KVM: mmu: Fix overlap between public and private memslots
[platform/kernel/linux-exynos.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
140                 unsigned long start, unsigned long end)
141 {
142 }
143
144 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
145 {
146         if (pfn_valid(pfn))
147                 return PageReserved(pfn_to_page(pfn));
148
149         return true;
150 }
151
152 /*
153  * Switches to specified vcpu, until a matching vcpu_put()
154  */
155 int vcpu_load(struct kvm_vcpu *vcpu)
156 {
157         int cpu;
158
159         if (mutex_lock_killable(&vcpu->mutex))
160                 return -EINTR;
161         cpu = get_cpu();
162         preempt_notifier_register(&vcpu->preempt_notifier);
163         kvm_arch_vcpu_load(vcpu, cpu);
164         put_cpu();
165         return 0;
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171         preempt_disable();
172         kvm_arch_vcpu_put(vcpu);
173         preempt_notifier_unregister(&vcpu->preempt_notifier);
174         preempt_enable();
175         mutex_unlock(&vcpu->mutex);
176 }
177 EXPORT_SYMBOL_GPL(vcpu_put);
178
179 /* TODO: merge with kvm_arch_vcpu_should_kick */
180 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
181 {
182         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
183
184         /*
185          * We need to wait for the VCPU to reenable interrupts and get out of
186          * READING_SHADOW_PAGE_TABLES mode.
187          */
188         if (req & KVM_REQUEST_WAIT)
189                 return mode != OUTSIDE_GUEST_MODE;
190
191         /*
192          * Need to kick a running VCPU, but otherwise there is nothing to do.
193          */
194         return mode == IN_GUEST_MODE;
195 }
196
197 static void ack_flush(void *_completed)
198 {
199 }
200
201 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
202 {
203         if (unlikely(!cpus))
204                 cpus = cpu_online_mask;
205
206         if (cpumask_empty(cpus))
207                 return false;
208
209         smp_call_function_many(cpus, ack_flush, NULL, wait);
210         return true;
211 }
212
213 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
214 {
215         int i, cpu, me;
216         cpumask_var_t cpus;
217         bool called;
218         struct kvm_vcpu *vcpu;
219
220         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
221
222         me = get_cpu();
223         kvm_for_each_vcpu(i, vcpu, kvm) {
224                 kvm_make_request(req, vcpu);
225                 cpu = vcpu->cpu;
226
227                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
228                         continue;
229
230                 if (cpus != NULL && cpu != -1 && cpu != me &&
231                     kvm_request_needs_ipi(vcpu, req))
232                         __cpumask_set_cpu(cpu, cpus);
233         }
234         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
235         put_cpu();
236         free_cpumask_var(cpus);
237         return called;
238 }
239
240 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
241 void kvm_flush_remote_tlbs(struct kvm *kvm)
242 {
243         /*
244          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
245          * kvm_make_all_cpus_request.
246          */
247         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
248
249         /*
250          * We want to publish modifications to the page tables before reading
251          * mode. Pairs with a memory barrier in arch-specific code.
252          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
253          * and smp_mb in walk_shadow_page_lockless_begin/end.
254          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
255          *
256          * There is already an smp_mb__after_atomic() before
257          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
258          * barrier here.
259          */
260         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
261                 ++kvm->stat.remote_tlb_flush;
262         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
263 }
264 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
265 #endif
266
267 void kvm_reload_remote_mmus(struct kvm *kvm)
268 {
269         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
270 }
271
272 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
273 {
274         struct page *page;
275         int r;
276
277         mutex_init(&vcpu->mutex);
278         vcpu->cpu = -1;
279         vcpu->kvm = kvm;
280         vcpu->vcpu_id = id;
281         vcpu->pid = NULL;
282         init_swait_queue_head(&vcpu->wq);
283         kvm_async_pf_vcpu_init(vcpu);
284
285         vcpu->pre_pcpu = -1;
286         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
287
288         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
289         if (!page) {
290                 r = -ENOMEM;
291                 goto fail;
292         }
293         vcpu->run = page_address(page);
294
295         kvm_vcpu_set_in_spin_loop(vcpu, false);
296         kvm_vcpu_set_dy_eligible(vcpu, false);
297         vcpu->preempted = false;
298
299         r = kvm_arch_vcpu_init(vcpu);
300         if (r < 0)
301                 goto fail_free_run;
302         return 0;
303
304 fail_free_run:
305         free_page((unsigned long)vcpu->run);
306 fail:
307         return r;
308 }
309 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
310
311 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
312 {
313         /*
314          * no need for rcu_read_lock as VCPU_RUN is the only place that
315          * will change the vcpu->pid pointer and on uninit all file
316          * descriptors are already gone.
317          */
318         put_pid(rcu_dereference_protected(vcpu->pid, 1));
319         kvm_arch_vcpu_uninit(vcpu);
320         free_page((unsigned long)vcpu->run);
321 }
322 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
323
324 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
325 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
326 {
327         return container_of(mn, struct kvm, mmu_notifier);
328 }
329
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331                                         struct mm_struct *mm,
332                                         unsigned long address,
333                                         pte_t pte)
334 {
335         struct kvm *kvm = mmu_notifier_to_kvm(mn);
336         int idx;
337
338         idx = srcu_read_lock(&kvm->srcu);
339         spin_lock(&kvm->mmu_lock);
340         kvm->mmu_notifier_seq++;
341         kvm_set_spte_hva(kvm, address, pte);
342         spin_unlock(&kvm->mmu_lock);
343         srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347                                                     struct mm_struct *mm,
348                                                     unsigned long start,
349                                                     unsigned long end)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int need_tlb_flush = 0, idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         /*
357          * The count increase must become visible at unlock time as no
358          * spte can be established without taking the mmu_lock and
359          * count is also read inside the mmu_lock critical section.
360          */
361         kvm->mmu_notifier_count++;
362         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363         need_tlb_flush |= kvm->tlbs_dirty;
364         /* we've to flush the tlb before the pages can be freed */
365         if (need_tlb_flush)
366                 kvm_flush_remote_tlbs(kvm);
367
368         spin_unlock(&kvm->mmu_lock);
369
370         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
371
372         srcu_read_unlock(&kvm->srcu, idx);
373 }
374
375 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
376                                                   struct mm_struct *mm,
377                                                   unsigned long start,
378                                                   unsigned long end)
379 {
380         struct kvm *kvm = mmu_notifier_to_kvm(mn);
381
382         spin_lock(&kvm->mmu_lock);
383         /*
384          * This sequence increase will notify the kvm page fault that
385          * the page that is going to be mapped in the spte could have
386          * been freed.
387          */
388         kvm->mmu_notifier_seq++;
389         smp_wmb();
390         /*
391          * The above sequence increase must be visible before the
392          * below count decrease, which is ensured by the smp_wmb above
393          * in conjunction with the smp_rmb in mmu_notifier_retry().
394          */
395         kvm->mmu_notifier_count--;
396         spin_unlock(&kvm->mmu_lock);
397
398         BUG_ON(kvm->mmu_notifier_count < 0);
399 }
400
401 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
402                                               struct mm_struct *mm,
403                                               unsigned long start,
404                                               unsigned long end)
405 {
406         struct kvm *kvm = mmu_notifier_to_kvm(mn);
407         int young, idx;
408
409         idx = srcu_read_lock(&kvm->srcu);
410         spin_lock(&kvm->mmu_lock);
411
412         young = kvm_age_hva(kvm, start, end);
413         if (young)
414                 kvm_flush_remote_tlbs(kvm);
415
416         spin_unlock(&kvm->mmu_lock);
417         srcu_read_unlock(&kvm->srcu, idx);
418
419         return young;
420 }
421
422 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
423                                         struct mm_struct *mm,
424                                         unsigned long start,
425                                         unsigned long end)
426 {
427         struct kvm *kvm = mmu_notifier_to_kvm(mn);
428         int young, idx;
429
430         idx = srcu_read_lock(&kvm->srcu);
431         spin_lock(&kvm->mmu_lock);
432         /*
433          * Even though we do not flush TLB, this will still adversely
434          * affect performance on pre-Haswell Intel EPT, where there is
435          * no EPT Access Bit to clear so that we have to tear down EPT
436          * tables instead. If we find this unacceptable, we can always
437          * add a parameter to kvm_age_hva so that it effectively doesn't
438          * do anything on clear_young.
439          *
440          * Also note that currently we never issue secondary TLB flushes
441          * from clear_young, leaving this job up to the regular system
442          * cadence. If we find this inaccurate, we might come up with a
443          * more sophisticated heuristic later.
444          */
445         young = kvm_age_hva(kvm, start, end);
446         spin_unlock(&kvm->mmu_lock);
447         srcu_read_unlock(&kvm->srcu, idx);
448
449         return young;
450 }
451
452 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
453                                        struct mm_struct *mm,
454                                        unsigned long address)
455 {
456         struct kvm *kvm = mmu_notifier_to_kvm(mn);
457         int young, idx;
458
459         idx = srcu_read_lock(&kvm->srcu);
460         spin_lock(&kvm->mmu_lock);
461         young = kvm_test_age_hva(kvm, address);
462         spin_unlock(&kvm->mmu_lock);
463         srcu_read_unlock(&kvm->srcu, idx);
464
465         return young;
466 }
467
468 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
469                                      struct mm_struct *mm)
470 {
471         struct kvm *kvm = mmu_notifier_to_kvm(mn);
472         int idx;
473
474         idx = srcu_read_lock(&kvm->srcu);
475         kvm_arch_flush_shadow_all(kvm);
476         srcu_read_unlock(&kvm->srcu, idx);
477 }
478
479 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
480         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
481         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
482         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
483         .clear_young            = kvm_mmu_notifier_clear_young,
484         .test_young             = kvm_mmu_notifier_test_young,
485         .change_pte             = kvm_mmu_notifier_change_pte,
486         .release                = kvm_mmu_notifier_release,
487 };
488
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
492         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
493 }
494
495 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
496
497 static int kvm_init_mmu_notifier(struct kvm *kvm)
498 {
499         return 0;
500 }
501
502 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
503
504 static struct kvm_memslots *kvm_alloc_memslots(void)
505 {
506         int i;
507         struct kvm_memslots *slots;
508
509         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
510         if (!slots)
511                 return NULL;
512
513         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
514                 slots->id_to_index[i] = slots->memslots[i].id = i;
515
516         return slots;
517 }
518
519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
520 {
521         if (!memslot->dirty_bitmap)
522                 return;
523
524         kvfree(memslot->dirty_bitmap);
525         memslot->dirty_bitmap = NULL;
526 }
527
528 /*
529  * Free any memory in @free but not in @dont.
530  */
531 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
532                               struct kvm_memory_slot *dont)
533 {
534         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
535                 kvm_destroy_dirty_bitmap(free);
536
537         kvm_arch_free_memslot(kvm, free, dont);
538
539         free->npages = 0;
540 }
541
542 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
543 {
544         struct kvm_memory_slot *memslot;
545
546         if (!slots)
547                 return;
548
549         kvm_for_each_memslot(memslot, slots)
550                 kvm_free_memslot(kvm, memslot, NULL);
551
552         kvfree(slots);
553 }
554
555 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
556 {
557         int i;
558
559         if (!kvm->debugfs_dentry)
560                 return;
561
562         debugfs_remove_recursive(kvm->debugfs_dentry);
563
564         if (kvm->debugfs_stat_data) {
565                 for (i = 0; i < kvm_debugfs_num_entries; i++)
566                         kfree(kvm->debugfs_stat_data[i]);
567                 kfree(kvm->debugfs_stat_data);
568         }
569 }
570
571 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
572 {
573         char dir_name[ITOA_MAX_LEN * 2];
574         struct kvm_stat_data *stat_data;
575         struct kvm_stats_debugfs_item *p;
576
577         if (!debugfs_initialized())
578                 return 0;
579
580         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
581         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
582                                                  kvm_debugfs_dir);
583         if (!kvm->debugfs_dentry)
584                 return -ENOMEM;
585
586         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
587                                          sizeof(*kvm->debugfs_stat_data),
588                                          GFP_KERNEL);
589         if (!kvm->debugfs_stat_data)
590                 return -ENOMEM;
591
592         for (p = debugfs_entries; p->name; p++) {
593                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
594                 if (!stat_data)
595                         return -ENOMEM;
596
597                 stat_data->kvm = kvm;
598                 stat_data->offset = p->offset;
599                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
600                 if (!debugfs_create_file(p->name, 0644,
601                                          kvm->debugfs_dentry,
602                                          stat_data,
603                                          stat_fops_per_vm[p->kind]))
604                         return -ENOMEM;
605         }
606         return 0;
607 }
608
609 static struct kvm *kvm_create_vm(unsigned long type)
610 {
611         int r, i;
612         struct kvm *kvm = kvm_arch_alloc_vm();
613
614         if (!kvm)
615                 return ERR_PTR(-ENOMEM);
616
617         spin_lock_init(&kvm->mmu_lock);
618         mmgrab(current->mm);
619         kvm->mm = current->mm;
620         kvm_eventfd_init(kvm);
621         mutex_init(&kvm->lock);
622         mutex_init(&kvm->irq_lock);
623         mutex_init(&kvm->slots_lock);
624         refcount_set(&kvm->users_count, 1);
625         INIT_LIST_HEAD(&kvm->devices);
626
627         r = kvm_arch_init_vm(kvm, type);
628         if (r)
629                 goto out_err_no_disable;
630
631         r = hardware_enable_all();
632         if (r)
633                 goto out_err_no_disable;
634
635 #ifdef CONFIG_HAVE_KVM_IRQFD
636         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
637 #endif
638
639         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
640
641         r = -ENOMEM;
642         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
643                 struct kvm_memslots *slots = kvm_alloc_memslots();
644                 if (!slots)
645                         goto out_err_no_srcu;
646                 /*
647                  * Generations must be different for each address space.
648                  * Init kvm generation close to the maximum to easily test the
649                  * code of handling generation number wrap-around.
650                  */
651                 slots->generation = i * 2 - 150;
652                 rcu_assign_pointer(kvm->memslots[i], slots);
653         }
654
655         if (init_srcu_struct(&kvm->srcu))
656                 goto out_err_no_srcu;
657         if (init_srcu_struct(&kvm->irq_srcu))
658                 goto out_err_no_irq_srcu;
659         for (i = 0; i < KVM_NR_BUSES; i++) {
660                 rcu_assign_pointer(kvm->buses[i],
661                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
662                 if (!kvm->buses[i])
663                         goto out_err;
664         }
665
666         r = kvm_init_mmu_notifier(kvm);
667         if (r)
668                 goto out_err;
669
670         spin_lock(&kvm_lock);
671         list_add(&kvm->vm_list, &vm_list);
672         spin_unlock(&kvm_lock);
673
674         preempt_notifier_inc();
675
676         return kvm;
677
678 out_err:
679         cleanup_srcu_struct(&kvm->irq_srcu);
680 out_err_no_irq_srcu:
681         cleanup_srcu_struct(&kvm->srcu);
682 out_err_no_srcu:
683         hardware_disable_all();
684 out_err_no_disable:
685         refcount_set(&kvm->users_count, 0);
686         for (i = 0; i < KVM_NR_BUSES; i++)
687                 kfree(kvm_get_bus(kvm, i));
688         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
689                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
690         kvm_arch_free_vm(kvm);
691         mmdrop(current->mm);
692         return ERR_PTR(r);
693 }
694
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697         struct kvm_device *dev, *tmp;
698
699         /*
700          * We do not need to take the kvm->lock here, because nobody else
701          * has a reference to the struct kvm at this point and therefore
702          * cannot access the devices list anyhow.
703          */
704         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
705                 list_del(&dev->vm_node);
706                 dev->ops->destroy(dev);
707         }
708 }
709
710 static void kvm_destroy_vm(struct kvm *kvm)
711 {
712         int i;
713         struct mm_struct *mm = kvm->mm;
714
715         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
716         kvm_destroy_vm_debugfs(kvm);
717         kvm_arch_sync_events(kvm);
718         spin_lock(&kvm_lock);
719         list_del(&kvm->vm_list);
720         spin_unlock(&kvm_lock);
721         kvm_free_irq_routing(kvm);
722         for (i = 0; i < KVM_NR_BUSES; i++) {
723                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
724
725                 if (bus)
726                         kvm_io_bus_destroy(bus);
727                 kvm->buses[i] = NULL;
728         }
729         kvm_coalesced_mmio_free(kvm);
730 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
731         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
732 #else
733         kvm_arch_flush_shadow_all(kvm);
734 #endif
735         kvm_arch_destroy_vm(kvm);
736         kvm_destroy_devices(kvm);
737         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
738                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
739         cleanup_srcu_struct(&kvm->irq_srcu);
740         cleanup_srcu_struct(&kvm->srcu);
741         kvm_arch_free_vm(kvm);
742         preempt_notifier_dec();
743         hardware_disable_all();
744         mmdrop(mm);
745 }
746
747 void kvm_get_kvm(struct kvm *kvm)
748 {
749         refcount_inc(&kvm->users_count);
750 }
751 EXPORT_SYMBOL_GPL(kvm_get_kvm);
752
753 void kvm_put_kvm(struct kvm *kvm)
754 {
755         if (refcount_dec_and_test(&kvm->users_count))
756                 kvm_destroy_vm(kvm);
757 }
758 EXPORT_SYMBOL_GPL(kvm_put_kvm);
759
760
761 static int kvm_vm_release(struct inode *inode, struct file *filp)
762 {
763         struct kvm *kvm = filp->private_data;
764
765         kvm_irqfd_release(kvm);
766
767         kvm_put_kvm(kvm);
768         return 0;
769 }
770
771 /*
772  * Allocation size is twice as large as the actual dirty bitmap size.
773  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
774  */
775 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
776 {
777         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
778
779         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
780         if (!memslot->dirty_bitmap)
781                 return -ENOMEM;
782
783         return 0;
784 }
785
786 /*
787  * Insert memslot and re-sort memslots based on their GFN,
788  * so binary search could be used to lookup GFN.
789  * Sorting algorithm takes advantage of having initially
790  * sorted array and known changed memslot position.
791  */
792 static void update_memslots(struct kvm_memslots *slots,
793                             struct kvm_memory_slot *new)
794 {
795         int id = new->id;
796         int i = slots->id_to_index[id];
797         struct kvm_memory_slot *mslots = slots->memslots;
798
799         WARN_ON(mslots[i].id != id);
800         if (!new->npages) {
801                 WARN_ON(!mslots[i].npages);
802                 if (mslots[i].npages)
803                         slots->used_slots--;
804         } else {
805                 if (!mslots[i].npages)
806                         slots->used_slots++;
807         }
808
809         while (i < KVM_MEM_SLOTS_NUM - 1 &&
810                new->base_gfn <= mslots[i + 1].base_gfn) {
811                 if (!mslots[i + 1].npages)
812                         break;
813                 mslots[i] = mslots[i + 1];
814                 slots->id_to_index[mslots[i].id] = i;
815                 i++;
816         }
817
818         /*
819          * The ">=" is needed when creating a slot with base_gfn == 0,
820          * so that it moves before all those with base_gfn == npages == 0.
821          *
822          * On the other hand, if new->npages is zero, the above loop has
823          * already left i pointing to the beginning of the empty part of
824          * mslots, and the ">=" would move the hole backwards in this
825          * case---which is wrong.  So skip the loop when deleting a slot.
826          */
827         if (new->npages) {
828                 while (i > 0 &&
829                        new->base_gfn >= mslots[i - 1].base_gfn) {
830                         mslots[i] = mslots[i - 1];
831                         slots->id_to_index[mslots[i].id] = i;
832                         i--;
833                 }
834         } else
835                 WARN_ON_ONCE(i != slots->used_slots);
836
837         mslots[i] = *new;
838         slots->id_to_index[mslots[i].id] = i;
839 }
840
841 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
842 {
843         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
844
845 #ifdef __KVM_HAVE_READONLY_MEM
846         valid_flags |= KVM_MEM_READONLY;
847 #endif
848
849         if (mem->flags & ~valid_flags)
850                 return -EINVAL;
851
852         return 0;
853 }
854
855 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
856                 int as_id, struct kvm_memslots *slots)
857 {
858         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
859
860         /*
861          * Set the low bit in the generation, which disables SPTE caching
862          * until the end of synchronize_srcu_expedited.
863          */
864         WARN_ON(old_memslots->generation & 1);
865         slots->generation = old_memslots->generation + 1;
866
867         rcu_assign_pointer(kvm->memslots[as_id], slots);
868         synchronize_srcu_expedited(&kvm->srcu);
869
870         /*
871          * Increment the new memslot generation a second time. This prevents
872          * vm exits that race with memslot updates from caching a memslot
873          * generation that will (potentially) be valid forever.
874          *
875          * Generations must be unique even across address spaces.  We do not need
876          * a global counter for that, instead the generation space is evenly split
877          * across address spaces.  For example, with two address spaces, address
878          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
879          * use generations 2, 6, 10, 14, ...
880          */
881         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
882
883         kvm_arch_memslots_updated(kvm, slots);
884
885         return old_memslots;
886 }
887
888 /*
889  * Allocate some memory and give it an address in the guest physical address
890  * space.
891  *
892  * Discontiguous memory is allowed, mostly for framebuffers.
893  *
894  * Must be called holding kvm->slots_lock for write.
895  */
896 int __kvm_set_memory_region(struct kvm *kvm,
897                             const struct kvm_userspace_memory_region *mem)
898 {
899         int r;
900         gfn_t base_gfn;
901         unsigned long npages;
902         struct kvm_memory_slot *slot;
903         struct kvm_memory_slot old, new;
904         struct kvm_memslots *slots = NULL, *old_memslots;
905         int as_id, id;
906         enum kvm_mr_change change;
907
908         r = check_memory_region_flags(mem);
909         if (r)
910                 goto out;
911
912         r = -EINVAL;
913         as_id = mem->slot >> 16;
914         id = (u16)mem->slot;
915
916         /* General sanity checks */
917         if (mem->memory_size & (PAGE_SIZE - 1))
918                 goto out;
919         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
920                 goto out;
921         /* We can read the guest memory with __xxx_user() later on. */
922         if ((id < KVM_USER_MEM_SLOTS) &&
923             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
924              !access_ok(VERIFY_WRITE,
925                         (void __user *)(unsigned long)mem->userspace_addr,
926                         mem->memory_size)))
927                 goto out;
928         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
929                 goto out;
930         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
931                 goto out;
932
933         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
934         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
935         npages = mem->memory_size >> PAGE_SHIFT;
936
937         if (npages > KVM_MEM_MAX_NR_PAGES)
938                 goto out;
939
940         new = old = *slot;
941
942         new.id = id;
943         new.base_gfn = base_gfn;
944         new.npages = npages;
945         new.flags = mem->flags;
946
947         if (npages) {
948                 if (!old.npages)
949                         change = KVM_MR_CREATE;
950                 else { /* Modify an existing slot. */
951                         if ((mem->userspace_addr != old.userspace_addr) ||
952                             (npages != old.npages) ||
953                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
954                                 goto out;
955
956                         if (base_gfn != old.base_gfn)
957                                 change = KVM_MR_MOVE;
958                         else if (new.flags != old.flags)
959                                 change = KVM_MR_FLAGS_ONLY;
960                         else { /* Nothing to change. */
961                                 r = 0;
962                                 goto out;
963                         }
964                 }
965         } else {
966                 if (!old.npages)
967                         goto out;
968
969                 change = KVM_MR_DELETE;
970                 new.base_gfn = 0;
971                 new.flags = 0;
972         }
973
974         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
975                 /* Check for overlaps */
976                 r = -EEXIST;
977                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
978                         if (slot->id == id)
979                                 continue;
980                         if (!((base_gfn + npages <= slot->base_gfn) ||
981                               (base_gfn >= slot->base_gfn + slot->npages)))
982                                 goto out;
983                 }
984         }
985
986         /* Free page dirty bitmap if unneeded */
987         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
988                 new.dirty_bitmap = NULL;
989
990         r = -ENOMEM;
991         if (change == KVM_MR_CREATE) {
992                 new.userspace_addr = mem->userspace_addr;
993
994                 if (kvm_arch_create_memslot(kvm, &new, npages))
995                         goto out_free;
996         }
997
998         /* Allocate page dirty bitmap if needed */
999         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1000                 if (kvm_create_dirty_bitmap(&new) < 0)
1001                         goto out_free;
1002         }
1003
1004         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1005         if (!slots)
1006                 goto out_free;
1007         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1008
1009         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1010                 slot = id_to_memslot(slots, id);
1011                 slot->flags |= KVM_MEMSLOT_INVALID;
1012
1013                 old_memslots = install_new_memslots(kvm, as_id, slots);
1014
1015                 /* From this point no new shadow pages pointing to a deleted,
1016                  * or moved, memslot will be created.
1017                  *
1018                  * validation of sp->gfn happens in:
1019                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1020                  *      - kvm_is_visible_gfn (mmu_check_roots)
1021                  */
1022                 kvm_arch_flush_shadow_memslot(kvm, slot);
1023
1024                 /*
1025                  * We can re-use the old_memslots from above, the only difference
1026                  * from the currently installed memslots is the invalid flag.  This
1027                  * will get overwritten by update_memslots anyway.
1028                  */
1029                 slots = old_memslots;
1030         }
1031
1032         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1033         if (r)
1034                 goto out_slots;
1035
1036         /* actual memory is freed via old in kvm_free_memslot below */
1037         if (change == KVM_MR_DELETE) {
1038                 new.dirty_bitmap = NULL;
1039                 memset(&new.arch, 0, sizeof(new.arch));
1040         }
1041
1042         update_memslots(slots, &new);
1043         old_memslots = install_new_memslots(kvm, as_id, slots);
1044
1045         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1046
1047         kvm_free_memslot(kvm, &old, &new);
1048         kvfree(old_memslots);
1049         return 0;
1050
1051 out_slots:
1052         kvfree(slots);
1053 out_free:
1054         kvm_free_memslot(kvm, &new, &old);
1055 out:
1056         return r;
1057 }
1058 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1059
1060 int kvm_set_memory_region(struct kvm *kvm,
1061                           const struct kvm_userspace_memory_region *mem)
1062 {
1063         int r;
1064
1065         mutex_lock(&kvm->slots_lock);
1066         r = __kvm_set_memory_region(kvm, mem);
1067         mutex_unlock(&kvm->slots_lock);
1068         return r;
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1071
1072 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1073                                           struct kvm_userspace_memory_region *mem)
1074 {
1075         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1076                 return -EINVAL;
1077
1078         return kvm_set_memory_region(kvm, mem);
1079 }
1080
1081 int kvm_get_dirty_log(struct kvm *kvm,
1082                         struct kvm_dirty_log *log, int *is_dirty)
1083 {
1084         struct kvm_memslots *slots;
1085         struct kvm_memory_slot *memslot;
1086         int i, as_id, id;
1087         unsigned long n;
1088         unsigned long any = 0;
1089
1090         as_id = log->slot >> 16;
1091         id = (u16)log->slot;
1092         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1093                 return -EINVAL;
1094
1095         slots = __kvm_memslots(kvm, as_id);
1096         memslot = id_to_memslot(slots, id);
1097         if (!memslot->dirty_bitmap)
1098                 return -ENOENT;
1099
1100         n = kvm_dirty_bitmap_bytes(memslot);
1101
1102         for (i = 0; !any && i < n/sizeof(long); ++i)
1103                 any = memslot->dirty_bitmap[i];
1104
1105         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1106                 return -EFAULT;
1107
1108         if (any)
1109                 *is_dirty = 1;
1110         return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1113
1114 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1115 /**
1116  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1117  *      are dirty write protect them for next write.
1118  * @kvm:        pointer to kvm instance
1119  * @log:        slot id and address to which we copy the log
1120  * @is_dirty:   flag set if any page is dirty
1121  *
1122  * We need to keep it in mind that VCPU threads can write to the bitmap
1123  * concurrently. So, to avoid losing track of dirty pages we keep the
1124  * following order:
1125  *
1126  *    1. Take a snapshot of the bit and clear it if needed.
1127  *    2. Write protect the corresponding page.
1128  *    3. Copy the snapshot to the userspace.
1129  *    4. Upon return caller flushes TLB's if needed.
1130  *
1131  * Between 2 and 4, the guest may write to the page using the remaining TLB
1132  * entry.  This is not a problem because the page is reported dirty using
1133  * the snapshot taken before and step 4 ensures that writes done after
1134  * exiting to userspace will be logged for the next call.
1135  *
1136  */
1137 int kvm_get_dirty_log_protect(struct kvm *kvm,
1138                         struct kvm_dirty_log *log, bool *is_dirty)
1139 {
1140         struct kvm_memslots *slots;
1141         struct kvm_memory_slot *memslot;
1142         int i, as_id, id;
1143         unsigned long n;
1144         unsigned long *dirty_bitmap;
1145         unsigned long *dirty_bitmap_buffer;
1146
1147         as_id = log->slot >> 16;
1148         id = (u16)log->slot;
1149         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1150                 return -EINVAL;
1151
1152         slots = __kvm_memslots(kvm, as_id);
1153         memslot = id_to_memslot(slots, id);
1154
1155         dirty_bitmap = memslot->dirty_bitmap;
1156         if (!dirty_bitmap)
1157                 return -ENOENT;
1158
1159         n = kvm_dirty_bitmap_bytes(memslot);
1160
1161         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1162         memset(dirty_bitmap_buffer, 0, n);
1163
1164         spin_lock(&kvm->mmu_lock);
1165         *is_dirty = false;
1166         for (i = 0; i < n / sizeof(long); i++) {
1167                 unsigned long mask;
1168                 gfn_t offset;
1169
1170                 if (!dirty_bitmap[i])
1171                         continue;
1172
1173                 *is_dirty = true;
1174
1175                 mask = xchg(&dirty_bitmap[i], 0);
1176                 dirty_bitmap_buffer[i] = mask;
1177
1178                 if (mask) {
1179                         offset = i * BITS_PER_LONG;
1180                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1181                                                                 offset, mask);
1182                 }
1183         }
1184
1185         spin_unlock(&kvm->mmu_lock);
1186         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1187                 return -EFAULT;
1188         return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1191 #endif
1192
1193 bool kvm_largepages_enabled(void)
1194 {
1195         return largepages_enabled;
1196 }
1197
1198 void kvm_disable_largepages(void)
1199 {
1200         largepages_enabled = false;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1203
1204 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1205 {
1206         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1207 }
1208 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1209
1210 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1211 {
1212         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1213 }
1214
1215 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1216 {
1217         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1218
1219         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1220               memslot->flags & KVM_MEMSLOT_INVALID)
1221                 return false;
1222
1223         return true;
1224 }
1225 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1226
1227 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1228 {
1229         struct vm_area_struct *vma;
1230         unsigned long addr, size;
1231
1232         size = PAGE_SIZE;
1233
1234         addr = gfn_to_hva(kvm, gfn);
1235         if (kvm_is_error_hva(addr))
1236                 return PAGE_SIZE;
1237
1238         down_read(&current->mm->mmap_sem);
1239         vma = find_vma(current->mm, addr);
1240         if (!vma)
1241                 goto out;
1242
1243         size = vma_kernel_pagesize(vma);
1244
1245 out:
1246         up_read(&current->mm->mmap_sem);
1247
1248         return size;
1249 }
1250
1251 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1252 {
1253         return slot->flags & KVM_MEM_READONLY;
1254 }
1255
1256 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1257                                        gfn_t *nr_pages, bool write)
1258 {
1259         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1260                 return KVM_HVA_ERR_BAD;
1261
1262         if (memslot_is_readonly(slot) && write)
1263                 return KVM_HVA_ERR_RO_BAD;
1264
1265         if (nr_pages)
1266                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1267
1268         return __gfn_to_hva_memslot(slot, gfn);
1269 }
1270
1271 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1272                                      gfn_t *nr_pages)
1273 {
1274         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1275 }
1276
1277 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1278                                         gfn_t gfn)
1279 {
1280         return gfn_to_hva_many(slot, gfn, NULL);
1281 }
1282 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1283
1284 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1285 {
1286         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1287 }
1288 EXPORT_SYMBOL_GPL(gfn_to_hva);
1289
1290 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1291 {
1292         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1295
1296 /*
1297  * If writable is set to false, the hva returned by this function is only
1298  * allowed to be read.
1299  */
1300 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1301                                       gfn_t gfn, bool *writable)
1302 {
1303         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1304
1305         if (!kvm_is_error_hva(hva) && writable)
1306                 *writable = !memslot_is_readonly(slot);
1307
1308         return hva;
1309 }
1310
1311 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1312 {
1313         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1314
1315         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1316 }
1317
1318 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1319 {
1320         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1321
1322         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1323 }
1324
1325 static int get_user_page_nowait(unsigned long start, int write,
1326                 struct page **page)
1327 {
1328         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1329
1330         if (write)
1331                 flags |= FOLL_WRITE;
1332
1333         return get_user_pages(start, 1, flags, page, NULL);
1334 }
1335
1336 static inline int check_user_page_hwpoison(unsigned long addr)
1337 {
1338         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1339
1340         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1341         return rc == -EHWPOISON;
1342 }
1343
1344 /*
1345  * The atomic path to get the writable pfn which will be stored in @pfn,
1346  * true indicates success, otherwise false is returned.
1347  */
1348 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1349                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1350 {
1351         struct page *page[1];
1352         int npages;
1353
1354         if (!(async || atomic))
1355                 return false;
1356
1357         /*
1358          * Fast pin a writable pfn only if it is a write fault request
1359          * or the caller allows to map a writable pfn for a read fault
1360          * request.
1361          */
1362         if (!(write_fault || writable))
1363                 return false;
1364
1365         npages = __get_user_pages_fast(addr, 1, 1, page);
1366         if (npages == 1) {
1367                 *pfn = page_to_pfn(page[0]);
1368
1369                 if (writable)
1370                         *writable = true;
1371                 return true;
1372         }
1373
1374         return false;
1375 }
1376
1377 /*
1378  * The slow path to get the pfn of the specified host virtual address,
1379  * 1 indicates success, -errno is returned if error is detected.
1380  */
1381 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1382                            bool *writable, kvm_pfn_t *pfn)
1383 {
1384         struct page *page[1];
1385         int npages = 0;
1386
1387         might_sleep();
1388
1389         if (writable)
1390                 *writable = write_fault;
1391
1392         if (async) {
1393                 down_read(&current->mm->mmap_sem);
1394                 npages = get_user_page_nowait(addr, write_fault, page);
1395                 up_read(&current->mm->mmap_sem);
1396         } else {
1397                 unsigned int flags = FOLL_HWPOISON;
1398
1399                 if (write_fault)
1400                         flags |= FOLL_WRITE;
1401
1402                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1403         }
1404         if (npages != 1)
1405                 return npages;
1406
1407         /* map read fault as writable if possible */
1408         if (unlikely(!write_fault) && writable) {
1409                 struct page *wpage[1];
1410
1411                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1412                 if (npages == 1) {
1413                         *writable = true;
1414                         put_page(page[0]);
1415                         page[0] = wpage[0];
1416                 }
1417
1418                 npages = 1;
1419         }
1420         *pfn = page_to_pfn(page[0]);
1421         return npages;
1422 }
1423
1424 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1425 {
1426         if (unlikely(!(vma->vm_flags & VM_READ)))
1427                 return false;
1428
1429         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1430                 return false;
1431
1432         return true;
1433 }
1434
1435 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1436                                unsigned long addr, bool *async,
1437                                bool write_fault, kvm_pfn_t *p_pfn)
1438 {
1439         unsigned long pfn;
1440         int r;
1441
1442         r = follow_pfn(vma, addr, &pfn);
1443         if (r) {
1444                 /*
1445                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1446                  * not call the fault handler, so do it here.
1447                  */
1448                 bool unlocked = false;
1449                 r = fixup_user_fault(current, current->mm, addr,
1450                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1451                                      &unlocked);
1452                 if (unlocked)
1453                         return -EAGAIN;
1454                 if (r)
1455                         return r;
1456
1457                 r = follow_pfn(vma, addr, &pfn);
1458                 if (r)
1459                         return r;
1460
1461         }
1462
1463
1464         /*
1465          * Get a reference here because callers of *hva_to_pfn* and
1466          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1467          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1468          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1469          * simply do nothing for reserved pfns.
1470          *
1471          * Whoever called remap_pfn_range is also going to call e.g.
1472          * unmap_mapping_range before the underlying pages are freed,
1473          * causing a call to our MMU notifier.
1474          */ 
1475         kvm_get_pfn(pfn);
1476
1477         *p_pfn = pfn;
1478         return 0;
1479 }
1480
1481 /*
1482  * Pin guest page in memory and return its pfn.
1483  * @addr: host virtual address which maps memory to the guest
1484  * @atomic: whether this function can sleep
1485  * @async: whether this function need to wait IO complete if the
1486  *         host page is not in the memory
1487  * @write_fault: whether we should get a writable host page
1488  * @writable: whether it allows to map a writable host page for !@write_fault
1489  *
1490  * The function will map a writable host page for these two cases:
1491  * 1): @write_fault = true
1492  * 2): @write_fault = false && @writable, @writable will tell the caller
1493  *     whether the mapping is writable.
1494  */
1495 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1496                         bool write_fault, bool *writable)
1497 {
1498         struct vm_area_struct *vma;
1499         kvm_pfn_t pfn = 0;
1500         int npages, r;
1501
1502         /* we can do it either atomically or asynchronously, not both */
1503         BUG_ON(atomic && async);
1504
1505         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1506                 return pfn;
1507
1508         if (atomic)
1509                 return KVM_PFN_ERR_FAULT;
1510
1511         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1512         if (npages == 1)
1513                 return pfn;
1514
1515         down_read(&current->mm->mmap_sem);
1516         if (npages == -EHWPOISON ||
1517               (!async && check_user_page_hwpoison(addr))) {
1518                 pfn = KVM_PFN_ERR_HWPOISON;
1519                 goto exit;
1520         }
1521
1522 retry:
1523         vma = find_vma_intersection(current->mm, addr, addr + 1);
1524
1525         if (vma == NULL)
1526                 pfn = KVM_PFN_ERR_FAULT;
1527         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1528                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1529                 if (r == -EAGAIN)
1530                         goto retry;
1531                 if (r < 0)
1532                         pfn = KVM_PFN_ERR_FAULT;
1533         } else {
1534                 if (async && vma_is_valid(vma, write_fault))
1535                         *async = true;
1536                 pfn = KVM_PFN_ERR_FAULT;
1537         }
1538 exit:
1539         up_read(&current->mm->mmap_sem);
1540         return pfn;
1541 }
1542
1543 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1544                                bool atomic, bool *async, bool write_fault,
1545                                bool *writable)
1546 {
1547         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1548
1549         if (addr == KVM_HVA_ERR_RO_BAD) {
1550                 if (writable)
1551                         *writable = false;
1552                 return KVM_PFN_ERR_RO_FAULT;
1553         }
1554
1555         if (kvm_is_error_hva(addr)) {
1556                 if (writable)
1557                         *writable = false;
1558                 return KVM_PFN_NOSLOT;
1559         }
1560
1561         /* Do not map writable pfn in the readonly memslot. */
1562         if (writable && memslot_is_readonly(slot)) {
1563                 *writable = false;
1564                 writable = NULL;
1565         }
1566
1567         return hva_to_pfn(addr, atomic, async, write_fault,
1568                           writable);
1569 }
1570 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1571
1572 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1573                       bool *writable)
1574 {
1575         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1576                                     write_fault, writable);
1577 }
1578 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1579
1580 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1581 {
1582         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1583 }
1584 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1585
1586 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1587 {
1588         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1591
1592 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1593 {
1594         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1595 }
1596 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1597
1598 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1599 {
1600         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1603
1604 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1605 {
1606         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1609
1610 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1615
1616 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1617                             struct page **pages, int nr_pages)
1618 {
1619         unsigned long addr;
1620         gfn_t entry = 0;
1621
1622         addr = gfn_to_hva_many(slot, gfn, &entry);
1623         if (kvm_is_error_hva(addr))
1624                 return -1;
1625
1626         if (entry < nr_pages)
1627                 return 0;
1628
1629         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1630 }
1631 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1632
1633 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1634 {
1635         if (is_error_noslot_pfn(pfn))
1636                 return KVM_ERR_PTR_BAD_PAGE;
1637
1638         if (kvm_is_reserved_pfn(pfn)) {
1639                 WARN_ON(1);
1640                 return KVM_ERR_PTR_BAD_PAGE;
1641         }
1642
1643         return pfn_to_page(pfn);
1644 }
1645
1646 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1647 {
1648         kvm_pfn_t pfn;
1649
1650         pfn = gfn_to_pfn(kvm, gfn);
1651
1652         return kvm_pfn_to_page(pfn);
1653 }
1654 EXPORT_SYMBOL_GPL(gfn_to_page);
1655
1656 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1657 {
1658         kvm_pfn_t pfn;
1659
1660         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1661
1662         return kvm_pfn_to_page(pfn);
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1665
1666 void kvm_release_page_clean(struct page *page)
1667 {
1668         WARN_ON(is_error_page(page));
1669
1670         kvm_release_pfn_clean(page_to_pfn(page));
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1673
1674 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1675 {
1676         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1677                 put_page(pfn_to_page(pfn));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1680
1681 void kvm_release_page_dirty(struct page *page)
1682 {
1683         WARN_ON(is_error_page(page));
1684
1685         kvm_release_pfn_dirty(page_to_pfn(page));
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1688
1689 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1690 {
1691         kvm_set_pfn_dirty(pfn);
1692         kvm_release_pfn_clean(pfn);
1693 }
1694
1695 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1696 {
1697         if (!kvm_is_reserved_pfn(pfn)) {
1698                 struct page *page = pfn_to_page(pfn);
1699
1700                 if (!PageReserved(page))
1701                         SetPageDirty(page);
1702         }
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1705
1706 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1707 {
1708         if (!kvm_is_reserved_pfn(pfn))
1709                 mark_page_accessed(pfn_to_page(pfn));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1712
1713 void kvm_get_pfn(kvm_pfn_t pfn)
1714 {
1715         if (!kvm_is_reserved_pfn(pfn))
1716                 get_page(pfn_to_page(pfn));
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1719
1720 static int next_segment(unsigned long len, int offset)
1721 {
1722         if (len > PAGE_SIZE - offset)
1723                 return PAGE_SIZE - offset;
1724         else
1725                 return len;
1726 }
1727
1728 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1729                                  void *data, int offset, int len)
1730 {
1731         int r;
1732         unsigned long addr;
1733
1734         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1735         if (kvm_is_error_hva(addr))
1736                 return -EFAULT;
1737         r = __copy_from_user(data, (void __user *)addr + offset, len);
1738         if (r)
1739                 return -EFAULT;
1740         return 0;
1741 }
1742
1743 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1744                         int len)
1745 {
1746         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1747
1748         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1751
1752 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1753                              int offset, int len)
1754 {
1755         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1756
1757         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1760
1761 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1762 {
1763         gfn_t gfn = gpa >> PAGE_SHIFT;
1764         int seg;
1765         int offset = offset_in_page(gpa);
1766         int ret;
1767
1768         while ((seg = next_segment(len, offset)) != 0) {
1769                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1770                 if (ret < 0)
1771                         return ret;
1772                 offset = 0;
1773                 len -= seg;
1774                 data += seg;
1775                 ++gfn;
1776         }
1777         return 0;
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_read_guest);
1780
1781 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1782 {
1783         gfn_t gfn = gpa >> PAGE_SHIFT;
1784         int seg;
1785         int offset = offset_in_page(gpa);
1786         int ret;
1787
1788         while ((seg = next_segment(len, offset)) != 0) {
1789                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1790                 if (ret < 0)
1791                         return ret;
1792                 offset = 0;
1793                 len -= seg;
1794                 data += seg;
1795                 ++gfn;
1796         }
1797         return 0;
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1800
1801 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1802                                    void *data, int offset, unsigned long len)
1803 {
1804         int r;
1805         unsigned long addr;
1806
1807         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1808         if (kvm_is_error_hva(addr))
1809                 return -EFAULT;
1810         pagefault_disable();
1811         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1812         pagefault_enable();
1813         if (r)
1814                 return -EFAULT;
1815         return 0;
1816 }
1817
1818 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1819                           unsigned long len)
1820 {
1821         gfn_t gfn = gpa >> PAGE_SHIFT;
1822         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1823         int offset = offset_in_page(gpa);
1824
1825         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1826 }
1827 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1828
1829 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1830                                void *data, unsigned long len)
1831 {
1832         gfn_t gfn = gpa >> PAGE_SHIFT;
1833         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1834         int offset = offset_in_page(gpa);
1835
1836         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1839
1840 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1841                                   const void *data, int offset, int len)
1842 {
1843         int r;
1844         unsigned long addr;
1845
1846         addr = gfn_to_hva_memslot(memslot, gfn);
1847         if (kvm_is_error_hva(addr))
1848                 return -EFAULT;
1849         r = __copy_to_user((void __user *)addr + offset, data, len);
1850         if (r)
1851                 return -EFAULT;
1852         mark_page_dirty_in_slot(memslot, gfn);
1853         return 0;
1854 }
1855
1856 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1857                          const void *data, int offset, int len)
1858 {
1859         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1860
1861         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1864
1865 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1866                               const void *data, int offset, int len)
1867 {
1868         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1869
1870         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1873
1874 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1875                     unsigned long len)
1876 {
1877         gfn_t gfn = gpa >> PAGE_SHIFT;
1878         int seg;
1879         int offset = offset_in_page(gpa);
1880         int ret;
1881
1882         while ((seg = next_segment(len, offset)) != 0) {
1883                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1884                 if (ret < 0)
1885                         return ret;
1886                 offset = 0;
1887                 len -= seg;
1888                 data += seg;
1889                 ++gfn;
1890         }
1891         return 0;
1892 }
1893 EXPORT_SYMBOL_GPL(kvm_write_guest);
1894
1895 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1896                          unsigned long len)
1897 {
1898         gfn_t gfn = gpa >> PAGE_SHIFT;
1899         int seg;
1900         int offset = offset_in_page(gpa);
1901         int ret;
1902
1903         while ((seg = next_segment(len, offset)) != 0) {
1904                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1905                 if (ret < 0)
1906                         return ret;
1907                 offset = 0;
1908                 len -= seg;
1909                 data += seg;
1910                 ++gfn;
1911         }
1912         return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1915
1916 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1917                                        struct gfn_to_hva_cache *ghc,
1918                                        gpa_t gpa, unsigned long len)
1919 {
1920         int offset = offset_in_page(gpa);
1921         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1922         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1923         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1924         gfn_t nr_pages_avail;
1925
1926         ghc->gpa = gpa;
1927         ghc->generation = slots->generation;
1928         ghc->len = len;
1929         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1930         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1931         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1932                 ghc->hva += offset;
1933         } else {
1934                 /*
1935                  * If the requested region crosses two memslots, we still
1936                  * verify that the entire region is valid here.
1937                  */
1938                 while (start_gfn <= end_gfn) {
1939                         nr_pages_avail = 0;
1940                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1941                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1942                                                    &nr_pages_avail);
1943                         if (kvm_is_error_hva(ghc->hva))
1944                                 return -EFAULT;
1945                         start_gfn += nr_pages_avail;
1946                 }
1947                 /* Use the slow path for cross page reads and writes. */
1948                 ghc->memslot = NULL;
1949         }
1950         return 0;
1951 }
1952
1953 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1954                               gpa_t gpa, unsigned long len)
1955 {
1956         struct kvm_memslots *slots = kvm_memslots(kvm);
1957         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1960
1961 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1962                            void *data, int offset, unsigned long len)
1963 {
1964         struct kvm_memslots *slots = kvm_memslots(kvm);
1965         int r;
1966         gpa_t gpa = ghc->gpa + offset;
1967
1968         BUG_ON(len + offset > ghc->len);
1969
1970         if (slots->generation != ghc->generation)
1971                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1972
1973         if (unlikely(!ghc->memslot))
1974                 return kvm_write_guest(kvm, gpa, data, len);
1975
1976         if (kvm_is_error_hva(ghc->hva))
1977                 return -EFAULT;
1978
1979         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1980         if (r)
1981                 return -EFAULT;
1982         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1983
1984         return 0;
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1987
1988 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989                            void *data, unsigned long len)
1990 {
1991         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1994
1995 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1996                            void *data, unsigned long len)
1997 {
1998         struct kvm_memslots *slots = kvm_memslots(kvm);
1999         int r;
2000
2001         BUG_ON(len > ghc->len);
2002
2003         if (slots->generation != ghc->generation)
2004                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2005
2006         if (unlikely(!ghc->memslot))
2007                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2008
2009         if (kvm_is_error_hva(ghc->hva))
2010                 return -EFAULT;
2011
2012         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2013         if (r)
2014                 return -EFAULT;
2015
2016         return 0;
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2019
2020 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2021 {
2022         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2023
2024         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2027
2028 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2029 {
2030         gfn_t gfn = gpa >> PAGE_SHIFT;
2031         int seg;
2032         int offset = offset_in_page(gpa);
2033         int ret;
2034
2035         while ((seg = next_segment(len, offset)) != 0) {
2036                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2037                 if (ret < 0)
2038                         return ret;
2039                 offset = 0;
2040                 len -= seg;
2041                 ++gfn;
2042         }
2043         return 0;
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2046
2047 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2048                                     gfn_t gfn)
2049 {
2050         if (memslot && memslot->dirty_bitmap) {
2051                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2052
2053                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2054         }
2055 }
2056
2057 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2058 {
2059         struct kvm_memory_slot *memslot;
2060
2061         memslot = gfn_to_memslot(kvm, gfn);
2062         mark_page_dirty_in_slot(memslot, gfn);
2063 }
2064 EXPORT_SYMBOL_GPL(mark_page_dirty);
2065
2066 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2067 {
2068         struct kvm_memory_slot *memslot;
2069
2070         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2071         mark_page_dirty_in_slot(memslot, gfn);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2074
2075 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2076 {
2077         if (!vcpu->sigset_active)
2078                 return;
2079
2080         /*
2081          * This does a lockless modification of ->real_blocked, which is fine
2082          * because, only current can change ->real_blocked and all readers of
2083          * ->real_blocked don't care as long ->real_blocked is always a subset
2084          * of ->blocked.
2085          */
2086         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2087 }
2088
2089 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2090 {
2091         if (!vcpu->sigset_active)
2092                 return;
2093
2094         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2095         sigemptyset(&current->real_blocked);
2096 }
2097
2098 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2099 {
2100         unsigned int old, val, grow;
2101
2102         old = val = vcpu->halt_poll_ns;
2103         grow = READ_ONCE(halt_poll_ns_grow);
2104         /* 10us base */
2105         if (val == 0 && grow)
2106                 val = 10000;
2107         else
2108                 val *= grow;
2109
2110         if (val > halt_poll_ns)
2111                 val = halt_poll_ns;
2112
2113         vcpu->halt_poll_ns = val;
2114         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2115 }
2116
2117 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2118 {
2119         unsigned int old, val, shrink;
2120
2121         old = val = vcpu->halt_poll_ns;
2122         shrink = READ_ONCE(halt_poll_ns_shrink);
2123         if (shrink == 0)
2124                 val = 0;
2125         else
2126                 val /= shrink;
2127
2128         vcpu->halt_poll_ns = val;
2129         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2130 }
2131
2132 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2133 {
2134         if (kvm_arch_vcpu_runnable(vcpu)) {
2135                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2136                 return -EINTR;
2137         }
2138         if (kvm_cpu_has_pending_timer(vcpu))
2139                 return -EINTR;
2140         if (signal_pending(current))
2141                 return -EINTR;
2142
2143         return 0;
2144 }
2145
2146 /*
2147  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2148  */
2149 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2150 {
2151         ktime_t start, cur;
2152         DECLARE_SWAITQUEUE(wait);
2153         bool waited = false;
2154         u64 block_ns;
2155
2156         start = cur = ktime_get();
2157         if (vcpu->halt_poll_ns) {
2158                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2159
2160                 ++vcpu->stat.halt_attempted_poll;
2161                 do {
2162                         /*
2163                          * This sets KVM_REQ_UNHALT if an interrupt
2164                          * arrives.
2165                          */
2166                         if (kvm_vcpu_check_block(vcpu) < 0) {
2167                                 ++vcpu->stat.halt_successful_poll;
2168                                 if (!vcpu_valid_wakeup(vcpu))
2169                                         ++vcpu->stat.halt_poll_invalid;
2170                                 goto out;
2171                         }
2172                         cur = ktime_get();
2173                 } while (single_task_running() && ktime_before(cur, stop));
2174         }
2175
2176         kvm_arch_vcpu_blocking(vcpu);
2177
2178         for (;;) {
2179                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2180
2181                 if (kvm_vcpu_check_block(vcpu) < 0)
2182                         break;
2183
2184                 waited = true;
2185                 schedule();
2186         }
2187
2188         finish_swait(&vcpu->wq, &wait);
2189         cur = ktime_get();
2190
2191         kvm_arch_vcpu_unblocking(vcpu);
2192 out:
2193         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2194
2195         if (!vcpu_valid_wakeup(vcpu))
2196                 shrink_halt_poll_ns(vcpu);
2197         else if (halt_poll_ns) {
2198                 if (block_ns <= vcpu->halt_poll_ns)
2199                         ;
2200                 /* we had a long block, shrink polling */
2201                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2202                         shrink_halt_poll_ns(vcpu);
2203                 /* we had a short halt and our poll time is too small */
2204                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2205                         block_ns < halt_poll_ns)
2206                         grow_halt_poll_ns(vcpu);
2207         } else
2208                 vcpu->halt_poll_ns = 0;
2209
2210         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2211         kvm_arch_vcpu_block_finish(vcpu);
2212 }
2213 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2214
2215 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2216 {
2217         struct swait_queue_head *wqp;
2218
2219         wqp = kvm_arch_vcpu_wq(vcpu);
2220         if (swq_has_sleeper(wqp)) {
2221                 swake_up(wqp);
2222                 ++vcpu->stat.halt_wakeup;
2223                 return true;
2224         }
2225
2226         return false;
2227 }
2228 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2229
2230 #ifndef CONFIG_S390
2231 /*
2232  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2233  */
2234 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2235 {
2236         int me;
2237         int cpu = vcpu->cpu;
2238
2239         if (kvm_vcpu_wake_up(vcpu))
2240                 return;
2241
2242         me = get_cpu();
2243         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2244                 if (kvm_arch_vcpu_should_kick(vcpu))
2245                         smp_send_reschedule(cpu);
2246         put_cpu();
2247 }
2248 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2249 #endif /* !CONFIG_S390 */
2250
2251 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2252 {
2253         struct pid *pid;
2254         struct task_struct *task = NULL;
2255         int ret = 0;
2256
2257         rcu_read_lock();
2258         pid = rcu_dereference(target->pid);
2259         if (pid)
2260                 task = get_pid_task(pid, PIDTYPE_PID);
2261         rcu_read_unlock();
2262         if (!task)
2263                 return ret;
2264         ret = yield_to(task, 1);
2265         put_task_struct(task);
2266
2267         return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2270
2271 /*
2272  * Helper that checks whether a VCPU is eligible for directed yield.
2273  * Most eligible candidate to yield is decided by following heuristics:
2274  *
2275  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2276  *  (preempted lock holder), indicated by @in_spin_loop.
2277  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2278  *
2279  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2280  *  chance last time (mostly it has become eligible now since we have probably
2281  *  yielded to lockholder in last iteration. This is done by toggling
2282  *  @dy_eligible each time a VCPU checked for eligibility.)
2283  *
2284  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2285  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2286  *  burning. Giving priority for a potential lock-holder increases lock
2287  *  progress.
2288  *
2289  *  Since algorithm is based on heuristics, accessing another VCPU data without
2290  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2291  *  and continue with next VCPU and so on.
2292  */
2293 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2294 {
2295 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2296         bool eligible;
2297
2298         eligible = !vcpu->spin_loop.in_spin_loop ||
2299                     vcpu->spin_loop.dy_eligible;
2300
2301         if (vcpu->spin_loop.in_spin_loop)
2302                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2303
2304         return eligible;
2305 #else
2306         return true;
2307 #endif
2308 }
2309
2310 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2311 {
2312         struct kvm *kvm = me->kvm;
2313         struct kvm_vcpu *vcpu;
2314         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2315         int yielded = 0;
2316         int try = 3;
2317         int pass;
2318         int i;
2319
2320         kvm_vcpu_set_in_spin_loop(me, true);
2321         /*
2322          * We boost the priority of a VCPU that is runnable but not
2323          * currently running, because it got preempted by something
2324          * else and called schedule in __vcpu_run.  Hopefully that
2325          * VCPU is holding the lock that we need and will release it.
2326          * We approximate round-robin by starting at the last boosted VCPU.
2327          */
2328         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2329                 kvm_for_each_vcpu(i, vcpu, kvm) {
2330                         if (!pass && i <= last_boosted_vcpu) {
2331                                 i = last_boosted_vcpu;
2332                                 continue;
2333                         } else if (pass && i > last_boosted_vcpu)
2334                                 break;
2335                         if (!ACCESS_ONCE(vcpu->preempted))
2336                                 continue;
2337                         if (vcpu == me)
2338                                 continue;
2339                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2340                                 continue;
2341                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2342                                 continue;
2343                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2344                                 continue;
2345
2346                         yielded = kvm_vcpu_yield_to(vcpu);
2347                         if (yielded > 0) {
2348                                 kvm->last_boosted_vcpu = i;
2349                                 break;
2350                         } else if (yielded < 0) {
2351                                 try--;
2352                                 if (!try)
2353                                         break;
2354                         }
2355                 }
2356         }
2357         kvm_vcpu_set_in_spin_loop(me, false);
2358
2359         /* Ensure vcpu is not eligible during next spinloop */
2360         kvm_vcpu_set_dy_eligible(me, false);
2361 }
2362 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2363
2364 static int kvm_vcpu_fault(struct vm_fault *vmf)
2365 {
2366         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2367         struct page *page;
2368
2369         if (vmf->pgoff == 0)
2370                 page = virt_to_page(vcpu->run);
2371 #ifdef CONFIG_X86
2372         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2373                 page = virt_to_page(vcpu->arch.pio_data);
2374 #endif
2375 #ifdef CONFIG_KVM_MMIO
2376         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2377                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2378 #endif
2379         else
2380                 return kvm_arch_vcpu_fault(vcpu, vmf);
2381         get_page(page);
2382         vmf->page = page;
2383         return 0;
2384 }
2385
2386 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2387         .fault = kvm_vcpu_fault,
2388 };
2389
2390 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2391 {
2392         vma->vm_ops = &kvm_vcpu_vm_ops;
2393         return 0;
2394 }
2395
2396 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2397 {
2398         struct kvm_vcpu *vcpu = filp->private_data;
2399
2400         debugfs_remove_recursive(vcpu->debugfs_dentry);
2401         kvm_put_kvm(vcpu->kvm);
2402         return 0;
2403 }
2404
2405 static struct file_operations kvm_vcpu_fops = {
2406         .release        = kvm_vcpu_release,
2407         .unlocked_ioctl = kvm_vcpu_ioctl,
2408 #ifdef CONFIG_KVM_COMPAT
2409         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2410 #endif
2411         .mmap           = kvm_vcpu_mmap,
2412         .llseek         = noop_llseek,
2413 };
2414
2415 /*
2416  * Allocates an inode for the vcpu.
2417  */
2418 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2419 {
2420         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2421 }
2422
2423 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2424 {
2425         char dir_name[ITOA_MAX_LEN * 2];
2426         int ret;
2427
2428         if (!kvm_arch_has_vcpu_debugfs())
2429                 return 0;
2430
2431         if (!debugfs_initialized())
2432                 return 0;
2433
2434         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2435         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2436                                                                 vcpu->kvm->debugfs_dentry);
2437         if (!vcpu->debugfs_dentry)
2438                 return -ENOMEM;
2439
2440         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2441         if (ret < 0) {
2442                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2443                 return ret;
2444         }
2445
2446         return 0;
2447 }
2448
2449 /*
2450  * Creates some virtual cpus.  Good luck creating more than one.
2451  */
2452 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2453 {
2454         int r;
2455         struct kvm_vcpu *vcpu;
2456
2457         if (id >= KVM_MAX_VCPU_ID)
2458                 return -EINVAL;
2459
2460         mutex_lock(&kvm->lock);
2461         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2462                 mutex_unlock(&kvm->lock);
2463                 return -EINVAL;
2464         }
2465
2466         kvm->created_vcpus++;
2467         mutex_unlock(&kvm->lock);
2468
2469         vcpu = kvm_arch_vcpu_create(kvm, id);
2470         if (IS_ERR(vcpu)) {
2471                 r = PTR_ERR(vcpu);
2472                 goto vcpu_decrement;
2473         }
2474
2475         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2476
2477         r = kvm_arch_vcpu_setup(vcpu);
2478         if (r)
2479                 goto vcpu_destroy;
2480
2481         r = kvm_create_vcpu_debugfs(vcpu);
2482         if (r)
2483                 goto vcpu_destroy;
2484
2485         mutex_lock(&kvm->lock);
2486         if (kvm_get_vcpu_by_id(kvm, id)) {
2487                 r = -EEXIST;
2488                 goto unlock_vcpu_destroy;
2489         }
2490
2491         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2492
2493         /* Now it's all set up, let userspace reach it */
2494         kvm_get_kvm(kvm);
2495         r = create_vcpu_fd(vcpu);
2496         if (r < 0) {
2497                 kvm_put_kvm(kvm);
2498                 goto unlock_vcpu_destroy;
2499         }
2500
2501         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2502
2503         /*
2504          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2505          * before kvm->online_vcpu's incremented value.
2506          */
2507         smp_wmb();
2508         atomic_inc(&kvm->online_vcpus);
2509
2510         mutex_unlock(&kvm->lock);
2511         kvm_arch_vcpu_postcreate(vcpu);
2512         return r;
2513
2514 unlock_vcpu_destroy:
2515         mutex_unlock(&kvm->lock);
2516         debugfs_remove_recursive(vcpu->debugfs_dentry);
2517 vcpu_destroy:
2518         kvm_arch_vcpu_destroy(vcpu);
2519 vcpu_decrement:
2520         mutex_lock(&kvm->lock);
2521         kvm->created_vcpus--;
2522         mutex_unlock(&kvm->lock);
2523         return r;
2524 }
2525
2526 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2527 {
2528         if (sigset) {
2529                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2530                 vcpu->sigset_active = 1;
2531                 vcpu->sigset = *sigset;
2532         } else
2533                 vcpu->sigset_active = 0;
2534         return 0;
2535 }
2536
2537 static long kvm_vcpu_ioctl(struct file *filp,
2538                            unsigned int ioctl, unsigned long arg)
2539 {
2540         struct kvm_vcpu *vcpu = filp->private_data;
2541         void __user *argp = (void __user *)arg;
2542         int r;
2543         struct kvm_fpu *fpu = NULL;
2544         struct kvm_sregs *kvm_sregs = NULL;
2545
2546         if (vcpu->kvm->mm != current->mm)
2547                 return -EIO;
2548
2549         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2550                 return -EINVAL;
2551
2552 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2553         /*
2554          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2555          * so vcpu_load() would break it.
2556          */
2557         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2558                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2559 #endif
2560
2561
2562         r = vcpu_load(vcpu);
2563         if (r)
2564                 return r;
2565         switch (ioctl) {
2566         case KVM_RUN: {
2567                 struct pid *oldpid;
2568                 r = -EINVAL;
2569                 if (arg)
2570                         goto out;
2571                 oldpid = rcu_access_pointer(vcpu->pid);
2572                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2573                         /* The thread running this VCPU changed. */
2574                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2575
2576                         rcu_assign_pointer(vcpu->pid, newpid);
2577                         if (oldpid)
2578                                 synchronize_rcu();
2579                         put_pid(oldpid);
2580                 }
2581                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2582                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2583                 break;
2584         }
2585         case KVM_GET_REGS: {
2586                 struct kvm_regs *kvm_regs;
2587
2588                 r = -ENOMEM;
2589                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2590                 if (!kvm_regs)
2591                         goto out;
2592                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2593                 if (r)
2594                         goto out_free1;
2595                 r = -EFAULT;
2596                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2597                         goto out_free1;
2598                 r = 0;
2599 out_free1:
2600                 kfree(kvm_regs);
2601                 break;
2602         }
2603         case KVM_SET_REGS: {
2604                 struct kvm_regs *kvm_regs;
2605
2606                 r = -ENOMEM;
2607                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2608                 if (IS_ERR(kvm_regs)) {
2609                         r = PTR_ERR(kvm_regs);
2610                         goto out;
2611                 }
2612                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2613                 kfree(kvm_regs);
2614                 break;
2615         }
2616         case KVM_GET_SREGS: {
2617                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2618                 r = -ENOMEM;
2619                 if (!kvm_sregs)
2620                         goto out;
2621                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2622                 if (r)
2623                         goto out;
2624                 r = -EFAULT;
2625                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2626                         goto out;
2627                 r = 0;
2628                 break;
2629         }
2630         case KVM_SET_SREGS: {
2631                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2632                 if (IS_ERR(kvm_sregs)) {
2633                         r = PTR_ERR(kvm_sregs);
2634                         kvm_sregs = NULL;
2635                         goto out;
2636                 }
2637                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2638                 break;
2639         }
2640         case KVM_GET_MP_STATE: {
2641                 struct kvm_mp_state mp_state;
2642
2643                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2644                 if (r)
2645                         goto out;
2646                 r = -EFAULT;
2647                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2648                         goto out;
2649                 r = 0;
2650                 break;
2651         }
2652         case KVM_SET_MP_STATE: {
2653                 struct kvm_mp_state mp_state;
2654
2655                 r = -EFAULT;
2656                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2657                         goto out;
2658                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2659                 break;
2660         }
2661         case KVM_TRANSLATE: {
2662                 struct kvm_translation tr;
2663
2664                 r = -EFAULT;
2665                 if (copy_from_user(&tr, argp, sizeof(tr)))
2666                         goto out;
2667                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2668                 if (r)
2669                         goto out;
2670                 r = -EFAULT;
2671                 if (copy_to_user(argp, &tr, sizeof(tr)))
2672                         goto out;
2673                 r = 0;
2674                 break;
2675         }
2676         case KVM_SET_GUEST_DEBUG: {
2677                 struct kvm_guest_debug dbg;
2678
2679                 r = -EFAULT;
2680                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2681                         goto out;
2682                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2683                 break;
2684         }
2685         case KVM_SET_SIGNAL_MASK: {
2686                 struct kvm_signal_mask __user *sigmask_arg = argp;
2687                 struct kvm_signal_mask kvm_sigmask;
2688                 sigset_t sigset, *p;
2689
2690                 p = NULL;
2691                 if (argp) {
2692                         r = -EFAULT;
2693                         if (copy_from_user(&kvm_sigmask, argp,
2694                                            sizeof(kvm_sigmask)))
2695                                 goto out;
2696                         r = -EINVAL;
2697                         if (kvm_sigmask.len != sizeof(sigset))
2698                                 goto out;
2699                         r = -EFAULT;
2700                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2701                                            sizeof(sigset)))
2702                                 goto out;
2703                         p = &sigset;
2704                 }
2705                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2706                 break;
2707         }
2708         case KVM_GET_FPU: {
2709                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2710                 r = -ENOMEM;
2711                 if (!fpu)
2712                         goto out;
2713                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2714                 if (r)
2715                         goto out;
2716                 r = -EFAULT;
2717                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2718                         goto out;
2719                 r = 0;
2720                 break;
2721         }
2722         case KVM_SET_FPU: {
2723                 fpu = memdup_user(argp, sizeof(*fpu));
2724                 if (IS_ERR(fpu)) {
2725                         r = PTR_ERR(fpu);
2726                         fpu = NULL;
2727                         goto out;
2728                 }
2729                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2730                 break;
2731         }
2732         default:
2733                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2734         }
2735 out:
2736         vcpu_put(vcpu);
2737         kfree(fpu);
2738         kfree(kvm_sregs);
2739         return r;
2740 }
2741
2742 #ifdef CONFIG_KVM_COMPAT
2743 static long kvm_vcpu_compat_ioctl(struct file *filp,
2744                                   unsigned int ioctl, unsigned long arg)
2745 {
2746         struct kvm_vcpu *vcpu = filp->private_data;
2747         void __user *argp = compat_ptr(arg);
2748         int r;
2749
2750         if (vcpu->kvm->mm != current->mm)
2751                 return -EIO;
2752
2753         switch (ioctl) {
2754         case KVM_SET_SIGNAL_MASK: {
2755                 struct kvm_signal_mask __user *sigmask_arg = argp;
2756                 struct kvm_signal_mask kvm_sigmask;
2757                 compat_sigset_t csigset;
2758                 sigset_t sigset;
2759
2760                 if (argp) {
2761                         r = -EFAULT;
2762                         if (copy_from_user(&kvm_sigmask, argp,
2763                                            sizeof(kvm_sigmask)))
2764                                 goto out;
2765                         r = -EINVAL;
2766                         if (kvm_sigmask.len != sizeof(csigset))
2767                                 goto out;
2768                         r = -EFAULT;
2769                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2770                                            sizeof(csigset)))
2771                                 goto out;
2772                         sigset_from_compat(&sigset, &csigset);
2773                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2774                 } else
2775                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2776                 break;
2777         }
2778         default:
2779                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2780         }
2781
2782 out:
2783         return r;
2784 }
2785 #endif
2786
2787 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2788                                  int (*accessor)(struct kvm_device *dev,
2789                                                  struct kvm_device_attr *attr),
2790                                  unsigned long arg)
2791 {
2792         struct kvm_device_attr attr;
2793
2794         if (!accessor)
2795                 return -EPERM;
2796
2797         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2798                 return -EFAULT;
2799
2800         return accessor(dev, &attr);
2801 }
2802
2803 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2804                              unsigned long arg)
2805 {
2806         struct kvm_device *dev = filp->private_data;
2807
2808         switch (ioctl) {
2809         case KVM_SET_DEVICE_ATTR:
2810                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2811         case KVM_GET_DEVICE_ATTR:
2812                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2813         case KVM_HAS_DEVICE_ATTR:
2814                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2815         default:
2816                 if (dev->ops->ioctl)
2817                         return dev->ops->ioctl(dev, ioctl, arg);
2818
2819                 return -ENOTTY;
2820         }
2821 }
2822
2823 static int kvm_device_release(struct inode *inode, struct file *filp)
2824 {
2825         struct kvm_device *dev = filp->private_data;
2826         struct kvm *kvm = dev->kvm;
2827
2828         kvm_put_kvm(kvm);
2829         return 0;
2830 }
2831
2832 static const struct file_operations kvm_device_fops = {
2833         .unlocked_ioctl = kvm_device_ioctl,
2834 #ifdef CONFIG_KVM_COMPAT
2835         .compat_ioctl = kvm_device_ioctl,
2836 #endif
2837         .release = kvm_device_release,
2838 };
2839
2840 struct kvm_device *kvm_device_from_filp(struct file *filp)
2841 {
2842         if (filp->f_op != &kvm_device_fops)
2843                 return NULL;
2844
2845         return filp->private_data;
2846 }
2847
2848 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2849 #ifdef CONFIG_KVM_MPIC
2850         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2851         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2852 #endif
2853 };
2854
2855 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2856 {
2857         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2858                 return -ENOSPC;
2859
2860         if (kvm_device_ops_table[type] != NULL)
2861                 return -EEXIST;
2862
2863         kvm_device_ops_table[type] = ops;
2864         return 0;
2865 }
2866
2867 void kvm_unregister_device_ops(u32 type)
2868 {
2869         if (kvm_device_ops_table[type] != NULL)
2870                 kvm_device_ops_table[type] = NULL;
2871 }
2872
2873 static int kvm_ioctl_create_device(struct kvm *kvm,
2874                                    struct kvm_create_device *cd)
2875 {
2876         struct kvm_device_ops *ops = NULL;
2877         struct kvm_device *dev;
2878         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2879         int ret;
2880
2881         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2882                 return -ENODEV;
2883
2884         ops = kvm_device_ops_table[cd->type];
2885         if (ops == NULL)
2886                 return -ENODEV;
2887
2888         if (test)
2889                 return 0;
2890
2891         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2892         if (!dev)
2893                 return -ENOMEM;
2894
2895         dev->ops = ops;
2896         dev->kvm = kvm;
2897
2898         mutex_lock(&kvm->lock);
2899         ret = ops->create(dev, cd->type);
2900         if (ret < 0) {
2901                 mutex_unlock(&kvm->lock);
2902                 kfree(dev);
2903                 return ret;
2904         }
2905         list_add(&dev->vm_node, &kvm->devices);
2906         mutex_unlock(&kvm->lock);
2907
2908         if (ops->init)
2909                 ops->init(dev);
2910
2911         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2912         if (ret < 0) {
2913                 mutex_lock(&kvm->lock);
2914                 list_del(&dev->vm_node);
2915                 mutex_unlock(&kvm->lock);
2916                 ops->destroy(dev);
2917                 return ret;
2918         }
2919
2920         kvm_get_kvm(kvm);
2921         cd->fd = ret;
2922         return 0;
2923 }
2924
2925 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2926 {
2927         switch (arg) {
2928         case KVM_CAP_USER_MEMORY:
2929         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2930         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2931         case KVM_CAP_INTERNAL_ERROR_DATA:
2932 #ifdef CONFIG_HAVE_KVM_MSI
2933         case KVM_CAP_SIGNAL_MSI:
2934 #endif
2935 #ifdef CONFIG_HAVE_KVM_IRQFD
2936         case KVM_CAP_IRQFD:
2937         case KVM_CAP_IRQFD_RESAMPLE:
2938 #endif
2939         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2940         case KVM_CAP_CHECK_EXTENSION_VM:
2941                 return 1;
2942 #ifdef CONFIG_KVM_MMIO
2943         case KVM_CAP_COALESCED_MMIO:
2944                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2945 #endif
2946 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2947         case KVM_CAP_IRQ_ROUTING:
2948                 return KVM_MAX_IRQ_ROUTES;
2949 #endif
2950 #if KVM_ADDRESS_SPACE_NUM > 1
2951         case KVM_CAP_MULTI_ADDRESS_SPACE:
2952                 return KVM_ADDRESS_SPACE_NUM;
2953 #endif
2954         case KVM_CAP_MAX_VCPU_ID:
2955                 return KVM_MAX_VCPU_ID;
2956         default:
2957                 break;
2958         }
2959         return kvm_vm_ioctl_check_extension(kvm, arg);
2960 }
2961
2962 static long kvm_vm_ioctl(struct file *filp,
2963                            unsigned int ioctl, unsigned long arg)
2964 {
2965         struct kvm *kvm = filp->private_data;
2966         void __user *argp = (void __user *)arg;
2967         int r;
2968
2969         if (kvm->mm != current->mm)
2970                 return -EIO;
2971         switch (ioctl) {
2972         case KVM_CREATE_VCPU:
2973                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2974                 break;
2975         case KVM_SET_USER_MEMORY_REGION: {
2976                 struct kvm_userspace_memory_region kvm_userspace_mem;
2977
2978                 r = -EFAULT;
2979                 if (copy_from_user(&kvm_userspace_mem, argp,
2980                                                 sizeof(kvm_userspace_mem)))
2981                         goto out;
2982
2983                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2984                 break;
2985         }
2986         case KVM_GET_DIRTY_LOG: {
2987                 struct kvm_dirty_log log;
2988
2989                 r = -EFAULT;
2990                 if (copy_from_user(&log, argp, sizeof(log)))
2991                         goto out;
2992                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2993                 break;
2994         }
2995 #ifdef CONFIG_KVM_MMIO
2996         case KVM_REGISTER_COALESCED_MMIO: {
2997                 struct kvm_coalesced_mmio_zone zone;
2998
2999                 r = -EFAULT;
3000                 if (copy_from_user(&zone, argp, sizeof(zone)))
3001                         goto out;
3002                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3003                 break;
3004         }
3005         case KVM_UNREGISTER_COALESCED_MMIO: {
3006                 struct kvm_coalesced_mmio_zone zone;
3007
3008                 r = -EFAULT;
3009                 if (copy_from_user(&zone, argp, sizeof(zone)))
3010                         goto out;
3011                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3012                 break;
3013         }
3014 #endif
3015         case KVM_IRQFD: {
3016                 struct kvm_irqfd data;
3017
3018                 r = -EFAULT;
3019                 if (copy_from_user(&data, argp, sizeof(data)))
3020                         goto out;
3021                 r = kvm_irqfd(kvm, &data);
3022                 break;
3023         }
3024         case KVM_IOEVENTFD: {
3025                 struct kvm_ioeventfd data;
3026
3027                 r = -EFAULT;
3028                 if (copy_from_user(&data, argp, sizeof(data)))
3029                         goto out;
3030                 r = kvm_ioeventfd(kvm, &data);
3031                 break;
3032         }
3033 #ifdef CONFIG_HAVE_KVM_MSI
3034         case KVM_SIGNAL_MSI: {
3035                 struct kvm_msi msi;
3036
3037                 r = -EFAULT;
3038                 if (copy_from_user(&msi, argp, sizeof(msi)))
3039                         goto out;
3040                 r = kvm_send_userspace_msi(kvm, &msi);
3041                 break;
3042         }
3043 #endif
3044 #ifdef __KVM_HAVE_IRQ_LINE
3045         case KVM_IRQ_LINE_STATUS:
3046         case KVM_IRQ_LINE: {
3047                 struct kvm_irq_level irq_event;
3048
3049                 r = -EFAULT;
3050                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3051                         goto out;
3052
3053                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3054                                         ioctl == KVM_IRQ_LINE_STATUS);
3055                 if (r)
3056                         goto out;
3057
3058                 r = -EFAULT;
3059                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3060                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3061                                 goto out;
3062                 }
3063
3064                 r = 0;
3065                 break;
3066         }
3067 #endif
3068 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3069         case KVM_SET_GSI_ROUTING: {
3070                 struct kvm_irq_routing routing;
3071                 struct kvm_irq_routing __user *urouting;
3072                 struct kvm_irq_routing_entry *entries = NULL;
3073
3074                 r = -EFAULT;
3075                 if (copy_from_user(&routing, argp, sizeof(routing)))
3076                         goto out;
3077                 r = -EINVAL;
3078                 if (!kvm_arch_can_set_irq_routing(kvm))
3079                         goto out;
3080                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3081                         goto out;
3082                 if (routing.flags)
3083                         goto out;
3084                 if (routing.nr) {
3085                         r = -ENOMEM;
3086                         entries = vmalloc(routing.nr * sizeof(*entries));
3087                         if (!entries)
3088                                 goto out;
3089                         r = -EFAULT;
3090                         urouting = argp;
3091                         if (copy_from_user(entries, urouting->entries,
3092                                            routing.nr * sizeof(*entries)))
3093                                 goto out_free_irq_routing;
3094                 }
3095                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3096                                         routing.flags);
3097 out_free_irq_routing:
3098                 vfree(entries);
3099                 break;
3100         }
3101 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3102         case KVM_CREATE_DEVICE: {
3103                 struct kvm_create_device cd;
3104
3105                 r = -EFAULT;
3106                 if (copy_from_user(&cd, argp, sizeof(cd)))
3107                         goto out;
3108
3109                 r = kvm_ioctl_create_device(kvm, &cd);
3110                 if (r)
3111                         goto out;
3112
3113                 r = -EFAULT;
3114                 if (copy_to_user(argp, &cd, sizeof(cd)))
3115                         goto out;
3116
3117                 r = 0;
3118                 break;
3119         }
3120         case KVM_CHECK_EXTENSION:
3121                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3122                 break;
3123         default:
3124                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3125         }
3126 out:
3127         return r;
3128 }
3129
3130 #ifdef CONFIG_KVM_COMPAT
3131 struct compat_kvm_dirty_log {
3132         __u32 slot;
3133         __u32 padding1;
3134         union {
3135                 compat_uptr_t dirty_bitmap; /* one bit per page */
3136                 __u64 padding2;
3137         };
3138 };
3139
3140 static long kvm_vm_compat_ioctl(struct file *filp,
3141                            unsigned int ioctl, unsigned long arg)
3142 {
3143         struct kvm *kvm = filp->private_data;
3144         int r;
3145
3146         if (kvm->mm != current->mm)
3147                 return -EIO;
3148         switch (ioctl) {
3149         case KVM_GET_DIRTY_LOG: {
3150                 struct compat_kvm_dirty_log compat_log;
3151                 struct kvm_dirty_log log;
3152
3153                 if (copy_from_user(&compat_log, (void __user *)arg,
3154                                    sizeof(compat_log)))
3155                         return -EFAULT;
3156                 log.slot         = compat_log.slot;
3157                 log.padding1     = compat_log.padding1;
3158                 log.padding2     = compat_log.padding2;
3159                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3160
3161                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3162                 break;
3163         }
3164         default:
3165                 r = kvm_vm_ioctl(filp, ioctl, arg);
3166         }
3167         return r;
3168 }
3169 #endif
3170
3171 static struct file_operations kvm_vm_fops = {
3172         .release        = kvm_vm_release,
3173         .unlocked_ioctl = kvm_vm_ioctl,
3174 #ifdef CONFIG_KVM_COMPAT
3175         .compat_ioctl   = kvm_vm_compat_ioctl,
3176 #endif
3177         .llseek         = noop_llseek,
3178 };
3179
3180 static int kvm_dev_ioctl_create_vm(unsigned long type)
3181 {
3182         int r;
3183         struct kvm *kvm;
3184         struct file *file;
3185
3186         kvm = kvm_create_vm(type);
3187         if (IS_ERR(kvm))
3188                 return PTR_ERR(kvm);
3189 #ifdef CONFIG_KVM_MMIO
3190         r = kvm_coalesced_mmio_init(kvm);
3191         if (r < 0) {
3192                 kvm_put_kvm(kvm);
3193                 return r;
3194         }
3195 #endif
3196         r = get_unused_fd_flags(O_CLOEXEC);
3197         if (r < 0) {
3198                 kvm_put_kvm(kvm);
3199                 return r;
3200         }
3201         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3202         if (IS_ERR(file)) {
3203                 put_unused_fd(r);
3204                 kvm_put_kvm(kvm);
3205                 return PTR_ERR(file);
3206         }
3207
3208         /*
3209          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3210          * already set, with ->release() being kvm_vm_release().  In error
3211          * cases it will be called by the final fput(file) and will take
3212          * care of doing kvm_put_kvm(kvm).
3213          */
3214         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3215                 put_unused_fd(r);
3216                 fput(file);
3217                 return -ENOMEM;
3218         }
3219         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3220
3221         fd_install(r, file);
3222         return r;
3223 }
3224
3225 static long kvm_dev_ioctl(struct file *filp,
3226                           unsigned int ioctl, unsigned long arg)
3227 {
3228         long r = -EINVAL;
3229
3230         switch (ioctl) {
3231         case KVM_GET_API_VERSION:
3232                 if (arg)
3233                         goto out;
3234                 r = KVM_API_VERSION;
3235                 break;
3236         case KVM_CREATE_VM:
3237                 r = kvm_dev_ioctl_create_vm(arg);
3238                 break;
3239         case KVM_CHECK_EXTENSION:
3240                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3241                 break;
3242         case KVM_GET_VCPU_MMAP_SIZE:
3243                 if (arg)
3244                         goto out;
3245                 r = PAGE_SIZE;     /* struct kvm_run */
3246 #ifdef CONFIG_X86
3247                 r += PAGE_SIZE;    /* pio data page */
3248 #endif
3249 #ifdef CONFIG_KVM_MMIO
3250                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3251 #endif
3252                 break;
3253         case KVM_TRACE_ENABLE:
3254         case KVM_TRACE_PAUSE:
3255         case KVM_TRACE_DISABLE:
3256                 r = -EOPNOTSUPP;
3257                 break;
3258         default:
3259                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3260         }
3261 out:
3262         return r;
3263 }
3264
3265 static struct file_operations kvm_chardev_ops = {
3266         .unlocked_ioctl = kvm_dev_ioctl,
3267         .compat_ioctl   = kvm_dev_ioctl,
3268         .llseek         = noop_llseek,
3269 };
3270
3271 static struct miscdevice kvm_dev = {
3272         KVM_MINOR,
3273         "kvm",
3274         &kvm_chardev_ops,
3275 };
3276
3277 static void hardware_enable_nolock(void *junk)
3278 {
3279         int cpu = raw_smp_processor_id();
3280         int r;
3281
3282         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3283                 return;
3284
3285         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3286
3287         r = kvm_arch_hardware_enable();
3288
3289         if (r) {
3290                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291                 atomic_inc(&hardware_enable_failed);
3292                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3293         }
3294 }
3295
3296 static int kvm_starting_cpu(unsigned int cpu)
3297 {
3298         raw_spin_lock(&kvm_count_lock);
3299         if (kvm_usage_count)
3300                 hardware_enable_nolock(NULL);
3301         raw_spin_unlock(&kvm_count_lock);
3302         return 0;
3303 }
3304
3305 static void hardware_disable_nolock(void *junk)
3306 {
3307         int cpu = raw_smp_processor_id();
3308
3309         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3310                 return;
3311         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3312         kvm_arch_hardware_disable();
3313 }
3314
3315 static int kvm_dying_cpu(unsigned int cpu)
3316 {
3317         raw_spin_lock(&kvm_count_lock);
3318         if (kvm_usage_count)
3319                 hardware_disable_nolock(NULL);
3320         raw_spin_unlock(&kvm_count_lock);
3321         return 0;
3322 }
3323
3324 static void hardware_disable_all_nolock(void)
3325 {
3326         BUG_ON(!kvm_usage_count);
3327
3328         kvm_usage_count--;
3329         if (!kvm_usage_count)
3330                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3331 }
3332
3333 static void hardware_disable_all(void)
3334 {
3335         raw_spin_lock(&kvm_count_lock);
3336         hardware_disable_all_nolock();
3337         raw_spin_unlock(&kvm_count_lock);
3338 }
3339
3340 static int hardware_enable_all(void)
3341 {
3342         int r = 0;
3343
3344         raw_spin_lock(&kvm_count_lock);
3345
3346         kvm_usage_count++;
3347         if (kvm_usage_count == 1) {
3348                 atomic_set(&hardware_enable_failed, 0);
3349                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3350
3351                 if (atomic_read(&hardware_enable_failed)) {
3352                         hardware_disable_all_nolock();
3353                         r = -EBUSY;
3354                 }
3355         }
3356
3357         raw_spin_unlock(&kvm_count_lock);
3358
3359         return r;
3360 }
3361
3362 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3363                       void *v)
3364 {
3365         /*
3366          * Some (well, at least mine) BIOSes hang on reboot if
3367          * in vmx root mode.
3368          *
3369          * And Intel TXT required VMX off for all cpu when system shutdown.
3370          */
3371         pr_info("kvm: exiting hardware virtualization\n");
3372         kvm_rebooting = true;
3373         on_each_cpu(hardware_disable_nolock, NULL, 1);
3374         return NOTIFY_OK;
3375 }
3376
3377 static struct notifier_block kvm_reboot_notifier = {
3378         .notifier_call = kvm_reboot,
3379         .priority = 0,
3380 };
3381
3382 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3383 {
3384         int i;
3385
3386         for (i = 0; i < bus->dev_count; i++) {
3387                 struct kvm_io_device *pos = bus->range[i].dev;
3388
3389                 kvm_iodevice_destructor(pos);
3390         }
3391         kfree(bus);
3392 }
3393
3394 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3395                                  const struct kvm_io_range *r2)
3396 {
3397         gpa_t addr1 = r1->addr;
3398         gpa_t addr2 = r2->addr;
3399
3400         if (addr1 < addr2)
3401                 return -1;
3402
3403         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3404          * accept any overlapping write.  Any order is acceptable for
3405          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3406          * we process all of them.
3407          */
3408         if (r2->len) {
3409                 addr1 += r1->len;
3410                 addr2 += r2->len;
3411         }
3412
3413         if (addr1 > addr2)
3414                 return 1;
3415
3416         return 0;
3417 }
3418
3419 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3420 {
3421         return kvm_io_bus_cmp(p1, p2);
3422 }
3423
3424 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3425                           gpa_t addr, int len)
3426 {
3427         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3428                 .addr = addr,
3429                 .len = len,
3430                 .dev = dev,
3431         };
3432
3433         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3434                 kvm_io_bus_sort_cmp, NULL);
3435
3436         return 0;
3437 }
3438
3439 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3440                              gpa_t addr, int len)
3441 {
3442         struct kvm_io_range *range, key;
3443         int off;
3444
3445         key = (struct kvm_io_range) {
3446                 .addr = addr,
3447                 .len = len,
3448         };
3449
3450         range = bsearch(&key, bus->range, bus->dev_count,
3451                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3452         if (range == NULL)
3453                 return -ENOENT;
3454
3455         off = range - bus->range;
3456
3457         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3458                 off--;
3459
3460         return off;
3461 }
3462
3463 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3464                               struct kvm_io_range *range, const void *val)
3465 {
3466         int idx;
3467
3468         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3469         if (idx < 0)
3470                 return -EOPNOTSUPP;
3471
3472         while (idx < bus->dev_count &&
3473                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3474                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3475                                         range->len, val))
3476                         return idx;
3477                 idx++;
3478         }
3479
3480         return -EOPNOTSUPP;
3481 }
3482
3483 /* kvm_io_bus_write - called under kvm->slots_lock */
3484 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3485                      int len, const void *val)
3486 {
3487         struct kvm_io_bus *bus;
3488         struct kvm_io_range range;
3489         int r;
3490
3491         range = (struct kvm_io_range) {
3492                 .addr = addr,
3493                 .len = len,
3494         };
3495
3496         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3497         if (!bus)
3498                 return -ENOMEM;
3499         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3500         return r < 0 ? r : 0;
3501 }
3502
3503 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3504 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3505                             gpa_t addr, int len, const void *val, long cookie)
3506 {
3507         struct kvm_io_bus *bus;
3508         struct kvm_io_range range;
3509
3510         range = (struct kvm_io_range) {
3511                 .addr = addr,
3512                 .len = len,
3513         };
3514
3515         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3516         if (!bus)
3517                 return -ENOMEM;
3518
3519         /* First try the device referenced by cookie. */
3520         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3521             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3522                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3523                                         val))
3524                         return cookie;
3525
3526         /*
3527          * cookie contained garbage; fall back to search and return the
3528          * correct cookie value.
3529          */
3530         return __kvm_io_bus_write(vcpu, bus, &range, val);
3531 }
3532
3533 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3534                              struct kvm_io_range *range, void *val)
3535 {
3536         int idx;
3537
3538         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3539         if (idx < 0)
3540                 return -EOPNOTSUPP;
3541
3542         while (idx < bus->dev_count &&
3543                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3544                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3545                                        range->len, val))
3546                         return idx;
3547                 idx++;
3548         }
3549
3550         return -EOPNOTSUPP;
3551 }
3552 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3553
3554 /* kvm_io_bus_read - called under kvm->slots_lock */
3555 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3556                     int len, void *val)
3557 {
3558         struct kvm_io_bus *bus;
3559         struct kvm_io_range range;
3560         int r;
3561
3562         range = (struct kvm_io_range) {
3563                 .addr = addr,
3564                 .len = len,
3565         };
3566
3567         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3568         if (!bus)
3569                 return -ENOMEM;
3570         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3571         return r < 0 ? r : 0;
3572 }
3573
3574
3575 /* Caller must hold slots_lock. */
3576 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3577                             int len, struct kvm_io_device *dev)
3578 {
3579         struct kvm_io_bus *new_bus, *bus;
3580
3581         bus = kvm_get_bus(kvm, bus_idx);
3582         if (!bus)
3583                 return -ENOMEM;
3584
3585         /* exclude ioeventfd which is limited by maximum fd */
3586         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3587                 return -ENOSPC;
3588
3589         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3590                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3591         if (!new_bus)
3592                 return -ENOMEM;
3593         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3594                sizeof(struct kvm_io_range)));
3595         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3596         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3597         synchronize_srcu_expedited(&kvm->srcu);
3598         kfree(bus);
3599
3600         return 0;
3601 }
3602
3603 /* Caller must hold slots_lock. */
3604 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3605                                struct kvm_io_device *dev)
3606 {
3607         int i;
3608         struct kvm_io_bus *new_bus, *bus;
3609
3610         bus = kvm_get_bus(kvm, bus_idx);
3611         if (!bus)
3612                 return;
3613
3614         for (i = 0; i < bus->dev_count; i++)
3615                 if (bus->range[i].dev == dev) {
3616                         break;
3617                 }
3618
3619         if (i == bus->dev_count)
3620                 return;
3621
3622         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3623                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3624         if (!new_bus)  {
3625                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3626                 goto broken;
3627         }
3628
3629         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3630         new_bus->dev_count--;
3631         memcpy(new_bus->range + i, bus->range + i + 1,
3632                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3633
3634 broken:
3635         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3636         synchronize_srcu_expedited(&kvm->srcu);
3637         kfree(bus);
3638         return;
3639 }
3640
3641 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3642                                          gpa_t addr)
3643 {
3644         struct kvm_io_bus *bus;
3645         int dev_idx, srcu_idx;
3646         struct kvm_io_device *iodev = NULL;
3647
3648         srcu_idx = srcu_read_lock(&kvm->srcu);
3649
3650         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3651         if (!bus)
3652                 goto out_unlock;
3653
3654         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3655         if (dev_idx < 0)
3656                 goto out_unlock;
3657
3658         iodev = bus->range[dev_idx].dev;
3659
3660 out_unlock:
3661         srcu_read_unlock(&kvm->srcu, srcu_idx);
3662
3663         return iodev;
3664 }
3665 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3666
3667 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3668                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3669                            const char *fmt)
3670 {
3671         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3672                                           inode->i_private;
3673
3674         /* The debugfs files are a reference to the kvm struct which
3675          * is still valid when kvm_destroy_vm is called.
3676          * To avoid the race between open and the removal of the debugfs
3677          * directory we test against the users count.
3678          */
3679         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3680                 return -ENOENT;
3681
3682         if (simple_attr_open(inode, file, get, set, fmt)) {
3683                 kvm_put_kvm(stat_data->kvm);
3684                 return -ENOMEM;
3685         }
3686
3687         return 0;
3688 }
3689
3690 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3691 {
3692         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3693                                           inode->i_private;
3694
3695         simple_attr_release(inode, file);
3696         kvm_put_kvm(stat_data->kvm);
3697
3698         return 0;
3699 }
3700
3701 static int vm_stat_get_per_vm(void *data, u64 *val)
3702 {
3703         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3704
3705         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3706
3707         return 0;
3708 }
3709
3710 static int vm_stat_clear_per_vm(void *data, u64 val)
3711 {
3712         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3713
3714         if (val)
3715                 return -EINVAL;
3716
3717         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3718
3719         return 0;
3720 }
3721
3722 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3723 {
3724         __simple_attr_check_format("%llu\n", 0ull);
3725         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3726                                 vm_stat_clear_per_vm, "%llu\n");
3727 }
3728
3729 static const struct file_operations vm_stat_get_per_vm_fops = {
3730         .owner   = THIS_MODULE,
3731         .open    = vm_stat_get_per_vm_open,
3732         .release = kvm_debugfs_release,
3733         .read    = simple_attr_read,
3734         .write   = simple_attr_write,
3735         .llseek  = no_llseek,
3736 };
3737
3738 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3739 {
3740         int i;
3741         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3742         struct kvm_vcpu *vcpu;
3743
3744         *val = 0;
3745
3746         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3747                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3748
3749         return 0;
3750 }
3751
3752 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3753 {
3754         int i;
3755         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3756         struct kvm_vcpu *vcpu;
3757
3758         if (val)
3759                 return -EINVAL;
3760
3761         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3762                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3763
3764         return 0;
3765 }
3766
3767 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3768 {
3769         __simple_attr_check_format("%llu\n", 0ull);
3770         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3771                                  vcpu_stat_clear_per_vm, "%llu\n");
3772 }
3773
3774 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3775         .owner   = THIS_MODULE,
3776         .open    = vcpu_stat_get_per_vm_open,
3777         .release = kvm_debugfs_release,
3778         .read    = simple_attr_read,
3779         .write   = simple_attr_write,
3780         .llseek  = no_llseek,
3781 };
3782
3783 static const struct file_operations *stat_fops_per_vm[] = {
3784         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3785         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3786 };
3787
3788 static int vm_stat_get(void *_offset, u64 *val)
3789 {
3790         unsigned offset = (long)_offset;
3791         struct kvm *kvm;
3792         struct kvm_stat_data stat_tmp = {.offset = offset};
3793         u64 tmp_val;
3794
3795         *val = 0;
3796         spin_lock(&kvm_lock);
3797         list_for_each_entry(kvm, &vm_list, vm_list) {
3798                 stat_tmp.kvm = kvm;
3799                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3800                 *val += tmp_val;
3801         }
3802         spin_unlock(&kvm_lock);
3803         return 0;
3804 }
3805
3806 static int vm_stat_clear(void *_offset, u64 val)
3807 {
3808         unsigned offset = (long)_offset;
3809         struct kvm *kvm;
3810         struct kvm_stat_data stat_tmp = {.offset = offset};
3811
3812         if (val)
3813                 return -EINVAL;
3814
3815         spin_lock(&kvm_lock);
3816         list_for_each_entry(kvm, &vm_list, vm_list) {
3817                 stat_tmp.kvm = kvm;
3818                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3819         }
3820         spin_unlock(&kvm_lock);
3821
3822         return 0;
3823 }
3824
3825 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3826
3827 static int vcpu_stat_get(void *_offset, u64 *val)
3828 {
3829         unsigned offset = (long)_offset;
3830         struct kvm *kvm;
3831         struct kvm_stat_data stat_tmp = {.offset = offset};
3832         u64 tmp_val;
3833
3834         *val = 0;
3835         spin_lock(&kvm_lock);
3836         list_for_each_entry(kvm, &vm_list, vm_list) {
3837                 stat_tmp.kvm = kvm;
3838                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3839                 *val += tmp_val;
3840         }
3841         spin_unlock(&kvm_lock);
3842         return 0;
3843 }
3844
3845 static int vcpu_stat_clear(void *_offset, u64 val)
3846 {
3847         unsigned offset = (long)_offset;
3848         struct kvm *kvm;
3849         struct kvm_stat_data stat_tmp = {.offset = offset};
3850
3851         if (val)
3852                 return -EINVAL;
3853
3854         spin_lock(&kvm_lock);
3855         list_for_each_entry(kvm, &vm_list, vm_list) {
3856                 stat_tmp.kvm = kvm;
3857                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3858         }
3859         spin_unlock(&kvm_lock);
3860
3861         return 0;
3862 }
3863
3864 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3865                         "%llu\n");
3866
3867 static const struct file_operations *stat_fops[] = {
3868         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3869         [KVM_STAT_VM]   = &vm_stat_fops,
3870 };
3871
3872 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3873 {
3874         struct kobj_uevent_env *env;
3875         unsigned long long created, active;
3876
3877         if (!kvm_dev.this_device || !kvm)
3878                 return;
3879
3880         spin_lock(&kvm_lock);
3881         if (type == KVM_EVENT_CREATE_VM) {
3882                 kvm_createvm_count++;
3883                 kvm_active_vms++;
3884         } else if (type == KVM_EVENT_DESTROY_VM) {
3885                 kvm_active_vms--;
3886         }
3887         created = kvm_createvm_count;
3888         active = kvm_active_vms;
3889         spin_unlock(&kvm_lock);
3890
3891         env = kzalloc(sizeof(*env), GFP_KERNEL);
3892         if (!env)
3893                 return;
3894
3895         add_uevent_var(env, "CREATED=%llu", created);
3896         add_uevent_var(env, "COUNT=%llu", active);
3897
3898         if (type == KVM_EVENT_CREATE_VM) {
3899                 add_uevent_var(env, "EVENT=create");
3900                 kvm->userspace_pid = task_pid_nr(current);
3901         } else if (type == KVM_EVENT_DESTROY_VM) {
3902                 add_uevent_var(env, "EVENT=destroy");
3903         }
3904         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3905
3906         if (kvm->debugfs_dentry) {
3907                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3908
3909                 if (p) {
3910                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3911                         if (!IS_ERR(tmp))
3912                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3913                         kfree(p);
3914                 }
3915         }
3916         /* no need for checks, since we are adding at most only 5 keys */
3917         env->envp[env->envp_idx++] = NULL;
3918         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3919         kfree(env);
3920 }
3921
3922 static int kvm_init_debug(void)
3923 {
3924         int r = -EEXIST;
3925         struct kvm_stats_debugfs_item *p;
3926
3927         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3928         if (kvm_debugfs_dir == NULL)
3929                 goto out;
3930
3931         kvm_debugfs_num_entries = 0;
3932         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3933                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3934                                          (void *)(long)p->offset,
3935                                          stat_fops[p->kind]))
3936                         goto out_dir;
3937         }
3938
3939         return 0;
3940
3941 out_dir:
3942         debugfs_remove_recursive(kvm_debugfs_dir);
3943 out:
3944         return r;
3945 }
3946
3947 static int kvm_suspend(void)
3948 {
3949         if (kvm_usage_count)
3950                 hardware_disable_nolock(NULL);
3951         return 0;
3952 }
3953
3954 static void kvm_resume(void)
3955 {
3956         if (kvm_usage_count) {
3957                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3958                 hardware_enable_nolock(NULL);
3959         }
3960 }
3961
3962 static struct syscore_ops kvm_syscore_ops = {
3963         .suspend = kvm_suspend,
3964         .resume = kvm_resume,
3965 };
3966
3967 static inline
3968 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3969 {
3970         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3971 }
3972
3973 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3974 {
3975         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3976
3977         if (vcpu->preempted)
3978                 vcpu->preempted = false;
3979
3980         kvm_arch_sched_in(vcpu, cpu);
3981
3982         kvm_arch_vcpu_load(vcpu, cpu);
3983 }
3984
3985 static void kvm_sched_out(struct preempt_notifier *pn,
3986                           struct task_struct *next)
3987 {
3988         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3989
3990         if (current->state == TASK_RUNNING)
3991                 vcpu->preempted = true;
3992         kvm_arch_vcpu_put(vcpu);
3993 }
3994
3995 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3996                   struct module *module)
3997 {
3998         int r;
3999         int cpu;
4000
4001         r = kvm_arch_init(opaque);
4002         if (r)
4003                 goto out_fail;
4004
4005         /*
4006          * kvm_arch_init makes sure there's at most one caller
4007          * for architectures that support multiple implementations,
4008          * like intel and amd on x86.
4009          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4010          * conflicts in case kvm is already setup for another implementation.
4011          */
4012         r = kvm_irqfd_init();
4013         if (r)
4014                 goto out_irqfd;
4015
4016         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4017                 r = -ENOMEM;
4018                 goto out_free_0;
4019         }
4020
4021         r = kvm_arch_hardware_setup();
4022         if (r < 0)
4023                 goto out_free_0a;
4024
4025         for_each_online_cpu(cpu) {
4026                 smp_call_function_single(cpu,
4027                                 kvm_arch_check_processor_compat,
4028                                 &r, 1);
4029                 if (r < 0)
4030                         goto out_free_1;
4031         }
4032
4033         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4034                                       kvm_starting_cpu, kvm_dying_cpu);
4035         if (r)
4036                 goto out_free_2;
4037         register_reboot_notifier(&kvm_reboot_notifier);
4038
4039         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4040         if (!vcpu_align)
4041                 vcpu_align = __alignof__(struct kvm_vcpu);
4042         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4043                                            SLAB_ACCOUNT, NULL);
4044         if (!kvm_vcpu_cache) {
4045                 r = -ENOMEM;
4046                 goto out_free_3;
4047         }
4048
4049         r = kvm_async_pf_init();
4050         if (r)
4051                 goto out_free;
4052
4053         kvm_chardev_ops.owner = module;
4054         kvm_vm_fops.owner = module;
4055         kvm_vcpu_fops.owner = module;
4056
4057         r = misc_register(&kvm_dev);
4058         if (r) {
4059                 pr_err("kvm: misc device register failed\n");
4060                 goto out_unreg;
4061         }
4062
4063         register_syscore_ops(&kvm_syscore_ops);
4064
4065         kvm_preempt_ops.sched_in = kvm_sched_in;
4066         kvm_preempt_ops.sched_out = kvm_sched_out;
4067
4068         r = kvm_init_debug();
4069         if (r) {
4070                 pr_err("kvm: create debugfs files failed\n");
4071                 goto out_undebugfs;
4072         }
4073
4074         r = kvm_vfio_ops_init();
4075         WARN_ON(r);
4076
4077         return 0;
4078
4079 out_undebugfs:
4080         unregister_syscore_ops(&kvm_syscore_ops);
4081         misc_deregister(&kvm_dev);
4082 out_unreg:
4083         kvm_async_pf_deinit();
4084 out_free:
4085         kmem_cache_destroy(kvm_vcpu_cache);
4086 out_free_3:
4087         unregister_reboot_notifier(&kvm_reboot_notifier);
4088         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4089 out_free_2:
4090 out_free_1:
4091         kvm_arch_hardware_unsetup();
4092 out_free_0a:
4093         free_cpumask_var(cpus_hardware_enabled);
4094 out_free_0:
4095         kvm_irqfd_exit();
4096 out_irqfd:
4097         kvm_arch_exit();
4098 out_fail:
4099         return r;
4100 }
4101 EXPORT_SYMBOL_GPL(kvm_init);
4102
4103 void kvm_exit(void)
4104 {
4105         debugfs_remove_recursive(kvm_debugfs_dir);
4106         misc_deregister(&kvm_dev);
4107         kmem_cache_destroy(kvm_vcpu_cache);
4108         kvm_async_pf_deinit();
4109         unregister_syscore_ops(&kvm_syscore_ops);
4110         unregister_reboot_notifier(&kvm_reboot_notifier);
4111         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4112         on_each_cpu(hardware_disable_nolock, NULL, 1);
4113         kvm_arch_hardware_unsetup();
4114         kvm_arch_exit();
4115         kvm_irqfd_exit();
4116         free_cpumask_var(cpus_hardware_enabled);
4117         kvm_vfio_ops_exit();
4118 }
4119 EXPORT_SYMBOL_GPL(kvm_exit);