sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[platform/kernel/linux-exynos.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/sched/mm.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
40 #include <linux/profile.h>
41 #include <linux/kvm_para.h>
42 #include <linux/pagemap.h>
43 #include <linux/mman.h>
44 #include <linux/swap.h>
45 #include <linux/bitops.h>
46 #include <linux/spinlock.h>
47 #include <linux/compat.h>
48 #include <linux/srcu.h>
49 #include <linux/hugetlb.h>
50 #include <linux/slab.h>
51 #include <linux/sort.h>
52 #include <linux/bsearch.h>
53
54 #include <asm/processor.h>
55 #include <asm/io.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* Default resets per-vcpu halt_poll_ns . */
84 unsigned int halt_poll_ns_shrink;
85 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
87
88 /*
89  * Ordering of locks:
90  *
91  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
92  */
93
94 DEFINE_SPINLOCK(kvm_lock);
95 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
96 LIST_HEAD(vm_list);
97
98 static cpumask_var_t cpus_hardware_enabled;
99 static int kvm_usage_count;
100 static atomic_t hardware_enable_failed;
101
102 struct kmem_cache *kvm_vcpu_cache;
103 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
104
105 static __read_mostly struct preempt_ops kvm_preempt_ops;
106
107 struct dentry *kvm_debugfs_dir;
108 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
109
110 static int kvm_debugfs_num_entries;
111 static const struct file_operations *stat_fops_per_vm[];
112
113 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
114                            unsigned long arg);
115 #ifdef CONFIG_KVM_COMPAT
116 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
117                                   unsigned long arg);
118 #endif
119 static int hardware_enable_all(void);
120 static void hardware_disable_all(void);
121
122 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
123
124 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
133 {
134         if (pfn_valid(pfn))
135                 return PageReserved(pfn_to_page(pfn));
136
137         return true;
138 }
139
140 /*
141  * Switches to specified vcpu, until a matching vcpu_put()
142  */
143 int vcpu_load(struct kvm_vcpu *vcpu)
144 {
145         int cpu;
146
147         if (mutex_lock_killable(&vcpu->mutex))
148                 return -EINTR;
149         cpu = get_cpu();
150         preempt_notifier_register(&vcpu->preempt_notifier);
151         kvm_arch_vcpu_load(vcpu, cpu);
152         put_cpu();
153         return 0;
154 }
155 EXPORT_SYMBOL_GPL(vcpu_load);
156
157 void vcpu_put(struct kvm_vcpu *vcpu)
158 {
159         preempt_disable();
160         kvm_arch_vcpu_put(vcpu);
161         preempt_notifier_unregister(&vcpu->preempt_notifier);
162         preempt_enable();
163         mutex_unlock(&vcpu->mutex);
164 }
165 EXPORT_SYMBOL_GPL(vcpu_put);
166
167 static void ack_flush(void *_completed)
168 {
169 }
170
171 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
172 {
173         int i, cpu, me;
174         cpumask_var_t cpus;
175         bool called = true;
176         struct kvm_vcpu *vcpu;
177
178         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
179
180         me = get_cpu();
181         kvm_for_each_vcpu(i, vcpu, kvm) {
182                 kvm_make_request(req, vcpu);
183                 cpu = vcpu->cpu;
184
185                 /* Set ->requests bit before we read ->mode. */
186                 smp_mb__after_atomic();
187
188                 if (cpus != NULL && cpu != -1 && cpu != me &&
189                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
190                         cpumask_set_cpu(cpu, cpus);
191         }
192         if (unlikely(cpus == NULL))
193                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
194         else if (!cpumask_empty(cpus))
195                 smp_call_function_many(cpus, ack_flush, NULL, 1);
196         else
197                 called = false;
198         put_cpu();
199         free_cpumask_var(cpus);
200         return called;
201 }
202
203 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206         /*
207          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
208          * kvm_make_all_cpus_request.
209          */
210         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
211
212         /*
213          * We want to publish modifications to the page tables before reading
214          * mode. Pairs with a memory barrier in arch-specific code.
215          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
216          * and smp_mb in walk_shadow_page_lockless_begin/end.
217          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
218          *
219          * There is already an smp_mb__after_atomic() before
220          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
221          * barrier here.
222          */
223         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
224                 ++kvm->stat.remote_tlb_flush;
225         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
226 }
227 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
228 #endif
229
230 void kvm_reload_remote_mmus(struct kvm *kvm)
231 {
232         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
233 }
234
235 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
236 {
237         struct page *page;
238         int r;
239
240         mutex_init(&vcpu->mutex);
241         vcpu->cpu = -1;
242         vcpu->kvm = kvm;
243         vcpu->vcpu_id = id;
244         vcpu->pid = NULL;
245         init_swait_queue_head(&vcpu->wq);
246         kvm_async_pf_vcpu_init(vcpu);
247
248         vcpu->pre_pcpu = -1;
249         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
250
251         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
252         if (!page) {
253                 r = -ENOMEM;
254                 goto fail;
255         }
256         vcpu->run = page_address(page);
257
258         kvm_vcpu_set_in_spin_loop(vcpu, false);
259         kvm_vcpu_set_dy_eligible(vcpu, false);
260         vcpu->preempted = false;
261
262         r = kvm_arch_vcpu_init(vcpu);
263         if (r < 0)
264                 goto fail_free_run;
265         return 0;
266
267 fail_free_run:
268         free_page((unsigned long)vcpu->run);
269 fail:
270         return r;
271 }
272 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
273
274 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
275 {
276         put_pid(vcpu->pid);
277         kvm_arch_vcpu_uninit(vcpu);
278         free_page((unsigned long)vcpu->run);
279 }
280 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
281
282 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
283 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
284 {
285         return container_of(mn, struct kvm, mmu_notifier);
286 }
287
288 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
289                                              struct mm_struct *mm,
290                                              unsigned long address)
291 {
292         struct kvm *kvm = mmu_notifier_to_kvm(mn);
293         int need_tlb_flush, idx;
294
295         /*
296          * When ->invalidate_page runs, the linux pte has been zapped
297          * already but the page is still allocated until
298          * ->invalidate_page returns. So if we increase the sequence
299          * here the kvm page fault will notice if the spte can't be
300          * established because the page is going to be freed. If
301          * instead the kvm page fault establishes the spte before
302          * ->invalidate_page runs, kvm_unmap_hva will release it
303          * before returning.
304          *
305          * The sequence increase only need to be seen at spin_unlock
306          * time, and not at spin_lock time.
307          *
308          * Increasing the sequence after the spin_unlock would be
309          * unsafe because the kvm page fault could then establish the
310          * pte after kvm_unmap_hva returned, without noticing the page
311          * is going to be freed.
312          */
313         idx = srcu_read_lock(&kvm->srcu);
314         spin_lock(&kvm->mmu_lock);
315
316         kvm->mmu_notifier_seq++;
317         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
318         /* we've to flush the tlb before the pages can be freed */
319         if (need_tlb_flush)
320                 kvm_flush_remote_tlbs(kvm);
321
322         spin_unlock(&kvm->mmu_lock);
323
324         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
325
326         srcu_read_unlock(&kvm->srcu, idx);
327 }
328
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330                                         struct mm_struct *mm,
331                                         unsigned long address,
332                                         pte_t pte)
333 {
334         struct kvm *kvm = mmu_notifier_to_kvm(mn);
335         int idx;
336
337         idx = srcu_read_lock(&kvm->srcu);
338         spin_lock(&kvm->mmu_lock);
339         kvm->mmu_notifier_seq++;
340         kvm_set_spte_hva(kvm, address, pte);
341         spin_unlock(&kvm->mmu_lock);
342         srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346                                                     struct mm_struct *mm,
347                                                     unsigned long start,
348                                                     unsigned long end)
349 {
350         struct kvm *kvm = mmu_notifier_to_kvm(mn);
351         int need_tlb_flush = 0, idx;
352
353         idx = srcu_read_lock(&kvm->srcu);
354         spin_lock(&kvm->mmu_lock);
355         /*
356          * The count increase must become visible at unlock time as no
357          * spte can be established without taking the mmu_lock and
358          * count is also read inside the mmu_lock critical section.
359          */
360         kvm->mmu_notifier_count++;
361         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362         need_tlb_flush |= kvm->tlbs_dirty;
363         /* we've to flush the tlb before the pages can be freed */
364         if (need_tlb_flush)
365                 kvm_flush_remote_tlbs(kvm);
366
367         spin_unlock(&kvm->mmu_lock);
368         srcu_read_unlock(&kvm->srcu, idx);
369 }
370
371 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
372                                                   struct mm_struct *mm,
373                                                   unsigned long start,
374                                                   unsigned long end)
375 {
376         struct kvm *kvm = mmu_notifier_to_kvm(mn);
377
378         spin_lock(&kvm->mmu_lock);
379         /*
380          * This sequence increase will notify the kvm page fault that
381          * the page that is going to be mapped in the spte could have
382          * been freed.
383          */
384         kvm->mmu_notifier_seq++;
385         smp_wmb();
386         /*
387          * The above sequence increase must be visible before the
388          * below count decrease, which is ensured by the smp_wmb above
389          * in conjunction with the smp_rmb in mmu_notifier_retry().
390          */
391         kvm->mmu_notifier_count--;
392         spin_unlock(&kvm->mmu_lock);
393
394         BUG_ON(kvm->mmu_notifier_count < 0);
395 }
396
397 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
398                                               struct mm_struct *mm,
399                                               unsigned long start,
400                                               unsigned long end)
401 {
402         struct kvm *kvm = mmu_notifier_to_kvm(mn);
403         int young, idx;
404
405         idx = srcu_read_lock(&kvm->srcu);
406         spin_lock(&kvm->mmu_lock);
407
408         young = kvm_age_hva(kvm, start, end);
409         if (young)
410                 kvm_flush_remote_tlbs(kvm);
411
412         spin_unlock(&kvm->mmu_lock);
413         srcu_read_unlock(&kvm->srcu, idx);
414
415         return young;
416 }
417
418 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
419                                         struct mm_struct *mm,
420                                         unsigned long start,
421                                         unsigned long end)
422 {
423         struct kvm *kvm = mmu_notifier_to_kvm(mn);
424         int young, idx;
425
426         idx = srcu_read_lock(&kvm->srcu);
427         spin_lock(&kvm->mmu_lock);
428         /*
429          * Even though we do not flush TLB, this will still adversely
430          * affect performance on pre-Haswell Intel EPT, where there is
431          * no EPT Access Bit to clear so that we have to tear down EPT
432          * tables instead. If we find this unacceptable, we can always
433          * add a parameter to kvm_age_hva so that it effectively doesn't
434          * do anything on clear_young.
435          *
436          * Also note that currently we never issue secondary TLB flushes
437          * from clear_young, leaving this job up to the regular system
438          * cadence. If we find this inaccurate, we might come up with a
439          * more sophisticated heuristic later.
440          */
441         young = kvm_age_hva(kvm, start, end);
442         spin_unlock(&kvm->mmu_lock);
443         srcu_read_unlock(&kvm->srcu, idx);
444
445         return young;
446 }
447
448 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
449                                        struct mm_struct *mm,
450                                        unsigned long address)
451 {
452         struct kvm *kvm = mmu_notifier_to_kvm(mn);
453         int young, idx;
454
455         idx = srcu_read_lock(&kvm->srcu);
456         spin_lock(&kvm->mmu_lock);
457         young = kvm_test_age_hva(kvm, address);
458         spin_unlock(&kvm->mmu_lock);
459         srcu_read_unlock(&kvm->srcu, idx);
460
461         return young;
462 }
463
464 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
465                                      struct mm_struct *mm)
466 {
467         struct kvm *kvm = mmu_notifier_to_kvm(mn);
468         int idx;
469
470         idx = srcu_read_lock(&kvm->srcu);
471         kvm_arch_flush_shadow_all(kvm);
472         srcu_read_unlock(&kvm->srcu, idx);
473 }
474
475 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
476         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
477         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
478         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
479         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
480         .clear_young            = kvm_mmu_notifier_clear_young,
481         .test_young             = kvm_mmu_notifier_test_young,
482         .change_pte             = kvm_mmu_notifier_change_pte,
483         .release                = kvm_mmu_notifier_release,
484 };
485
486 static int kvm_init_mmu_notifier(struct kvm *kvm)
487 {
488         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
489         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
490 }
491
492 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
493
494 static int kvm_init_mmu_notifier(struct kvm *kvm)
495 {
496         return 0;
497 }
498
499 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
500
501 static struct kvm_memslots *kvm_alloc_memslots(void)
502 {
503         int i;
504         struct kvm_memslots *slots;
505
506         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
507         if (!slots)
508                 return NULL;
509
510         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
511                 slots->id_to_index[i] = slots->memslots[i].id = i;
512
513         return slots;
514 }
515
516 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
517 {
518         if (!memslot->dirty_bitmap)
519                 return;
520
521         kvfree(memslot->dirty_bitmap);
522         memslot->dirty_bitmap = NULL;
523 }
524
525 /*
526  * Free any memory in @free but not in @dont.
527  */
528 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
529                               struct kvm_memory_slot *dont)
530 {
531         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
532                 kvm_destroy_dirty_bitmap(free);
533
534         kvm_arch_free_memslot(kvm, free, dont);
535
536         free->npages = 0;
537 }
538
539 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
540 {
541         struct kvm_memory_slot *memslot;
542
543         if (!slots)
544                 return;
545
546         kvm_for_each_memslot(memslot, slots)
547                 kvm_free_memslot(kvm, memslot, NULL);
548
549         kvfree(slots);
550 }
551
552 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
553 {
554         int i;
555
556         if (!kvm->debugfs_dentry)
557                 return;
558
559         debugfs_remove_recursive(kvm->debugfs_dentry);
560
561         if (kvm->debugfs_stat_data) {
562                 for (i = 0; i < kvm_debugfs_num_entries; i++)
563                         kfree(kvm->debugfs_stat_data[i]);
564                 kfree(kvm->debugfs_stat_data);
565         }
566 }
567
568 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
569 {
570         char dir_name[ITOA_MAX_LEN * 2];
571         struct kvm_stat_data *stat_data;
572         struct kvm_stats_debugfs_item *p;
573
574         if (!debugfs_initialized())
575                 return 0;
576
577         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
578         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
579                                                  kvm_debugfs_dir);
580         if (!kvm->debugfs_dentry)
581                 return -ENOMEM;
582
583         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
584                                          sizeof(*kvm->debugfs_stat_data),
585                                          GFP_KERNEL);
586         if (!kvm->debugfs_stat_data)
587                 return -ENOMEM;
588
589         for (p = debugfs_entries; p->name; p++) {
590                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
591                 if (!stat_data)
592                         return -ENOMEM;
593
594                 stat_data->kvm = kvm;
595                 stat_data->offset = p->offset;
596                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
597                 if (!debugfs_create_file(p->name, 0644,
598                                          kvm->debugfs_dentry,
599                                          stat_data,
600                                          stat_fops_per_vm[p->kind]))
601                         return -ENOMEM;
602         }
603         return 0;
604 }
605
606 static struct kvm *kvm_create_vm(unsigned long type)
607 {
608         int r, i;
609         struct kvm *kvm = kvm_arch_alloc_vm();
610
611         if (!kvm)
612                 return ERR_PTR(-ENOMEM);
613
614         spin_lock_init(&kvm->mmu_lock);
615         mmgrab(current->mm);
616         kvm->mm = current->mm;
617         kvm_eventfd_init(kvm);
618         mutex_init(&kvm->lock);
619         mutex_init(&kvm->irq_lock);
620         mutex_init(&kvm->slots_lock);
621         atomic_set(&kvm->users_count, 1);
622         INIT_LIST_HEAD(&kvm->devices);
623
624         r = kvm_arch_init_vm(kvm, type);
625         if (r)
626                 goto out_err_no_disable;
627
628         r = hardware_enable_all();
629         if (r)
630                 goto out_err_no_disable;
631
632 #ifdef CONFIG_HAVE_KVM_IRQFD
633         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
634 #endif
635
636         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
637
638         r = -ENOMEM;
639         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
640                 struct kvm_memslots *slots = kvm_alloc_memslots();
641                 if (!slots)
642                         goto out_err_no_srcu;
643                 /*
644                  * Generations must be different for each address space.
645                  * Init kvm generation close to the maximum to easily test the
646                  * code of handling generation number wrap-around.
647                  */
648                 slots->generation = i * 2 - 150;
649                 rcu_assign_pointer(kvm->memslots[i], slots);
650         }
651
652         if (init_srcu_struct(&kvm->srcu))
653                 goto out_err_no_srcu;
654         if (init_srcu_struct(&kvm->irq_srcu))
655                 goto out_err_no_irq_srcu;
656         for (i = 0; i < KVM_NR_BUSES; i++) {
657                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
658                                         GFP_KERNEL);
659                 if (!kvm->buses[i])
660                         goto out_err;
661         }
662
663         r = kvm_init_mmu_notifier(kvm);
664         if (r)
665                 goto out_err;
666
667         spin_lock(&kvm_lock);
668         list_add(&kvm->vm_list, &vm_list);
669         spin_unlock(&kvm_lock);
670
671         preempt_notifier_inc();
672
673         return kvm;
674
675 out_err:
676         cleanup_srcu_struct(&kvm->irq_srcu);
677 out_err_no_irq_srcu:
678         cleanup_srcu_struct(&kvm->srcu);
679 out_err_no_srcu:
680         hardware_disable_all();
681 out_err_no_disable:
682         for (i = 0; i < KVM_NR_BUSES; i++)
683                 kfree(kvm->buses[i]);
684         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
685                 kvm_free_memslots(kvm, kvm->memslots[i]);
686         kvm_arch_free_vm(kvm);
687         mmdrop(current->mm);
688         return ERR_PTR(r);
689 }
690
691 /*
692  * Avoid using vmalloc for a small buffer.
693  * Should not be used when the size is statically known.
694  */
695 void *kvm_kvzalloc(unsigned long size)
696 {
697         if (size > PAGE_SIZE)
698                 return vzalloc(size);
699         else
700                 return kzalloc(size, GFP_KERNEL);
701 }
702
703 static void kvm_destroy_devices(struct kvm *kvm)
704 {
705         struct kvm_device *dev, *tmp;
706
707         /*
708          * We do not need to take the kvm->lock here, because nobody else
709          * has a reference to the struct kvm at this point and therefore
710          * cannot access the devices list anyhow.
711          */
712         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
713                 list_del(&dev->vm_node);
714                 dev->ops->destroy(dev);
715         }
716 }
717
718 static void kvm_destroy_vm(struct kvm *kvm)
719 {
720         int i;
721         struct mm_struct *mm = kvm->mm;
722
723         kvm_destroy_vm_debugfs(kvm);
724         kvm_arch_sync_events(kvm);
725         spin_lock(&kvm_lock);
726         list_del(&kvm->vm_list);
727         spin_unlock(&kvm_lock);
728         kvm_free_irq_routing(kvm);
729         for (i = 0; i < KVM_NR_BUSES; i++)
730                 kvm_io_bus_destroy(kvm->buses[i]);
731         kvm_coalesced_mmio_free(kvm);
732 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
733         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
734 #else
735         kvm_arch_flush_shadow_all(kvm);
736 #endif
737         kvm_arch_destroy_vm(kvm);
738         kvm_destroy_devices(kvm);
739         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
740                 kvm_free_memslots(kvm, kvm->memslots[i]);
741         cleanup_srcu_struct(&kvm->irq_srcu);
742         cleanup_srcu_struct(&kvm->srcu);
743         kvm_arch_free_vm(kvm);
744         preempt_notifier_dec();
745         hardware_disable_all();
746         mmdrop(mm);
747 }
748
749 void kvm_get_kvm(struct kvm *kvm)
750 {
751         atomic_inc(&kvm->users_count);
752 }
753 EXPORT_SYMBOL_GPL(kvm_get_kvm);
754
755 void kvm_put_kvm(struct kvm *kvm)
756 {
757         if (atomic_dec_and_test(&kvm->users_count))
758                 kvm_destroy_vm(kvm);
759 }
760 EXPORT_SYMBOL_GPL(kvm_put_kvm);
761
762
763 static int kvm_vm_release(struct inode *inode, struct file *filp)
764 {
765         struct kvm *kvm = filp->private_data;
766
767         kvm_irqfd_release(kvm);
768
769         kvm_put_kvm(kvm);
770         return 0;
771 }
772
773 /*
774  * Allocation size is twice as large as the actual dirty bitmap size.
775  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
776  */
777 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
778 {
779         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
780
781         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
782         if (!memslot->dirty_bitmap)
783                 return -ENOMEM;
784
785         return 0;
786 }
787
788 /*
789  * Insert memslot and re-sort memslots based on their GFN,
790  * so binary search could be used to lookup GFN.
791  * Sorting algorithm takes advantage of having initially
792  * sorted array and known changed memslot position.
793  */
794 static void update_memslots(struct kvm_memslots *slots,
795                             struct kvm_memory_slot *new)
796 {
797         int id = new->id;
798         int i = slots->id_to_index[id];
799         struct kvm_memory_slot *mslots = slots->memslots;
800
801         WARN_ON(mslots[i].id != id);
802         if (!new->npages) {
803                 WARN_ON(!mslots[i].npages);
804                 if (mslots[i].npages)
805                         slots->used_slots--;
806         } else {
807                 if (!mslots[i].npages)
808                         slots->used_slots++;
809         }
810
811         while (i < KVM_MEM_SLOTS_NUM - 1 &&
812                new->base_gfn <= mslots[i + 1].base_gfn) {
813                 if (!mslots[i + 1].npages)
814                         break;
815                 mslots[i] = mslots[i + 1];
816                 slots->id_to_index[mslots[i].id] = i;
817                 i++;
818         }
819
820         /*
821          * The ">=" is needed when creating a slot with base_gfn == 0,
822          * so that it moves before all those with base_gfn == npages == 0.
823          *
824          * On the other hand, if new->npages is zero, the above loop has
825          * already left i pointing to the beginning of the empty part of
826          * mslots, and the ">=" would move the hole backwards in this
827          * case---which is wrong.  So skip the loop when deleting a slot.
828          */
829         if (new->npages) {
830                 while (i > 0 &&
831                        new->base_gfn >= mslots[i - 1].base_gfn) {
832                         mslots[i] = mslots[i - 1];
833                         slots->id_to_index[mslots[i].id] = i;
834                         i--;
835                 }
836         } else
837                 WARN_ON_ONCE(i != slots->used_slots);
838
839         mslots[i] = *new;
840         slots->id_to_index[mslots[i].id] = i;
841 }
842
843 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
844 {
845         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
846
847 #ifdef __KVM_HAVE_READONLY_MEM
848         valid_flags |= KVM_MEM_READONLY;
849 #endif
850
851         if (mem->flags & ~valid_flags)
852                 return -EINVAL;
853
854         return 0;
855 }
856
857 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
858                 int as_id, struct kvm_memslots *slots)
859 {
860         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
861
862         /*
863          * Set the low bit in the generation, which disables SPTE caching
864          * until the end of synchronize_srcu_expedited.
865          */
866         WARN_ON(old_memslots->generation & 1);
867         slots->generation = old_memslots->generation + 1;
868
869         rcu_assign_pointer(kvm->memslots[as_id], slots);
870         synchronize_srcu_expedited(&kvm->srcu);
871
872         /*
873          * Increment the new memslot generation a second time. This prevents
874          * vm exits that race with memslot updates from caching a memslot
875          * generation that will (potentially) be valid forever.
876          *
877          * Generations must be unique even across address spaces.  We do not need
878          * a global counter for that, instead the generation space is evenly split
879          * across address spaces.  For example, with two address spaces, address
880          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
881          * use generations 2, 6, 10, 14, ...
882          */
883         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
884
885         kvm_arch_memslots_updated(kvm, slots);
886
887         return old_memslots;
888 }
889
890 /*
891  * Allocate some memory and give it an address in the guest physical address
892  * space.
893  *
894  * Discontiguous memory is allowed, mostly for framebuffers.
895  *
896  * Must be called holding kvm->slots_lock for write.
897  */
898 int __kvm_set_memory_region(struct kvm *kvm,
899                             const struct kvm_userspace_memory_region *mem)
900 {
901         int r;
902         gfn_t base_gfn;
903         unsigned long npages;
904         struct kvm_memory_slot *slot;
905         struct kvm_memory_slot old, new;
906         struct kvm_memslots *slots = NULL, *old_memslots;
907         int as_id, id;
908         enum kvm_mr_change change;
909
910         r = check_memory_region_flags(mem);
911         if (r)
912                 goto out;
913
914         r = -EINVAL;
915         as_id = mem->slot >> 16;
916         id = (u16)mem->slot;
917
918         /* General sanity checks */
919         if (mem->memory_size & (PAGE_SIZE - 1))
920                 goto out;
921         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
922                 goto out;
923         /* We can read the guest memory with __xxx_user() later on. */
924         if ((id < KVM_USER_MEM_SLOTS) &&
925             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
926              !access_ok(VERIFY_WRITE,
927                         (void __user *)(unsigned long)mem->userspace_addr,
928                         mem->memory_size)))
929                 goto out;
930         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
931                 goto out;
932         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
933                 goto out;
934
935         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
936         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
937         npages = mem->memory_size >> PAGE_SHIFT;
938
939         if (npages > KVM_MEM_MAX_NR_PAGES)
940                 goto out;
941
942         new = old = *slot;
943
944         new.id = id;
945         new.base_gfn = base_gfn;
946         new.npages = npages;
947         new.flags = mem->flags;
948
949         if (npages) {
950                 if (!old.npages)
951                         change = KVM_MR_CREATE;
952                 else { /* Modify an existing slot. */
953                         if ((mem->userspace_addr != old.userspace_addr) ||
954                             (npages != old.npages) ||
955                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
956                                 goto out;
957
958                         if (base_gfn != old.base_gfn)
959                                 change = KVM_MR_MOVE;
960                         else if (new.flags != old.flags)
961                                 change = KVM_MR_FLAGS_ONLY;
962                         else { /* Nothing to change. */
963                                 r = 0;
964                                 goto out;
965                         }
966                 }
967         } else {
968                 if (!old.npages)
969                         goto out;
970
971                 change = KVM_MR_DELETE;
972                 new.base_gfn = 0;
973                 new.flags = 0;
974         }
975
976         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
977                 /* Check for overlaps */
978                 r = -EEXIST;
979                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
980                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
981                             (slot->id == id))
982                                 continue;
983                         if (!((base_gfn + npages <= slot->base_gfn) ||
984                               (base_gfn >= slot->base_gfn + slot->npages)))
985                                 goto out;
986                 }
987         }
988
989         /* Free page dirty bitmap if unneeded */
990         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
991                 new.dirty_bitmap = NULL;
992
993         r = -ENOMEM;
994         if (change == KVM_MR_CREATE) {
995                 new.userspace_addr = mem->userspace_addr;
996
997                 if (kvm_arch_create_memslot(kvm, &new, npages))
998                         goto out_free;
999         }
1000
1001         /* Allocate page dirty bitmap if needed */
1002         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1003                 if (kvm_create_dirty_bitmap(&new) < 0)
1004                         goto out_free;
1005         }
1006
1007         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1008         if (!slots)
1009                 goto out_free;
1010         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1011
1012         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1013                 slot = id_to_memslot(slots, id);
1014                 slot->flags |= KVM_MEMSLOT_INVALID;
1015
1016                 old_memslots = install_new_memslots(kvm, as_id, slots);
1017
1018                 /* slot was deleted or moved, clear iommu mapping */
1019                 kvm_iommu_unmap_pages(kvm, &old);
1020                 /* From this point no new shadow pages pointing to a deleted,
1021                  * or moved, memslot will be created.
1022                  *
1023                  * validation of sp->gfn happens in:
1024                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1025                  *      - kvm_is_visible_gfn (mmu_check_roots)
1026                  */
1027                 kvm_arch_flush_shadow_memslot(kvm, slot);
1028
1029                 /*
1030                  * We can re-use the old_memslots from above, the only difference
1031                  * from the currently installed memslots is the invalid flag.  This
1032                  * will get overwritten by update_memslots anyway.
1033                  */
1034                 slots = old_memslots;
1035         }
1036
1037         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1038         if (r)
1039                 goto out_slots;
1040
1041         /* actual memory is freed via old in kvm_free_memslot below */
1042         if (change == KVM_MR_DELETE) {
1043                 new.dirty_bitmap = NULL;
1044                 memset(&new.arch, 0, sizeof(new.arch));
1045         }
1046
1047         update_memslots(slots, &new);
1048         old_memslots = install_new_memslots(kvm, as_id, slots);
1049
1050         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1051
1052         kvm_free_memslot(kvm, &old, &new);
1053         kvfree(old_memslots);
1054
1055         /*
1056          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1057          * un-mapped and re-mapped if their base changes.  Since base change
1058          * unmapping is handled above with slot deletion, mapping alone is
1059          * needed here.  Anything else the iommu might care about for existing
1060          * slots (size changes, userspace addr changes and read-only flag
1061          * changes) is disallowed above, so any other attribute changes getting
1062          * here can be skipped.
1063          */
1064         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1065                 r = kvm_iommu_map_pages(kvm, &new);
1066                 return r;
1067         }
1068
1069         return 0;
1070
1071 out_slots:
1072         kvfree(slots);
1073 out_free:
1074         kvm_free_memslot(kvm, &new, &old);
1075 out:
1076         return r;
1077 }
1078 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1079
1080 int kvm_set_memory_region(struct kvm *kvm,
1081                           const struct kvm_userspace_memory_region *mem)
1082 {
1083         int r;
1084
1085         mutex_lock(&kvm->slots_lock);
1086         r = __kvm_set_memory_region(kvm, mem);
1087         mutex_unlock(&kvm->slots_lock);
1088         return r;
1089 }
1090 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1091
1092 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1093                                           struct kvm_userspace_memory_region *mem)
1094 {
1095         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1096                 return -EINVAL;
1097
1098         return kvm_set_memory_region(kvm, mem);
1099 }
1100
1101 int kvm_get_dirty_log(struct kvm *kvm,
1102                         struct kvm_dirty_log *log, int *is_dirty)
1103 {
1104         struct kvm_memslots *slots;
1105         struct kvm_memory_slot *memslot;
1106         int i, as_id, id;
1107         unsigned long n;
1108         unsigned long any = 0;
1109
1110         as_id = log->slot >> 16;
1111         id = (u16)log->slot;
1112         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1113                 return -EINVAL;
1114
1115         slots = __kvm_memslots(kvm, as_id);
1116         memslot = id_to_memslot(slots, id);
1117         if (!memslot->dirty_bitmap)
1118                 return -ENOENT;
1119
1120         n = kvm_dirty_bitmap_bytes(memslot);
1121
1122         for (i = 0; !any && i < n/sizeof(long); ++i)
1123                 any = memslot->dirty_bitmap[i];
1124
1125         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1126                 return -EFAULT;
1127
1128         if (any)
1129                 *is_dirty = 1;
1130         return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1133
1134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1135 /**
1136  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1137  *      are dirty write protect them for next write.
1138  * @kvm:        pointer to kvm instance
1139  * @log:        slot id and address to which we copy the log
1140  * @is_dirty:   flag set if any page is dirty
1141  *
1142  * We need to keep it in mind that VCPU threads can write to the bitmap
1143  * concurrently. So, to avoid losing track of dirty pages we keep the
1144  * following order:
1145  *
1146  *    1. Take a snapshot of the bit and clear it if needed.
1147  *    2. Write protect the corresponding page.
1148  *    3. Copy the snapshot to the userspace.
1149  *    4. Upon return caller flushes TLB's if needed.
1150  *
1151  * Between 2 and 4, the guest may write to the page using the remaining TLB
1152  * entry.  This is not a problem because the page is reported dirty using
1153  * the snapshot taken before and step 4 ensures that writes done after
1154  * exiting to userspace will be logged for the next call.
1155  *
1156  */
1157 int kvm_get_dirty_log_protect(struct kvm *kvm,
1158                         struct kvm_dirty_log *log, bool *is_dirty)
1159 {
1160         struct kvm_memslots *slots;
1161         struct kvm_memory_slot *memslot;
1162         int i, as_id, id;
1163         unsigned long n;
1164         unsigned long *dirty_bitmap;
1165         unsigned long *dirty_bitmap_buffer;
1166
1167         as_id = log->slot >> 16;
1168         id = (u16)log->slot;
1169         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1170                 return -EINVAL;
1171
1172         slots = __kvm_memslots(kvm, as_id);
1173         memslot = id_to_memslot(slots, id);
1174
1175         dirty_bitmap = memslot->dirty_bitmap;
1176         if (!dirty_bitmap)
1177                 return -ENOENT;
1178
1179         n = kvm_dirty_bitmap_bytes(memslot);
1180
1181         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1182         memset(dirty_bitmap_buffer, 0, n);
1183
1184         spin_lock(&kvm->mmu_lock);
1185         *is_dirty = false;
1186         for (i = 0; i < n / sizeof(long); i++) {
1187                 unsigned long mask;
1188                 gfn_t offset;
1189
1190                 if (!dirty_bitmap[i])
1191                         continue;
1192
1193                 *is_dirty = true;
1194
1195                 mask = xchg(&dirty_bitmap[i], 0);
1196                 dirty_bitmap_buffer[i] = mask;
1197
1198                 if (mask) {
1199                         offset = i * BITS_PER_LONG;
1200                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1201                                                                 offset, mask);
1202                 }
1203         }
1204
1205         spin_unlock(&kvm->mmu_lock);
1206         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1207                 return -EFAULT;
1208         return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1211 #endif
1212
1213 bool kvm_largepages_enabled(void)
1214 {
1215         return largepages_enabled;
1216 }
1217
1218 void kvm_disable_largepages(void)
1219 {
1220         largepages_enabled = false;
1221 }
1222 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1223
1224 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1225 {
1226         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1227 }
1228 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1229
1230 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1231 {
1232         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1233 }
1234
1235 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1236 {
1237         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1238
1239         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1240               memslot->flags & KVM_MEMSLOT_INVALID)
1241                 return false;
1242
1243         return true;
1244 }
1245 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1246
1247 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1248 {
1249         struct vm_area_struct *vma;
1250         unsigned long addr, size;
1251
1252         size = PAGE_SIZE;
1253
1254         addr = gfn_to_hva(kvm, gfn);
1255         if (kvm_is_error_hva(addr))
1256                 return PAGE_SIZE;
1257
1258         down_read(&current->mm->mmap_sem);
1259         vma = find_vma(current->mm, addr);
1260         if (!vma)
1261                 goto out;
1262
1263         size = vma_kernel_pagesize(vma);
1264
1265 out:
1266         up_read(&current->mm->mmap_sem);
1267
1268         return size;
1269 }
1270
1271 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1272 {
1273         return slot->flags & KVM_MEM_READONLY;
1274 }
1275
1276 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1277                                        gfn_t *nr_pages, bool write)
1278 {
1279         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1280                 return KVM_HVA_ERR_BAD;
1281
1282         if (memslot_is_readonly(slot) && write)
1283                 return KVM_HVA_ERR_RO_BAD;
1284
1285         if (nr_pages)
1286                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1287
1288         return __gfn_to_hva_memslot(slot, gfn);
1289 }
1290
1291 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1292                                      gfn_t *nr_pages)
1293 {
1294         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1295 }
1296
1297 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1298                                         gfn_t gfn)
1299 {
1300         return gfn_to_hva_many(slot, gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1303
1304 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1305 {
1306         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(gfn_to_hva);
1309
1310 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1311 {
1312         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1315
1316 /*
1317  * If writable is set to false, the hva returned by this function is only
1318  * allowed to be read.
1319  */
1320 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1321                                       gfn_t gfn, bool *writable)
1322 {
1323         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1324
1325         if (!kvm_is_error_hva(hva) && writable)
1326                 *writable = !memslot_is_readonly(slot);
1327
1328         return hva;
1329 }
1330
1331 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1332 {
1333         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1334
1335         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1336 }
1337
1338 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1339 {
1340         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1341
1342         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1343 }
1344
1345 static int get_user_page_nowait(unsigned long start, int write,
1346                 struct page **page)
1347 {
1348         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1349
1350         if (write)
1351                 flags |= FOLL_WRITE;
1352
1353         return get_user_pages(start, 1, flags, page, NULL);
1354 }
1355
1356 static inline int check_user_page_hwpoison(unsigned long addr)
1357 {
1358         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1359
1360         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1361         return rc == -EHWPOISON;
1362 }
1363
1364 /*
1365  * The atomic path to get the writable pfn which will be stored in @pfn,
1366  * true indicates success, otherwise false is returned.
1367  */
1368 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1369                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1370 {
1371         struct page *page[1];
1372         int npages;
1373
1374         if (!(async || atomic))
1375                 return false;
1376
1377         /*
1378          * Fast pin a writable pfn only if it is a write fault request
1379          * or the caller allows to map a writable pfn for a read fault
1380          * request.
1381          */
1382         if (!(write_fault || writable))
1383                 return false;
1384
1385         npages = __get_user_pages_fast(addr, 1, 1, page);
1386         if (npages == 1) {
1387                 *pfn = page_to_pfn(page[0]);
1388
1389                 if (writable)
1390                         *writable = true;
1391                 return true;
1392         }
1393
1394         return false;
1395 }
1396
1397 /*
1398  * The slow path to get the pfn of the specified host virtual address,
1399  * 1 indicates success, -errno is returned if error is detected.
1400  */
1401 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1402                            bool *writable, kvm_pfn_t *pfn)
1403 {
1404         struct page *page[1];
1405         int npages = 0;
1406
1407         might_sleep();
1408
1409         if (writable)
1410                 *writable = write_fault;
1411
1412         if (async) {
1413                 down_read(&current->mm->mmap_sem);
1414                 npages = get_user_page_nowait(addr, write_fault, page);
1415                 up_read(&current->mm->mmap_sem);
1416         } else {
1417                 unsigned int flags = FOLL_HWPOISON;
1418
1419                 if (write_fault)
1420                         flags |= FOLL_WRITE;
1421
1422                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1423         }
1424         if (npages != 1)
1425                 return npages;
1426
1427         /* map read fault as writable if possible */
1428         if (unlikely(!write_fault) && writable) {
1429                 struct page *wpage[1];
1430
1431                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1432                 if (npages == 1) {
1433                         *writable = true;
1434                         put_page(page[0]);
1435                         page[0] = wpage[0];
1436                 }
1437
1438                 npages = 1;
1439         }
1440         *pfn = page_to_pfn(page[0]);
1441         return npages;
1442 }
1443
1444 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1445 {
1446         if (unlikely(!(vma->vm_flags & VM_READ)))
1447                 return false;
1448
1449         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1450                 return false;
1451
1452         return true;
1453 }
1454
1455 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1456                                unsigned long addr, bool *async,
1457                                bool write_fault, kvm_pfn_t *p_pfn)
1458 {
1459         unsigned long pfn;
1460         int r;
1461
1462         r = follow_pfn(vma, addr, &pfn);
1463         if (r) {
1464                 /*
1465                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1466                  * not call the fault handler, so do it here.
1467                  */
1468                 bool unlocked = false;
1469                 r = fixup_user_fault(current, current->mm, addr,
1470                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1471                                      &unlocked);
1472                 if (unlocked)
1473                         return -EAGAIN;
1474                 if (r)
1475                         return r;
1476
1477                 r = follow_pfn(vma, addr, &pfn);
1478                 if (r)
1479                         return r;
1480
1481         }
1482
1483
1484         /*
1485          * Get a reference here because callers of *hva_to_pfn* and
1486          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1487          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1488          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1489          * simply do nothing for reserved pfns.
1490          *
1491          * Whoever called remap_pfn_range is also going to call e.g.
1492          * unmap_mapping_range before the underlying pages are freed,
1493          * causing a call to our MMU notifier.
1494          */ 
1495         kvm_get_pfn(pfn);
1496
1497         *p_pfn = pfn;
1498         return 0;
1499 }
1500
1501 /*
1502  * Pin guest page in memory and return its pfn.
1503  * @addr: host virtual address which maps memory to the guest
1504  * @atomic: whether this function can sleep
1505  * @async: whether this function need to wait IO complete if the
1506  *         host page is not in the memory
1507  * @write_fault: whether we should get a writable host page
1508  * @writable: whether it allows to map a writable host page for !@write_fault
1509  *
1510  * The function will map a writable host page for these two cases:
1511  * 1): @write_fault = true
1512  * 2): @write_fault = false && @writable, @writable will tell the caller
1513  *     whether the mapping is writable.
1514  */
1515 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1516                         bool write_fault, bool *writable)
1517 {
1518         struct vm_area_struct *vma;
1519         kvm_pfn_t pfn = 0;
1520         int npages, r;
1521
1522         /* we can do it either atomically or asynchronously, not both */
1523         BUG_ON(atomic && async);
1524
1525         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1526                 return pfn;
1527
1528         if (atomic)
1529                 return KVM_PFN_ERR_FAULT;
1530
1531         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1532         if (npages == 1)
1533                 return pfn;
1534
1535         down_read(&current->mm->mmap_sem);
1536         if (npages == -EHWPOISON ||
1537               (!async && check_user_page_hwpoison(addr))) {
1538                 pfn = KVM_PFN_ERR_HWPOISON;
1539                 goto exit;
1540         }
1541
1542 retry:
1543         vma = find_vma_intersection(current->mm, addr, addr + 1);
1544
1545         if (vma == NULL)
1546                 pfn = KVM_PFN_ERR_FAULT;
1547         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1548                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1549                 if (r == -EAGAIN)
1550                         goto retry;
1551                 if (r < 0)
1552                         pfn = KVM_PFN_ERR_FAULT;
1553         } else {
1554                 if (async && vma_is_valid(vma, write_fault))
1555                         *async = true;
1556                 pfn = KVM_PFN_ERR_FAULT;
1557         }
1558 exit:
1559         up_read(&current->mm->mmap_sem);
1560         return pfn;
1561 }
1562
1563 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1564                                bool atomic, bool *async, bool write_fault,
1565                                bool *writable)
1566 {
1567         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1568
1569         if (addr == KVM_HVA_ERR_RO_BAD) {
1570                 if (writable)
1571                         *writable = false;
1572                 return KVM_PFN_ERR_RO_FAULT;
1573         }
1574
1575         if (kvm_is_error_hva(addr)) {
1576                 if (writable)
1577                         *writable = false;
1578                 return KVM_PFN_NOSLOT;
1579         }
1580
1581         /* Do not map writable pfn in the readonly memslot. */
1582         if (writable && memslot_is_readonly(slot)) {
1583                 *writable = false;
1584                 writable = NULL;
1585         }
1586
1587         return hva_to_pfn(addr, atomic, async, write_fault,
1588                           writable);
1589 }
1590 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1591
1592 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1593                       bool *writable)
1594 {
1595         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1596                                     write_fault, writable);
1597 }
1598 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1599
1600 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1601 {
1602         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1605
1606 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1607 {
1608         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1611
1612 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1613 {
1614         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1615 }
1616 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1617
1618 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1619 {
1620         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1623
1624 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1625 {
1626         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1627 }
1628 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1629
1630 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1631 {
1632         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1633 }
1634 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1635
1636 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1637                             struct page **pages, int nr_pages)
1638 {
1639         unsigned long addr;
1640         gfn_t entry;
1641
1642         addr = gfn_to_hva_many(slot, gfn, &entry);
1643         if (kvm_is_error_hva(addr))
1644                 return -1;
1645
1646         if (entry < nr_pages)
1647                 return 0;
1648
1649         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1650 }
1651 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1652
1653 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1654 {
1655         if (is_error_noslot_pfn(pfn))
1656                 return KVM_ERR_PTR_BAD_PAGE;
1657
1658         if (kvm_is_reserved_pfn(pfn)) {
1659                 WARN_ON(1);
1660                 return KVM_ERR_PTR_BAD_PAGE;
1661         }
1662
1663         return pfn_to_page(pfn);
1664 }
1665
1666 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1667 {
1668         kvm_pfn_t pfn;
1669
1670         pfn = gfn_to_pfn(kvm, gfn);
1671
1672         return kvm_pfn_to_page(pfn);
1673 }
1674 EXPORT_SYMBOL_GPL(gfn_to_page);
1675
1676 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1677 {
1678         kvm_pfn_t pfn;
1679
1680         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1681
1682         return kvm_pfn_to_page(pfn);
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1685
1686 void kvm_release_page_clean(struct page *page)
1687 {
1688         WARN_ON(is_error_page(page));
1689
1690         kvm_release_pfn_clean(page_to_pfn(page));
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1693
1694 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1695 {
1696         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1697                 put_page(pfn_to_page(pfn));
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1700
1701 void kvm_release_page_dirty(struct page *page)
1702 {
1703         WARN_ON(is_error_page(page));
1704
1705         kvm_release_pfn_dirty(page_to_pfn(page));
1706 }
1707 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1708
1709 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1710 {
1711         kvm_set_pfn_dirty(pfn);
1712         kvm_release_pfn_clean(pfn);
1713 }
1714
1715 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1716 {
1717         if (!kvm_is_reserved_pfn(pfn)) {
1718                 struct page *page = pfn_to_page(pfn);
1719
1720                 if (!PageReserved(page))
1721                         SetPageDirty(page);
1722         }
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1725
1726 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1727 {
1728         if (!kvm_is_reserved_pfn(pfn))
1729                 mark_page_accessed(pfn_to_page(pfn));
1730 }
1731 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1732
1733 void kvm_get_pfn(kvm_pfn_t pfn)
1734 {
1735         if (!kvm_is_reserved_pfn(pfn))
1736                 get_page(pfn_to_page(pfn));
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1739
1740 static int next_segment(unsigned long len, int offset)
1741 {
1742         if (len > PAGE_SIZE - offset)
1743                 return PAGE_SIZE - offset;
1744         else
1745                 return len;
1746 }
1747
1748 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1749                                  void *data, int offset, int len)
1750 {
1751         int r;
1752         unsigned long addr;
1753
1754         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1755         if (kvm_is_error_hva(addr))
1756                 return -EFAULT;
1757         r = __copy_from_user(data, (void __user *)addr + offset, len);
1758         if (r)
1759                 return -EFAULT;
1760         return 0;
1761 }
1762
1763 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1764                         int len)
1765 {
1766         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1767
1768         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1771
1772 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1773                              int offset, int len)
1774 {
1775         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776
1777         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1780
1781 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1782 {
1783         gfn_t gfn = gpa >> PAGE_SHIFT;
1784         int seg;
1785         int offset = offset_in_page(gpa);
1786         int ret;
1787
1788         while ((seg = next_segment(len, offset)) != 0) {
1789                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1790                 if (ret < 0)
1791                         return ret;
1792                 offset = 0;
1793                 len -= seg;
1794                 data += seg;
1795                 ++gfn;
1796         }
1797         return 0;
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_read_guest);
1800
1801 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1802 {
1803         gfn_t gfn = gpa >> PAGE_SHIFT;
1804         int seg;
1805         int offset = offset_in_page(gpa);
1806         int ret;
1807
1808         while ((seg = next_segment(len, offset)) != 0) {
1809                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1810                 if (ret < 0)
1811                         return ret;
1812                 offset = 0;
1813                 len -= seg;
1814                 data += seg;
1815                 ++gfn;
1816         }
1817         return 0;
1818 }
1819 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1820
1821 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1822                                    void *data, int offset, unsigned long len)
1823 {
1824         int r;
1825         unsigned long addr;
1826
1827         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1828         if (kvm_is_error_hva(addr))
1829                 return -EFAULT;
1830         pagefault_disable();
1831         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1832         pagefault_enable();
1833         if (r)
1834                 return -EFAULT;
1835         return 0;
1836 }
1837
1838 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1839                           unsigned long len)
1840 {
1841         gfn_t gfn = gpa >> PAGE_SHIFT;
1842         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1843         int offset = offset_in_page(gpa);
1844
1845         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1846 }
1847 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1848
1849 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1850                                void *data, unsigned long len)
1851 {
1852         gfn_t gfn = gpa >> PAGE_SHIFT;
1853         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1854         int offset = offset_in_page(gpa);
1855
1856         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1857 }
1858 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1859
1860 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1861                                   const void *data, int offset, int len)
1862 {
1863         int r;
1864         unsigned long addr;
1865
1866         addr = gfn_to_hva_memslot(memslot, gfn);
1867         if (kvm_is_error_hva(addr))
1868                 return -EFAULT;
1869         r = __copy_to_user((void __user *)addr + offset, data, len);
1870         if (r)
1871                 return -EFAULT;
1872         mark_page_dirty_in_slot(memslot, gfn);
1873         return 0;
1874 }
1875
1876 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1877                          const void *data, int offset, int len)
1878 {
1879         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1880
1881         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1882 }
1883 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1884
1885 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1886                               const void *data, int offset, int len)
1887 {
1888         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1889
1890         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1891 }
1892 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1893
1894 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1895                     unsigned long len)
1896 {
1897         gfn_t gfn = gpa >> PAGE_SHIFT;
1898         int seg;
1899         int offset = offset_in_page(gpa);
1900         int ret;
1901
1902         while ((seg = next_segment(len, offset)) != 0) {
1903                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1904                 if (ret < 0)
1905                         return ret;
1906                 offset = 0;
1907                 len -= seg;
1908                 data += seg;
1909                 ++gfn;
1910         }
1911         return 0;
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_write_guest);
1914
1915 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1916                          unsigned long len)
1917 {
1918         gfn_t gfn = gpa >> PAGE_SHIFT;
1919         int seg;
1920         int offset = offset_in_page(gpa);
1921         int ret;
1922
1923         while ((seg = next_segment(len, offset)) != 0) {
1924                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1925                 if (ret < 0)
1926                         return ret;
1927                 offset = 0;
1928                 len -= seg;
1929                 data += seg;
1930                 ++gfn;
1931         }
1932         return 0;
1933 }
1934 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1935
1936 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1937                                        struct gfn_to_hva_cache *ghc,
1938                                        gpa_t gpa, unsigned long len)
1939 {
1940         int offset = offset_in_page(gpa);
1941         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1942         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1943         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1944         gfn_t nr_pages_avail;
1945
1946         ghc->gpa = gpa;
1947         ghc->generation = slots->generation;
1948         ghc->len = len;
1949         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1950         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1951         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1952                 ghc->hva += offset;
1953         } else {
1954                 /*
1955                  * If the requested region crosses two memslots, we still
1956                  * verify that the entire region is valid here.
1957                  */
1958                 while (start_gfn <= end_gfn) {
1959                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1960                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1961                                                    &nr_pages_avail);
1962                         if (kvm_is_error_hva(ghc->hva))
1963                                 return -EFAULT;
1964                         start_gfn += nr_pages_avail;
1965                 }
1966                 /* Use the slow path for cross page reads and writes. */
1967                 ghc->memslot = NULL;
1968         }
1969         return 0;
1970 }
1971
1972 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1973                               gpa_t gpa, unsigned long len)
1974 {
1975         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1976         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1977 }
1978 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1979
1980 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1981                                        void *data, int offset, unsigned long len)
1982 {
1983         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1984         int r;
1985         gpa_t gpa = ghc->gpa + offset;
1986
1987         BUG_ON(len + offset > ghc->len);
1988
1989         if (slots->generation != ghc->generation)
1990                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1991
1992         if (unlikely(!ghc->memslot))
1993                 return kvm_vcpu_write_guest(vcpu, gpa, data, len);
1994
1995         if (kvm_is_error_hva(ghc->hva))
1996                 return -EFAULT;
1997
1998         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1999         if (r)
2000                 return -EFAULT;
2001         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2002
2003         return 0;
2004 }
2005 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
2006
2007 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2008                                void *data, unsigned long len)
2009 {
2010         return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2011 }
2012 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2013
2014 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2015                                void *data, unsigned long len)
2016 {
2017         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2018         int r;
2019
2020         BUG_ON(len > ghc->len);
2021
2022         if (slots->generation != ghc->generation)
2023                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2024
2025         if (unlikely(!ghc->memslot))
2026                 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2027
2028         if (kvm_is_error_hva(ghc->hva))
2029                 return -EFAULT;
2030
2031         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2032         if (r)
2033                 return -EFAULT;
2034
2035         return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2038
2039 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2040 {
2041         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2042
2043         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2046
2047 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2048 {
2049         gfn_t gfn = gpa >> PAGE_SHIFT;
2050         int seg;
2051         int offset = offset_in_page(gpa);
2052         int ret;
2053
2054         while ((seg = next_segment(len, offset)) != 0) {
2055                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2056                 if (ret < 0)
2057                         return ret;
2058                 offset = 0;
2059                 len -= seg;
2060                 ++gfn;
2061         }
2062         return 0;
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2065
2066 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2067                                     gfn_t gfn)
2068 {
2069         if (memslot && memslot->dirty_bitmap) {
2070                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2071
2072                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2073         }
2074 }
2075
2076 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2077 {
2078         struct kvm_memory_slot *memslot;
2079
2080         memslot = gfn_to_memslot(kvm, gfn);
2081         mark_page_dirty_in_slot(memslot, gfn);
2082 }
2083 EXPORT_SYMBOL_GPL(mark_page_dirty);
2084
2085 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2086 {
2087         struct kvm_memory_slot *memslot;
2088
2089         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2090         mark_page_dirty_in_slot(memslot, gfn);
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2093
2094 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2095 {
2096         unsigned int old, val, grow;
2097
2098         old = val = vcpu->halt_poll_ns;
2099         grow = READ_ONCE(halt_poll_ns_grow);
2100         /* 10us base */
2101         if (val == 0 && grow)
2102                 val = 10000;
2103         else
2104                 val *= grow;
2105
2106         if (val > halt_poll_ns)
2107                 val = halt_poll_ns;
2108
2109         vcpu->halt_poll_ns = val;
2110         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2111 }
2112
2113 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2114 {
2115         unsigned int old, val, shrink;
2116
2117         old = val = vcpu->halt_poll_ns;
2118         shrink = READ_ONCE(halt_poll_ns_shrink);
2119         if (shrink == 0)
2120                 val = 0;
2121         else
2122                 val /= shrink;
2123
2124         vcpu->halt_poll_ns = val;
2125         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2126 }
2127
2128 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2129 {
2130         if (kvm_arch_vcpu_runnable(vcpu)) {
2131                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2132                 return -EINTR;
2133         }
2134         if (kvm_cpu_has_pending_timer(vcpu))
2135                 return -EINTR;
2136         if (signal_pending(current))
2137                 return -EINTR;
2138
2139         return 0;
2140 }
2141
2142 /*
2143  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2144  */
2145 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2146 {
2147         ktime_t start, cur;
2148         DECLARE_SWAITQUEUE(wait);
2149         bool waited = false;
2150         u64 block_ns;
2151
2152         start = cur = ktime_get();
2153         if (vcpu->halt_poll_ns) {
2154                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2155
2156                 ++vcpu->stat.halt_attempted_poll;
2157                 do {
2158                         /*
2159                          * This sets KVM_REQ_UNHALT if an interrupt
2160                          * arrives.
2161                          */
2162                         if (kvm_vcpu_check_block(vcpu) < 0) {
2163                                 ++vcpu->stat.halt_successful_poll;
2164                                 if (!vcpu_valid_wakeup(vcpu))
2165                                         ++vcpu->stat.halt_poll_invalid;
2166                                 goto out;
2167                         }
2168                         cur = ktime_get();
2169                 } while (single_task_running() && ktime_before(cur, stop));
2170         }
2171
2172         kvm_arch_vcpu_blocking(vcpu);
2173
2174         for (;;) {
2175                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2176
2177                 if (kvm_vcpu_check_block(vcpu) < 0)
2178                         break;
2179
2180                 waited = true;
2181                 schedule();
2182         }
2183
2184         finish_swait(&vcpu->wq, &wait);
2185         cur = ktime_get();
2186
2187         kvm_arch_vcpu_unblocking(vcpu);
2188 out:
2189         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2190
2191         if (!vcpu_valid_wakeup(vcpu))
2192                 shrink_halt_poll_ns(vcpu);
2193         else if (halt_poll_ns) {
2194                 if (block_ns <= vcpu->halt_poll_ns)
2195                         ;
2196                 /* we had a long block, shrink polling */
2197                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2198                         shrink_halt_poll_ns(vcpu);
2199                 /* we had a short halt and our poll time is too small */
2200                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2201                         block_ns < halt_poll_ns)
2202                         grow_halt_poll_ns(vcpu);
2203         } else
2204                 vcpu->halt_poll_ns = 0;
2205
2206         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2207         kvm_arch_vcpu_block_finish(vcpu);
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2210
2211 #ifndef CONFIG_S390
2212 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2213 {
2214         struct swait_queue_head *wqp;
2215
2216         wqp = kvm_arch_vcpu_wq(vcpu);
2217         if (swait_active(wqp)) {
2218                 swake_up(wqp);
2219                 ++vcpu->stat.halt_wakeup;
2220         }
2221
2222 }
2223 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2224
2225 /*
2226  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2227  */
2228 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2229 {
2230         int me;
2231         int cpu = vcpu->cpu;
2232
2233         kvm_vcpu_wake_up(vcpu);
2234         me = get_cpu();
2235         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2236                 if (kvm_arch_vcpu_should_kick(vcpu))
2237                         smp_send_reschedule(cpu);
2238         put_cpu();
2239 }
2240 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2241 #endif /* !CONFIG_S390 */
2242
2243 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2244 {
2245         struct pid *pid;
2246         struct task_struct *task = NULL;
2247         int ret = 0;
2248
2249         rcu_read_lock();
2250         pid = rcu_dereference(target->pid);
2251         if (pid)
2252                 task = get_pid_task(pid, PIDTYPE_PID);
2253         rcu_read_unlock();
2254         if (!task)
2255                 return ret;
2256         ret = yield_to(task, 1);
2257         put_task_struct(task);
2258
2259         return ret;
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2262
2263 /*
2264  * Helper that checks whether a VCPU is eligible for directed yield.
2265  * Most eligible candidate to yield is decided by following heuristics:
2266  *
2267  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2268  *  (preempted lock holder), indicated by @in_spin_loop.
2269  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2270  *
2271  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2272  *  chance last time (mostly it has become eligible now since we have probably
2273  *  yielded to lockholder in last iteration. This is done by toggling
2274  *  @dy_eligible each time a VCPU checked for eligibility.)
2275  *
2276  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2277  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2278  *  burning. Giving priority for a potential lock-holder increases lock
2279  *  progress.
2280  *
2281  *  Since algorithm is based on heuristics, accessing another VCPU data without
2282  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2283  *  and continue with next VCPU and so on.
2284  */
2285 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2286 {
2287 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2288         bool eligible;
2289
2290         eligible = !vcpu->spin_loop.in_spin_loop ||
2291                     vcpu->spin_loop.dy_eligible;
2292
2293         if (vcpu->spin_loop.in_spin_loop)
2294                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2295
2296         return eligible;
2297 #else
2298         return true;
2299 #endif
2300 }
2301
2302 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2303 {
2304         struct kvm *kvm = me->kvm;
2305         struct kvm_vcpu *vcpu;
2306         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2307         int yielded = 0;
2308         int try = 3;
2309         int pass;
2310         int i;
2311
2312         kvm_vcpu_set_in_spin_loop(me, true);
2313         /*
2314          * We boost the priority of a VCPU that is runnable but not
2315          * currently running, because it got preempted by something
2316          * else and called schedule in __vcpu_run.  Hopefully that
2317          * VCPU is holding the lock that we need and will release it.
2318          * We approximate round-robin by starting at the last boosted VCPU.
2319          */
2320         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2321                 kvm_for_each_vcpu(i, vcpu, kvm) {
2322                         if (!pass && i <= last_boosted_vcpu) {
2323                                 i = last_boosted_vcpu;
2324                                 continue;
2325                         } else if (pass && i > last_boosted_vcpu)
2326                                 break;
2327                         if (!ACCESS_ONCE(vcpu->preempted))
2328                                 continue;
2329                         if (vcpu == me)
2330                                 continue;
2331                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2332                                 continue;
2333                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2334                                 continue;
2335
2336                         yielded = kvm_vcpu_yield_to(vcpu);
2337                         if (yielded > 0) {
2338                                 kvm->last_boosted_vcpu = i;
2339                                 break;
2340                         } else if (yielded < 0) {
2341                                 try--;
2342                                 if (!try)
2343                                         break;
2344                         }
2345                 }
2346         }
2347         kvm_vcpu_set_in_spin_loop(me, false);
2348
2349         /* Ensure vcpu is not eligible during next spinloop */
2350         kvm_vcpu_set_dy_eligible(me, false);
2351 }
2352 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2353
2354 static int kvm_vcpu_fault(struct vm_fault *vmf)
2355 {
2356         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2357         struct page *page;
2358
2359         if (vmf->pgoff == 0)
2360                 page = virt_to_page(vcpu->run);
2361 #ifdef CONFIG_X86
2362         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2363                 page = virt_to_page(vcpu->arch.pio_data);
2364 #endif
2365 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2366         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2367                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2368 #endif
2369         else
2370                 return kvm_arch_vcpu_fault(vcpu, vmf);
2371         get_page(page);
2372         vmf->page = page;
2373         return 0;
2374 }
2375
2376 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2377         .fault = kvm_vcpu_fault,
2378 };
2379
2380 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2381 {
2382         vma->vm_ops = &kvm_vcpu_vm_ops;
2383         return 0;
2384 }
2385
2386 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2387 {
2388         struct kvm_vcpu *vcpu = filp->private_data;
2389
2390         debugfs_remove_recursive(vcpu->debugfs_dentry);
2391         kvm_put_kvm(vcpu->kvm);
2392         return 0;
2393 }
2394
2395 static struct file_operations kvm_vcpu_fops = {
2396         .release        = kvm_vcpu_release,
2397         .unlocked_ioctl = kvm_vcpu_ioctl,
2398 #ifdef CONFIG_KVM_COMPAT
2399         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2400 #endif
2401         .mmap           = kvm_vcpu_mmap,
2402         .llseek         = noop_llseek,
2403 };
2404
2405 /*
2406  * Allocates an inode for the vcpu.
2407  */
2408 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2409 {
2410         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2411 }
2412
2413 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2414 {
2415         char dir_name[ITOA_MAX_LEN * 2];
2416         int ret;
2417
2418         if (!kvm_arch_has_vcpu_debugfs())
2419                 return 0;
2420
2421         if (!debugfs_initialized())
2422                 return 0;
2423
2424         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2425         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2426                                                                 vcpu->kvm->debugfs_dentry);
2427         if (!vcpu->debugfs_dentry)
2428                 return -ENOMEM;
2429
2430         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2431         if (ret < 0) {
2432                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2433                 return ret;
2434         }
2435
2436         return 0;
2437 }
2438
2439 /*
2440  * Creates some virtual cpus.  Good luck creating more than one.
2441  */
2442 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2443 {
2444         int r;
2445         struct kvm_vcpu *vcpu;
2446
2447         if (id >= KVM_MAX_VCPU_ID)
2448                 return -EINVAL;
2449
2450         mutex_lock(&kvm->lock);
2451         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2452                 mutex_unlock(&kvm->lock);
2453                 return -EINVAL;
2454         }
2455
2456         kvm->created_vcpus++;
2457         mutex_unlock(&kvm->lock);
2458
2459         vcpu = kvm_arch_vcpu_create(kvm, id);
2460         if (IS_ERR(vcpu)) {
2461                 r = PTR_ERR(vcpu);
2462                 goto vcpu_decrement;
2463         }
2464
2465         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2466
2467         r = kvm_arch_vcpu_setup(vcpu);
2468         if (r)
2469                 goto vcpu_destroy;
2470
2471         r = kvm_create_vcpu_debugfs(vcpu);
2472         if (r)
2473                 goto vcpu_destroy;
2474
2475         mutex_lock(&kvm->lock);
2476         if (kvm_get_vcpu_by_id(kvm, id)) {
2477                 r = -EEXIST;
2478                 goto unlock_vcpu_destroy;
2479         }
2480
2481         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2482
2483         /* Now it's all set up, let userspace reach it */
2484         kvm_get_kvm(kvm);
2485         r = create_vcpu_fd(vcpu);
2486         if (r < 0) {
2487                 kvm_put_kvm(kvm);
2488                 goto unlock_vcpu_destroy;
2489         }
2490
2491         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2492
2493         /*
2494          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2495          * before kvm->online_vcpu's incremented value.
2496          */
2497         smp_wmb();
2498         atomic_inc(&kvm->online_vcpus);
2499
2500         mutex_unlock(&kvm->lock);
2501         kvm_arch_vcpu_postcreate(vcpu);
2502         return r;
2503
2504 unlock_vcpu_destroy:
2505         mutex_unlock(&kvm->lock);
2506         debugfs_remove_recursive(vcpu->debugfs_dentry);
2507 vcpu_destroy:
2508         kvm_arch_vcpu_destroy(vcpu);
2509 vcpu_decrement:
2510         mutex_lock(&kvm->lock);
2511         kvm->created_vcpus--;
2512         mutex_unlock(&kvm->lock);
2513         return r;
2514 }
2515
2516 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2517 {
2518         if (sigset) {
2519                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2520                 vcpu->sigset_active = 1;
2521                 vcpu->sigset = *sigset;
2522         } else
2523                 vcpu->sigset_active = 0;
2524         return 0;
2525 }
2526
2527 static long kvm_vcpu_ioctl(struct file *filp,
2528                            unsigned int ioctl, unsigned long arg)
2529 {
2530         struct kvm_vcpu *vcpu = filp->private_data;
2531         void __user *argp = (void __user *)arg;
2532         int r;
2533         struct kvm_fpu *fpu = NULL;
2534         struct kvm_sregs *kvm_sregs = NULL;
2535
2536         if (vcpu->kvm->mm != current->mm)
2537                 return -EIO;
2538
2539         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2540                 return -EINVAL;
2541
2542 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2543         /*
2544          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2545          * so vcpu_load() would break it.
2546          */
2547         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2548                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2549 #endif
2550
2551
2552         r = vcpu_load(vcpu);
2553         if (r)
2554                 return r;
2555         switch (ioctl) {
2556         case KVM_RUN:
2557                 r = -EINVAL;
2558                 if (arg)
2559                         goto out;
2560                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2561                         /* The thread running this VCPU changed. */
2562                         struct pid *oldpid = vcpu->pid;
2563                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2564
2565                         rcu_assign_pointer(vcpu->pid, newpid);
2566                         if (oldpid)
2567                                 synchronize_rcu();
2568                         put_pid(oldpid);
2569                 }
2570                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2571                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2572                 break;
2573         case KVM_GET_REGS: {
2574                 struct kvm_regs *kvm_regs;
2575
2576                 r = -ENOMEM;
2577                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2578                 if (!kvm_regs)
2579                         goto out;
2580                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2581                 if (r)
2582                         goto out_free1;
2583                 r = -EFAULT;
2584                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2585                         goto out_free1;
2586                 r = 0;
2587 out_free1:
2588                 kfree(kvm_regs);
2589                 break;
2590         }
2591         case KVM_SET_REGS: {
2592                 struct kvm_regs *kvm_regs;
2593
2594                 r = -ENOMEM;
2595                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2596                 if (IS_ERR(kvm_regs)) {
2597                         r = PTR_ERR(kvm_regs);
2598                         goto out;
2599                 }
2600                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2601                 kfree(kvm_regs);
2602                 break;
2603         }
2604         case KVM_GET_SREGS: {
2605                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2606                 r = -ENOMEM;
2607                 if (!kvm_sregs)
2608                         goto out;
2609                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2610                 if (r)
2611                         goto out;
2612                 r = -EFAULT;
2613                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2614                         goto out;
2615                 r = 0;
2616                 break;
2617         }
2618         case KVM_SET_SREGS: {
2619                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2620                 if (IS_ERR(kvm_sregs)) {
2621                         r = PTR_ERR(kvm_sregs);
2622                         kvm_sregs = NULL;
2623                         goto out;
2624                 }
2625                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2626                 break;
2627         }
2628         case KVM_GET_MP_STATE: {
2629                 struct kvm_mp_state mp_state;
2630
2631                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2632                 if (r)
2633                         goto out;
2634                 r = -EFAULT;
2635                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2636                         goto out;
2637                 r = 0;
2638                 break;
2639         }
2640         case KVM_SET_MP_STATE: {
2641                 struct kvm_mp_state mp_state;
2642
2643                 r = -EFAULT;
2644                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2645                         goto out;
2646                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2647                 break;
2648         }
2649         case KVM_TRANSLATE: {
2650                 struct kvm_translation tr;
2651
2652                 r = -EFAULT;
2653                 if (copy_from_user(&tr, argp, sizeof(tr)))
2654                         goto out;
2655                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2656                 if (r)
2657                         goto out;
2658                 r = -EFAULT;
2659                 if (copy_to_user(argp, &tr, sizeof(tr)))
2660                         goto out;
2661                 r = 0;
2662                 break;
2663         }
2664         case KVM_SET_GUEST_DEBUG: {
2665                 struct kvm_guest_debug dbg;
2666
2667                 r = -EFAULT;
2668                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2669                         goto out;
2670                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2671                 break;
2672         }
2673         case KVM_SET_SIGNAL_MASK: {
2674                 struct kvm_signal_mask __user *sigmask_arg = argp;
2675                 struct kvm_signal_mask kvm_sigmask;
2676                 sigset_t sigset, *p;
2677
2678                 p = NULL;
2679                 if (argp) {
2680                         r = -EFAULT;
2681                         if (copy_from_user(&kvm_sigmask, argp,
2682                                            sizeof(kvm_sigmask)))
2683                                 goto out;
2684                         r = -EINVAL;
2685                         if (kvm_sigmask.len != sizeof(sigset))
2686                                 goto out;
2687                         r = -EFAULT;
2688                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2689                                            sizeof(sigset)))
2690                                 goto out;
2691                         p = &sigset;
2692                 }
2693                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2694                 break;
2695         }
2696         case KVM_GET_FPU: {
2697                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2698                 r = -ENOMEM;
2699                 if (!fpu)
2700                         goto out;
2701                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2702                 if (r)
2703                         goto out;
2704                 r = -EFAULT;
2705                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2706                         goto out;
2707                 r = 0;
2708                 break;
2709         }
2710         case KVM_SET_FPU: {
2711                 fpu = memdup_user(argp, sizeof(*fpu));
2712                 if (IS_ERR(fpu)) {
2713                         r = PTR_ERR(fpu);
2714                         fpu = NULL;
2715                         goto out;
2716                 }
2717                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2718                 break;
2719         }
2720         default:
2721                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2722         }
2723 out:
2724         vcpu_put(vcpu);
2725         kfree(fpu);
2726         kfree(kvm_sregs);
2727         return r;
2728 }
2729
2730 #ifdef CONFIG_KVM_COMPAT
2731 static long kvm_vcpu_compat_ioctl(struct file *filp,
2732                                   unsigned int ioctl, unsigned long arg)
2733 {
2734         struct kvm_vcpu *vcpu = filp->private_data;
2735         void __user *argp = compat_ptr(arg);
2736         int r;
2737
2738         if (vcpu->kvm->mm != current->mm)
2739                 return -EIO;
2740
2741         switch (ioctl) {
2742         case KVM_SET_SIGNAL_MASK: {
2743                 struct kvm_signal_mask __user *sigmask_arg = argp;
2744                 struct kvm_signal_mask kvm_sigmask;
2745                 compat_sigset_t csigset;
2746                 sigset_t sigset;
2747
2748                 if (argp) {
2749                         r = -EFAULT;
2750                         if (copy_from_user(&kvm_sigmask, argp,
2751                                            sizeof(kvm_sigmask)))
2752                                 goto out;
2753                         r = -EINVAL;
2754                         if (kvm_sigmask.len != sizeof(csigset))
2755                                 goto out;
2756                         r = -EFAULT;
2757                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2758                                            sizeof(csigset)))
2759                                 goto out;
2760                         sigset_from_compat(&sigset, &csigset);
2761                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2762                 } else
2763                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2764                 break;
2765         }
2766         default:
2767                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2768         }
2769
2770 out:
2771         return r;
2772 }
2773 #endif
2774
2775 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2776                                  int (*accessor)(struct kvm_device *dev,
2777                                                  struct kvm_device_attr *attr),
2778                                  unsigned long arg)
2779 {
2780         struct kvm_device_attr attr;
2781
2782         if (!accessor)
2783                 return -EPERM;
2784
2785         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2786                 return -EFAULT;
2787
2788         return accessor(dev, &attr);
2789 }
2790
2791 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2792                              unsigned long arg)
2793 {
2794         struct kvm_device *dev = filp->private_data;
2795
2796         switch (ioctl) {
2797         case KVM_SET_DEVICE_ATTR:
2798                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2799         case KVM_GET_DEVICE_ATTR:
2800                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2801         case KVM_HAS_DEVICE_ATTR:
2802                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2803         default:
2804                 if (dev->ops->ioctl)
2805                         return dev->ops->ioctl(dev, ioctl, arg);
2806
2807                 return -ENOTTY;
2808         }
2809 }
2810
2811 static int kvm_device_release(struct inode *inode, struct file *filp)
2812 {
2813         struct kvm_device *dev = filp->private_data;
2814         struct kvm *kvm = dev->kvm;
2815
2816         kvm_put_kvm(kvm);
2817         return 0;
2818 }
2819
2820 static const struct file_operations kvm_device_fops = {
2821         .unlocked_ioctl = kvm_device_ioctl,
2822 #ifdef CONFIG_KVM_COMPAT
2823         .compat_ioctl = kvm_device_ioctl,
2824 #endif
2825         .release = kvm_device_release,
2826 };
2827
2828 struct kvm_device *kvm_device_from_filp(struct file *filp)
2829 {
2830         if (filp->f_op != &kvm_device_fops)
2831                 return NULL;
2832
2833         return filp->private_data;
2834 }
2835
2836 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2837 #ifdef CONFIG_KVM_MPIC
2838         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2839         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2840 #endif
2841
2842 #ifdef CONFIG_KVM_XICS
2843         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2844 #endif
2845 };
2846
2847 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2848 {
2849         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2850                 return -ENOSPC;
2851
2852         if (kvm_device_ops_table[type] != NULL)
2853                 return -EEXIST;
2854
2855         kvm_device_ops_table[type] = ops;
2856         return 0;
2857 }
2858
2859 void kvm_unregister_device_ops(u32 type)
2860 {
2861         if (kvm_device_ops_table[type] != NULL)
2862                 kvm_device_ops_table[type] = NULL;
2863 }
2864
2865 static int kvm_ioctl_create_device(struct kvm *kvm,
2866                                    struct kvm_create_device *cd)
2867 {
2868         struct kvm_device_ops *ops = NULL;
2869         struct kvm_device *dev;
2870         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2871         int ret;
2872
2873         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2874                 return -ENODEV;
2875
2876         ops = kvm_device_ops_table[cd->type];
2877         if (ops == NULL)
2878                 return -ENODEV;
2879
2880         if (test)
2881                 return 0;
2882
2883         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2884         if (!dev)
2885                 return -ENOMEM;
2886
2887         dev->ops = ops;
2888         dev->kvm = kvm;
2889
2890         mutex_lock(&kvm->lock);
2891         ret = ops->create(dev, cd->type);
2892         if (ret < 0) {
2893                 mutex_unlock(&kvm->lock);
2894                 kfree(dev);
2895                 return ret;
2896         }
2897         list_add(&dev->vm_node, &kvm->devices);
2898         mutex_unlock(&kvm->lock);
2899
2900         if (ops->init)
2901                 ops->init(dev);
2902
2903         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2904         if (ret < 0) {
2905                 mutex_lock(&kvm->lock);
2906                 list_del(&dev->vm_node);
2907                 mutex_unlock(&kvm->lock);
2908                 ops->destroy(dev);
2909                 return ret;
2910         }
2911
2912         kvm_get_kvm(kvm);
2913         cd->fd = ret;
2914         return 0;
2915 }
2916
2917 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2918 {
2919         switch (arg) {
2920         case KVM_CAP_USER_MEMORY:
2921         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2922         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2923         case KVM_CAP_INTERNAL_ERROR_DATA:
2924 #ifdef CONFIG_HAVE_KVM_MSI
2925         case KVM_CAP_SIGNAL_MSI:
2926 #endif
2927 #ifdef CONFIG_HAVE_KVM_IRQFD
2928         case KVM_CAP_IRQFD:
2929         case KVM_CAP_IRQFD_RESAMPLE:
2930 #endif
2931         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2932         case KVM_CAP_CHECK_EXTENSION_VM:
2933                 return 1;
2934 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2935         case KVM_CAP_IRQ_ROUTING:
2936                 return KVM_MAX_IRQ_ROUTES;
2937 #endif
2938 #if KVM_ADDRESS_SPACE_NUM > 1
2939         case KVM_CAP_MULTI_ADDRESS_SPACE:
2940                 return KVM_ADDRESS_SPACE_NUM;
2941 #endif
2942         case KVM_CAP_MAX_VCPU_ID:
2943                 return KVM_MAX_VCPU_ID;
2944         default:
2945                 break;
2946         }
2947         return kvm_vm_ioctl_check_extension(kvm, arg);
2948 }
2949
2950 static long kvm_vm_ioctl(struct file *filp,
2951                            unsigned int ioctl, unsigned long arg)
2952 {
2953         struct kvm *kvm = filp->private_data;
2954         void __user *argp = (void __user *)arg;
2955         int r;
2956
2957         if (kvm->mm != current->mm)
2958                 return -EIO;
2959         switch (ioctl) {
2960         case KVM_CREATE_VCPU:
2961                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2962                 break;
2963         case KVM_SET_USER_MEMORY_REGION: {
2964                 struct kvm_userspace_memory_region kvm_userspace_mem;
2965
2966                 r = -EFAULT;
2967                 if (copy_from_user(&kvm_userspace_mem, argp,
2968                                                 sizeof(kvm_userspace_mem)))
2969                         goto out;
2970
2971                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2972                 break;
2973         }
2974         case KVM_GET_DIRTY_LOG: {
2975                 struct kvm_dirty_log log;
2976
2977                 r = -EFAULT;
2978                 if (copy_from_user(&log, argp, sizeof(log)))
2979                         goto out;
2980                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2981                 break;
2982         }
2983 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2984         case KVM_REGISTER_COALESCED_MMIO: {
2985                 struct kvm_coalesced_mmio_zone zone;
2986
2987                 r = -EFAULT;
2988                 if (copy_from_user(&zone, argp, sizeof(zone)))
2989                         goto out;
2990                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2991                 break;
2992         }
2993         case KVM_UNREGISTER_COALESCED_MMIO: {
2994                 struct kvm_coalesced_mmio_zone zone;
2995
2996                 r = -EFAULT;
2997                 if (copy_from_user(&zone, argp, sizeof(zone)))
2998                         goto out;
2999                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3000                 break;
3001         }
3002 #endif
3003         case KVM_IRQFD: {
3004                 struct kvm_irqfd data;
3005
3006                 r = -EFAULT;
3007                 if (copy_from_user(&data, argp, sizeof(data)))
3008                         goto out;
3009                 r = kvm_irqfd(kvm, &data);
3010                 break;
3011         }
3012         case KVM_IOEVENTFD: {
3013                 struct kvm_ioeventfd data;
3014
3015                 r = -EFAULT;
3016                 if (copy_from_user(&data, argp, sizeof(data)))
3017                         goto out;
3018                 r = kvm_ioeventfd(kvm, &data);
3019                 break;
3020         }
3021 #ifdef CONFIG_HAVE_KVM_MSI
3022         case KVM_SIGNAL_MSI: {
3023                 struct kvm_msi msi;
3024
3025                 r = -EFAULT;
3026                 if (copy_from_user(&msi, argp, sizeof(msi)))
3027                         goto out;
3028                 r = kvm_send_userspace_msi(kvm, &msi);
3029                 break;
3030         }
3031 #endif
3032 #ifdef __KVM_HAVE_IRQ_LINE
3033         case KVM_IRQ_LINE_STATUS:
3034         case KVM_IRQ_LINE: {
3035                 struct kvm_irq_level irq_event;
3036
3037                 r = -EFAULT;
3038                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3039                         goto out;
3040
3041                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3042                                         ioctl == KVM_IRQ_LINE_STATUS);
3043                 if (r)
3044                         goto out;
3045
3046                 r = -EFAULT;
3047                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3048                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3049                                 goto out;
3050                 }
3051
3052                 r = 0;
3053                 break;
3054         }
3055 #endif
3056 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3057         case KVM_SET_GSI_ROUTING: {
3058                 struct kvm_irq_routing routing;
3059                 struct kvm_irq_routing __user *urouting;
3060                 struct kvm_irq_routing_entry *entries = NULL;
3061
3062                 r = -EFAULT;
3063                 if (copy_from_user(&routing, argp, sizeof(routing)))
3064                         goto out;
3065                 r = -EINVAL;
3066                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3067                         goto out;
3068                 if (routing.flags)
3069                         goto out;
3070                 if (routing.nr) {
3071                         r = -ENOMEM;
3072                         entries = vmalloc(routing.nr * sizeof(*entries));
3073                         if (!entries)
3074                                 goto out;
3075                         r = -EFAULT;
3076                         urouting = argp;
3077                         if (copy_from_user(entries, urouting->entries,
3078                                            routing.nr * sizeof(*entries)))
3079                                 goto out_free_irq_routing;
3080                 }
3081                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3082                                         routing.flags);
3083 out_free_irq_routing:
3084                 vfree(entries);
3085                 break;
3086         }
3087 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3088         case KVM_CREATE_DEVICE: {
3089                 struct kvm_create_device cd;
3090
3091                 r = -EFAULT;
3092                 if (copy_from_user(&cd, argp, sizeof(cd)))
3093                         goto out;
3094
3095                 r = kvm_ioctl_create_device(kvm, &cd);
3096                 if (r)
3097                         goto out;
3098
3099                 r = -EFAULT;
3100                 if (copy_to_user(argp, &cd, sizeof(cd)))
3101                         goto out;
3102
3103                 r = 0;
3104                 break;
3105         }
3106         case KVM_CHECK_EXTENSION:
3107                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3108                 break;
3109         default:
3110                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3111         }
3112 out:
3113         return r;
3114 }
3115
3116 #ifdef CONFIG_KVM_COMPAT
3117 struct compat_kvm_dirty_log {
3118         __u32 slot;
3119         __u32 padding1;
3120         union {
3121                 compat_uptr_t dirty_bitmap; /* one bit per page */
3122                 __u64 padding2;
3123         };
3124 };
3125
3126 static long kvm_vm_compat_ioctl(struct file *filp,
3127                            unsigned int ioctl, unsigned long arg)
3128 {
3129         struct kvm *kvm = filp->private_data;
3130         int r;
3131
3132         if (kvm->mm != current->mm)
3133                 return -EIO;
3134         switch (ioctl) {
3135         case KVM_GET_DIRTY_LOG: {
3136                 struct compat_kvm_dirty_log compat_log;
3137                 struct kvm_dirty_log log;
3138
3139                 if (copy_from_user(&compat_log, (void __user *)arg,
3140                                    sizeof(compat_log)))
3141                         return -EFAULT;
3142                 log.slot         = compat_log.slot;
3143                 log.padding1     = compat_log.padding1;
3144                 log.padding2     = compat_log.padding2;
3145                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3146
3147                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3148                 break;
3149         }
3150         default:
3151                 r = kvm_vm_ioctl(filp, ioctl, arg);
3152         }
3153         return r;
3154 }
3155 #endif
3156
3157 static struct file_operations kvm_vm_fops = {
3158         .release        = kvm_vm_release,
3159         .unlocked_ioctl = kvm_vm_ioctl,
3160 #ifdef CONFIG_KVM_COMPAT
3161         .compat_ioctl   = kvm_vm_compat_ioctl,
3162 #endif
3163         .llseek         = noop_llseek,
3164 };
3165
3166 static int kvm_dev_ioctl_create_vm(unsigned long type)
3167 {
3168         int r;
3169         struct kvm *kvm;
3170         struct file *file;
3171
3172         kvm = kvm_create_vm(type);
3173         if (IS_ERR(kvm))
3174                 return PTR_ERR(kvm);
3175 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3176         r = kvm_coalesced_mmio_init(kvm);
3177         if (r < 0) {
3178                 kvm_put_kvm(kvm);
3179                 return r;
3180         }
3181 #endif
3182         r = get_unused_fd_flags(O_CLOEXEC);
3183         if (r < 0) {
3184                 kvm_put_kvm(kvm);
3185                 return r;
3186         }
3187         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3188         if (IS_ERR(file)) {
3189                 put_unused_fd(r);
3190                 kvm_put_kvm(kvm);
3191                 return PTR_ERR(file);
3192         }
3193
3194         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195                 put_unused_fd(r);
3196                 fput(file);
3197                 return -ENOMEM;
3198         }
3199
3200         fd_install(r, file);
3201         return r;
3202 }
3203
3204 static long kvm_dev_ioctl(struct file *filp,
3205                           unsigned int ioctl, unsigned long arg)
3206 {
3207         long r = -EINVAL;
3208
3209         switch (ioctl) {
3210         case KVM_GET_API_VERSION:
3211                 if (arg)
3212                         goto out;
3213                 r = KVM_API_VERSION;
3214                 break;
3215         case KVM_CREATE_VM:
3216                 r = kvm_dev_ioctl_create_vm(arg);
3217                 break;
3218         case KVM_CHECK_EXTENSION:
3219                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3220                 break;
3221         case KVM_GET_VCPU_MMAP_SIZE:
3222                 if (arg)
3223                         goto out;
3224                 r = PAGE_SIZE;     /* struct kvm_run */
3225 #ifdef CONFIG_X86
3226                 r += PAGE_SIZE;    /* pio data page */
3227 #endif
3228 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3229                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3230 #endif
3231                 break;
3232         case KVM_TRACE_ENABLE:
3233         case KVM_TRACE_PAUSE:
3234         case KVM_TRACE_DISABLE:
3235                 r = -EOPNOTSUPP;
3236                 break;
3237         default:
3238                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3239         }
3240 out:
3241         return r;
3242 }
3243
3244 static struct file_operations kvm_chardev_ops = {
3245         .unlocked_ioctl = kvm_dev_ioctl,
3246         .compat_ioctl   = kvm_dev_ioctl,
3247         .llseek         = noop_llseek,
3248 };
3249
3250 static struct miscdevice kvm_dev = {
3251         KVM_MINOR,
3252         "kvm",
3253         &kvm_chardev_ops,
3254 };
3255
3256 static void hardware_enable_nolock(void *junk)
3257 {
3258         int cpu = raw_smp_processor_id();
3259         int r;
3260
3261         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3262                 return;
3263
3264         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3265
3266         r = kvm_arch_hardware_enable();
3267
3268         if (r) {
3269                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3270                 atomic_inc(&hardware_enable_failed);
3271                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3272         }
3273 }
3274
3275 static int kvm_starting_cpu(unsigned int cpu)
3276 {
3277         raw_spin_lock(&kvm_count_lock);
3278         if (kvm_usage_count)
3279                 hardware_enable_nolock(NULL);
3280         raw_spin_unlock(&kvm_count_lock);
3281         return 0;
3282 }
3283
3284 static void hardware_disable_nolock(void *junk)
3285 {
3286         int cpu = raw_smp_processor_id();
3287
3288         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289                 return;
3290         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291         kvm_arch_hardware_disable();
3292 }
3293
3294 static int kvm_dying_cpu(unsigned int cpu)
3295 {
3296         raw_spin_lock(&kvm_count_lock);
3297         if (kvm_usage_count)
3298                 hardware_disable_nolock(NULL);
3299         raw_spin_unlock(&kvm_count_lock);
3300         return 0;
3301 }
3302
3303 static void hardware_disable_all_nolock(void)
3304 {
3305         BUG_ON(!kvm_usage_count);
3306
3307         kvm_usage_count--;
3308         if (!kvm_usage_count)
3309                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3310 }
3311
3312 static void hardware_disable_all(void)
3313 {
3314         raw_spin_lock(&kvm_count_lock);
3315         hardware_disable_all_nolock();
3316         raw_spin_unlock(&kvm_count_lock);
3317 }
3318
3319 static int hardware_enable_all(void)
3320 {
3321         int r = 0;
3322
3323         raw_spin_lock(&kvm_count_lock);
3324
3325         kvm_usage_count++;
3326         if (kvm_usage_count == 1) {
3327                 atomic_set(&hardware_enable_failed, 0);
3328                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3329
3330                 if (atomic_read(&hardware_enable_failed)) {
3331                         hardware_disable_all_nolock();
3332                         r = -EBUSY;
3333                 }
3334         }
3335
3336         raw_spin_unlock(&kvm_count_lock);
3337
3338         return r;
3339 }
3340
3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3342                       void *v)
3343 {
3344         /*
3345          * Some (well, at least mine) BIOSes hang on reboot if
3346          * in vmx root mode.
3347          *
3348          * And Intel TXT required VMX off for all cpu when system shutdown.
3349          */
3350         pr_info("kvm: exiting hardware virtualization\n");
3351         kvm_rebooting = true;
3352         on_each_cpu(hardware_disable_nolock, NULL, 1);
3353         return NOTIFY_OK;
3354 }
3355
3356 static struct notifier_block kvm_reboot_notifier = {
3357         .notifier_call = kvm_reboot,
3358         .priority = 0,
3359 };
3360
3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3362 {
3363         int i;
3364
3365         for (i = 0; i < bus->dev_count; i++) {
3366                 struct kvm_io_device *pos = bus->range[i].dev;
3367
3368                 kvm_iodevice_destructor(pos);
3369         }
3370         kfree(bus);
3371 }
3372
3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3374                                  const struct kvm_io_range *r2)
3375 {
3376         gpa_t addr1 = r1->addr;
3377         gpa_t addr2 = r2->addr;
3378
3379         if (addr1 < addr2)
3380                 return -1;
3381
3382         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3383          * accept any overlapping write.  Any order is acceptable for
3384          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3385          * we process all of them.
3386          */
3387         if (r2->len) {
3388                 addr1 += r1->len;
3389                 addr2 += r2->len;
3390         }
3391
3392         if (addr1 > addr2)
3393                 return 1;
3394
3395         return 0;
3396 }
3397
3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3399 {
3400         return kvm_io_bus_cmp(p1, p2);
3401 }
3402
3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3404                           gpa_t addr, int len)
3405 {
3406         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3407                 .addr = addr,
3408                 .len = len,
3409                 .dev = dev,
3410         };
3411
3412         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3413                 kvm_io_bus_sort_cmp, NULL);
3414
3415         return 0;
3416 }
3417
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419                              gpa_t addr, int len)
3420 {
3421         struct kvm_io_range *range, key;
3422         int off;
3423
3424         key = (struct kvm_io_range) {
3425                 .addr = addr,
3426                 .len = len,
3427         };
3428
3429         range = bsearch(&key, bus->range, bus->dev_count,
3430                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431         if (range == NULL)
3432                 return -ENOENT;
3433
3434         off = range - bus->range;
3435
3436         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437                 off--;
3438
3439         return off;
3440 }
3441
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443                               struct kvm_io_range *range, const void *val)
3444 {
3445         int idx;
3446
3447         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448         if (idx < 0)
3449                 return -EOPNOTSUPP;
3450
3451         while (idx < bus->dev_count &&
3452                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454                                         range->len, val))
3455                         return idx;
3456                 idx++;
3457         }
3458
3459         return -EOPNOTSUPP;
3460 }
3461
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464                      int len, const void *val)
3465 {
3466         struct kvm_io_bus *bus;
3467         struct kvm_io_range range;
3468         int r;
3469
3470         range = (struct kvm_io_range) {
3471                 .addr = addr,
3472                 .len = len,
3473         };
3474
3475         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3477         return r < 0 ? r : 0;
3478 }
3479
3480 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3481 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3482                             gpa_t addr, int len, const void *val, long cookie)
3483 {
3484         struct kvm_io_bus *bus;
3485         struct kvm_io_range range;
3486
3487         range = (struct kvm_io_range) {
3488                 .addr = addr,
3489                 .len = len,
3490         };
3491
3492         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3493
3494         /* First try the device referenced by cookie. */
3495         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3496             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3497                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3498                                         val))
3499                         return cookie;
3500
3501         /*
3502          * cookie contained garbage; fall back to search and return the
3503          * correct cookie value.
3504          */
3505         return __kvm_io_bus_write(vcpu, bus, &range, val);
3506 }
3507
3508 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3509                              struct kvm_io_range *range, void *val)
3510 {
3511         int idx;
3512
3513         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3514         if (idx < 0)
3515                 return -EOPNOTSUPP;
3516
3517         while (idx < bus->dev_count &&
3518                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3519                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3520                                        range->len, val))
3521                         return idx;
3522                 idx++;
3523         }
3524
3525         return -EOPNOTSUPP;
3526 }
3527 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3528
3529 /* kvm_io_bus_read - called under kvm->slots_lock */
3530 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3531                     int len, void *val)
3532 {
3533         struct kvm_io_bus *bus;
3534         struct kvm_io_range range;
3535         int r;
3536
3537         range = (struct kvm_io_range) {
3538                 .addr = addr,
3539                 .len = len,
3540         };
3541
3542         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3543         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3544         return r < 0 ? r : 0;
3545 }
3546
3547
3548 /* Caller must hold slots_lock. */
3549 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3550                             int len, struct kvm_io_device *dev)
3551 {
3552         struct kvm_io_bus *new_bus, *bus;
3553
3554         bus = kvm->buses[bus_idx];
3555         /* exclude ioeventfd which is limited by maximum fd */
3556         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3557                 return -ENOSPC;
3558
3559         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3560                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3561         if (!new_bus)
3562                 return -ENOMEM;
3563         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3564                sizeof(struct kvm_io_range)));
3565         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3566         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3567         synchronize_srcu_expedited(&kvm->srcu);
3568         kfree(bus);
3569
3570         return 0;
3571 }
3572
3573 /* Caller must hold slots_lock. */
3574 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3575                               struct kvm_io_device *dev)
3576 {
3577         int i, r;
3578         struct kvm_io_bus *new_bus, *bus;
3579
3580         bus = kvm->buses[bus_idx];
3581         r = -ENOENT;
3582         for (i = 0; i < bus->dev_count; i++)
3583                 if (bus->range[i].dev == dev) {
3584                         r = 0;
3585                         break;
3586                 }
3587
3588         if (r)
3589                 return r;
3590
3591         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3592                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3593         if (!new_bus)
3594                 return -ENOMEM;
3595
3596         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3597         new_bus->dev_count--;
3598         memcpy(new_bus->range + i, bus->range + i + 1,
3599                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3600
3601         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3602         synchronize_srcu_expedited(&kvm->srcu);
3603         kfree(bus);
3604         return r;
3605 }
3606
3607 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3608                                          gpa_t addr)
3609 {
3610         struct kvm_io_bus *bus;
3611         int dev_idx, srcu_idx;
3612         struct kvm_io_device *iodev = NULL;
3613
3614         srcu_idx = srcu_read_lock(&kvm->srcu);
3615
3616         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3617
3618         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3619         if (dev_idx < 0)
3620                 goto out_unlock;
3621
3622         iodev = bus->range[dev_idx].dev;
3623
3624 out_unlock:
3625         srcu_read_unlock(&kvm->srcu, srcu_idx);
3626
3627         return iodev;
3628 }
3629 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3630
3631 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3632                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3633                            const char *fmt)
3634 {
3635         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3636                                           inode->i_private;
3637
3638         /* The debugfs files are a reference to the kvm struct which
3639          * is still valid when kvm_destroy_vm is called.
3640          * To avoid the race between open and the removal of the debugfs
3641          * directory we test against the users count.
3642          */
3643         if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3644                 return -ENOENT;
3645
3646         if (simple_attr_open(inode, file, get, set, fmt)) {
3647                 kvm_put_kvm(stat_data->kvm);
3648                 return -ENOMEM;
3649         }
3650
3651         return 0;
3652 }
3653
3654 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3655 {
3656         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3657                                           inode->i_private;
3658
3659         simple_attr_release(inode, file);
3660         kvm_put_kvm(stat_data->kvm);
3661
3662         return 0;
3663 }
3664
3665 static int vm_stat_get_per_vm(void *data, u64 *val)
3666 {
3667         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3668
3669         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3670
3671         return 0;
3672 }
3673
3674 static int vm_stat_clear_per_vm(void *data, u64 val)
3675 {
3676         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3677
3678         if (val)
3679                 return -EINVAL;
3680
3681         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3682
3683         return 0;
3684 }
3685
3686 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3687 {
3688         __simple_attr_check_format("%llu\n", 0ull);
3689         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3690                                 vm_stat_clear_per_vm, "%llu\n");
3691 }
3692
3693 static const struct file_operations vm_stat_get_per_vm_fops = {
3694         .owner   = THIS_MODULE,
3695         .open    = vm_stat_get_per_vm_open,
3696         .release = kvm_debugfs_release,
3697         .read    = simple_attr_read,
3698         .write   = simple_attr_write,
3699         .llseek  = generic_file_llseek,
3700 };
3701
3702 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3703 {
3704         int i;
3705         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3706         struct kvm_vcpu *vcpu;
3707
3708         *val = 0;
3709
3710         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3711                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3712
3713         return 0;
3714 }
3715
3716 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3717 {
3718         int i;
3719         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3720         struct kvm_vcpu *vcpu;
3721
3722         if (val)
3723                 return -EINVAL;
3724
3725         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3726                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3727
3728         return 0;
3729 }
3730
3731 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3732 {
3733         __simple_attr_check_format("%llu\n", 0ull);
3734         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3735                                  vcpu_stat_clear_per_vm, "%llu\n");
3736 }
3737
3738 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3739         .owner   = THIS_MODULE,
3740         .open    = vcpu_stat_get_per_vm_open,
3741         .release = kvm_debugfs_release,
3742         .read    = simple_attr_read,
3743         .write   = simple_attr_write,
3744         .llseek  = generic_file_llseek,
3745 };
3746
3747 static const struct file_operations *stat_fops_per_vm[] = {
3748         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3749         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3750 };
3751
3752 static int vm_stat_get(void *_offset, u64 *val)
3753 {
3754         unsigned offset = (long)_offset;
3755         struct kvm *kvm;
3756         struct kvm_stat_data stat_tmp = {.offset = offset};
3757         u64 tmp_val;
3758
3759         *val = 0;
3760         spin_lock(&kvm_lock);
3761         list_for_each_entry(kvm, &vm_list, vm_list) {
3762                 stat_tmp.kvm = kvm;
3763                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3764                 *val += tmp_val;
3765         }
3766         spin_unlock(&kvm_lock);
3767         return 0;
3768 }
3769
3770 static int vm_stat_clear(void *_offset, u64 val)
3771 {
3772         unsigned offset = (long)_offset;
3773         struct kvm *kvm;
3774         struct kvm_stat_data stat_tmp = {.offset = offset};
3775
3776         if (val)
3777                 return -EINVAL;
3778
3779         spin_lock(&kvm_lock);
3780         list_for_each_entry(kvm, &vm_list, vm_list) {
3781                 stat_tmp.kvm = kvm;
3782                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3783         }
3784         spin_unlock(&kvm_lock);
3785
3786         return 0;
3787 }
3788
3789 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3790
3791 static int vcpu_stat_get(void *_offset, u64 *val)
3792 {
3793         unsigned offset = (long)_offset;
3794         struct kvm *kvm;
3795         struct kvm_stat_data stat_tmp = {.offset = offset};
3796         u64 tmp_val;
3797
3798         *val = 0;
3799         spin_lock(&kvm_lock);
3800         list_for_each_entry(kvm, &vm_list, vm_list) {
3801                 stat_tmp.kvm = kvm;
3802                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3803                 *val += tmp_val;
3804         }
3805         spin_unlock(&kvm_lock);
3806         return 0;
3807 }
3808
3809 static int vcpu_stat_clear(void *_offset, u64 val)
3810 {
3811         unsigned offset = (long)_offset;
3812         struct kvm *kvm;
3813         struct kvm_stat_data stat_tmp = {.offset = offset};
3814
3815         if (val)
3816                 return -EINVAL;
3817
3818         spin_lock(&kvm_lock);
3819         list_for_each_entry(kvm, &vm_list, vm_list) {
3820                 stat_tmp.kvm = kvm;
3821                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3822         }
3823         spin_unlock(&kvm_lock);
3824
3825         return 0;
3826 }
3827
3828 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3829                         "%llu\n");
3830
3831 static const struct file_operations *stat_fops[] = {
3832         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3833         [KVM_STAT_VM]   = &vm_stat_fops,
3834 };
3835
3836 static int kvm_init_debug(void)
3837 {
3838         int r = -EEXIST;
3839         struct kvm_stats_debugfs_item *p;
3840
3841         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3842         if (kvm_debugfs_dir == NULL)
3843                 goto out;
3844
3845         kvm_debugfs_num_entries = 0;
3846         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3847                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3848                                          (void *)(long)p->offset,
3849                                          stat_fops[p->kind]))
3850                         goto out_dir;
3851         }
3852
3853         return 0;
3854
3855 out_dir:
3856         debugfs_remove_recursive(kvm_debugfs_dir);
3857 out:
3858         return r;
3859 }
3860
3861 static int kvm_suspend(void)
3862 {
3863         if (kvm_usage_count)
3864                 hardware_disable_nolock(NULL);
3865         return 0;
3866 }
3867
3868 static void kvm_resume(void)
3869 {
3870         if (kvm_usage_count) {
3871                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3872                 hardware_enable_nolock(NULL);
3873         }
3874 }
3875
3876 static struct syscore_ops kvm_syscore_ops = {
3877         .suspend = kvm_suspend,
3878         .resume = kvm_resume,
3879 };
3880
3881 static inline
3882 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3883 {
3884         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3885 }
3886
3887 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3888 {
3889         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3890
3891         if (vcpu->preempted)
3892                 vcpu->preempted = false;
3893
3894         kvm_arch_sched_in(vcpu, cpu);
3895
3896         kvm_arch_vcpu_load(vcpu, cpu);
3897 }
3898
3899 static void kvm_sched_out(struct preempt_notifier *pn,
3900                           struct task_struct *next)
3901 {
3902         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3903
3904         if (current->state == TASK_RUNNING)
3905                 vcpu->preempted = true;
3906         kvm_arch_vcpu_put(vcpu);
3907 }
3908
3909 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3910                   struct module *module)
3911 {
3912         int r;
3913         int cpu;
3914
3915         r = kvm_arch_init(opaque);
3916         if (r)
3917                 goto out_fail;
3918
3919         /*
3920          * kvm_arch_init makes sure there's at most one caller
3921          * for architectures that support multiple implementations,
3922          * like intel and amd on x86.
3923          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3924          * conflicts in case kvm is already setup for another implementation.
3925          */
3926         r = kvm_irqfd_init();
3927         if (r)
3928                 goto out_irqfd;
3929
3930         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3931                 r = -ENOMEM;
3932                 goto out_free_0;
3933         }
3934
3935         r = kvm_arch_hardware_setup();
3936         if (r < 0)
3937                 goto out_free_0a;
3938
3939         for_each_online_cpu(cpu) {
3940                 smp_call_function_single(cpu,
3941                                 kvm_arch_check_processor_compat,
3942                                 &r, 1);
3943                 if (r < 0)
3944                         goto out_free_1;
3945         }
3946
3947         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3948                                       kvm_starting_cpu, kvm_dying_cpu);
3949         if (r)
3950                 goto out_free_2;
3951         register_reboot_notifier(&kvm_reboot_notifier);
3952
3953         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3954         if (!vcpu_align)
3955                 vcpu_align = __alignof__(struct kvm_vcpu);
3956         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3957                                            0, NULL);
3958         if (!kvm_vcpu_cache) {
3959                 r = -ENOMEM;
3960                 goto out_free_3;
3961         }
3962
3963         r = kvm_async_pf_init();
3964         if (r)
3965                 goto out_free;
3966
3967         kvm_chardev_ops.owner = module;
3968         kvm_vm_fops.owner = module;
3969         kvm_vcpu_fops.owner = module;
3970
3971         r = misc_register(&kvm_dev);
3972         if (r) {
3973                 pr_err("kvm: misc device register failed\n");
3974                 goto out_unreg;
3975         }
3976
3977         register_syscore_ops(&kvm_syscore_ops);
3978
3979         kvm_preempt_ops.sched_in = kvm_sched_in;
3980         kvm_preempt_ops.sched_out = kvm_sched_out;
3981
3982         r = kvm_init_debug();
3983         if (r) {
3984                 pr_err("kvm: create debugfs files failed\n");
3985                 goto out_undebugfs;
3986         }
3987
3988         r = kvm_vfio_ops_init();
3989         WARN_ON(r);
3990
3991         return 0;
3992
3993 out_undebugfs:
3994         unregister_syscore_ops(&kvm_syscore_ops);
3995         misc_deregister(&kvm_dev);
3996 out_unreg:
3997         kvm_async_pf_deinit();
3998 out_free:
3999         kmem_cache_destroy(kvm_vcpu_cache);
4000 out_free_3:
4001         unregister_reboot_notifier(&kvm_reboot_notifier);
4002         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4003 out_free_2:
4004 out_free_1:
4005         kvm_arch_hardware_unsetup();
4006 out_free_0a:
4007         free_cpumask_var(cpus_hardware_enabled);
4008 out_free_0:
4009         kvm_irqfd_exit();
4010 out_irqfd:
4011         kvm_arch_exit();
4012 out_fail:
4013         return r;
4014 }
4015 EXPORT_SYMBOL_GPL(kvm_init);
4016
4017 void kvm_exit(void)
4018 {
4019         debugfs_remove_recursive(kvm_debugfs_dir);
4020         misc_deregister(&kvm_dev);
4021         kmem_cache_destroy(kvm_vcpu_cache);
4022         kvm_async_pf_deinit();
4023         unregister_syscore_ops(&kvm_syscore_ops);
4024         unregister_reboot_notifier(&kvm_reboot_notifier);
4025         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4026         on_each_cpu(hardware_disable_nolock, NULL, 1);
4027         kvm_arch_hardware_unsetup();
4028         kvm_arch_exit();
4029         kvm_irqfd_exit();
4030         free_cpumask_var(cpus_hardware_enabled);
4031         kvm_vfio_ops_exit();
4032 }
4033 EXPORT_SYMBOL_GPL(kvm_exit);