
5927 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5928 fops = &vm_stat_fops;
5930 fops = &vm_stat_readonly_fops;
5931 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5933 (void *)(long)pdesc->desc.offset, fops);
5936 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5937 pdesc = &kvm_vcpu_stats_desc[i];
5938 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5939 fops = &vcpu_stat_fops;
5941 fops = &vcpu_stat_readonly_fops;
5942 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5944 (void *)(long)pdesc->desc.offset, fops);
5949 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5951 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5954 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5956 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5958 WRITE_ONCE(vcpu->preempted, false);
5959 WRITE_ONCE(vcpu->ready, false);
5961 __this_cpu_write(kvm_running_vcpu, vcpu);
5962 kvm_arch_sched_in(vcpu, cpu);
5963 kvm_arch_vcpu_load(vcpu, cpu);
5966 static void kvm_sched_out(struct preempt_notifier *pn,
5967 struct task_struct *next)
5969 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5971 if (current->on_rq) {
5972 WRITE_ONCE(vcpu->preempted, true);
5973 WRITE_ONCE(vcpu->ready, true);
5975 kvm_arch_vcpu_put(vcpu);
5976 __this_cpu_write(kvm_running_vcpu, NULL);
5980 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5982 * We can disable preemption locally around accessing the per-CPU variable,
5983 * and use the resolved vcpu pointer after enabling preemption again,
5984 * because even if the current thread is migrated to another CPU, reading
5985 * the per-CPU value later will give us the same value as we update the
5986 * per-CPU variable in the preempt notifier handlers.
5988 struct kvm_vcpu *kvm_get_running_vcpu(void)
5990 struct kvm_vcpu *vcpu;
5993 vcpu = __this_cpu_read(kvm_running_vcpu);
5998 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6001 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6003 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6005 return &kvm_running_vcpu;
6008 #ifdef CONFIG_GUEST_PERF_EVENTS
6009 static unsigned int kvm_guest_state(void)
6011 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6014 if (!kvm_arch_pmi_in_guest(vcpu))
6017 state = PERF_GUEST_ACTIVE;
6018 if (!kvm_arch_vcpu_in_kernel(vcpu))
6019 state |= PERF_GUEST_USER;
6024 static unsigned long kvm_guest_get_ip(void)
6026 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6028 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6029 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6032 return kvm_arch_vcpu_get_ip(vcpu);
6035 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6036 .state = kvm_guest_state,
6037 .get_ip = kvm_guest_get_ip,
6038 .handle_intel_pt_intr = NULL,
6041 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6043 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6044 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6046 void kvm_unregister_perf_callbacks(void)
6048 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6052 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6057 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6058 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6059 kvm_online_cpu, kvm_offline_cpu);
6063 register_syscore_ops(&kvm_syscore_ops);
6066 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6068 vcpu_align = __alignof__(struct kvm_vcpu);
6070 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6072 offsetof(struct kvm_vcpu, arch),
6073 offsetofend(struct kvm_vcpu, stats_id)
6074 - offsetof(struct kvm_vcpu, arch),
6076 if (!kvm_vcpu_cache) {
6078 goto err_vcpu_cache;
6081 for_each_possible_cpu(cpu) {
6082 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6083 GFP_KERNEL, cpu_to_node(cpu))) {
6085 goto err_cpu_kick_mask;
6089 r = kvm_irqfd_init();
6093 r = kvm_async_pf_init();
6097 kvm_chardev_ops.owner = module;
6099 kvm_preempt_ops.sched_in = kvm_sched_in;
6100 kvm_preempt_ops.sched_out = kvm_sched_out;
6104 r = kvm_vfio_ops_init();
6105 if (WARN_ON_ONCE(r))
6109 * Registration _must_ be the very last thing done, as this exposes
6110 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6112 r = misc_register(&kvm_dev);
6114 pr_err("kvm: misc device register failed\n");
6121 kvm_vfio_ops_exit();
6123 kvm_async_pf_deinit();
6128 for_each_possible_cpu(cpu)
6129 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6130 kmem_cache_destroy(kvm_vcpu_cache);
6132 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6133 unregister_syscore_ops(&kvm_syscore_ops);
6134 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6138 EXPORT_SYMBOL_GPL(kvm_init);
6145 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6146 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6147 * to KVM while the module is being stopped.
6149 misc_deregister(&kvm_dev);
6151 debugfs_remove_recursive(kvm_debugfs_dir);
6152 for_each_possible_cpu(cpu)
6153 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6154 kmem_cache_destroy(kvm_vcpu_cache);
6155 kvm_vfio_ops_exit();
6156 kvm_async_pf_deinit();
6157 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6158 unregister_syscore_ops(&kvm_syscore_ops);
6159 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6163 EXPORT_SYMBOL_GPL(kvm_exit);
6165 struct kvm_vm_worker_thread_context {
6167 struct task_struct *parent;
6168 struct completion init_done;
6169 kvm_vm_thread_fn_t thread_fn;
6174 static int kvm_vm_worker_thread(void *context)
6177 * The init_context is allocated on the stack of the parent thread, so
6178 * we have to locally copy anything that is needed beyond initialization
6180 struct kvm_vm_worker_thread_context *init_context = context;
6181 struct task_struct *parent;
6182 struct kvm *kvm = init_context->kvm;
6183 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6184 uintptr_t data = init_context->data;
6187 err = kthread_park(current);
6188 /* kthread_park(current) is never supposed to return an error */
6193 err = cgroup_attach_task_all(init_context->parent, current);
6195 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6200 set_user_nice(current, task_nice(init_context->parent));
6203 init_context->err = err;
6204 complete(&init_context->init_done);
6205 init_context = NULL;
6210 /* Wait to be woken up by the spawner before proceeding. */
6213 if (!kthread_should_stop())
6214 err = thread_fn(kvm, data);
6218 * Move kthread back to its original cgroup to prevent it lingering in
6219 * the cgroup of the VM process, after the latter finishes its
6222 * kthread_stop() waits on the 'exited' completion condition which is
6223 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6224 * kthread is removed from the cgroup in the cgroup_exit() which is
6225 * called after the exit_mm(). This causes the kthread_stop() to return
6226 * before the kthread actually quits the cgroup.
6229 parent = rcu_dereference(current->real_parent);
6230 get_task_struct(parent);
6232 cgroup_attach_task_all(parent, current);
6233 put_task_struct(parent);
6238 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6239 uintptr_t data, const char *name,
6240 struct task_struct **thread_ptr)
6242 struct kvm_vm_worker_thread_context init_context = {};
6243 struct task_struct *thread;
6246 init_context.kvm = kvm;
6247 init_context.parent = current;
6248 init_context.thread_fn = thread_fn;
6249 init_context.data = data;
6250 init_completion(&init_context.init_done);
6252 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6253 "%s-%d", name, task_pid_nr(current));
6255 return PTR_ERR(thread);
6257 /* kthread_run is never supposed to return NULL */
6258 WARN_ON(thread == NULL);
6260 wait_for_completion(&init_context.init_done);
6262 if (!init_context.err)
6263 *thread_ptr = thread;
6265 return init_context.err;