2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
126 static bool largepages_enabled = true;
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
131 return PageReserved(pfn_to_page(pfn));
137 * Switches to specified vcpu, until a matching vcpu_put()
139 int vcpu_load(struct kvm_vcpu *vcpu)
143 if (mutex_lock_killable(&vcpu->mutex))
146 preempt_notifier_register(&vcpu->preempt_notifier);
147 kvm_arch_vcpu_load(vcpu, cpu);
151 EXPORT_SYMBOL_GPL(vcpu_load);
153 void vcpu_put(struct kvm_vcpu *vcpu)
156 kvm_arch_vcpu_put(vcpu);
157 preempt_notifier_unregister(&vcpu->preempt_notifier);
159 mutex_unlock(&vcpu->mutex);
161 EXPORT_SYMBOL_GPL(vcpu_put);
163 static void ack_flush(void *_completed)
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
172 struct kvm_vcpu *vcpu;
174 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
177 kvm_for_each_vcpu(i, vcpu, kvm) {
178 kvm_make_request(req, vcpu);
181 /* Set ->requests bit before we read ->mode. */
182 smp_mb__after_atomic();
184 if (cpus != NULL && cpu != -1 && cpu != me &&
185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 cpumask_set_cpu(cpu, cpus);
188 if (unlikely(cpus == NULL))
189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 else if (!cpumask_empty(cpus))
191 smp_call_function_many(cpus, ack_flush, NULL, 1);
195 free_cpumask_var(cpus);
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
203 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 * kvm_make_all_cpus_request.
206 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
209 * We want to publish modifications to the page tables before reading
210 * mode. Pairs with a memory barrier in arch-specific code.
211 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
215 * There is already an smp_mb__after_atomic() before
216 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
219 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 ++kvm->stat.remote_tlb_flush;
221 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
226 void kvm_reload_remote_mmus(struct kvm *kvm)
228 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
236 mutex_init(&vcpu->mutex);
241 init_swait_queue_head(&vcpu->wq);
242 kvm_async_pf_vcpu_init(vcpu);
245 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
247 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
252 vcpu->run = page_address(page);
254 kvm_vcpu_set_in_spin_loop(vcpu, false);
255 kvm_vcpu_set_dy_eligible(vcpu, false);
256 vcpu->preempted = false;
258 r = kvm_arch_vcpu_init(vcpu);
264 free_page((unsigned long)vcpu->run);
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
273 kvm_arch_vcpu_uninit(vcpu);
274 free_page((unsigned long)vcpu->run);
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
281 return container_of(mn, struct kvm, mmu_notifier);
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 struct mm_struct *mm,
286 unsigned long address)
288 struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 int need_tlb_flush, idx;
292 * When ->invalidate_page runs, the linux pte has been zapped
293 * already but the page is still allocated until
294 * ->invalidate_page returns. So if we increase the sequence
295 * here the kvm page fault will notice if the spte can't be
296 * established because the page is going to be freed. If
297 * instead the kvm page fault establishes the spte before
298 * ->invalidate_page runs, kvm_unmap_hva will release it
301 * The sequence increase only need to be seen at spin_unlock
302 * time, and not at spin_lock time.
304 * Increasing the sequence after the spin_unlock would be
305 * unsafe because the kvm page fault could then establish the
306 * pte after kvm_unmap_hva returned, without noticing the page
307 * is going to be freed.
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
312 kvm->mmu_notifier_seq++;
313 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 /* we've to flush the tlb before the pages can be freed */
316 kvm_flush_remote_tlbs(kvm);
318 spin_unlock(&kvm->mmu_lock);
320 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
322 srcu_read_unlock(&kvm->srcu, idx);
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address,
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335 kvm->mmu_notifier_seq++;
336 kvm_set_spte_hva(kvm, address, pte);
337 spin_unlock(&kvm->mmu_lock);
338 srcu_read_unlock(&kvm->srcu, idx);
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 struct mm_struct *mm,
346 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 int need_tlb_flush = 0, idx;
349 idx = srcu_read_lock(&kvm->srcu);
350 spin_lock(&kvm->mmu_lock);
352 * The count increase must become visible at unlock time as no
353 * spte can be established without taking the mmu_lock and
354 * count is also read inside the mmu_lock critical section.
356 kvm->mmu_notifier_count++;
357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 need_tlb_flush |= kvm->tlbs_dirty;
359 /* we've to flush the tlb before the pages can be freed */
361 kvm_flush_remote_tlbs(kvm);
363 spin_unlock(&kvm->mmu_lock);
364 srcu_read_unlock(&kvm->srcu, idx);
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 struct mm_struct *mm,
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 spin_lock(&kvm->mmu_lock);
376 * This sequence increase will notify the kvm page fault that
377 * the page that is going to be mapped in the spte could have
380 kvm->mmu_notifier_seq++;
383 * The above sequence increase must be visible before the
384 * below count decrease, which is ensured by the smp_wmb above
385 * in conjunction with the smp_rmb in mmu_notifier_retry().
387 kvm->mmu_notifier_count--;
388 spin_unlock(&kvm->mmu_lock);
390 BUG_ON(kvm->mmu_notifier_count < 0);
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
404 young = kvm_age_hva(kvm, start, end);
406 kvm_flush_remote_tlbs(kvm);
408 spin_unlock(&kvm->mmu_lock);
409 srcu_read_unlock(&kvm->srcu, idx);
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 struct mm_struct *mm,
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
422 idx = srcu_read_lock(&kvm->srcu);
423 spin_lock(&kvm->mmu_lock);
425 * Even though we do not flush TLB, this will still adversely
426 * affect performance on pre-Haswell Intel EPT, where there is
427 * no EPT Access Bit to clear so that we have to tear down EPT
428 * tables instead. If we find this unacceptable, we can always
429 * add a parameter to kvm_age_hva so that it effectively doesn't
430 * do anything on clear_young.
432 * Also note that currently we never issue secondary TLB flushes
433 * from clear_young, leaving this job up to the regular system
434 * cadence. If we find this inaccurate, we might come up with a
435 * more sophisticated heuristic later.
437 young = kvm_age_hva(kvm, start, end);
438 spin_unlock(&kvm->mmu_lock);
439 srcu_read_unlock(&kvm->srcu, idx);
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 struct mm_struct *mm,
446 unsigned long address)
448 struct kvm *kvm = mmu_notifier_to_kvm(mn);
451 idx = srcu_read_lock(&kvm->srcu);
452 spin_lock(&kvm->mmu_lock);
453 young = kvm_test_age_hva(kvm, address);
454 spin_unlock(&kvm->mmu_lock);
455 srcu_read_unlock(&kvm->srcu, idx);
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 struct mm_struct *mm)
463 struct kvm *kvm = mmu_notifier_to_kvm(mn);
466 idx = srcu_read_lock(&kvm->srcu);
467 kvm_arch_flush_shadow_all(kvm);
468 srcu_read_unlock(&kvm->srcu, idx);
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 .invalidate_page = kvm_mmu_notifier_invalidate_page,
473 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
475 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
476 .clear_young = kvm_mmu_notifier_clear_young,
477 .test_young = kvm_mmu_notifier_test_young,
478 .change_pte = kvm_mmu_notifier_change_pte,
479 .release = kvm_mmu_notifier_release,
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
484 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
488 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
497 static struct kvm_memslots *kvm_alloc_memslots(void)
500 struct kvm_memslots *slots;
502 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
507 * Init kvm generation close to the maximum to easily test the
508 * code of handling generation number wrap-around.
510 slots->generation = -150;
511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 slots->id_to_index[i] = slots->memslots[i].id = i;
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 if (!memslot->dirty_bitmap)
522 kvfree(memslot->dirty_bitmap);
523 memslot->dirty_bitmap = NULL;
527 * Free any memory in @free but not in @dont.
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 struct kvm_memory_slot *dont)
532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 kvm_destroy_dirty_bitmap(free);
535 kvm_arch_free_memslot(kvm, free, dont);
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
542 struct kvm_memory_slot *memslot;
547 kvm_for_each_memslot(memslot, slots)
548 kvm_free_memslot(kvm, memslot, NULL);
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
557 if (!kvm->debugfs_dentry)
560 debugfs_remove_recursive(kvm->debugfs_dentry);
562 for (i = 0; i < kvm_debugfs_num_entries; i++)
563 kfree(kvm->debugfs_stat_data[i]);
564 kfree(kvm->debugfs_stat_data);
567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
569 char dir_name[ITOA_MAX_LEN * 2];
570 struct kvm_stat_data *stat_data;
571 struct kvm_stats_debugfs_item *p;
573 if (!debugfs_initialized())
576 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
577 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
579 if (!kvm->debugfs_dentry)
582 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
583 sizeof(*kvm->debugfs_stat_data),
585 if (!kvm->debugfs_stat_data)
588 for (p = debugfs_entries; p->name; p++) {
589 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
593 stat_data->kvm = kvm;
594 stat_data->offset = p->offset;
595 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
596 if (!debugfs_create_file(p->name, 0444,
599 stat_fops_per_vm[p->kind]))
605 static struct kvm *kvm_create_vm(unsigned long type)
608 struct kvm *kvm = kvm_arch_alloc_vm();
611 return ERR_PTR(-ENOMEM);
613 spin_lock_init(&kvm->mmu_lock);
614 atomic_inc(¤t->mm->mm_count);
615 kvm->mm = current->mm;
616 kvm_eventfd_init(kvm);
617 mutex_init(&kvm->lock);
618 mutex_init(&kvm->irq_lock);
619 mutex_init(&kvm->slots_lock);
620 atomic_set(&kvm->users_count, 1);
621 INIT_LIST_HEAD(&kvm->devices);
623 r = kvm_arch_init_vm(kvm, type);
625 goto out_err_no_disable;
627 r = hardware_enable_all();
629 goto out_err_no_disable;
631 #ifdef CONFIG_HAVE_KVM_IRQFD
632 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
639 kvm->memslots[i] = kvm_alloc_memslots();
640 if (!kvm->memslots[i])
641 goto out_err_no_srcu;
644 if (init_srcu_struct(&kvm->srcu))
645 goto out_err_no_srcu;
646 if (init_srcu_struct(&kvm->irq_srcu))
647 goto out_err_no_irq_srcu;
648 for (i = 0; i < KVM_NR_BUSES; i++) {
649 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
655 r = kvm_init_mmu_notifier(kvm);
659 spin_lock(&kvm_lock);
660 list_add(&kvm->vm_list, &vm_list);
661 spin_unlock(&kvm_lock);
663 preempt_notifier_inc();
668 cleanup_srcu_struct(&kvm->irq_srcu);
670 cleanup_srcu_struct(&kvm->srcu);
672 hardware_disable_all();
674 for (i = 0; i < KVM_NR_BUSES; i++)
675 kfree(kvm->buses[i]);
676 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
677 kvm_free_memslots(kvm, kvm->memslots[i]);
678 kvm_arch_free_vm(kvm);
684 * Avoid using vmalloc for a small buffer.
685 * Should not be used when the size is statically known.
687 void *kvm_kvzalloc(unsigned long size)
689 if (size > PAGE_SIZE)
690 return vzalloc(size);
692 return kzalloc(size, GFP_KERNEL);
695 static void kvm_destroy_devices(struct kvm *kvm)
697 struct kvm_device *dev, *tmp;
699 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
700 list_del(&dev->vm_node);
701 dev->ops->destroy(dev);
705 static void kvm_destroy_vm(struct kvm *kvm)
708 struct mm_struct *mm = kvm->mm;
710 kvm_destroy_vm_debugfs(kvm);
711 kvm_arch_sync_events(kvm);
712 spin_lock(&kvm_lock);
713 list_del(&kvm->vm_list);
714 spin_unlock(&kvm_lock);
715 kvm_free_irq_routing(kvm);
716 for (i = 0; i < KVM_NR_BUSES; i++)
717 kvm_io_bus_destroy(kvm->buses[i]);
718 kvm_coalesced_mmio_free(kvm);
719 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
720 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
722 kvm_arch_flush_shadow_all(kvm);
724 kvm_arch_destroy_vm(kvm);
725 kvm_destroy_devices(kvm);
726 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
727 kvm_free_memslots(kvm, kvm->memslots[i]);
728 cleanup_srcu_struct(&kvm->irq_srcu);
729 cleanup_srcu_struct(&kvm->srcu);
730 kvm_arch_free_vm(kvm);
731 preempt_notifier_dec();
732 hardware_disable_all();
736 void kvm_get_kvm(struct kvm *kvm)
738 atomic_inc(&kvm->users_count);
740 EXPORT_SYMBOL_GPL(kvm_get_kvm);
742 void kvm_put_kvm(struct kvm *kvm)
744 if (atomic_dec_and_test(&kvm->users_count))
747 EXPORT_SYMBOL_GPL(kvm_put_kvm);
750 static int kvm_vm_release(struct inode *inode, struct file *filp)
752 struct kvm *kvm = filp->private_data;
754 kvm_irqfd_release(kvm);
761 * Allocation size is twice as large as the actual dirty bitmap size.
762 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
764 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
766 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
768 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
769 if (!memslot->dirty_bitmap)
776 * Insert memslot and re-sort memslots based on their GFN,
777 * so binary search could be used to lookup GFN.
778 * Sorting algorithm takes advantage of having initially
779 * sorted array and known changed memslot position.
781 static void update_memslots(struct kvm_memslots *slots,
782 struct kvm_memory_slot *new)
785 int i = slots->id_to_index[id];
786 struct kvm_memory_slot *mslots = slots->memslots;
788 WARN_ON(mslots[i].id != id);
790 WARN_ON(!mslots[i].npages);
791 if (mslots[i].npages)
794 if (!mslots[i].npages)
798 while (i < KVM_MEM_SLOTS_NUM - 1 &&
799 new->base_gfn <= mslots[i + 1].base_gfn) {
800 if (!mslots[i + 1].npages)
802 mslots[i] = mslots[i + 1];
803 slots->id_to_index[mslots[i].id] = i;
808 * The ">=" is needed when creating a slot with base_gfn == 0,
809 * so that it moves before all those with base_gfn == npages == 0.
811 * On the other hand, if new->npages is zero, the above loop has
812 * already left i pointing to the beginning of the empty part of
813 * mslots, and the ">=" would move the hole backwards in this
814 * case---which is wrong. So skip the loop when deleting a slot.
818 new->base_gfn >= mslots[i - 1].base_gfn) {
819 mslots[i] = mslots[i - 1];
820 slots->id_to_index[mslots[i].id] = i;
824 WARN_ON_ONCE(i != slots->used_slots);
827 slots->id_to_index[mslots[i].id] = i;
830 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
832 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
834 #ifdef __KVM_HAVE_READONLY_MEM
835 valid_flags |= KVM_MEM_READONLY;
838 if (mem->flags & ~valid_flags)
844 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
845 int as_id, struct kvm_memslots *slots)
847 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
850 * Set the low bit in the generation, which disables SPTE caching
851 * until the end of synchronize_srcu_expedited.
853 WARN_ON(old_memslots->generation & 1);
854 slots->generation = old_memslots->generation + 1;
856 rcu_assign_pointer(kvm->memslots[as_id], slots);
857 synchronize_srcu_expedited(&kvm->srcu);
860 * Increment the new memslot generation a second time. This prevents
861 * vm exits that race with memslot updates from caching a memslot
862 * generation that will (potentially) be valid forever.
866 kvm_arch_memslots_updated(kvm, slots);
872 * Allocate some memory and give it an address in the guest physical address
875 * Discontiguous memory is allowed, mostly for framebuffers.
877 * Must be called holding kvm->slots_lock for write.
879 int __kvm_set_memory_region(struct kvm *kvm,
880 const struct kvm_userspace_memory_region *mem)
884 unsigned long npages;
885 struct kvm_memory_slot *slot;
886 struct kvm_memory_slot old, new;
887 struct kvm_memslots *slots = NULL, *old_memslots;
889 enum kvm_mr_change change;
891 r = check_memory_region_flags(mem);
896 as_id = mem->slot >> 16;
899 /* General sanity checks */
900 if (mem->memory_size & (PAGE_SIZE - 1))
902 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
904 /* We can read the guest memory with __xxx_user() later on. */
905 if ((id < KVM_USER_MEM_SLOTS) &&
906 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
907 !access_ok(VERIFY_WRITE,
908 (void __user *)(unsigned long)mem->userspace_addr,
911 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
913 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
916 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
917 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
918 npages = mem->memory_size >> PAGE_SHIFT;
920 if (npages > KVM_MEM_MAX_NR_PAGES)
926 new.base_gfn = base_gfn;
928 new.flags = mem->flags;
932 change = KVM_MR_CREATE;
933 else { /* Modify an existing slot. */
934 if ((mem->userspace_addr != old.userspace_addr) ||
935 (npages != old.npages) ||
936 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
939 if (base_gfn != old.base_gfn)
940 change = KVM_MR_MOVE;
941 else if (new.flags != old.flags)
942 change = KVM_MR_FLAGS_ONLY;
943 else { /* Nothing to change. */
952 change = KVM_MR_DELETE;
957 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
958 /* Check for overlaps */
960 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
961 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
964 if (!((base_gfn + npages <= slot->base_gfn) ||
965 (base_gfn >= slot->base_gfn + slot->npages)))
970 /* Free page dirty bitmap if unneeded */
971 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
972 new.dirty_bitmap = NULL;
975 if (change == KVM_MR_CREATE) {
976 new.userspace_addr = mem->userspace_addr;
978 if (kvm_arch_create_memslot(kvm, &new, npages))
982 /* Allocate page dirty bitmap if needed */
983 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
984 if (kvm_create_dirty_bitmap(&new) < 0)
988 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
991 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
993 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
994 slot = id_to_memslot(slots, id);
995 slot->flags |= KVM_MEMSLOT_INVALID;
997 old_memslots = install_new_memslots(kvm, as_id, slots);
999 /* slot was deleted or moved, clear iommu mapping */
1000 kvm_iommu_unmap_pages(kvm, &old);
1001 /* From this point no new shadow pages pointing to a deleted,
1002 * or moved, memslot will be created.
1004 * validation of sp->gfn happens in:
1005 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1006 * - kvm_is_visible_gfn (mmu_check_roots)
1008 kvm_arch_flush_shadow_memslot(kvm, slot);
1011 * We can re-use the old_memslots from above, the only difference
1012 * from the currently installed memslots is the invalid flag. This
1013 * will get overwritten by update_memslots anyway.
1015 slots = old_memslots;
1018 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1022 /* actual memory is freed via old in kvm_free_memslot below */
1023 if (change == KVM_MR_DELETE) {
1024 new.dirty_bitmap = NULL;
1025 memset(&new.arch, 0, sizeof(new.arch));
1028 update_memslots(slots, &new);
1029 old_memslots = install_new_memslots(kvm, as_id, slots);
1031 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1033 kvm_free_memslot(kvm, &old, &new);
1034 kvfree(old_memslots);
1037 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1038 * un-mapped and re-mapped if their base changes. Since base change
1039 * unmapping is handled above with slot deletion, mapping alone is
1040 * needed here. Anything else the iommu might care about for existing
1041 * slots (size changes, userspace addr changes and read-only flag
1042 * changes) is disallowed above, so any other attribute changes getting
1043 * here can be skipped.
1045 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1046 r = kvm_iommu_map_pages(kvm, &new);
1055 kvm_free_memslot(kvm, &new, &old);
1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1061 int kvm_set_memory_region(struct kvm *kvm,
1062 const struct kvm_userspace_memory_region *mem)
1066 mutex_lock(&kvm->slots_lock);
1067 r = __kvm_set_memory_region(kvm, mem);
1068 mutex_unlock(&kvm->slots_lock);
1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1074 struct kvm_userspace_memory_region *mem)
1076 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1079 return kvm_set_memory_region(kvm, mem);
1082 int kvm_get_dirty_log(struct kvm *kvm,
1083 struct kvm_dirty_log *log, int *is_dirty)
1085 struct kvm_memslots *slots;
1086 struct kvm_memory_slot *memslot;
1087 int r, i, as_id, id;
1089 unsigned long any = 0;
1092 as_id = log->slot >> 16;
1093 id = (u16)log->slot;
1094 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1097 slots = __kvm_memslots(kvm, as_id);
1098 memslot = id_to_memslot(slots, id);
1100 if (!memslot->dirty_bitmap)
1103 n = kvm_dirty_bitmap_bytes(memslot);
1105 for (i = 0; !any && i < n/sizeof(long); ++i)
1106 any = memslot->dirty_bitmap[i];
1109 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1119 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1121 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1123 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1124 * are dirty write protect them for next write.
1125 * @kvm: pointer to kvm instance
1126 * @log: slot id and address to which we copy the log
1127 * @is_dirty: flag set if any page is dirty
1129 * We need to keep it in mind that VCPU threads can write to the bitmap
1130 * concurrently. So, to avoid losing track of dirty pages we keep the
1133 * 1. Take a snapshot of the bit and clear it if needed.
1134 * 2. Write protect the corresponding page.
1135 * 3. Copy the snapshot to the userspace.
1136 * 4. Upon return caller flushes TLB's if needed.
1138 * Between 2 and 4, the guest may write to the page using the remaining TLB
1139 * entry. This is not a problem because the page is reported dirty using
1140 * the snapshot taken before and step 4 ensures that writes done after
1141 * exiting to userspace will be logged for the next call.
1144 int kvm_get_dirty_log_protect(struct kvm *kvm,
1145 struct kvm_dirty_log *log, bool *is_dirty)
1147 struct kvm_memslots *slots;
1148 struct kvm_memory_slot *memslot;
1149 int r, i, as_id, id;
1151 unsigned long *dirty_bitmap;
1152 unsigned long *dirty_bitmap_buffer;
1155 as_id = log->slot >> 16;
1156 id = (u16)log->slot;
1157 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1160 slots = __kvm_memslots(kvm, as_id);
1161 memslot = id_to_memslot(slots, id);
1163 dirty_bitmap = memslot->dirty_bitmap;
1168 n = kvm_dirty_bitmap_bytes(memslot);
1170 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1171 memset(dirty_bitmap_buffer, 0, n);
1173 spin_lock(&kvm->mmu_lock);
1175 for (i = 0; i < n / sizeof(long); i++) {
1179 if (!dirty_bitmap[i])
1184 mask = xchg(&dirty_bitmap[i], 0);
1185 dirty_bitmap_buffer[i] = mask;
1188 offset = i * BITS_PER_LONG;
1189 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1194 spin_unlock(&kvm->mmu_lock);
1197 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1207 bool kvm_largepages_enabled(void)
1209 return largepages_enabled;
1212 void kvm_disable_largepages(void)
1214 largepages_enabled = false;
1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1220 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1222 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1226 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1231 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1233 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1234 memslot->flags & KVM_MEMSLOT_INVALID)
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1243 struct vm_area_struct *vma;
1244 unsigned long addr, size;
1248 addr = gfn_to_hva(kvm, gfn);
1249 if (kvm_is_error_hva(addr))
1252 down_read(¤t->mm->mmap_sem);
1253 vma = find_vma(current->mm, addr);
1257 size = vma_kernel_pagesize(vma);
1260 up_read(¤t->mm->mmap_sem);
1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1267 return slot->flags & KVM_MEM_READONLY;
1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271 gfn_t *nr_pages, bool write)
1273 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1274 return KVM_HVA_ERR_BAD;
1276 if (memslot_is_readonly(slot) && write)
1277 return KVM_HVA_ERR_RO_BAD;
1280 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1282 return __gfn_to_hva_memslot(slot, gfn);
1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1288 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1294 return gfn_to_hva_many(slot, gfn, NULL);
1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1300 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1302 EXPORT_SYMBOL_GPL(gfn_to_hva);
1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1306 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1311 * If writable is set to false, the hva returned by this function is only
1312 * allowed to be read.
1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1315 gfn_t gfn, bool *writable)
1317 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1319 if (!kvm_is_error_hva(hva) && writable)
1320 *writable = !memslot_is_readonly(slot);
1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1327 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1329 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1334 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1336 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1339 static int get_user_page_nowait(unsigned long start, int write,
1342 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1345 flags |= FOLL_WRITE;
1347 return __get_user_pages(current, current->mm, start, 1, flags, page,
1351 static inline int check_user_page_hwpoison(unsigned long addr)
1353 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1355 rc = __get_user_pages(current, current->mm, addr, 1,
1356 flags, NULL, NULL, NULL);
1357 return rc == -EHWPOISON;
1361 * The atomic path to get the writable pfn which will be stored in @pfn,
1362 * true indicates success, otherwise false is returned.
1364 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1365 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1367 struct page *page[1];
1370 if (!(async || atomic))
1374 * Fast pin a writable pfn only if it is a write fault request
1375 * or the caller allows to map a writable pfn for a read fault
1378 if (!(write_fault || writable))
1381 npages = __get_user_pages_fast(addr, 1, 1, page);
1383 *pfn = page_to_pfn(page[0]);
1394 * The slow path to get the pfn of the specified host virtual address,
1395 * 1 indicates success, -errno is returned if error is detected.
1397 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1398 bool *writable, kvm_pfn_t *pfn)
1400 struct page *page[1];
1406 *writable = write_fault;
1409 down_read(¤t->mm->mmap_sem);
1410 npages = get_user_page_nowait(addr, write_fault, page);
1411 up_read(¤t->mm->mmap_sem);
1413 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1414 write_fault, 0, page,
1415 FOLL_TOUCH|FOLL_HWPOISON);
1419 /* map read fault as writable if possible */
1420 if (unlikely(!write_fault) && writable) {
1421 struct page *wpage[1];
1423 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1432 *pfn = page_to_pfn(page[0]);
1436 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1438 if (unlikely(!(vma->vm_flags & VM_READ)))
1441 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1447 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1448 unsigned long addr, bool *async,
1449 bool write_fault, kvm_pfn_t *p_pfn)
1454 r = follow_pfn(vma, addr, &pfn);
1457 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1458 * not call the fault handler, so do it here.
1460 bool unlocked = false;
1461 r = fixup_user_fault(current, current->mm, addr,
1462 (write_fault ? FAULT_FLAG_WRITE : 0),
1469 r = follow_pfn(vma, addr, &pfn);
1477 * Get a reference here because callers of *hva_to_pfn* and
1478 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1479 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1480 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1481 * simply do nothing for reserved pfns.
1483 * Whoever called remap_pfn_range is also going to call e.g.
1484 * unmap_mapping_range before the underlying pages are freed,
1485 * causing a call to our MMU notifier.
1494 * Pin guest page in memory and return its pfn.
1495 * @addr: host virtual address which maps memory to the guest
1496 * @atomic: whether this function can sleep
1497 * @async: whether this function need to wait IO complete if the
1498 * host page is not in the memory
1499 * @write_fault: whether we should get a writable host page
1500 * @writable: whether it allows to map a writable host page for !@write_fault
1502 * The function will map a writable host page for these two cases:
1503 * 1): @write_fault = true
1504 * 2): @write_fault = false && @writable, @writable will tell the caller
1505 * whether the mapping is writable.
1507 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1508 bool write_fault, bool *writable)
1510 struct vm_area_struct *vma;
1514 /* we can do it either atomically or asynchronously, not both */
1515 BUG_ON(atomic && async);
1517 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1521 return KVM_PFN_ERR_FAULT;
1523 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1527 down_read(¤t->mm->mmap_sem);
1528 if (npages == -EHWPOISON ||
1529 (!async && check_user_page_hwpoison(addr))) {
1530 pfn = KVM_PFN_ERR_HWPOISON;
1535 vma = find_vma_intersection(current->mm, addr, addr + 1);
1538 pfn = KVM_PFN_ERR_FAULT;
1539 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1540 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1544 pfn = KVM_PFN_ERR_FAULT;
1546 if (async && vma_is_valid(vma, write_fault))
1548 pfn = KVM_PFN_ERR_FAULT;
1551 up_read(¤t->mm->mmap_sem);
1555 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1556 bool atomic, bool *async, bool write_fault,
1559 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1561 if (addr == KVM_HVA_ERR_RO_BAD) {
1564 return KVM_PFN_ERR_RO_FAULT;
1567 if (kvm_is_error_hva(addr)) {
1570 return KVM_PFN_NOSLOT;
1573 /* Do not map writable pfn in the readonly memslot. */
1574 if (writable && memslot_is_readonly(slot)) {
1579 return hva_to_pfn(addr, atomic, async, write_fault,
1582 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1584 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1587 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1588 write_fault, writable);
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1592 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1594 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1596 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1598 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1600 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1604 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1606 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1610 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1612 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1616 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1618 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1624 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1628 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1629 struct page **pages, int nr_pages)
1634 addr = gfn_to_hva_many(slot, gfn, &entry);
1635 if (kvm_is_error_hva(addr))
1638 if (entry < nr_pages)
1641 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1643 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1645 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1647 if (is_error_noslot_pfn(pfn))
1648 return KVM_ERR_PTR_BAD_PAGE;
1650 if (kvm_is_reserved_pfn(pfn)) {
1652 return KVM_ERR_PTR_BAD_PAGE;
1655 return pfn_to_page(pfn);
1658 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1662 pfn = gfn_to_pfn(kvm, gfn);
1664 return kvm_pfn_to_page(pfn);
1666 EXPORT_SYMBOL_GPL(gfn_to_page);
1668 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1672 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1674 return kvm_pfn_to_page(pfn);
1676 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1678 void kvm_release_page_clean(struct page *page)
1680 WARN_ON(is_error_page(page));
1682 kvm_release_pfn_clean(page_to_pfn(page));
1684 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1686 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1688 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1689 put_page(pfn_to_page(pfn));
1691 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1693 void kvm_release_page_dirty(struct page *page)
1695 WARN_ON(is_error_page(page));
1697 kvm_release_pfn_dirty(page_to_pfn(page));
1699 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1701 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1703 kvm_set_pfn_dirty(pfn);
1704 kvm_release_pfn_clean(pfn);
1707 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1709 if (!kvm_is_reserved_pfn(pfn)) {
1710 struct page *page = pfn_to_page(pfn);
1712 if (!PageReserved(page))
1716 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1718 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1720 if (!kvm_is_reserved_pfn(pfn))
1721 mark_page_accessed(pfn_to_page(pfn));
1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1725 void kvm_get_pfn(kvm_pfn_t pfn)
1727 if (!kvm_is_reserved_pfn(pfn))
1728 get_page(pfn_to_page(pfn));
1730 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1732 static int next_segment(unsigned long len, int offset)
1734 if (len > PAGE_SIZE - offset)
1735 return PAGE_SIZE - offset;
1740 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1741 void *data, int offset, int len)
1746 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1747 if (kvm_is_error_hva(addr))
1749 r = __copy_from_user(data, (void __user *)addr + offset, len);
1755 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1758 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1760 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1762 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1764 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1765 int offset, int len)
1767 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1769 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1771 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1773 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1775 gfn_t gfn = gpa >> PAGE_SHIFT;
1777 int offset = offset_in_page(gpa);
1780 while ((seg = next_segment(len, offset)) != 0) {
1781 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1791 EXPORT_SYMBOL_GPL(kvm_read_guest);
1793 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1795 gfn_t gfn = gpa >> PAGE_SHIFT;
1797 int offset = offset_in_page(gpa);
1800 while ((seg = next_segment(len, offset)) != 0) {
1801 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1813 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1814 void *data, int offset, unsigned long len)
1819 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1820 if (kvm_is_error_hva(addr))
1822 pagefault_disable();
1823 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1830 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1833 gfn_t gfn = gpa >> PAGE_SHIFT;
1834 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1835 int offset = offset_in_page(gpa);
1837 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1839 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1841 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1842 void *data, unsigned long len)
1844 gfn_t gfn = gpa >> PAGE_SHIFT;
1845 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1846 int offset = offset_in_page(gpa);
1848 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1850 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1852 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1853 const void *data, int offset, int len)
1858 addr = gfn_to_hva_memslot(memslot, gfn);
1859 if (kvm_is_error_hva(addr))
1861 r = __copy_to_user((void __user *)addr + offset, data, len);
1864 mark_page_dirty_in_slot(memslot, gfn);
1868 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1869 const void *data, int offset, int len)
1871 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1873 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1875 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1877 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1878 const void *data, int offset, int len)
1880 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1882 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1884 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1886 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1889 gfn_t gfn = gpa >> PAGE_SHIFT;
1891 int offset = offset_in_page(gpa);
1894 while ((seg = next_segment(len, offset)) != 0) {
1895 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1905 EXPORT_SYMBOL_GPL(kvm_write_guest);
1907 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1910 gfn_t gfn = gpa >> PAGE_SHIFT;
1912 int offset = offset_in_page(gpa);
1915 while ((seg = next_segment(len, offset)) != 0) {
1916 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1926 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1928 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1929 gpa_t gpa, unsigned long len)
1931 struct kvm_memslots *slots = kvm_memslots(kvm);
1932 int offset = offset_in_page(gpa);
1933 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1934 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1935 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1936 gfn_t nr_pages_avail;
1939 ghc->generation = slots->generation;
1941 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1942 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1943 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1947 * If the requested region crosses two memslots, we still
1948 * verify that the entire region is valid here.
1950 while (start_gfn <= end_gfn) {
1951 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1952 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1954 if (kvm_is_error_hva(ghc->hva))
1956 start_gfn += nr_pages_avail;
1958 /* Use the slow path for cross page reads and writes. */
1959 ghc->memslot = NULL;
1963 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1965 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1966 void *data, unsigned long len)
1968 struct kvm_memslots *slots = kvm_memslots(kvm);
1971 BUG_ON(len > ghc->len);
1973 if (slots->generation != ghc->generation)
1974 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1976 if (unlikely(!ghc->memslot))
1977 return kvm_write_guest(kvm, ghc->gpa, data, len);
1979 if (kvm_is_error_hva(ghc->hva))
1982 r = __copy_to_user((void __user *)ghc->hva, data, len);
1985 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1991 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1992 void *data, unsigned long len)
1994 struct kvm_memslots *slots = kvm_memslots(kvm);
1997 BUG_ON(len > ghc->len);
1999 if (slots->generation != ghc->generation)
2000 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2002 if (unlikely(!ghc->memslot))
2003 return kvm_read_guest(kvm, ghc->gpa, data, len);
2005 if (kvm_is_error_hva(ghc->hva))
2008 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2014 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2016 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2018 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2020 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2022 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2024 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2026 gfn_t gfn = gpa >> PAGE_SHIFT;
2028 int offset = offset_in_page(gpa);
2031 while ((seg = next_segment(len, offset)) != 0) {
2032 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2041 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2043 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2046 if (memslot && memslot->dirty_bitmap) {
2047 unsigned long rel_gfn = gfn - memslot->base_gfn;
2049 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2053 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2055 struct kvm_memory_slot *memslot;
2057 memslot = gfn_to_memslot(kvm, gfn);
2058 mark_page_dirty_in_slot(memslot, gfn);
2060 EXPORT_SYMBOL_GPL(mark_page_dirty);
2062 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2064 struct kvm_memory_slot *memslot;
2066 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2067 mark_page_dirty_in_slot(memslot, gfn);
2069 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2071 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2073 unsigned int old, val, grow;
2075 old = val = vcpu->halt_poll_ns;
2076 grow = READ_ONCE(halt_poll_ns_grow);
2078 if (val == 0 && grow)
2083 if (val > halt_poll_ns)
2086 vcpu->halt_poll_ns = val;
2087 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2090 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2092 unsigned int old, val, shrink;
2094 old = val = vcpu->halt_poll_ns;
2095 shrink = READ_ONCE(halt_poll_ns_shrink);
2101 vcpu->halt_poll_ns = val;
2102 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2105 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2107 if (kvm_arch_vcpu_runnable(vcpu)) {
2108 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2111 if (kvm_cpu_has_pending_timer(vcpu))
2113 if (signal_pending(current))
2120 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2122 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2125 DECLARE_SWAITQUEUE(wait);
2126 bool waited = false;
2129 start = cur = ktime_get();
2130 if (vcpu->halt_poll_ns) {
2131 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2133 ++vcpu->stat.halt_attempted_poll;
2136 * This sets KVM_REQ_UNHALT if an interrupt
2139 if (kvm_vcpu_check_block(vcpu) < 0) {
2140 ++vcpu->stat.halt_successful_poll;
2141 if (!vcpu_valid_wakeup(vcpu))
2142 ++vcpu->stat.halt_poll_invalid;
2146 } while (single_task_running() && ktime_before(cur, stop));
2149 kvm_arch_vcpu_blocking(vcpu);
2152 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2154 if (kvm_vcpu_check_block(vcpu) < 0)
2161 finish_swait(&vcpu->wq, &wait);
2164 kvm_arch_vcpu_unblocking(vcpu);
2166 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2168 if (!vcpu_valid_wakeup(vcpu))
2169 shrink_halt_poll_ns(vcpu);
2170 else if (halt_poll_ns) {
2171 if (block_ns <= vcpu->halt_poll_ns)
2173 /* we had a long block, shrink polling */
2174 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2175 shrink_halt_poll_ns(vcpu);
2176 /* we had a short halt and our poll time is too small */
2177 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2178 block_ns < halt_poll_ns)
2179 grow_halt_poll_ns(vcpu);
2181 vcpu->halt_poll_ns = 0;
2183 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2184 kvm_arch_vcpu_block_finish(vcpu);
2186 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2189 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2191 struct swait_queue_head *wqp;
2193 wqp = kvm_arch_vcpu_wq(vcpu);
2194 if (swait_active(wqp)) {
2196 ++vcpu->stat.halt_wakeup;
2200 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2203 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2205 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2208 int cpu = vcpu->cpu;
2210 kvm_vcpu_wake_up(vcpu);
2212 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2213 if (kvm_arch_vcpu_should_kick(vcpu))
2214 smp_send_reschedule(cpu);
2217 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2218 #endif /* !CONFIG_S390 */
2220 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2223 struct task_struct *task = NULL;
2227 pid = rcu_dereference(target->pid);
2229 task = get_pid_task(pid, PIDTYPE_PID);
2233 ret = yield_to(task, 1);
2234 put_task_struct(task);
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2241 * Helper that checks whether a VCPU is eligible for directed yield.
2242 * Most eligible candidate to yield is decided by following heuristics:
2244 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2245 * (preempted lock holder), indicated by @in_spin_loop.
2246 * Set at the beiginning and cleared at the end of interception/PLE handler.
2248 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2249 * chance last time (mostly it has become eligible now since we have probably
2250 * yielded to lockholder in last iteration. This is done by toggling
2251 * @dy_eligible each time a VCPU checked for eligibility.)
2253 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2254 * to preempted lock-holder could result in wrong VCPU selection and CPU
2255 * burning. Giving priority for a potential lock-holder increases lock
2258 * Since algorithm is based on heuristics, accessing another VCPU data without
2259 * locking does not harm. It may result in trying to yield to same VCPU, fail
2260 * and continue with next VCPU and so on.
2262 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2264 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2267 eligible = !vcpu->spin_loop.in_spin_loop ||
2268 vcpu->spin_loop.dy_eligible;
2270 if (vcpu->spin_loop.in_spin_loop)
2271 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2279 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2281 struct kvm *kvm = me->kvm;
2282 struct kvm_vcpu *vcpu;
2283 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2289 kvm_vcpu_set_in_spin_loop(me, true);
2291 * We boost the priority of a VCPU that is runnable but not
2292 * currently running, because it got preempted by something
2293 * else and called schedule in __vcpu_run. Hopefully that
2294 * VCPU is holding the lock that we need and will release it.
2295 * We approximate round-robin by starting at the last boosted VCPU.
2297 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2298 kvm_for_each_vcpu(i, vcpu, kvm) {
2299 if (!pass && i <= last_boosted_vcpu) {
2300 i = last_boosted_vcpu;
2302 } else if (pass && i > last_boosted_vcpu)
2304 if (!ACCESS_ONCE(vcpu->preempted))
2308 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2310 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2313 yielded = kvm_vcpu_yield_to(vcpu);
2315 kvm->last_boosted_vcpu = i;
2317 } else if (yielded < 0) {
2324 kvm_vcpu_set_in_spin_loop(me, false);
2326 /* Ensure vcpu is not eligible during next spinloop */
2327 kvm_vcpu_set_dy_eligible(me, false);
2329 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2331 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2333 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2336 if (vmf->pgoff == 0)
2337 page = virt_to_page(vcpu->run);
2339 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2340 page = virt_to_page(vcpu->arch.pio_data);
2342 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2343 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2344 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2347 return kvm_arch_vcpu_fault(vcpu, vmf);
2353 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2354 .fault = kvm_vcpu_fault,
2357 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2359 vma->vm_ops = &kvm_vcpu_vm_ops;
2363 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2365 struct kvm_vcpu *vcpu = filp->private_data;
2367 kvm_put_kvm(vcpu->kvm);
2371 static struct file_operations kvm_vcpu_fops = {
2372 .release = kvm_vcpu_release,
2373 .unlocked_ioctl = kvm_vcpu_ioctl,
2374 #ifdef CONFIG_KVM_COMPAT
2375 .compat_ioctl = kvm_vcpu_compat_ioctl,
2377 .mmap = kvm_vcpu_mmap,
2378 .llseek = noop_llseek,
2382 * Allocates an inode for the vcpu.
2384 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2386 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2390 * Creates some virtual cpus. Good luck creating more than one.
2392 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2395 struct kvm_vcpu *vcpu;
2397 if (id >= KVM_MAX_VCPU_ID)
2400 mutex_lock(&kvm->lock);
2401 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2402 mutex_unlock(&kvm->lock);
2406 kvm->created_vcpus++;
2407 mutex_unlock(&kvm->lock);
2409 vcpu = kvm_arch_vcpu_create(kvm, id);
2412 goto vcpu_decrement;
2415 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2417 r = kvm_arch_vcpu_setup(vcpu);
2421 mutex_lock(&kvm->lock);
2422 if (kvm_get_vcpu_by_id(kvm, id)) {
2424 goto unlock_vcpu_destroy;
2427 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2429 /* Now it's all set up, let userspace reach it */
2431 r = create_vcpu_fd(vcpu);
2434 goto unlock_vcpu_destroy;
2437 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2440 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2441 * before kvm->online_vcpu's incremented value.
2444 atomic_inc(&kvm->online_vcpus);
2446 mutex_unlock(&kvm->lock);
2447 kvm_arch_vcpu_postcreate(vcpu);
2450 unlock_vcpu_destroy:
2451 mutex_unlock(&kvm->lock);
2453 kvm_arch_vcpu_destroy(vcpu);
2455 mutex_lock(&kvm->lock);
2456 kvm->created_vcpus--;
2457 mutex_unlock(&kvm->lock);
2461 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2464 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2465 vcpu->sigset_active = 1;
2466 vcpu->sigset = *sigset;
2468 vcpu->sigset_active = 0;
2472 static long kvm_vcpu_ioctl(struct file *filp,
2473 unsigned int ioctl, unsigned long arg)
2475 struct kvm_vcpu *vcpu = filp->private_data;
2476 void __user *argp = (void __user *)arg;
2478 struct kvm_fpu *fpu = NULL;
2479 struct kvm_sregs *kvm_sregs = NULL;
2481 if (vcpu->kvm->mm != current->mm)
2484 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2487 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2489 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2490 * so vcpu_load() would break it.
2492 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2493 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2497 r = vcpu_load(vcpu);
2505 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2506 /* The thread running this VCPU changed. */
2507 struct pid *oldpid = vcpu->pid;
2508 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2510 rcu_assign_pointer(vcpu->pid, newpid);
2515 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2516 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2518 case KVM_GET_REGS: {
2519 struct kvm_regs *kvm_regs;
2522 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2525 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2529 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2536 case KVM_SET_REGS: {
2537 struct kvm_regs *kvm_regs;
2540 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2541 if (IS_ERR(kvm_regs)) {
2542 r = PTR_ERR(kvm_regs);
2545 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2549 case KVM_GET_SREGS: {
2550 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2554 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2558 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2563 case KVM_SET_SREGS: {
2564 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2565 if (IS_ERR(kvm_sregs)) {
2566 r = PTR_ERR(kvm_sregs);
2570 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2573 case KVM_GET_MP_STATE: {
2574 struct kvm_mp_state mp_state;
2576 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2580 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2585 case KVM_SET_MP_STATE: {
2586 struct kvm_mp_state mp_state;
2589 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2591 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2594 case KVM_TRANSLATE: {
2595 struct kvm_translation tr;
2598 if (copy_from_user(&tr, argp, sizeof(tr)))
2600 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2604 if (copy_to_user(argp, &tr, sizeof(tr)))
2609 case KVM_SET_GUEST_DEBUG: {
2610 struct kvm_guest_debug dbg;
2613 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2615 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2618 case KVM_SET_SIGNAL_MASK: {
2619 struct kvm_signal_mask __user *sigmask_arg = argp;
2620 struct kvm_signal_mask kvm_sigmask;
2621 sigset_t sigset, *p;
2626 if (copy_from_user(&kvm_sigmask, argp,
2627 sizeof(kvm_sigmask)))
2630 if (kvm_sigmask.len != sizeof(sigset))
2633 if (copy_from_user(&sigset, sigmask_arg->sigset,
2638 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2642 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2646 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2650 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2656 fpu = memdup_user(argp, sizeof(*fpu));
2662 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2666 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2675 #ifdef CONFIG_KVM_COMPAT
2676 static long kvm_vcpu_compat_ioctl(struct file *filp,
2677 unsigned int ioctl, unsigned long arg)
2679 struct kvm_vcpu *vcpu = filp->private_data;
2680 void __user *argp = compat_ptr(arg);
2683 if (vcpu->kvm->mm != current->mm)
2687 case KVM_SET_SIGNAL_MASK: {
2688 struct kvm_signal_mask __user *sigmask_arg = argp;
2689 struct kvm_signal_mask kvm_sigmask;
2690 compat_sigset_t csigset;
2695 if (copy_from_user(&kvm_sigmask, argp,
2696 sizeof(kvm_sigmask)))
2699 if (kvm_sigmask.len != sizeof(csigset))
2702 if (copy_from_user(&csigset, sigmask_arg->sigset,
2705 sigset_from_compat(&sigset, &csigset);
2706 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2708 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2712 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2720 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2721 int (*accessor)(struct kvm_device *dev,
2722 struct kvm_device_attr *attr),
2725 struct kvm_device_attr attr;
2730 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2733 return accessor(dev, &attr);
2736 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2739 struct kvm_device *dev = filp->private_data;
2742 case KVM_SET_DEVICE_ATTR:
2743 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2744 case KVM_GET_DEVICE_ATTR:
2745 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2746 case KVM_HAS_DEVICE_ATTR:
2747 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2749 if (dev->ops->ioctl)
2750 return dev->ops->ioctl(dev, ioctl, arg);
2756 static int kvm_device_release(struct inode *inode, struct file *filp)
2758 struct kvm_device *dev = filp->private_data;
2759 struct kvm *kvm = dev->kvm;
2765 static const struct file_operations kvm_device_fops = {
2766 .unlocked_ioctl = kvm_device_ioctl,
2767 #ifdef CONFIG_KVM_COMPAT
2768 .compat_ioctl = kvm_device_ioctl,
2770 .release = kvm_device_release,
2773 struct kvm_device *kvm_device_from_filp(struct file *filp)
2775 if (filp->f_op != &kvm_device_fops)
2778 return filp->private_data;
2781 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2782 #ifdef CONFIG_KVM_MPIC
2783 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2784 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2787 #ifdef CONFIG_KVM_XICS
2788 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2792 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2794 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2797 if (kvm_device_ops_table[type] != NULL)
2800 kvm_device_ops_table[type] = ops;
2804 void kvm_unregister_device_ops(u32 type)
2806 if (kvm_device_ops_table[type] != NULL)
2807 kvm_device_ops_table[type] = NULL;
2810 static int kvm_ioctl_create_device(struct kvm *kvm,
2811 struct kvm_create_device *cd)
2813 struct kvm_device_ops *ops = NULL;
2814 struct kvm_device *dev;
2815 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2818 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2821 ops = kvm_device_ops_table[cd->type];
2828 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2835 ret = ops->create(dev, cd->type);
2841 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2847 list_add(&dev->vm_node, &kvm->devices);
2853 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2856 case KVM_CAP_USER_MEMORY:
2857 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2858 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2859 case KVM_CAP_INTERNAL_ERROR_DATA:
2860 #ifdef CONFIG_HAVE_KVM_MSI
2861 case KVM_CAP_SIGNAL_MSI:
2863 #ifdef CONFIG_HAVE_KVM_IRQFD
2865 case KVM_CAP_IRQFD_RESAMPLE:
2867 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2868 case KVM_CAP_CHECK_EXTENSION_VM:
2870 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2871 case KVM_CAP_IRQ_ROUTING:
2872 return KVM_MAX_IRQ_ROUTES;
2874 #if KVM_ADDRESS_SPACE_NUM > 1
2875 case KVM_CAP_MULTI_ADDRESS_SPACE:
2876 return KVM_ADDRESS_SPACE_NUM;
2878 case KVM_CAP_MAX_VCPU_ID:
2879 return KVM_MAX_VCPU_ID;
2883 return kvm_vm_ioctl_check_extension(kvm, arg);
2886 static long kvm_vm_ioctl(struct file *filp,
2887 unsigned int ioctl, unsigned long arg)
2889 struct kvm *kvm = filp->private_data;
2890 void __user *argp = (void __user *)arg;
2893 if (kvm->mm != current->mm)
2896 case KVM_CREATE_VCPU:
2897 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2899 case KVM_SET_USER_MEMORY_REGION: {
2900 struct kvm_userspace_memory_region kvm_userspace_mem;
2903 if (copy_from_user(&kvm_userspace_mem, argp,
2904 sizeof(kvm_userspace_mem)))
2907 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2910 case KVM_GET_DIRTY_LOG: {
2911 struct kvm_dirty_log log;
2914 if (copy_from_user(&log, argp, sizeof(log)))
2916 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2919 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2920 case KVM_REGISTER_COALESCED_MMIO: {
2921 struct kvm_coalesced_mmio_zone zone;
2924 if (copy_from_user(&zone, argp, sizeof(zone)))
2926 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2929 case KVM_UNREGISTER_COALESCED_MMIO: {
2930 struct kvm_coalesced_mmio_zone zone;
2933 if (copy_from_user(&zone, argp, sizeof(zone)))
2935 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2940 struct kvm_irqfd data;
2943 if (copy_from_user(&data, argp, sizeof(data)))
2945 r = kvm_irqfd(kvm, &data);
2948 case KVM_IOEVENTFD: {
2949 struct kvm_ioeventfd data;
2952 if (copy_from_user(&data, argp, sizeof(data)))
2954 r = kvm_ioeventfd(kvm, &data);
2957 #ifdef CONFIG_HAVE_KVM_MSI
2958 case KVM_SIGNAL_MSI: {
2962 if (copy_from_user(&msi, argp, sizeof(msi)))
2964 r = kvm_send_userspace_msi(kvm, &msi);
2968 #ifdef __KVM_HAVE_IRQ_LINE
2969 case KVM_IRQ_LINE_STATUS:
2970 case KVM_IRQ_LINE: {
2971 struct kvm_irq_level irq_event;
2974 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2977 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2978 ioctl == KVM_IRQ_LINE_STATUS);
2983 if (ioctl == KVM_IRQ_LINE_STATUS) {
2984 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2992 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2993 case KVM_SET_GSI_ROUTING: {
2994 struct kvm_irq_routing routing;
2995 struct kvm_irq_routing __user *urouting;
2996 struct kvm_irq_routing_entry *entries = NULL;
2999 if (copy_from_user(&routing, argp, sizeof(routing)))
3002 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3008 entries = vmalloc(routing.nr * sizeof(*entries));
3013 if (copy_from_user(entries, urouting->entries,
3014 routing.nr * sizeof(*entries)))
3015 goto out_free_irq_routing;
3017 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3019 out_free_irq_routing:
3023 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3024 case KVM_CREATE_DEVICE: {
3025 struct kvm_create_device cd;
3028 if (copy_from_user(&cd, argp, sizeof(cd)))
3031 r = kvm_ioctl_create_device(kvm, &cd);
3036 if (copy_to_user(argp, &cd, sizeof(cd)))
3042 case KVM_CHECK_EXTENSION:
3043 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3046 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3052 #ifdef CONFIG_KVM_COMPAT
3053 struct compat_kvm_dirty_log {
3057 compat_uptr_t dirty_bitmap; /* one bit per page */
3062 static long kvm_vm_compat_ioctl(struct file *filp,
3063 unsigned int ioctl, unsigned long arg)
3065 struct kvm *kvm = filp->private_data;
3068 if (kvm->mm != current->mm)
3071 case KVM_GET_DIRTY_LOG: {
3072 struct compat_kvm_dirty_log compat_log;
3073 struct kvm_dirty_log log;
3076 if (copy_from_user(&compat_log, (void __user *)arg,
3077 sizeof(compat_log)))
3079 log.slot = compat_log.slot;
3080 log.padding1 = compat_log.padding1;
3081 log.padding2 = compat_log.padding2;
3082 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3084 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3088 r = kvm_vm_ioctl(filp, ioctl, arg);
3096 static struct file_operations kvm_vm_fops = {
3097 .release = kvm_vm_release,
3098 .unlocked_ioctl = kvm_vm_ioctl,
3099 #ifdef CONFIG_KVM_COMPAT
3100 .compat_ioctl = kvm_vm_compat_ioctl,
3102 .llseek = noop_llseek,
3105 static int kvm_dev_ioctl_create_vm(unsigned long type)
3111 kvm = kvm_create_vm(type);
3113 return PTR_ERR(kvm);
3114 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3115 r = kvm_coalesced_mmio_init(kvm);
3121 r = get_unused_fd_flags(O_CLOEXEC);
3126 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3130 return PTR_ERR(file);
3133 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3139 fd_install(r, file);
3143 static long kvm_dev_ioctl(struct file *filp,
3144 unsigned int ioctl, unsigned long arg)
3149 case KVM_GET_API_VERSION:
3152 r = KVM_API_VERSION;
3155 r = kvm_dev_ioctl_create_vm(arg);
3157 case KVM_CHECK_EXTENSION:
3158 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3160 case KVM_GET_VCPU_MMAP_SIZE:
3163 r = PAGE_SIZE; /* struct kvm_run */
3165 r += PAGE_SIZE; /* pio data page */
3167 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3168 r += PAGE_SIZE; /* coalesced mmio ring page */
3171 case KVM_TRACE_ENABLE:
3172 case KVM_TRACE_PAUSE:
3173 case KVM_TRACE_DISABLE:
3177 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3183 static struct file_operations kvm_chardev_ops = {
3184 .unlocked_ioctl = kvm_dev_ioctl,
3185 .compat_ioctl = kvm_dev_ioctl,
3186 .llseek = noop_llseek,
3189 static struct miscdevice kvm_dev = {
3195 static void hardware_enable_nolock(void *junk)
3197 int cpu = raw_smp_processor_id();
3200 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3203 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3205 r = kvm_arch_hardware_enable();
3208 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3209 atomic_inc(&hardware_enable_failed);
3210 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3214 static int kvm_starting_cpu(unsigned int cpu)
3216 raw_spin_lock(&kvm_count_lock);
3217 if (kvm_usage_count)
3218 hardware_enable_nolock(NULL);
3219 raw_spin_unlock(&kvm_count_lock);
3223 static void hardware_disable_nolock(void *junk)
3225 int cpu = raw_smp_processor_id();
3227 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3229 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3230 kvm_arch_hardware_disable();
3233 static int kvm_dying_cpu(unsigned int cpu)
3235 raw_spin_lock(&kvm_count_lock);
3236 if (kvm_usage_count)
3237 hardware_disable_nolock(NULL);
3238 raw_spin_unlock(&kvm_count_lock);
3242 static void hardware_disable_all_nolock(void)
3244 BUG_ON(!kvm_usage_count);
3247 if (!kvm_usage_count)
3248 on_each_cpu(hardware_disable_nolock, NULL, 1);
3251 static void hardware_disable_all(void)
3253 raw_spin_lock(&kvm_count_lock);
3254 hardware_disable_all_nolock();
3255 raw_spin_unlock(&kvm_count_lock);
3258 static int hardware_enable_all(void)
3262 raw_spin_lock(&kvm_count_lock);
3265 if (kvm_usage_count == 1) {
3266 atomic_set(&hardware_enable_failed, 0);
3267 on_each_cpu(hardware_enable_nolock, NULL, 1);
3269 if (atomic_read(&hardware_enable_failed)) {
3270 hardware_disable_all_nolock();
3275 raw_spin_unlock(&kvm_count_lock);
3280 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3284 * Some (well, at least mine) BIOSes hang on reboot if
3287 * And Intel TXT required VMX off for all cpu when system shutdown.
3289 pr_info("kvm: exiting hardware virtualization\n");
3290 kvm_rebooting = true;
3291 on_each_cpu(hardware_disable_nolock, NULL, 1);
3295 static struct notifier_block kvm_reboot_notifier = {
3296 .notifier_call = kvm_reboot,
3300 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3304 for (i = 0; i < bus->dev_count; i++) {
3305 struct kvm_io_device *pos = bus->range[i].dev;
3307 kvm_iodevice_destructor(pos);
3312 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3313 const struct kvm_io_range *r2)
3315 gpa_t addr1 = r1->addr;
3316 gpa_t addr2 = r2->addr;
3321 /* If r2->len == 0, match the exact address. If r2->len != 0,
3322 * accept any overlapping write. Any order is acceptable for
3323 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3324 * we process all of them.
3337 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3339 return kvm_io_bus_cmp(p1, p2);
3342 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3343 gpa_t addr, int len)
3345 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3351 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3352 kvm_io_bus_sort_cmp, NULL);
3357 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3358 gpa_t addr, int len)
3360 struct kvm_io_range *range, key;
3363 key = (struct kvm_io_range) {
3368 range = bsearch(&key, bus->range, bus->dev_count,
3369 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3373 off = range - bus->range;
3375 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3381 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3382 struct kvm_io_range *range, const void *val)
3386 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3390 while (idx < bus->dev_count &&
3391 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3392 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3401 /* kvm_io_bus_write - called under kvm->slots_lock */
3402 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3403 int len, const void *val)
3405 struct kvm_io_bus *bus;
3406 struct kvm_io_range range;
3409 range = (struct kvm_io_range) {
3414 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3415 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3416 return r < 0 ? r : 0;
3419 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3420 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3421 gpa_t addr, int len, const void *val, long cookie)
3423 struct kvm_io_bus *bus;
3424 struct kvm_io_range range;
3426 range = (struct kvm_io_range) {
3431 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3433 /* First try the device referenced by cookie. */
3434 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3435 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3436 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3441 * cookie contained garbage; fall back to search and return the
3442 * correct cookie value.
3444 return __kvm_io_bus_write(vcpu, bus, &range, val);
3447 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3448 struct kvm_io_range *range, void *val)
3452 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3456 while (idx < bus->dev_count &&
3457 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3458 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3466 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3468 /* kvm_io_bus_read - called under kvm->slots_lock */
3469 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3472 struct kvm_io_bus *bus;
3473 struct kvm_io_range range;
3476 range = (struct kvm_io_range) {
3481 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3482 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3483 return r < 0 ? r : 0;
3487 /* Caller must hold slots_lock. */
3488 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3489 int len, struct kvm_io_device *dev)
3491 struct kvm_io_bus *new_bus, *bus;
3493 bus = kvm->buses[bus_idx];
3494 /* exclude ioeventfd which is limited by maximum fd */
3495 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3498 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3499 sizeof(struct kvm_io_range)), GFP_KERNEL);
3502 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3503 sizeof(struct kvm_io_range)));
3504 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3505 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3506 synchronize_srcu_expedited(&kvm->srcu);
3512 /* Caller must hold slots_lock. */
3513 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3514 struct kvm_io_device *dev)
3517 struct kvm_io_bus *new_bus, *bus;
3519 bus = kvm->buses[bus_idx];
3521 for (i = 0; i < bus->dev_count; i++)
3522 if (bus->range[i].dev == dev) {
3530 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3531 sizeof(struct kvm_io_range)), GFP_KERNEL);
3535 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3536 new_bus->dev_count--;
3537 memcpy(new_bus->range + i, bus->range + i + 1,
3538 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3540 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3541 synchronize_srcu_expedited(&kvm->srcu);
3546 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3549 struct kvm_io_bus *bus;
3550 int dev_idx, srcu_idx;
3551 struct kvm_io_device *iodev = NULL;
3553 srcu_idx = srcu_read_lock(&kvm->srcu);
3555 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3557 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3561 iodev = bus->range[dev_idx].dev;
3564 srcu_read_unlock(&kvm->srcu, srcu_idx);
3568 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3570 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3571 int (*get)(void *, u64 *), int (*set)(void *, u64),
3574 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3577 /* The debugfs files are a reference to the kvm struct which
3578 * is still valid when kvm_destroy_vm is called.
3579 * To avoid the race between open and the removal of the debugfs
3580 * directory we test against the users count.
3582 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3585 if (simple_attr_open(inode, file, get, set, fmt)) {
3586 kvm_put_kvm(stat_data->kvm);
3593 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3595 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3598 simple_attr_release(inode, file);
3599 kvm_put_kvm(stat_data->kvm);
3604 static int vm_stat_get_per_vm(void *data, u64 *val)
3606 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3608 *val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3613 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3615 __simple_attr_check_format("%llu\n", 0ull);
3616 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3620 static const struct file_operations vm_stat_get_per_vm_fops = {
3621 .owner = THIS_MODULE,
3622 .open = vm_stat_get_per_vm_open,
3623 .release = kvm_debugfs_release,
3624 .read = simple_attr_read,
3625 .write = simple_attr_write,
3626 .llseek = generic_file_llseek,
3629 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3632 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3633 struct kvm_vcpu *vcpu;
3637 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3638 *val += *(u32 *)((void *)vcpu + stat_data->offset);
3643 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3645 __simple_attr_check_format("%llu\n", 0ull);
3646 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3650 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3651 .owner = THIS_MODULE,
3652 .open = vcpu_stat_get_per_vm_open,
3653 .release = kvm_debugfs_release,
3654 .read = simple_attr_read,
3655 .write = simple_attr_write,
3656 .llseek = generic_file_llseek,
3659 static const struct file_operations *stat_fops_per_vm[] = {
3660 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3661 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3664 static int vm_stat_get(void *_offset, u64 *val)
3666 unsigned offset = (long)_offset;
3668 struct kvm_stat_data stat_tmp = {.offset = offset};
3672 spin_lock(&kvm_lock);
3673 list_for_each_entry(kvm, &vm_list, vm_list) {
3675 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3678 spin_unlock(&kvm_lock);
3682 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3684 static int vcpu_stat_get(void *_offset, u64 *val)
3686 unsigned offset = (long)_offset;
3688 struct kvm_stat_data stat_tmp = {.offset = offset};
3692 spin_lock(&kvm_lock);
3693 list_for_each_entry(kvm, &vm_list, vm_list) {
3695 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3698 spin_unlock(&kvm_lock);
3702 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3704 static const struct file_operations *stat_fops[] = {
3705 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3706 [KVM_STAT_VM] = &vm_stat_fops,
3709 static int kvm_init_debug(void)
3712 struct kvm_stats_debugfs_item *p;
3714 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3715 if (kvm_debugfs_dir == NULL)
3718 kvm_debugfs_num_entries = 0;
3719 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3720 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3721 (void *)(long)p->offset,
3722 stat_fops[p->kind]))
3729 debugfs_remove_recursive(kvm_debugfs_dir);
3734 static int kvm_suspend(void)
3736 if (kvm_usage_count)
3737 hardware_disable_nolock(NULL);
3741 static void kvm_resume(void)
3743 if (kvm_usage_count) {
3744 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3745 hardware_enable_nolock(NULL);
3749 static struct syscore_ops kvm_syscore_ops = {
3750 .suspend = kvm_suspend,
3751 .resume = kvm_resume,
3755 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3757 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3760 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3762 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3764 if (vcpu->preempted)
3765 vcpu->preempted = false;
3767 kvm_arch_sched_in(vcpu, cpu);
3769 kvm_arch_vcpu_load(vcpu, cpu);
3772 static void kvm_sched_out(struct preempt_notifier *pn,
3773 struct task_struct *next)
3775 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3777 if (current->state == TASK_RUNNING)
3778 vcpu->preempted = true;
3779 kvm_arch_vcpu_put(vcpu);
3782 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3783 struct module *module)
3788 r = kvm_arch_init(opaque);
3793 * kvm_arch_init makes sure there's at most one caller
3794 * for architectures that support multiple implementations,
3795 * like intel and amd on x86.
3796 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3797 * conflicts in case kvm is already setup for another implementation.
3799 r = kvm_irqfd_init();
3803 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3808 r = kvm_arch_hardware_setup();
3812 for_each_online_cpu(cpu) {
3813 smp_call_function_single(cpu,
3814 kvm_arch_check_processor_compat,
3820 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3821 kvm_starting_cpu, kvm_dying_cpu);
3824 register_reboot_notifier(&kvm_reboot_notifier);
3826 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3828 vcpu_align = __alignof__(struct kvm_vcpu);
3829 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3831 if (!kvm_vcpu_cache) {
3836 r = kvm_async_pf_init();
3840 kvm_chardev_ops.owner = module;
3841 kvm_vm_fops.owner = module;
3842 kvm_vcpu_fops.owner = module;
3844 r = misc_register(&kvm_dev);
3846 pr_err("kvm: misc device register failed\n");
3850 register_syscore_ops(&kvm_syscore_ops);
3852 kvm_preempt_ops.sched_in = kvm_sched_in;
3853 kvm_preempt_ops.sched_out = kvm_sched_out;
3855 r = kvm_init_debug();
3857 pr_err("kvm: create debugfs files failed\n");
3861 r = kvm_vfio_ops_init();
3867 unregister_syscore_ops(&kvm_syscore_ops);
3868 misc_deregister(&kvm_dev);
3870 kvm_async_pf_deinit();
3872 kmem_cache_destroy(kvm_vcpu_cache);
3874 unregister_reboot_notifier(&kvm_reboot_notifier);
3875 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3878 kvm_arch_hardware_unsetup();
3880 free_cpumask_var(cpus_hardware_enabled);
3888 EXPORT_SYMBOL_GPL(kvm_init);
3892 debugfs_remove_recursive(kvm_debugfs_dir);
3893 misc_deregister(&kvm_dev);
3894 kmem_cache_destroy(kvm_vcpu_cache);
3895 kvm_async_pf_deinit();
3896 unregister_syscore_ops(&kvm_syscore_ops);
3897 unregister_reboot_notifier(&kvm_reboot_notifier);
3898 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3899 on_each_cpu(hardware_disable_nolock, NULL, 1);
3900 kvm_arch_hardware_unsetup();
3903 free_cpumask_var(cpus_hardware_enabled);
3904 kvm_vfio_ops_exit();
3906 EXPORT_SYMBOL_GPL(kvm_exit);