2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_RAW_SPINLOCK(kvm_lock);
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 struct dentry *kvm_debugfs_dir;
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
101 static bool largepages_enabled = true;
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
106 struct page *fault_page;
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
111 if (pfn_valid(pfn)) {
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
131 return PageReserved(tail);
138 * Switches to specified vcpu, until a matching vcpu_put()
140 void vcpu_load(struct kvm_vcpu *vcpu)
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
159 void vcpu_put(struct kvm_vcpu *vcpu)
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
165 mutex_unlock(&vcpu->mutex);
168 static void ack_flush(void *_completed)
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
177 struct kvm_vcpu *vcpu;
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
186 /* Set ->requests bit before we read ->mode */
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
200 free_cpumask_var(cpus);
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 long dirty_count = kvm->tlbs_dirty;
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
214 void kvm_reload_remote_mmus(struct kvm *kvm)
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
224 mutex_init(&vcpu->mutex);
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
237 vcpu->run = page_address(page);
239 r = kvm_arch_vcpu_init(vcpu);
245 free_page((unsigned long)vcpu->run);
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
262 return container_of(mn, struct kvm, mmu_notifier);
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
293 kvm->mmu_notifier_seq++;
294 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
295 /* we've to flush the tlb before the pages can be freed */
297 kvm_flush_remote_tlbs(kvm);
299 spin_unlock(&kvm->mmu_lock);
300 srcu_read_unlock(&kvm->srcu, idx);
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
340 kvm_flush_remote_tlbs(kvm);
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
353 spin_lock(&kvm->mmu_lock);
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
359 kvm->mmu_notifier_seq++;
362 * The above sequence increase must be visible before the
363 * below count decrease, which is ensured by the smp_wmb above
364 * in conjunction with the smp_rmb in mmu_notifier_retry().
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
369 BUG_ON(kvm->mmu_notifier_count < 0);
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
382 young = kvm_age_hva(kvm, address);
384 kvm_flush_remote_tlbs(kvm);
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
392 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
393 struct mm_struct *mm,
394 unsigned long address)
396 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 idx = srcu_read_lock(&kvm->srcu);
400 spin_lock(&kvm->mmu_lock);
401 young = kvm_test_age_hva(kvm, address);
402 spin_unlock(&kvm->mmu_lock);
403 srcu_read_unlock(&kvm->srcu, idx);
408 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
409 struct mm_struct *mm)
411 struct kvm *kvm = mmu_notifier_to_kvm(mn);
414 idx = srcu_read_lock(&kvm->srcu);
415 kvm_arch_flush_shadow(kvm);
416 srcu_read_unlock(&kvm->srcu, idx);
419 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
420 .invalidate_page = kvm_mmu_notifier_invalidate_page,
421 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
422 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
423 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
424 .test_young = kvm_mmu_notifier_test_young,
425 .change_pte = kvm_mmu_notifier_change_pte,
426 .release = kvm_mmu_notifier_release,
429 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
432 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
435 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
437 static int kvm_init_mmu_notifier(struct kvm *kvm)
442 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
444 static void kvm_init_memslots_id(struct kvm *kvm)
447 struct kvm_memslots *slots = kvm->memslots;
449 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
450 slots->id_to_index[i] = slots->memslots[i].id = i;
453 static struct kvm *kvm_create_vm(unsigned long type)
456 struct kvm *kvm = kvm_arch_alloc_vm();
459 return ERR_PTR(-ENOMEM);
461 r = kvm_arch_init_vm(kvm, type);
463 goto out_err_nodisable;
465 r = hardware_enable_all();
467 goto out_err_nodisable;
469 #ifdef CONFIG_HAVE_KVM_IRQCHIP
470 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
471 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
475 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
478 kvm_init_memslots_id(kvm);
479 if (init_srcu_struct(&kvm->srcu))
481 for (i = 0; i < KVM_NR_BUSES; i++) {
482 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
488 spin_lock_init(&kvm->mmu_lock);
489 kvm->mm = current->mm;
490 atomic_inc(&kvm->mm->mm_count);
491 kvm_eventfd_init(kvm);
492 mutex_init(&kvm->lock);
493 mutex_init(&kvm->irq_lock);
494 mutex_init(&kvm->slots_lock);
495 atomic_set(&kvm->users_count, 1);
497 r = kvm_init_mmu_notifier(kvm);
501 raw_spin_lock(&kvm_lock);
502 list_add(&kvm->vm_list, &vm_list);
503 raw_spin_unlock(&kvm_lock);
508 cleanup_srcu_struct(&kvm->srcu);
510 hardware_disable_all();
512 for (i = 0; i < KVM_NR_BUSES; i++)
513 kfree(kvm->buses[i]);
514 kfree(kvm->memslots);
515 kvm_arch_free_vm(kvm);
519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
521 if (!memslot->dirty_bitmap)
524 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
525 vfree(memslot->dirty_bitmap_head);
527 kfree(memslot->dirty_bitmap_head);
529 memslot->dirty_bitmap = NULL;
530 memslot->dirty_bitmap_head = NULL;
534 * Free any memory in @free but not in @dont.
536 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
537 struct kvm_memory_slot *dont)
539 if (!dont || free->rmap != dont->rmap)
542 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
543 kvm_destroy_dirty_bitmap(free);
545 kvm_arch_free_memslot(free, dont);
551 void kvm_free_physmem(struct kvm *kvm)
553 struct kvm_memslots *slots = kvm->memslots;
554 struct kvm_memory_slot *memslot;
556 kvm_for_each_memslot(memslot, slots)
557 kvm_free_physmem_slot(memslot, NULL);
559 kfree(kvm->memslots);
562 static void kvm_destroy_vm(struct kvm *kvm)
565 struct mm_struct *mm = kvm->mm;
567 kvm_arch_sync_events(kvm);
568 raw_spin_lock(&kvm_lock);
569 list_del(&kvm->vm_list);
570 raw_spin_unlock(&kvm_lock);
571 kvm_free_irq_routing(kvm);
572 for (i = 0; i < KVM_NR_BUSES; i++)
573 kvm_io_bus_destroy(kvm->buses[i]);
574 kvm_coalesced_mmio_free(kvm);
575 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
576 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
578 kvm_arch_flush_shadow(kvm);
580 kvm_arch_destroy_vm(kvm);
581 kvm_free_physmem(kvm);
582 cleanup_srcu_struct(&kvm->srcu);
583 kvm_arch_free_vm(kvm);
584 hardware_disable_all();
588 void kvm_get_kvm(struct kvm *kvm)
590 atomic_inc(&kvm->users_count);
592 EXPORT_SYMBOL_GPL(kvm_get_kvm);
594 void kvm_put_kvm(struct kvm *kvm)
596 if (atomic_dec_and_test(&kvm->users_count))
599 EXPORT_SYMBOL_GPL(kvm_put_kvm);
602 static int kvm_vm_release(struct inode *inode, struct file *filp)
604 struct kvm *kvm = filp->private_data;
606 kvm_irqfd_release(kvm);
613 * Allocation size is twice as large as the actual dirty bitmap size.
614 * This makes it possible to do double buffering: see x86's
615 * kvm_vm_ioctl_get_dirty_log().
617 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
620 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
622 if (dirty_bytes > PAGE_SIZE)
623 memslot->dirty_bitmap = vzalloc(dirty_bytes);
625 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
627 if (!memslot->dirty_bitmap)
630 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
631 memslot->nr_dirty_pages = 0;
632 #endif /* !CONFIG_S390 */
636 static int cmp_memslot(const void *slot1, const void *slot2)
638 struct kvm_memory_slot *s1, *s2;
640 s1 = (struct kvm_memory_slot *)slot1;
641 s2 = (struct kvm_memory_slot *)slot2;
643 if (s1->npages < s2->npages)
645 if (s1->npages > s2->npages)
652 * Sort the memslots base on its size, so the larger slots
653 * will get better fit.
655 static void sort_memslots(struct kvm_memslots *slots)
659 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
660 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
662 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
663 slots->id_to_index[slots->memslots[i].id] = i;
666 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
670 struct kvm_memory_slot *old = id_to_memslot(slots, id);
671 unsigned long npages = old->npages;
674 if (new->npages != npages)
675 sort_memslots(slots);
682 * Allocate some memory and give it an address in the guest physical address
685 * Discontiguous memory is allowed, mostly for framebuffers.
687 * Must be called holding mmap_sem for write.
689 int __kvm_set_memory_region(struct kvm *kvm,
690 struct kvm_userspace_memory_region *mem,
695 unsigned long npages;
697 struct kvm_memory_slot *memslot;
698 struct kvm_memory_slot old, new;
699 struct kvm_memslots *slots, *old_memslots;
702 /* General sanity checks */
703 if (mem->memory_size & (PAGE_SIZE - 1))
705 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
707 /* We can read the guest memory with __xxx_user() later on. */
709 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
710 !access_ok(VERIFY_WRITE,
711 (void __user *)(unsigned long)mem->userspace_addr,
714 if (mem->slot >= KVM_MEM_SLOTS_NUM)
716 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
719 memslot = id_to_memslot(kvm->memslots, mem->slot);
720 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
721 npages = mem->memory_size >> PAGE_SHIFT;
724 if (npages > KVM_MEM_MAX_NR_PAGES)
728 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
730 new = old = *memslot;
733 new.base_gfn = base_gfn;
735 new.flags = mem->flags;
737 /* Disallow changing a memory slot's size. */
739 if (npages && old.npages && npages != old.npages)
742 /* Check for overlaps */
744 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
745 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
747 if (s == memslot || !s->npages)
749 if (!((base_gfn + npages <= s->base_gfn) ||
750 (base_gfn >= s->base_gfn + s->npages)))
754 /* Free page dirty bitmap if unneeded */
755 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
756 new.dirty_bitmap = NULL;
760 /* Allocate if a slot is being created */
761 if (npages && !old.npages) {
762 new.user_alloc = user_alloc;
763 new.userspace_addr = mem->userspace_addr;
765 new.rmap = vzalloc(npages * sizeof(*new.rmap));
768 #endif /* not defined CONFIG_S390 */
769 if (kvm_arch_create_memslot(&new, npages))
773 /* Allocate page dirty bitmap if needed */
774 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
775 if (kvm_create_dirty_bitmap(&new) < 0)
777 /* destroy any largepage mappings for dirty tracking */
781 struct kvm_memory_slot *slot;
784 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
788 slot = id_to_memslot(slots, mem->slot);
789 slot->flags |= KVM_MEMSLOT_INVALID;
791 update_memslots(slots, NULL);
793 old_memslots = kvm->memslots;
794 rcu_assign_pointer(kvm->memslots, slots);
795 synchronize_srcu_expedited(&kvm->srcu);
796 /* From this point no new shadow pages pointing to a deleted
797 * memslot will be created.
799 * validation of sp->gfn happens in:
800 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
801 * - kvm_is_visible_gfn (mmu_check_roots)
803 kvm_arch_flush_shadow(kvm);
807 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
811 /* map/unmap the pages in iommu page table */
813 r = kvm_iommu_map_pages(kvm, &new);
817 kvm_iommu_unmap_pages(kvm, &old);
820 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
825 /* actual memory is freed via old in kvm_free_physmem_slot below */
828 new.dirty_bitmap = NULL;
829 memset(&new.arch, 0, sizeof(new.arch));
832 update_memslots(slots, &new);
833 old_memslots = kvm->memslots;
834 rcu_assign_pointer(kvm->memslots, slots);
835 synchronize_srcu_expedited(&kvm->srcu);
837 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
840 * If the new memory slot is created, we need to clear all
843 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
844 kvm_arch_flush_shadow(kvm);
846 kvm_free_physmem_slot(&old, &new);
852 kvm_free_physmem_slot(&new, &old);
857 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
859 int kvm_set_memory_region(struct kvm *kvm,
860 struct kvm_userspace_memory_region *mem,
865 mutex_lock(&kvm->slots_lock);
866 r = __kvm_set_memory_region(kvm, mem, user_alloc);
867 mutex_unlock(&kvm->slots_lock);
870 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
872 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
874 kvm_userspace_memory_region *mem,
877 if (mem->slot >= KVM_MEMORY_SLOTS)
879 return kvm_set_memory_region(kvm, mem, user_alloc);
882 int kvm_get_dirty_log(struct kvm *kvm,
883 struct kvm_dirty_log *log, int *is_dirty)
885 struct kvm_memory_slot *memslot;
888 unsigned long any = 0;
891 if (log->slot >= KVM_MEMORY_SLOTS)
894 memslot = id_to_memslot(kvm->memslots, log->slot);
896 if (!memslot->dirty_bitmap)
899 n = kvm_dirty_bitmap_bytes(memslot);
901 for (i = 0; !any && i < n/sizeof(long); ++i)
902 any = memslot->dirty_bitmap[i];
905 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
916 bool kvm_largepages_enabled(void)
918 return largepages_enabled;
921 void kvm_disable_largepages(void)
923 largepages_enabled = false;
925 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
927 int is_error_page(struct page *page)
929 return page == bad_page || page == hwpoison_page || page == fault_page;
931 EXPORT_SYMBOL_GPL(is_error_page);
933 int is_error_pfn(pfn_t pfn)
935 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
937 EXPORT_SYMBOL_GPL(is_error_pfn);
939 int is_hwpoison_pfn(pfn_t pfn)
941 return pfn == hwpoison_pfn;
943 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
945 int is_fault_pfn(pfn_t pfn)
947 return pfn == fault_pfn;
949 EXPORT_SYMBOL_GPL(is_fault_pfn);
951 int is_noslot_pfn(pfn_t pfn)
953 return pfn == bad_pfn;
955 EXPORT_SYMBOL_GPL(is_noslot_pfn);
957 int is_invalid_pfn(pfn_t pfn)
959 return pfn == hwpoison_pfn || pfn == fault_pfn;
961 EXPORT_SYMBOL_GPL(is_invalid_pfn);
963 static inline unsigned long bad_hva(void)
968 int kvm_is_error_hva(unsigned long addr)
970 return addr == bad_hva();
972 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
974 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
976 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
978 EXPORT_SYMBOL_GPL(gfn_to_memslot);
980 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
982 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
984 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
985 memslot->flags & KVM_MEMSLOT_INVALID)
990 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
992 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
994 struct vm_area_struct *vma;
995 unsigned long addr, size;
999 addr = gfn_to_hva(kvm, gfn);
1000 if (kvm_is_error_hva(addr))
1003 down_read(¤t->mm->mmap_sem);
1004 vma = find_vma(current->mm, addr);
1008 size = vma_kernel_pagesize(vma);
1011 up_read(¤t->mm->mmap_sem);
1016 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1019 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1023 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1025 return gfn_to_hva_memslot(slot, gfn);
1028 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1030 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1032 EXPORT_SYMBOL_GPL(gfn_to_hva);
1034 static pfn_t get_fault_pfn(void)
1036 get_page(fault_page);
1040 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1041 unsigned long start, int write, struct page **page)
1043 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1046 flags |= FOLL_WRITE;
1048 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1051 static inline int check_user_page_hwpoison(unsigned long addr)
1053 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1055 rc = __get_user_pages(current, current->mm, addr, 1,
1056 flags, NULL, NULL, NULL);
1057 return rc == -EHWPOISON;
1060 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1061 bool *async, bool write_fault, bool *writable)
1063 struct page *page[1];
1067 /* we can do it either atomically or asynchronously, not both */
1068 BUG_ON(atomic && async);
1070 BUG_ON(!write_fault && !writable);
1075 if (atomic || async)
1076 npages = __get_user_pages_fast(addr, 1, 1, page);
1078 if (unlikely(npages != 1) && !atomic) {
1082 *writable = write_fault;
1085 down_read(¤t->mm->mmap_sem);
1086 npages = get_user_page_nowait(current, current->mm,
1087 addr, write_fault, page);
1088 up_read(¤t->mm->mmap_sem);
1090 npages = get_user_pages_fast(addr, 1, write_fault,
1093 /* map read fault as writable if possible */
1094 if (unlikely(!write_fault) && npages == 1) {
1095 struct page *wpage[1];
1097 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1107 if (unlikely(npages != 1)) {
1108 struct vm_area_struct *vma;
1111 return get_fault_pfn();
1113 down_read(¤t->mm->mmap_sem);
1114 if (npages == -EHWPOISON ||
1115 (!async && check_user_page_hwpoison(addr))) {
1116 up_read(¤t->mm->mmap_sem);
1117 get_page(hwpoison_page);
1118 return page_to_pfn(hwpoison_page);
1121 vma = find_vma_intersection(current->mm, addr, addr+1);
1124 pfn = get_fault_pfn();
1125 else if ((vma->vm_flags & VM_PFNMAP)) {
1126 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1128 BUG_ON(!kvm_is_mmio_pfn(pfn));
1130 if (async && (vma->vm_flags & VM_WRITE))
1132 pfn = get_fault_pfn();
1134 up_read(¤t->mm->mmap_sem);
1136 pfn = page_to_pfn(page[0]);
1141 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1143 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1145 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1147 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1148 bool write_fault, bool *writable)
1155 addr = gfn_to_hva(kvm, gfn);
1156 if (kvm_is_error_hva(addr)) {
1158 return page_to_pfn(bad_page);
1161 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1164 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1166 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1168 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1170 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1171 bool write_fault, bool *writable)
1173 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1175 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1177 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1179 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1181 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1183 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1186 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1188 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1190 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1191 struct kvm_memory_slot *slot, gfn_t gfn)
1193 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1194 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1197 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1203 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1204 if (kvm_is_error_hva(addr))
1207 if (entry < nr_pages)
1210 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1212 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1214 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1218 pfn = gfn_to_pfn(kvm, gfn);
1219 if (!kvm_is_mmio_pfn(pfn))
1220 return pfn_to_page(pfn);
1222 WARN_ON(kvm_is_mmio_pfn(pfn));
1228 EXPORT_SYMBOL_GPL(gfn_to_page);
1230 void kvm_release_page_clean(struct page *page)
1232 kvm_release_pfn_clean(page_to_pfn(page));
1234 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1236 void kvm_release_pfn_clean(pfn_t pfn)
1238 if (!kvm_is_mmio_pfn(pfn))
1239 put_page(pfn_to_page(pfn));
1241 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1243 void kvm_release_page_dirty(struct page *page)
1245 kvm_release_pfn_dirty(page_to_pfn(page));
1247 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1249 void kvm_release_pfn_dirty(pfn_t pfn)
1251 kvm_set_pfn_dirty(pfn);
1252 kvm_release_pfn_clean(pfn);
1254 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1256 void kvm_set_page_dirty(struct page *page)
1258 kvm_set_pfn_dirty(page_to_pfn(page));
1260 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1262 void kvm_set_pfn_dirty(pfn_t pfn)
1264 if (!kvm_is_mmio_pfn(pfn)) {
1265 struct page *page = pfn_to_page(pfn);
1266 if (!PageReserved(page))
1270 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1272 void kvm_set_pfn_accessed(pfn_t pfn)
1274 if (!kvm_is_mmio_pfn(pfn))
1275 mark_page_accessed(pfn_to_page(pfn));
1277 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1279 void kvm_get_pfn(pfn_t pfn)
1281 if (!kvm_is_mmio_pfn(pfn))
1282 get_page(pfn_to_page(pfn));
1284 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1286 static int next_segment(unsigned long len, int offset)
1288 if (len > PAGE_SIZE - offset)
1289 return PAGE_SIZE - offset;
1294 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1300 addr = gfn_to_hva(kvm, gfn);
1301 if (kvm_is_error_hva(addr))
1303 r = __copy_from_user(data, (void __user *)addr + offset, len);
1308 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1310 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1312 gfn_t gfn = gpa >> PAGE_SHIFT;
1314 int offset = offset_in_page(gpa);
1317 while ((seg = next_segment(len, offset)) != 0) {
1318 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1328 EXPORT_SYMBOL_GPL(kvm_read_guest);
1330 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1335 gfn_t gfn = gpa >> PAGE_SHIFT;
1336 int offset = offset_in_page(gpa);
1338 addr = gfn_to_hva(kvm, gfn);
1339 if (kvm_is_error_hva(addr))
1341 pagefault_disable();
1342 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1348 EXPORT_SYMBOL(kvm_read_guest_atomic);
1350 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1351 int offset, int len)
1356 addr = gfn_to_hva(kvm, gfn);
1357 if (kvm_is_error_hva(addr))
1359 r = __copy_to_user((void __user *)addr + offset, data, len);
1362 mark_page_dirty(kvm, gfn);
1365 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1367 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1370 gfn_t gfn = gpa >> PAGE_SHIFT;
1372 int offset = offset_in_page(gpa);
1375 while ((seg = next_segment(len, offset)) != 0) {
1376 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1387 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1390 struct kvm_memslots *slots = kvm_memslots(kvm);
1391 int offset = offset_in_page(gpa);
1392 gfn_t gfn = gpa >> PAGE_SHIFT;
1395 ghc->generation = slots->generation;
1396 ghc->memslot = gfn_to_memslot(kvm, gfn);
1397 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1398 if (!kvm_is_error_hva(ghc->hva))
1405 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1407 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1408 void *data, unsigned long len)
1410 struct kvm_memslots *slots = kvm_memslots(kvm);
1413 if (slots->generation != ghc->generation)
1414 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1416 if (kvm_is_error_hva(ghc->hva))
1419 r = __copy_to_user((void __user *)ghc->hva, data, len);
1422 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1426 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1428 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1429 void *data, unsigned long len)
1431 struct kvm_memslots *slots = kvm_memslots(kvm);
1434 if (slots->generation != ghc->generation)
1435 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1437 if (kvm_is_error_hva(ghc->hva))
1440 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1446 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1448 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1450 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1453 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1455 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1457 gfn_t gfn = gpa >> PAGE_SHIFT;
1459 int offset = offset_in_page(gpa);
1462 while ((seg = next_segment(len, offset)) != 0) {
1463 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1472 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1474 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1477 if (memslot && memslot->dirty_bitmap) {
1478 unsigned long rel_gfn = gfn - memslot->base_gfn;
1480 if (!test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
1481 memslot->nr_dirty_pages++;
1485 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1487 struct kvm_memory_slot *memslot;
1489 memslot = gfn_to_memslot(kvm, gfn);
1490 mark_page_dirty_in_slot(kvm, memslot, gfn);
1494 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1496 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1501 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1503 if (kvm_arch_vcpu_runnable(vcpu)) {
1504 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1507 if (kvm_cpu_has_pending_timer(vcpu))
1509 if (signal_pending(current))
1515 finish_wait(&vcpu->wq, &wait);
1518 void kvm_resched(struct kvm_vcpu *vcpu)
1520 if (!need_resched())
1524 EXPORT_SYMBOL_GPL(kvm_resched);
1526 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1528 struct kvm *kvm = me->kvm;
1529 struct kvm_vcpu *vcpu;
1530 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1536 * We boost the priority of a VCPU that is runnable but not
1537 * currently running, because it got preempted by something
1538 * else and called schedule in __vcpu_run. Hopefully that
1539 * VCPU is holding the lock that we need and will release it.
1540 * We approximate round-robin by starting at the last boosted VCPU.
1542 for (pass = 0; pass < 2 && !yielded; pass++) {
1543 kvm_for_each_vcpu(i, vcpu, kvm) {
1544 struct task_struct *task = NULL;
1546 if (!pass && i < last_boosted_vcpu) {
1547 i = last_boosted_vcpu;
1549 } else if (pass && i > last_boosted_vcpu)
1553 if (waitqueue_active(&vcpu->wq))
1556 pid = rcu_dereference(vcpu->pid);
1558 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1562 if (task->flags & PF_VCPU) {
1563 put_task_struct(task);
1566 if (yield_to(task, 1)) {
1567 put_task_struct(task);
1568 kvm->last_boosted_vcpu = i;
1572 put_task_struct(task);
1576 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1578 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1580 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1583 if (vmf->pgoff == 0)
1584 page = virt_to_page(vcpu->run);
1586 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1587 page = virt_to_page(vcpu->arch.pio_data);
1589 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1590 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1591 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1594 return kvm_arch_vcpu_fault(vcpu, vmf);
1600 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1601 .fault = kvm_vcpu_fault,
1604 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1606 vma->vm_ops = &kvm_vcpu_vm_ops;
1610 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1612 struct kvm_vcpu *vcpu = filp->private_data;
1614 kvm_put_kvm(vcpu->kvm);
1618 static struct file_operations kvm_vcpu_fops = {
1619 .release = kvm_vcpu_release,
1620 .unlocked_ioctl = kvm_vcpu_ioctl,
1621 #ifdef CONFIG_COMPAT
1622 .compat_ioctl = kvm_vcpu_compat_ioctl,
1624 .mmap = kvm_vcpu_mmap,
1625 .llseek = noop_llseek,
1629 * Allocates an inode for the vcpu.
1631 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1633 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1637 * Creates some virtual cpus. Good luck creating more than one.
1639 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1642 struct kvm_vcpu *vcpu, *v;
1644 vcpu = kvm_arch_vcpu_create(kvm, id);
1646 return PTR_ERR(vcpu);
1648 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1650 r = kvm_arch_vcpu_setup(vcpu);
1654 mutex_lock(&kvm->lock);
1655 if (!kvm_vcpu_compatible(vcpu)) {
1657 goto unlock_vcpu_destroy;
1659 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1661 goto unlock_vcpu_destroy;
1664 kvm_for_each_vcpu(r, v, kvm)
1665 if (v->vcpu_id == id) {
1667 goto unlock_vcpu_destroy;
1670 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1672 /* Now it's all set up, let userspace reach it */
1674 r = create_vcpu_fd(vcpu);
1677 goto unlock_vcpu_destroy;
1680 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1682 atomic_inc(&kvm->online_vcpus);
1684 mutex_unlock(&kvm->lock);
1687 unlock_vcpu_destroy:
1688 mutex_unlock(&kvm->lock);
1690 kvm_arch_vcpu_destroy(vcpu);
1694 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1697 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1698 vcpu->sigset_active = 1;
1699 vcpu->sigset = *sigset;
1701 vcpu->sigset_active = 0;
1705 static long kvm_vcpu_ioctl(struct file *filp,
1706 unsigned int ioctl, unsigned long arg)
1708 struct kvm_vcpu *vcpu = filp->private_data;
1709 void __user *argp = (void __user *)arg;
1711 struct kvm_fpu *fpu = NULL;
1712 struct kvm_sregs *kvm_sregs = NULL;
1714 if (vcpu->kvm->mm != current->mm)
1717 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1719 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1720 * so vcpu_load() would break it.
1722 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1723 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1733 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1734 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1736 case KVM_GET_REGS: {
1737 struct kvm_regs *kvm_regs;
1740 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1743 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1747 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1754 case KVM_SET_REGS: {
1755 struct kvm_regs *kvm_regs;
1758 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1759 if (IS_ERR(kvm_regs)) {
1760 r = PTR_ERR(kvm_regs);
1763 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1771 case KVM_GET_SREGS: {
1772 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1776 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1780 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1785 case KVM_SET_SREGS: {
1786 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1787 if (IS_ERR(kvm_sregs)) {
1788 r = PTR_ERR(kvm_sregs);
1791 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1797 case KVM_GET_MP_STATE: {
1798 struct kvm_mp_state mp_state;
1800 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1804 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1809 case KVM_SET_MP_STATE: {
1810 struct kvm_mp_state mp_state;
1813 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1815 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1821 case KVM_TRANSLATE: {
1822 struct kvm_translation tr;
1825 if (copy_from_user(&tr, argp, sizeof tr))
1827 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1831 if (copy_to_user(argp, &tr, sizeof tr))
1836 case KVM_SET_GUEST_DEBUG: {
1837 struct kvm_guest_debug dbg;
1840 if (copy_from_user(&dbg, argp, sizeof dbg))
1842 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1848 case KVM_SET_SIGNAL_MASK: {
1849 struct kvm_signal_mask __user *sigmask_arg = argp;
1850 struct kvm_signal_mask kvm_sigmask;
1851 sigset_t sigset, *p;
1856 if (copy_from_user(&kvm_sigmask, argp,
1857 sizeof kvm_sigmask))
1860 if (kvm_sigmask.len != sizeof sigset)
1863 if (copy_from_user(&sigset, sigmask_arg->sigset,
1868 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1872 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1876 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1880 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1886 fpu = memdup_user(argp, sizeof(*fpu));
1891 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1898 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1907 #ifdef CONFIG_COMPAT
1908 static long kvm_vcpu_compat_ioctl(struct file *filp,
1909 unsigned int ioctl, unsigned long arg)
1911 struct kvm_vcpu *vcpu = filp->private_data;
1912 void __user *argp = compat_ptr(arg);
1915 if (vcpu->kvm->mm != current->mm)
1919 case KVM_SET_SIGNAL_MASK: {
1920 struct kvm_signal_mask __user *sigmask_arg = argp;
1921 struct kvm_signal_mask kvm_sigmask;
1922 compat_sigset_t csigset;
1927 if (copy_from_user(&kvm_sigmask, argp,
1928 sizeof kvm_sigmask))
1931 if (kvm_sigmask.len != sizeof csigset)
1934 if (copy_from_user(&csigset, sigmask_arg->sigset,
1938 sigset_from_compat(&sigset, &csigset);
1939 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1943 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1951 static long kvm_vm_ioctl(struct file *filp,
1952 unsigned int ioctl, unsigned long arg)
1954 struct kvm *kvm = filp->private_data;
1955 void __user *argp = (void __user *)arg;
1958 if (kvm->mm != current->mm)
1961 case KVM_CREATE_VCPU:
1962 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1966 case KVM_SET_USER_MEMORY_REGION: {
1967 struct kvm_userspace_memory_region kvm_userspace_mem;
1970 if (copy_from_user(&kvm_userspace_mem, argp,
1971 sizeof kvm_userspace_mem))
1974 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1979 case KVM_GET_DIRTY_LOG: {
1980 struct kvm_dirty_log log;
1983 if (copy_from_user(&log, argp, sizeof log))
1985 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1990 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1991 case KVM_REGISTER_COALESCED_MMIO: {
1992 struct kvm_coalesced_mmio_zone zone;
1994 if (copy_from_user(&zone, argp, sizeof zone))
1996 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2002 case KVM_UNREGISTER_COALESCED_MMIO: {
2003 struct kvm_coalesced_mmio_zone zone;
2005 if (copy_from_user(&zone, argp, sizeof zone))
2007 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2015 struct kvm_irqfd data;
2018 if (copy_from_user(&data, argp, sizeof data))
2020 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2023 case KVM_IOEVENTFD: {
2024 struct kvm_ioeventfd data;
2027 if (copy_from_user(&data, argp, sizeof data))
2029 r = kvm_ioeventfd(kvm, &data);
2032 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2033 case KVM_SET_BOOT_CPU_ID:
2035 mutex_lock(&kvm->lock);
2036 if (atomic_read(&kvm->online_vcpus) != 0)
2039 kvm->bsp_vcpu_id = arg;
2040 mutex_unlock(&kvm->lock);
2044 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2046 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2052 #ifdef CONFIG_COMPAT
2053 struct compat_kvm_dirty_log {
2057 compat_uptr_t dirty_bitmap; /* one bit per page */
2062 static long kvm_vm_compat_ioctl(struct file *filp,
2063 unsigned int ioctl, unsigned long arg)
2065 struct kvm *kvm = filp->private_data;
2068 if (kvm->mm != current->mm)
2071 case KVM_GET_DIRTY_LOG: {
2072 struct compat_kvm_dirty_log compat_log;
2073 struct kvm_dirty_log log;
2076 if (copy_from_user(&compat_log, (void __user *)arg,
2077 sizeof(compat_log)))
2079 log.slot = compat_log.slot;
2080 log.padding1 = compat_log.padding1;
2081 log.padding2 = compat_log.padding2;
2082 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2084 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2090 r = kvm_vm_ioctl(filp, ioctl, arg);
2098 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2100 struct page *page[1];
2103 gfn_t gfn = vmf->pgoff;
2104 struct kvm *kvm = vma->vm_file->private_data;
2106 addr = gfn_to_hva(kvm, gfn);
2107 if (kvm_is_error_hva(addr))
2108 return VM_FAULT_SIGBUS;
2110 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2112 if (unlikely(npages != 1))
2113 return VM_FAULT_SIGBUS;
2115 vmf->page = page[0];
2119 static const struct vm_operations_struct kvm_vm_vm_ops = {
2120 .fault = kvm_vm_fault,
2123 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2125 vma->vm_ops = &kvm_vm_vm_ops;
2129 static struct file_operations kvm_vm_fops = {
2130 .release = kvm_vm_release,
2131 .unlocked_ioctl = kvm_vm_ioctl,
2132 #ifdef CONFIG_COMPAT
2133 .compat_ioctl = kvm_vm_compat_ioctl,
2135 .mmap = kvm_vm_mmap,
2136 .llseek = noop_llseek,
2139 static int kvm_dev_ioctl_create_vm(unsigned long type)
2144 kvm = kvm_create_vm(type);
2146 return PTR_ERR(kvm);
2147 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2148 r = kvm_coalesced_mmio_init(kvm);
2154 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2161 static long kvm_dev_ioctl_check_extension_generic(long arg)
2164 case KVM_CAP_USER_MEMORY:
2165 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2166 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2167 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2168 case KVM_CAP_SET_BOOT_CPU_ID:
2170 case KVM_CAP_INTERNAL_ERROR_DATA:
2172 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2173 case KVM_CAP_IRQ_ROUTING:
2174 return KVM_MAX_IRQ_ROUTES;
2179 return kvm_dev_ioctl_check_extension(arg);
2182 static long kvm_dev_ioctl(struct file *filp,
2183 unsigned int ioctl, unsigned long arg)
2188 case KVM_GET_API_VERSION:
2192 r = KVM_API_VERSION;
2195 r = kvm_dev_ioctl_create_vm(arg);
2197 case KVM_CHECK_EXTENSION:
2198 r = kvm_dev_ioctl_check_extension_generic(arg);
2200 case KVM_GET_VCPU_MMAP_SIZE:
2204 r = PAGE_SIZE; /* struct kvm_run */
2206 r += PAGE_SIZE; /* pio data page */
2208 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2209 r += PAGE_SIZE; /* coalesced mmio ring page */
2212 case KVM_TRACE_ENABLE:
2213 case KVM_TRACE_PAUSE:
2214 case KVM_TRACE_DISABLE:
2218 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2224 static struct file_operations kvm_chardev_ops = {
2225 .unlocked_ioctl = kvm_dev_ioctl,
2226 .compat_ioctl = kvm_dev_ioctl,
2227 .llseek = noop_llseek,
2230 static struct miscdevice kvm_dev = {
2236 static void hardware_enable_nolock(void *junk)
2238 int cpu = raw_smp_processor_id();
2241 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2244 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2246 r = kvm_arch_hardware_enable(NULL);
2249 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2250 atomic_inc(&hardware_enable_failed);
2251 printk(KERN_INFO "kvm: enabling virtualization on "
2252 "CPU%d failed\n", cpu);
2256 static void hardware_enable(void *junk)
2258 raw_spin_lock(&kvm_lock);
2259 hardware_enable_nolock(junk);
2260 raw_spin_unlock(&kvm_lock);
2263 static void hardware_disable_nolock(void *junk)
2265 int cpu = raw_smp_processor_id();
2267 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2269 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2270 kvm_arch_hardware_disable(NULL);
2273 static void hardware_disable(void *junk)
2275 raw_spin_lock(&kvm_lock);
2276 hardware_disable_nolock(junk);
2277 raw_spin_unlock(&kvm_lock);
2280 static void hardware_disable_all_nolock(void)
2282 BUG_ON(!kvm_usage_count);
2285 if (!kvm_usage_count)
2286 on_each_cpu(hardware_disable_nolock, NULL, 1);
2289 static void hardware_disable_all(void)
2291 raw_spin_lock(&kvm_lock);
2292 hardware_disable_all_nolock();
2293 raw_spin_unlock(&kvm_lock);
2296 static int hardware_enable_all(void)
2300 raw_spin_lock(&kvm_lock);
2303 if (kvm_usage_count == 1) {
2304 atomic_set(&hardware_enable_failed, 0);
2305 on_each_cpu(hardware_enable_nolock, NULL, 1);
2307 if (atomic_read(&hardware_enable_failed)) {
2308 hardware_disable_all_nolock();
2313 raw_spin_unlock(&kvm_lock);
2318 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2323 if (!kvm_usage_count)
2326 val &= ~CPU_TASKS_FROZEN;
2329 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2331 hardware_disable(NULL);
2334 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2336 hardware_enable(NULL);
2343 asmlinkage void kvm_spurious_fault(void)
2345 /* Fault while not rebooting. We want the trace. */
2348 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2350 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2354 * Some (well, at least mine) BIOSes hang on reboot if
2357 * And Intel TXT required VMX off for all cpu when system shutdown.
2359 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2360 kvm_rebooting = true;
2361 on_each_cpu(hardware_disable_nolock, NULL, 1);
2365 static struct notifier_block kvm_reboot_notifier = {
2366 .notifier_call = kvm_reboot,
2370 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2374 for (i = 0; i < bus->dev_count; i++) {
2375 struct kvm_io_device *pos = bus->range[i].dev;
2377 kvm_iodevice_destructor(pos);
2382 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2384 const struct kvm_io_range *r1 = p1;
2385 const struct kvm_io_range *r2 = p2;
2387 if (r1->addr < r2->addr)
2389 if (r1->addr + r1->len > r2->addr + r2->len)
2394 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2395 gpa_t addr, int len)
2397 if (bus->dev_count == NR_IOBUS_DEVS)
2400 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2406 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2407 kvm_io_bus_sort_cmp, NULL);
2412 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2413 gpa_t addr, int len)
2415 struct kvm_io_range *range, key;
2418 key = (struct kvm_io_range) {
2423 range = bsearch(&key, bus->range, bus->dev_count,
2424 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2428 off = range - bus->range;
2430 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2436 /* kvm_io_bus_write - called under kvm->slots_lock */
2437 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2438 int len, const void *val)
2441 struct kvm_io_bus *bus;
2442 struct kvm_io_range range;
2444 range = (struct kvm_io_range) {
2449 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2450 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2454 while (idx < bus->dev_count &&
2455 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2456 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2464 /* kvm_io_bus_read - called under kvm->slots_lock */
2465 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2469 struct kvm_io_bus *bus;
2470 struct kvm_io_range range;
2472 range = (struct kvm_io_range) {
2477 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2478 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2482 while (idx < bus->dev_count &&
2483 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2484 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2492 /* Caller must hold slots_lock. */
2493 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2494 int len, struct kvm_io_device *dev)
2496 struct kvm_io_bus *new_bus, *bus;
2498 bus = kvm->buses[bus_idx];
2499 if (bus->dev_count > NR_IOBUS_DEVS-1)
2502 new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
2505 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2506 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2507 synchronize_srcu_expedited(&kvm->srcu);
2513 /* Caller must hold slots_lock. */
2514 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2515 struct kvm_io_device *dev)
2518 struct kvm_io_bus *new_bus, *bus;
2520 bus = kvm->buses[bus_idx];
2522 new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL);
2527 for (i = 0; i < new_bus->dev_count; i++)
2528 if (new_bus->range[i].dev == dev) {
2530 new_bus->dev_count--;
2531 new_bus->range[i] = new_bus->range[new_bus->dev_count];
2532 sort(new_bus->range, new_bus->dev_count,
2533 sizeof(struct kvm_io_range),
2534 kvm_io_bus_sort_cmp, NULL);
2543 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2544 synchronize_srcu_expedited(&kvm->srcu);
2549 static struct notifier_block kvm_cpu_notifier = {
2550 .notifier_call = kvm_cpu_hotplug,
2553 static int vm_stat_get(void *_offset, u64 *val)
2555 unsigned offset = (long)_offset;
2559 raw_spin_lock(&kvm_lock);
2560 list_for_each_entry(kvm, &vm_list, vm_list)
2561 *val += *(u32 *)((void *)kvm + offset);
2562 raw_spin_unlock(&kvm_lock);
2566 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2568 static int vcpu_stat_get(void *_offset, u64 *val)
2570 unsigned offset = (long)_offset;
2572 struct kvm_vcpu *vcpu;
2576 raw_spin_lock(&kvm_lock);
2577 list_for_each_entry(kvm, &vm_list, vm_list)
2578 kvm_for_each_vcpu(i, vcpu, kvm)
2579 *val += *(u32 *)((void *)vcpu + offset);
2581 raw_spin_unlock(&kvm_lock);
2585 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2587 static const struct file_operations *stat_fops[] = {
2588 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2589 [KVM_STAT_VM] = &vm_stat_fops,
2592 static int kvm_init_debug(void)
2595 struct kvm_stats_debugfs_item *p;
2597 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2598 if (kvm_debugfs_dir == NULL)
2601 for (p = debugfs_entries; p->name; ++p) {
2602 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2603 (void *)(long)p->offset,
2604 stat_fops[p->kind]);
2605 if (p->dentry == NULL)
2612 debugfs_remove_recursive(kvm_debugfs_dir);
2617 static void kvm_exit_debug(void)
2619 struct kvm_stats_debugfs_item *p;
2621 for (p = debugfs_entries; p->name; ++p)
2622 debugfs_remove(p->dentry);
2623 debugfs_remove(kvm_debugfs_dir);
2626 static int kvm_suspend(void)
2628 if (kvm_usage_count)
2629 hardware_disable_nolock(NULL);
2633 static void kvm_resume(void)
2635 if (kvm_usage_count) {
2636 WARN_ON(raw_spin_is_locked(&kvm_lock));
2637 hardware_enable_nolock(NULL);
2641 static struct syscore_ops kvm_syscore_ops = {
2642 .suspend = kvm_suspend,
2643 .resume = kvm_resume,
2646 struct page *bad_page;
2650 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2652 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2655 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2657 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2659 kvm_arch_vcpu_load(vcpu, cpu);
2662 static void kvm_sched_out(struct preempt_notifier *pn,
2663 struct task_struct *next)
2665 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2667 kvm_arch_vcpu_put(vcpu);
2670 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2671 struct module *module)
2676 r = kvm_arch_init(opaque);
2680 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2682 if (bad_page == NULL) {
2687 bad_pfn = page_to_pfn(bad_page);
2689 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2691 if (hwpoison_page == NULL) {
2696 hwpoison_pfn = page_to_pfn(hwpoison_page);
2698 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2700 if (fault_page == NULL) {
2705 fault_pfn = page_to_pfn(fault_page);
2707 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2712 r = kvm_arch_hardware_setup();
2716 for_each_online_cpu(cpu) {
2717 smp_call_function_single(cpu,
2718 kvm_arch_check_processor_compat,
2724 r = register_cpu_notifier(&kvm_cpu_notifier);
2727 register_reboot_notifier(&kvm_reboot_notifier);
2729 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2731 vcpu_align = __alignof__(struct kvm_vcpu);
2732 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2734 if (!kvm_vcpu_cache) {
2739 r = kvm_async_pf_init();
2743 kvm_chardev_ops.owner = module;
2744 kvm_vm_fops.owner = module;
2745 kvm_vcpu_fops.owner = module;
2747 r = misc_register(&kvm_dev);
2749 printk(KERN_ERR "kvm: misc device register failed\n");
2753 register_syscore_ops(&kvm_syscore_ops);
2755 kvm_preempt_ops.sched_in = kvm_sched_in;
2756 kvm_preempt_ops.sched_out = kvm_sched_out;
2758 r = kvm_init_debug();
2760 printk(KERN_ERR "kvm: create debugfs files failed\n");
2767 unregister_syscore_ops(&kvm_syscore_ops);
2769 kvm_async_pf_deinit();
2771 kmem_cache_destroy(kvm_vcpu_cache);
2773 unregister_reboot_notifier(&kvm_reboot_notifier);
2774 unregister_cpu_notifier(&kvm_cpu_notifier);
2777 kvm_arch_hardware_unsetup();
2779 free_cpumask_var(cpus_hardware_enabled);
2782 __free_page(fault_page);
2784 __free_page(hwpoison_page);
2785 __free_page(bad_page);
2791 EXPORT_SYMBOL_GPL(kvm_init);
2796 misc_deregister(&kvm_dev);
2797 kmem_cache_destroy(kvm_vcpu_cache);
2798 kvm_async_pf_deinit();
2799 unregister_syscore_ops(&kvm_syscore_ops);
2800 unregister_reboot_notifier(&kvm_reboot_notifier);
2801 unregister_cpu_notifier(&kvm_cpu_notifier);
2802 on_each_cpu(hardware_disable_nolock, NULL, 1);
2803 kvm_arch_hardware_unsetup();
2805 free_cpumask_var(cpus_hardware_enabled);
2806 __free_page(hwpoison_page);
2807 __free_page(bad_page);
2809 EXPORT_SYMBOL_GPL(kvm_exit);