Merge tag 'kvmarm-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm...
[platform/kernel/linux-starfive.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100  * Ordering of locks:
101  *
102  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static struct file_operations kvm_chardev_ops;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158                                                    unsigned long start, unsigned long end)
159 {
160 }
161
162 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
163 {
164 }
165
166 bool kvm_is_zone_device_page(struct page *page)
167 {
168         /*
169          * The metadata used by is_zone_device_page() to determine whether or
170          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171          * the device has been pinned, e.g. by get_user_pages().  WARN if the
172          * page_count() is zero to help detect bad usage of this helper.
173          */
174         if (WARN_ON_ONCE(!page_count(page)))
175                 return false;
176
177         return is_zone_device_page(page);
178 }
179
180 /*
181  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
182  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
183  * is likely incomplete, it has been compiled purely through people wanting to
184  * back guest with a certain type of memory and encountering issues.
185  */
186 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
187 {
188         struct page *page;
189
190         if (!pfn_valid(pfn))
191                 return NULL;
192
193         page = pfn_to_page(pfn);
194         if (!PageReserved(page))
195                 return page;
196
197         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
198         if (is_zero_pfn(pfn))
199                 return page;
200
201         /*
202          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
203          * perspective they are "normal" pages, albeit with slightly different
204          * usage rules.
205          */
206         if (kvm_is_zone_device_page(page))
207                 return page;
208
209         return NULL;
210 }
211
212 /*
213  * Switches to specified vcpu, until a matching vcpu_put()
214  */
215 void vcpu_load(struct kvm_vcpu *vcpu)
216 {
217         int cpu = get_cpu();
218
219         __this_cpu_write(kvm_running_vcpu, vcpu);
220         preempt_notifier_register(&vcpu->preempt_notifier);
221         kvm_arch_vcpu_load(vcpu, cpu);
222         put_cpu();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_load);
225
226 void vcpu_put(struct kvm_vcpu *vcpu)
227 {
228         preempt_disable();
229         kvm_arch_vcpu_put(vcpu);
230         preempt_notifier_unregister(&vcpu->preempt_notifier);
231         __this_cpu_write(kvm_running_vcpu, NULL);
232         preempt_enable();
233 }
234 EXPORT_SYMBOL_GPL(vcpu_put);
235
236 /* TODO: merge with kvm_arch_vcpu_should_kick */
237 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
238 {
239         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
240
241         /*
242          * We need to wait for the VCPU to reenable interrupts and get out of
243          * READING_SHADOW_PAGE_TABLES mode.
244          */
245         if (req & KVM_REQUEST_WAIT)
246                 return mode != OUTSIDE_GUEST_MODE;
247
248         /*
249          * Need to kick a running VCPU, but otherwise there is nothing to do.
250          */
251         return mode == IN_GUEST_MODE;
252 }
253
254 static void ack_kick(void *_completed)
255 {
256 }
257
258 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
259 {
260         if (cpumask_empty(cpus))
261                 return false;
262
263         smp_call_function_many(cpus, ack_kick, NULL, wait);
264         return true;
265 }
266
267 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
268                                   struct cpumask *tmp, int current_cpu)
269 {
270         int cpu;
271
272         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
273                 __kvm_make_request(req, vcpu);
274
275         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
276                 return;
277
278         /*
279          * Note, the vCPU could get migrated to a different pCPU at any point
280          * after kvm_request_needs_ipi(), which could result in sending an IPI
281          * to the previous pCPU.  But, that's OK because the purpose of the IPI
282          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
283          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
284          * after this point is also OK, as the requirement is only that KVM wait
285          * for vCPUs that were reading SPTEs _before_ any changes were
286          * finalized. See kvm_vcpu_kick() for more details on handling requests.
287          */
288         if (kvm_request_needs_ipi(vcpu, req)) {
289                 cpu = READ_ONCE(vcpu->cpu);
290                 if (cpu != -1 && cpu != current_cpu)
291                         __cpumask_set_cpu(cpu, tmp);
292         }
293 }
294
295 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
296                                  unsigned long *vcpu_bitmap)
297 {
298         struct kvm_vcpu *vcpu;
299         struct cpumask *cpus;
300         int i, me;
301         bool called;
302
303         me = get_cpu();
304
305         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
306         cpumask_clear(cpus);
307
308         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
309                 vcpu = kvm_get_vcpu(kvm, i);
310                 if (!vcpu)
311                         continue;
312                 kvm_make_vcpu_request(vcpu, req, cpus, me);
313         }
314
315         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
316         put_cpu();
317
318         return called;
319 }
320
321 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
322                                       struct kvm_vcpu *except)
323 {
324         struct kvm_vcpu *vcpu;
325         struct cpumask *cpus;
326         unsigned long i;
327         bool called;
328         int me;
329
330         me = get_cpu();
331
332         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
333         cpumask_clear(cpus);
334
335         kvm_for_each_vcpu(i, vcpu, kvm) {
336                 if (vcpu == except)
337                         continue;
338                 kvm_make_vcpu_request(vcpu, req, cpus, me);
339         }
340
341         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
342         put_cpu();
343
344         return called;
345 }
346
347 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
348 {
349         return kvm_make_all_cpus_request_except(kvm, req, NULL);
350 }
351 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
352
353 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
354 void kvm_flush_remote_tlbs(struct kvm *kvm)
355 {
356         ++kvm->stat.generic.remote_tlb_flush_requests;
357
358         /*
359          * We want to publish modifications to the page tables before reading
360          * mode. Pairs with a memory barrier in arch-specific code.
361          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
362          * and smp_mb in walk_shadow_page_lockless_begin/end.
363          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
364          *
365          * There is already an smp_mb__after_atomic() before
366          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
367          * barrier here.
368          */
369         if (!kvm_arch_flush_remote_tlb(kvm)
370             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
371                 ++kvm->stat.generic.remote_tlb_flush;
372 }
373 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
374 #endif
375
376 static void kvm_flush_shadow_all(struct kvm *kvm)
377 {
378         kvm_arch_flush_shadow_all(kvm);
379         kvm_arch_guest_memory_reclaimed(kvm);
380 }
381
382 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
383 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
384                                                gfp_t gfp_flags)
385 {
386         gfp_flags |= mc->gfp_zero;
387
388         if (mc->kmem_cache)
389                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
390         else
391                 return (void *)__get_free_page(gfp_flags);
392 }
393
394 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
395 {
396         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
397         void *obj;
398
399         if (mc->nobjs >= min)
400                 return 0;
401
402         if (unlikely(!mc->objects)) {
403                 if (WARN_ON_ONCE(!capacity))
404                         return -EIO;
405
406                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
407                 if (!mc->objects)
408                         return -ENOMEM;
409
410                 mc->capacity = capacity;
411         }
412
413         /* It is illegal to request a different capacity across topups. */
414         if (WARN_ON_ONCE(mc->capacity != capacity))
415                 return -EIO;
416
417         while (mc->nobjs < mc->capacity) {
418                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
419                 if (!obj)
420                         return mc->nobjs >= min ? 0 : -ENOMEM;
421                 mc->objects[mc->nobjs++] = obj;
422         }
423         return 0;
424 }
425
426 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
427 {
428         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
429 }
430
431 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
432 {
433         return mc->nobjs;
434 }
435
436 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
437 {
438         while (mc->nobjs) {
439                 if (mc->kmem_cache)
440                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
441                 else
442                         free_page((unsigned long)mc->objects[--mc->nobjs]);
443         }
444
445         kvfree(mc->objects);
446
447         mc->objects = NULL;
448         mc->capacity = 0;
449 }
450
451 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
452 {
453         void *p;
454
455         if (WARN_ON(!mc->nobjs))
456                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
457         else
458                 p = mc->objects[--mc->nobjs];
459         BUG_ON(!p);
460         return p;
461 }
462 #endif
463
464 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
465 {
466         mutex_init(&vcpu->mutex);
467         vcpu->cpu = -1;
468         vcpu->kvm = kvm;
469         vcpu->vcpu_id = id;
470         vcpu->pid = NULL;
471 #ifndef __KVM_HAVE_ARCH_WQP
472         rcuwait_init(&vcpu->wait);
473 #endif
474         kvm_async_pf_vcpu_init(vcpu);
475
476         kvm_vcpu_set_in_spin_loop(vcpu, false);
477         kvm_vcpu_set_dy_eligible(vcpu, false);
478         vcpu->preempted = false;
479         vcpu->ready = false;
480         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
481         vcpu->last_used_slot = NULL;
482
483         /* Fill the stats id string for the vcpu */
484         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
485                  task_pid_nr(current), id);
486 }
487
488 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
489 {
490         kvm_arch_vcpu_destroy(vcpu);
491         kvm_dirty_ring_free(&vcpu->dirty_ring);
492
493         /*
494          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
495          * the vcpu->pid pointer, and at destruction time all file descriptors
496          * are already gone.
497          */
498         put_pid(rcu_dereference_protected(vcpu->pid, 1));
499
500         free_page((unsigned long)vcpu->run);
501         kmem_cache_free(kvm_vcpu_cache, vcpu);
502 }
503
504 void kvm_destroy_vcpus(struct kvm *kvm)
505 {
506         unsigned long i;
507         struct kvm_vcpu *vcpu;
508
509         kvm_for_each_vcpu(i, vcpu, kvm) {
510                 kvm_vcpu_destroy(vcpu);
511                 xa_erase(&kvm->vcpu_array, i);
512         }
513
514         atomic_set(&kvm->online_vcpus, 0);
515 }
516 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
517
518 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
519 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
520 {
521         return container_of(mn, struct kvm, mmu_notifier);
522 }
523
524 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
525                                               struct mm_struct *mm,
526                                               unsigned long start, unsigned long end)
527 {
528         struct kvm *kvm = mmu_notifier_to_kvm(mn);
529         int idx;
530
531         idx = srcu_read_lock(&kvm->srcu);
532         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
533         srcu_read_unlock(&kvm->srcu, idx);
534 }
535
536 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
537
538 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
539                              unsigned long end);
540
541 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
542
543 struct kvm_hva_range {
544         unsigned long start;
545         unsigned long end;
546         pte_t pte;
547         hva_handler_t handler;
548         on_lock_fn_t on_lock;
549         on_unlock_fn_t on_unlock;
550         bool flush_on_ret;
551         bool may_block;
552 };
553
554 /*
555  * Use a dedicated stub instead of NULL to indicate that there is no callback
556  * function/handler.  The compiler technically can't guarantee that a real
557  * function will have a non-zero address, and so it will generate code to
558  * check for !NULL, whereas comparing against a stub will be elided at compile
559  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
560  */
561 static void kvm_null_fn(void)
562 {
563
564 }
565 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
566
567 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
568 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
569         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
570              node;                                                           \
571              node = interval_tree_iter_next(node, start, last))      \
572
573 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
574                                                   const struct kvm_hva_range *range)
575 {
576         bool ret = false, locked = false;
577         struct kvm_gfn_range gfn_range;
578         struct kvm_memory_slot *slot;
579         struct kvm_memslots *slots;
580         int i, idx;
581
582         if (WARN_ON_ONCE(range->end <= range->start))
583                 return 0;
584
585         /* A null handler is allowed if and only if on_lock() is provided. */
586         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
587                          IS_KVM_NULL_FN(range->handler)))
588                 return 0;
589
590         idx = srcu_read_lock(&kvm->srcu);
591
592         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
593                 struct interval_tree_node *node;
594
595                 slots = __kvm_memslots(kvm, i);
596                 kvm_for_each_memslot_in_hva_range(node, slots,
597                                                   range->start, range->end - 1) {
598                         unsigned long hva_start, hva_end;
599
600                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
601                         hva_start = max(range->start, slot->userspace_addr);
602                         hva_end = min(range->end, slot->userspace_addr +
603                                                   (slot->npages << PAGE_SHIFT));
604
605                         /*
606                          * To optimize for the likely case where the address
607                          * range is covered by zero or one memslots, don't
608                          * bother making these conditional (to avoid writes on
609                          * the second or later invocation of the handler).
610                          */
611                         gfn_range.pte = range->pte;
612                         gfn_range.may_block = range->may_block;
613
614                         /*
615                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
616                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
617                          */
618                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620                         gfn_range.slot = slot;
621
622                         if (!locked) {
623                                 locked = true;
624                                 KVM_MMU_LOCK(kvm);
625                                 if (!IS_KVM_NULL_FN(range->on_lock))
626                                         range->on_lock(kvm, range->start, range->end);
627                                 if (IS_KVM_NULL_FN(range->handler))
628                                         break;
629                         }
630                         ret |= range->handler(kvm, &gfn_range);
631                 }
632         }
633
634         if (range->flush_on_ret && ret)
635                 kvm_flush_remote_tlbs(kvm);
636
637         if (locked) {
638                 KVM_MMU_UNLOCK(kvm);
639                 if (!IS_KVM_NULL_FN(range->on_unlock))
640                         range->on_unlock(kvm);
641         }
642
643         srcu_read_unlock(&kvm->srcu, idx);
644
645         /* The notifiers are averse to booleans. :-( */
646         return (int)ret;
647 }
648
649 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
650                                                 unsigned long start,
651                                                 unsigned long end,
652                                                 pte_t pte,
653                                                 hva_handler_t handler)
654 {
655         struct kvm *kvm = mmu_notifier_to_kvm(mn);
656         const struct kvm_hva_range range = {
657                 .start          = start,
658                 .end            = end,
659                 .pte            = pte,
660                 .handler        = handler,
661                 .on_lock        = (void *)kvm_null_fn,
662                 .on_unlock      = (void *)kvm_null_fn,
663                 .flush_on_ret   = true,
664                 .may_block      = false,
665         };
666
667         return __kvm_handle_hva_range(kvm, &range);
668 }
669
670 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
671                                                          unsigned long start,
672                                                          unsigned long end,
673                                                          hva_handler_t handler)
674 {
675         struct kvm *kvm = mmu_notifier_to_kvm(mn);
676         const struct kvm_hva_range range = {
677                 .start          = start,
678                 .end            = end,
679                 .pte            = __pte(0),
680                 .handler        = handler,
681                 .on_lock        = (void *)kvm_null_fn,
682                 .on_unlock      = (void *)kvm_null_fn,
683                 .flush_on_ret   = false,
684                 .may_block      = false,
685         };
686
687         return __kvm_handle_hva_range(kvm, &range);
688 }
689
690 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
691 {
692         /*
693          * Skipping invalid memslots is correct if and only change_pte() is
694          * surrounded by invalidate_range_{start,end}(), which is currently
695          * guaranteed by the primary MMU.  If that ever changes, KVM needs to
696          * unmap the memslot instead of skipping the memslot to ensure that KVM
697          * doesn't hold references to the old PFN.
698          */
699         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
700
701         if (range->slot->flags & KVM_MEMSLOT_INVALID)
702                 return false;
703
704         return kvm_set_spte_gfn(kvm, range);
705 }
706
707 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
708                                         struct mm_struct *mm,
709                                         unsigned long address,
710                                         pte_t pte)
711 {
712         struct kvm *kvm = mmu_notifier_to_kvm(mn);
713
714         trace_kvm_set_spte_hva(address);
715
716         /*
717          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
718          * If mmu_invalidate_in_progress is zero, then no in-progress
719          * invalidations, including this one, found a relevant memslot at
720          * start(); rechecking memslots here is unnecessary.  Note, a false
721          * positive (count elevated by a different invalidation) is sub-optimal
722          * but functionally ok.
723          */
724         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
725         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
726                 return;
727
728         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
729 }
730
731 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
732                               unsigned long end)
733 {
734         /*
735          * The count increase must become visible at unlock time as no
736          * spte can be established without taking the mmu_lock and
737          * count is also read inside the mmu_lock critical section.
738          */
739         kvm->mmu_invalidate_in_progress++;
740         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
741                 kvm->mmu_invalidate_range_start = start;
742                 kvm->mmu_invalidate_range_end = end;
743         } else {
744                 /*
745                  * Fully tracking multiple concurrent ranges has diminishing
746                  * returns. Keep things simple and just find the minimal range
747                  * which includes the current and new ranges. As there won't be
748                  * enough information to subtract a range after its invalidate
749                  * completes, any ranges invalidated concurrently will
750                  * accumulate and persist until all outstanding invalidates
751                  * complete.
752                  */
753                 kvm->mmu_invalidate_range_start =
754                         min(kvm->mmu_invalidate_range_start, start);
755                 kvm->mmu_invalidate_range_end =
756                         max(kvm->mmu_invalidate_range_end, end);
757         }
758 }
759
760 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
761                                         const struct mmu_notifier_range *range)
762 {
763         struct kvm *kvm = mmu_notifier_to_kvm(mn);
764         const struct kvm_hva_range hva_range = {
765                 .start          = range->start,
766                 .end            = range->end,
767                 .pte            = __pte(0),
768                 .handler        = kvm_unmap_gfn_range,
769                 .on_lock        = kvm_mmu_invalidate_begin,
770                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
771                 .flush_on_ret   = true,
772                 .may_block      = mmu_notifier_range_blockable(range),
773         };
774
775         trace_kvm_unmap_hva_range(range->start, range->end);
776
777         /*
778          * Prevent memslot modification between range_start() and range_end()
779          * so that conditionally locking provides the same result in both
780          * functions.  Without that guarantee, the mmu_invalidate_in_progress
781          * adjustments will be imbalanced.
782          *
783          * Pairs with the decrement in range_end().
784          */
785         spin_lock(&kvm->mn_invalidate_lock);
786         kvm->mn_active_invalidate_count++;
787         spin_unlock(&kvm->mn_invalidate_lock);
788
789         /*
790          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
791          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
792          * each cache's lock.  There are relatively few caches in existence at
793          * any given time, and the caches themselves can check for hva overlap,
794          * i.e. don't need to rely on memslot overlap checks for performance.
795          * Because this runs without holding mmu_lock, the pfn caches must use
796          * mn_active_invalidate_count (see above) instead of
797          * mmu_invalidate_in_progress.
798          */
799         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
800                                           hva_range.may_block);
801
802         __kvm_handle_hva_range(kvm, &hva_range);
803
804         return 0;
805 }
806
807 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
808                             unsigned long end)
809 {
810         /*
811          * This sequence increase will notify the kvm page fault that
812          * the page that is going to be mapped in the spte could have
813          * been freed.
814          */
815         kvm->mmu_invalidate_seq++;
816         smp_wmb();
817         /*
818          * The above sequence increase must be visible before the
819          * below count decrease, which is ensured by the smp_wmb above
820          * in conjunction with the smp_rmb in mmu_invalidate_retry().
821          */
822         kvm->mmu_invalidate_in_progress--;
823 }
824
825 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
826                                         const struct mmu_notifier_range *range)
827 {
828         struct kvm *kvm = mmu_notifier_to_kvm(mn);
829         const struct kvm_hva_range hva_range = {
830                 .start          = range->start,
831                 .end            = range->end,
832                 .pte            = __pte(0),
833                 .handler        = (void *)kvm_null_fn,
834                 .on_lock        = kvm_mmu_invalidate_end,
835                 .on_unlock      = (void *)kvm_null_fn,
836                 .flush_on_ret   = false,
837                 .may_block      = mmu_notifier_range_blockable(range),
838         };
839         bool wake;
840
841         __kvm_handle_hva_range(kvm, &hva_range);
842
843         /* Pairs with the increment in range_start(). */
844         spin_lock(&kvm->mn_invalidate_lock);
845         wake = (--kvm->mn_active_invalidate_count == 0);
846         spin_unlock(&kvm->mn_invalidate_lock);
847
848         /*
849          * There can only be one waiter, since the wait happens under
850          * slots_lock.
851          */
852         if (wake)
853                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
854
855         BUG_ON(kvm->mmu_invalidate_in_progress < 0);
856 }
857
858 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
859                                               struct mm_struct *mm,
860                                               unsigned long start,
861                                               unsigned long end)
862 {
863         trace_kvm_age_hva(start, end);
864
865         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
866 }
867
868 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
869                                         struct mm_struct *mm,
870                                         unsigned long start,
871                                         unsigned long end)
872 {
873         trace_kvm_age_hva(start, end);
874
875         /*
876          * Even though we do not flush TLB, this will still adversely
877          * affect performance on pre-Haswell Intel EPT, where there is
878          * no EPT Access Bit to clear so that we have to tear down EPT
879          * tables instead. If we find this unacceptable, we can always
880          * add a parameter to kvm_age_hva so that it effectively doesn't
881          * do anything on clear_young.
882          *
883          * Also note that currently we never issue secondary TLB flushes
884          * from clear_young, leaving this job up to the regular system
885          * cadence. If we find this inaccurate, we might come up with a
886          * more sophisticated heuristic later.
887          */
888         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
889 }
890
891 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
892                                        struct mm_struct *mm,
893                                        unsigned long address)
894 {
895         trace_kvm_test_age_hva(address);
896
897         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
898                                              kvm_test_age_gfn);
899 }
900
901 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
902                                      struct mm_struct *mm)
903 {
904         struct kvm *kvm = mmu_notifier_to_kvm(mn);
905         int idx;
906
907         idx = srcu_read_lock(&kvm->srcu);
908         kvm_flush_shadow_all(kvm);
909         srcu_read_unlock(&kvm->srcu, idx);
910 }
911
912 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
913         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
914         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
915         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
916         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
917         .clear_young            = kvm_mmu_notifier_clear_young,
918         .test_young             = kvm_mmu_notifier_test_young,
919         .change_pte             = kvm_mmu_notifier_change_pte,
920         .release                = kvm_mmu_notifier_release,
921 };
922
923 static int kvm_init_mmu_notifier(struct kvm *kvm)
924 {
925         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
926         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
927 }
928
929 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
930
931 static int kvm_init_mmu_notifier(struct kvm *kvm)
932 {
933         return 0;
934 }
935
936 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
937
938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
939 static int kvm_pm_notifier_call(struct notifier_block *bl,
940                                 unsigned long state,
941                                 void *unused)
942 {
943         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
944
945         return kvm_arch_pm_notifier(kvm, state);
946 }
947
948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
951         /* Suspend KVM before we suspend ftrace, RCU, etc. */
952         kvm->pm_notifier.priority = INT_MAX;
953         register_pm_notifier(&kvm->pm_notifier);
954 }
955
956 static void kvm_destroy_pm_notifier(struct kvm *kvm)
957 {
958         unregister_pm_notifier(&kvm->pm_notifier);
959 }
960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
961 static void kvm_init_pm_notifier(struct kvm *kvm)
962 {
963 }
964
965 static void kvm_destroy_pm_notifier(struct kvm *kvm)
966 {
967 }
968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
969
970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
971 {
972         if (!memslot->dirty_bitmap)
973                 return;
974
975         kvfree(memslot->dirty_bitmap);
976         memslot->dirty_bitmap = NULL;
977 }
978
979 /* This does not remove the slot from struct kvm_memslots data structures */
980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
981 {
982         kvm_destroy_dirty_bitmap(slot);
983
984         kvm_arch_free_memslot(kvm, slot);
985
986         kfree(slot);
987 }
988
989 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
990 {
991         struct hlist_node *idnode;
992         struct kvm_memory_slot *memslot;
993         int bkt;
994
995         /*
996          * The same memslot objects live in both active and inactive sets,
997          * arbitrarily free using index '1' so the second invocation of this
998          * function isn't operating over a structure with dangling pointers
999          * (even though this function isn't actually touching them).
1000          */
1001         if (!slots->node_idx)
1002                 return;
1003
1004         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1005                 kvm_free_memslot(kvm, memslot);
1006 }
1007
1008 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1009 {
1010         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1011         case KVM_STATS_TYPE_INSTANT:
1012                 return 0444;
1013         case KVM_STATS_TYPE_CUMULATIVE:
1014         case KVM_STATS_TYPE_PEAK:
1015         default:
1016                 return 0644;
1017         }
1018 }
1019
1020
1021 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1022 {
1023         int i;
1024         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1025                                       kvm_vcpu_stats_header.num_desc;
1026
1027         if (IS_ERR(kvm->debugfs_dentry))
1028                 return;
1029
1030         debugfs_remove_recursive(kvm->debugfs_dentry);
1031
1032         if (kvm->debugfs_stat_data) {
1033                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1034                         kfree(kvm->debugfs_stat_data[i]);
1035                 kfree(kvm->debugfs_stat_data);
1036         }
1037 }
1038
1039 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1040 {
1041         static DEFINE_MUTEX(kvm_debugfs_lock);
1042         struct dentry *dent;
1043         char dir_name[ITOA_MAX_LEN * 2];
1044         struct kvm_stat_data *stat_data;
1045         const struct _kvm_stats_desc *pdesc;
1046         int i, ret = -ENOMEM;
1047         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1048                                       kvm_vcpu_stats_header.num_desc;
1049
1050         if (!debugfs_initialized())
1051                 return 0;
1052
1053         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1054         mutex_lock(&kvm_debugfs_lock);
1055         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1056         if (dent) {
1057                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1058                 dput(dent);
1059                 mutex_unlock(&kvm_debugfs_lock);
1060                 return 0;
1061         }
1062         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1063         mutex_unlock(&kvm_debugfs_lock);
1064         if (IS_ERR(dent))
1065                 return 0;
1066
1067         kvm->debugfs_dentry = dent;
1068         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1069                                          sizeof(*kvm->debugfs_stat_data),
1070                                          GFP_KERNEL_ACCOUNT);
1071         if (!kvm->debugfs_stat_data)
1072                 goto out_err;
1073
1074         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1075                 pdesc = &kvm_vm_stats_desc[i];
1076                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1077                 if (!stat_data)
1078                         goto out_err;
1079
1080                 stat_data->kvm = kvm;
1081                 stat_data->desc = pdesc;
1082                 stat_data->kind = KVM_STAT_VM;
1083                 kvm->debugfs_stat_data[i] = stat_data;
1084                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1085                                     kvm->debugfs_dentry, stat_data,
1086                                     &stat_fops_per_vm);
1087         }
1088
1089         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1090                 pdesc = &kvm_vcpu_stats_desc[i];
1091                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1092                 if (!stat_data)
1093                         goto out_err;
1094
1095                 stat_data->kvm = kvm;
1096                 stat_data->desc = pdesc;
1097                 stat_data->kind = KVM_STAT_VCPU;
1098                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1099                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1100                                     kvm->debugfs_dentry, stat_data,
1101                                     &stat_fops_per_vm);
1102         }
1103
1104         ret = kvm_arch_create_vm_debugfs(kvm);
1105         if (ret)
1106                 goto out_err;
1107
1108         return 0;
1109 out_err:
1110         kvm_destroy_vm_debugfs(kvm);
1111         return ret;
1112 }
1113
1114 /*
1115  * Called after the VM is otherwise initialized, but just before adding it to
1116  * the vm_list.
1117  */
1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1119 {
1120         return 0;
1121 }
1122
1123 /*
1124  * Called just after removing the VM from the vm_list, but before doing any
1125  * other destruction.
1126  */
1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1128 {
1129 }
1130
1131 /*
1132  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1133  * be setup already, so we can create arch-specific debugfs entries under it.
1134  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1135  * a per-arch destroy interface is not needed.
1136  */
1137 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1138 {
1139         return 0;
1140 }
1141
1142 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1143 {
1144         struct kvm *kvm = kvm_arch_alloc_vm();
1145         struct kvm_memslots *slots;
1146         int r = -ENOMEM;
1147         int i, j;
1148
1149         if (!kvm)
1150                 return ERR_PTR(-ENOMEM);
1151
1152         /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1153         __module_get(kvm_chardev_ops.owner);
1154
1155         KVM_MMU_LOCK_INIT(kvm);
1156         mmgrab(current->mm);
1157         kvm->mm = current->mm;
1158         kvm_eventfd_init(kvm);
1159         mutex_init(&kvm->lock);
1160         mutex_init(&kvm->irq_lock);
1161         mutex_init(&kvm->slots_lock);
1162         mutex_init(&kvm->slots_arch_lock);
1163         spin_lock_init(&kvm->mn_invalidate_lock);
1164         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1165         xa_init(&kvm->vcpu_array);
1166
1167         INIT_LIST_HEAD(&kvm->gpc_list);
1168         spin_lock_init(&kvm->gpc_lock);
1169
1170         INIT_LIST_HEAD(&kvm->devices);
1171         kvm->max_vcpus = KVM_MAX_VCPUS;
1172
1173         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1174
1175         /*
1176          * Force subsequent debugfs file creations to fail if the VM directory
1177          * is not created (by kvm_create_vm_debugfs()).
1178          */
1179         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1180
1181         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1182                  task_pid_nr(current));
1183
1184         if (init_srcu_struct(&kvm->srcu))
1185                 goto out_err_no_srcu;
1186         if (init_srcu_struct(&kvm->irq_srcu))
1187                 goto out_err_no_irq_srcu;
1188
1189         refcount_set(&kvm->users_count, 1);
1190         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1191                 for (j = 0; j < 2; j++) {
1192                         slots = &kvm->__memslots[i][j];
1193
1194                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1195                         slots->hva_tree = RB_ROOT_CACHED;
1196                         slots->gfn_tree = RB_ROOT;
1197                         hash_init(slots->id_hash);
1198                         slots->node_idx = j;
1199
1200                         /* Generations must be different for each address space. */
1201                         slots->generation = i;
1202                 }
1203
1204                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1205         }
1206
1207         for (i = 0; i < KVM_NR_BUSES; i++) {
1208                 rcu_assign_pointer(kvm->buses[i],
1209                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1210                 if (!kvm->buses[i])
1211                         goto out_err_no_arch_destroy_vm;
1212         }
1213
1214         r = kvm_arch_init_vm(kvm, type);
1215         if (r)
1216                 goto out_err_no_arch_destroy_vm;
1217
1218         r = hardware_enable_all();
1219         if (r)
1220                 goto out_err_no_disable;
1221
1222 #ifdef CONFIG_HAVE_KVM_IRQFD
1223         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1224 #endif
1225
1226         r = kvm_init_mmu_notifier(kvm);
1227         if (r)
1228                 goto out_err_no_mmu_notifier;
1229
1230         r = kvm_coalesced_mmio_init(kvm);
1231         if (r < 0)
1232                 goto out_no_coalesced_mmio;
1233
1234         r = kvm_create_vm_debugfs(kvm, fdname);
1235         if (r)
1236                 goto out_err_no_debugfs;
1237
1238         r = kvm_arch_post_init_vm(kvm);
1239         if (r)
1240                 goto out_err;
1241
1242         mutex_lock(&kvm_lock);
1243         list_add(&kvm->vm_list, &vm_list);
1244         mutex_unlock(&kvm_lock);
1245
1246         preempt_notifier_inc();
1247         kvm_init_pm_notifier(kvm);
1248
1249         return kvm;
1250
1251 out_err:
1252         kvm_destroy_vm_debugfs(kvm);
1253 out_err_no_debugfs:
1254         kvm_coalesced_mmio_free(kvm);
1255 out_no_coalesced_mmio:
1256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1257         if (kvm->mmu_notifier.ops)
1258                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1259 #endif
1260 out_err_no_mmu_notifier:
1261         hardware_disable_all();
1262 out_err_no_disable:
1263         kvm_arch_destroy_vm(kvm);
1264 out_err_no_arch_destroy_vm:
1265         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1266         for (i = 0; i < KVM_NR_BUSES; i++)
1267                 kfree(kvm_get_bus(kvm, i));
1268         cleanup_srcu_struct(&kvm->irq_srcu);
1269 out_err_no_irq_srcu:
1270         cleanup_srcu_struct(&kvm->srcu);
1271 out_err_no_srcu:
1272         kvm_arch_free_vm(kvm);
1273         mmdrop(current->mm);
1274         module_put(kvm_chardev_ops.owner);
1275         return ERR_PTR(r);
1276 }
1277
1278 static void kvm_destroy_devices(struct kvm *kvm)
1279 {
1280         struct kvm_device *dev, *tmp;
1281
1282         /*
1283          * We do not need to take the kvm->lock here, because nobody else
1284          * has a reference to the struct kvm at this point and therefore
1285          * cannot access the devices list anyhow.
1286          */
1287         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1288                 list_del(&dev->vm_node);
1289                 dev->ops->destroy(dev);
1290         }
1291 }
1292
1293 static void kvm_destroy_vm(struct kvm *kvm)
1294 {
1295         int i;
1296         struct mm_struct *mm = kvm->mm;
1297
1298         kvm_destroy_pm_notifier(kvm);
1299         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1300         kvm_destroy_vm_debugfs(kvm);
1301         kvm_arch_sync_events(kvm);
1302         mutex_lock(&kvm_lock);
1303         list_del(&kvm->vm_list);
1304         mutex_unlock(&kvm_lock);
1305         kvm_arch_pre_destroy_vm(kvm);
1306
1307         kvm_free_irq_routing(kvm);
1308         for (i = 0; i < KVM_NR_BUSES; i++) {
1309                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1310
1311                 if (bus)
1312                         kvm_io_bus_destroy(bus);
1313                 kvm->buses[i] = NULL;
1314         }
1315         kvm_coalesced_mmio_free(kvm);
1316 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1317         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1318         /*
1319          * At this point, pending calls to invalidate_range_start()
1320          * have completed but no more MMU notifiers will run, so
1321          * mn_active_invalidate_count may remain unbalanced.
1322          * No threads can be waiting in kvm_swap_active_memslots() as the
1323          * last reference on KVM has been dropped, but freeing
1324          * memslots would deadlock without this manual intervention.
1325          */
1326         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1327         kvm->mn_active_invalidate_count = 0;
1328 #else
1329         kvm_flush_shadow_all(kvm);
1330 #endif
1331         kvm_arch_destroy_vm(kvm);
1332         kvm_destroy_devices(kvm);
1333         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1334                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1335                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1336         }
1337         cleanup_srcu_struct(&kvm->irq_srcu);
1338         cleanup_srcu_struct(&kvm->srcu);
1339         kvm_arch_free_vm(kvm);
1340         preempt_notifier_dec();
1341         hardware_disable_all();
1342         mmdrop(mm);
1343         module_put(kvm_chardev_ops.owner);
1344 }
1345
1346 void kvm_get_kvm(struct kvm *kvm)
1347 {
1348         refcount_inc(&kvm->users_count);
1349 }
1350 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1351
1352 /*
1353  * Make sure the vm is not during destruction, which is a safe version of
1354  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1355  */
1356 bool kvm_get_kvm_safe(struct kvm *kvm)
1357 {
1358         return refcount_inc_not_zero(&kvm->users_count);
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1361
1362 void kvm_put_kvm(struct kvm *kvm)
1363 {
1364         if (refcount_dec_and_test(&kvm->users_count))
1365                 kvm_destroy_vm(kvm);
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1368
1369 /*
1370  * Used to put a reference that was taken on behalf of an object associated
1371  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1372  * of the new file descriptor fails and the reference cannot be transferred to
1373  * its final owner.  In such cases, the caller is still actively using @kvm and
1374  * will fail miserably if the refcount unexpectedly hits zero.
1375  */
1376 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1377 {
1378         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1381
1382 static int kvm_vm_release(struct inode *inode, struct file *filp)
1383 {
1384         struct kvm *kvm = filp->private_data;
1385
1386         kvm_irqfd_release(kvm);
1387
1388         kvm_put_kvm(kvm);
1389         return 0;
1390 }
1391
1392 /*
1393  * Allocation size is twice as large as the actual dirty bitmap size.
1394  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1395  */
1396 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1397 {
1398         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1399
1400         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1401         if (!memslot->dirty_bitmap)
1402                 return -ENOMEM;
1403
1404         return 0;
1405 }
1406
1407 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1408 {
1409         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1410         int node_idx_inactive = active->node_idx ^ 1;
1411
1412         return &kvm->__memslots[as_id][node_idx_inactive];
1413 }
1414
1415 /*
1416  * Helper to get the address space ID when one of memslot pointers may be NULL.
1417  * This also serves as a sanity that at least one of the pointers is non-NULL,
1418  * and that their address space IDs don't diverge.
1419  */
1420 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1421                                   struct kvm_memory_slot *b)
1422 {
1423         if (WARN_ON_ONCE(!a && !b))
1424                 return 0;
1425
1426         if (!a)
1427                 return b->as_id;
1428         if (!b)
1429                 return a->as_id;
1430
1431         WARN_ON_ONCE(a->as_id != b->as_id);
1432         return a->as_id;
1433 }
1434
1435 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1436                                 struct kvm_memory_slot *slot)
1437 {
1438         struct rb_root *gfn_tree = &slots->gfn_tree;
1439         struct rb_node **node, *parent;
1440         int idx = slots->node_idx;
1441
1442         parent = NULL;
1443         for (node = &gfn_tree->rb_node; *node; ) {
1444                 struct kvm_memory_slot *tmp;
1445
1446                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1447                 parent = *node;
1448                 if (slot->base_gfn < tmp->base_gfn)
1449                         node = &(*node)->rb_left;
1450                 else if (slot->base_gfn > tmp->base_gfn)
1451                         node = &(*node)->rb_right;
1452                 else
1453                         BUG();
1454         }
1455
1456         rb_link_node(&slot->gfn_node[idx], parent, node);
1457         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1458 }
1459
1460 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1461                                struct kvm_memory_slot *slot)
1462 {
1463         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1464 }
1465
1466 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1467                                  struct kvm_memory_slot *old,
1468                                  struct kvm_memory_slot *new)
1469 {
1470         int idx = slots->node_idx;
1471
1472         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1473
1474         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1475                         &slots->gfn_tree);
1476 }
1477
1478 /*
1479  * Replace @old with @new in the inactive memslots.
1480  *
1481  * With NULL @old this simply adds @new.
1482  * With NULL @new this simply removes @old.
1483  *
1484  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1485  * appropriately.
1486  */
1487 static void kvm_replace_memslot(struct kvm *kvm,
1488                                 struct kvm_memory_slot *old,
1489                                 struct kvm_memory_slot *new)
1490 {
1491         int as_id = kvm_memslots_get_as_id(old, new);
1492         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1493         int idx = slots->node_idx;
1494
1495         if (old) {
1496                 hash_del(&old->id_node[idx]);
1497                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1498
1499                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1500                         atomic_long_set(&slots->last_used_slot, (long)new);
1501
1502                 if (!new) {
1503                         kvm_erase_gfn_node(slots, old);
1504                         return;
1505                 }
1506         }
1507
1508         /*
1509          * Initialize @new's hva range.  Do this even when replacing an @old
1510          * slot, kvm_copy_memslot() deliberately does not touch node data.
1511          */
1512         new->hva_node[idx].start = new->userspace_addr;
1513         new->hva_node[idx].last = new->userspace_addr +
1514                                   (new->npages << PAGE_SHIFT) - 1;
1515
1516         /*
1517          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1518          * hva_node needs to be swapped with remove+insert even though hva can't
1519          * change when replacing an existing slot.
1520          */
1521         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1522         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1523
1524         /*
1525          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1526          * switch the node in the gfn tree instead of removing the old and
1527          * inserting the new as two separate operations. Replacement is a
1528          * single O(1) operation versus two O(log(n)) operations for
1529          * remove+insert.
1530          */
1531         if (old && old->base_gfn == new->base_gfn) {
1532                 kvm_replace_gfn_node(slots, old, new);
1533         } else {
1534                 if (old)
1535                         kvm_erase_gfn_node(slots, old);
1536                 kvm_insert_gfn_node(slots, new);
1537         }
1538 }
1539
1540 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1541 {
1542         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1543
1544 #ifdef __KVM_HAVE_READONLY_MEM
1545         valid_flags |= KVM_MEM_READONLY;
1546 #endif
1547
1548         if (mem->flags & ~valid_flags)
1549                 return -EINVAL;
1550
1551         return 0;
1552 }
1553
1554 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1555 {
1556         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1557
1558         /* Grab the generation from the activate memslots. */
1559         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1560
1561         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1562         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1563
1564         /*
1565          * Do not store the new memslots while there are invalidations in
1566          * progress, otherwise the locking in invalidate_range_start and
1567          * invalidate_range_end will be unbalanced.
1568          */
1569         spin_lock(&kvm->mn_invalidate_lock);
1570         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1571         while (kvm->mn_active_invalidate_count) {
1572                 set_current_state(TASK_UNINTERRUPTIBLE);
1573                 spin_unlock(&kvm->mn_invalidate_lock);
1574                 schedule();
1575                 spin_lock(&kvm->mn_invalidate_lock);
1576         }
1577         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1578         rcu_assign_pointer(kvm->memslots[as_id], slots);
1579         spin_unlock(&kvm->mn_invalidate_lock);
1580
1581         /*
1582          * Acquired in kvm_set_memslot. Must be released before synchronize
1583          * SRCU below in order to avoid deadlock with another thread
1584          * acquiring the slots_arch_lock in an srcu critical section.
1585          */
1586         mutex_unlock(&kvm->slots_arch_lock);
1587
1588         synchronize_srcu_expedited(&kvm->srcu);
1589
1590         /*
1591          * Increment the new memslot generation a second time, dropping the
1592          * update in-progress flag and incrementing the generation based on
1593          * the number of address spaces.  This provides a unique and easily
1594          * identifiable generation number while the memslots are in flux.
1595          */
1596         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1597
1598         /*
1599          * Generations must be unique even across address spaces.  We do not need
1600          * a global counter for that, instead the generation space is evenly split
1601          * across address spaces.  For example, with two address spaces, address
1602          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1603          * use generations 1, 3, 5, ...
1604          */
1605         gen += KVM_ADDRESS_SPACE_NUM;
1606
1607         kvm_arch_memslots_updated(kvm, gen);
1608
1609         slots->generation = gen;
1610 }
1611
1612 static int kvm_prepare_memory_region(struct kvm *kvm,
1613                                      const struct kvm_memory_slot *old,
1614                                      struct kvm_memory_slot *new,
1615                                      enum kvm_mr_change change)
1616 {
1617         int r;
1618
1619         /*
1620          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1621          * will be freed on "commit".  If logging is enabled in both old and
1622          * new, reuse the existing bitmap.  If logging is enabled only in the
1623          * new and KVM isn't using a ring buffer, allocate and initialize a
1624          * new bitmap.
1625          */
1626         if (change != KVM_MR_DELETE) {
1627                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1628                         new->dirty_bitmap = NULL;
1629                 else if (old && old->dirty_bitmap)
1630                         new->dirty_bitmap = old->dirty_bitmap;
1631                 else if (kvm_use_dirty_bitmap(kvm)) {
1632                         r = kvm_alloc_dirty_bitmap(new);
1633                         if (r)
1634                                 return r;
1635
1636                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1637                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1638                 }
1639         }
1640
1641         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1642
1643         /* Free the bitmap on failure if it was allocated above. */
1644         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1645                 kvm_destroy_dirty_bitmap(new);
1646
1647         return r;
1648 }
1649
1650 static void kvm_commit_memory_region(struct kvm *kvm,
1651                                      struct kvm_memory_slot *old,
1652                                      const struct kvm_memory_slot *new,
1653                                      enum kvm_mr_change change)
1654 {
1655         int old_flags = old ? old->flags : 0;
1656         int new_flags = new ? new->flags : 0;
1657         /*
1658          * Update the total number of memslot pages before calling the arch
1659          * hook so that architectures can consume the result directly.
1660          */
1661         if (change == KVM_MR_DELETE)
1662                 kvm->nr_memslot_pages -= old->npages;
1663         else if (change == KVM_MR_CREATE)
1664                 kvm->nr_memslot_pages += new->npages;
1665
1666         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1667                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1668                 atomic_set(&kvm->nr_memslots_dirty_logging,
1669                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1670         }
1671
1672         kvm_arch_commit_memory_region(kvm, old, new, change);
1673
1674         switch (change) {
1675         case KVM_MR_CREATE:
1676                 /* Nothing more to do. */
1677                 break;
1678         case KVM_MR_DELETE:
1679                 /* Free the old memslot and all its metadata. */
1680                 kvm_free_memslot(kvm, old);
1681                 break;
1682         case KVM_MR_MOVE:
1683         case KVM_MR_FLAGS_ONLY:
1684                 /*
1685                  * Free the dirty bitmap as needed; the below check encompasses
1686                  * both the flags and whether a ring buffer is being used)
1687                  */
1688                 if (old->dirty_bitmap && !new->dirty_bitmap)
1689                         kvm_destroy_dirty_bitmap(old);
1690
1691                 /*
1692                  * The final quirk.  Free the detached, old slot, but only its
1693                  * memory, not any metadata.  Metadata, including arch specific
1694                  * data, may be reused by @new.
1695                  */
1696                 kfree(old);
1697                 break;
1698         default:
1699                 BUG();
1700         }
1701 }
1702
1703 /*
1704  * Activate @new, which must be installed in the inactive slots by the caller,
1705  * by swapping the active slots and then propagating @new to @old once @old is
1706  * unreachable and can be safely modified.
1707  *
1708  * With NULL @old this simply adds @new to @active (while swapping the sets).
1709  * With NULL @new this simply removes @old from @active and frees it
1710  * (while also swapping the sets).
1711  */
1712 static void kvm_activate_memslot(struct kvm *kvm,
1713                                  struct kvm_memory_slot *old,
1714                                  struct kvm_memory_slot *new)
1715 {
1716         int as_id = kvm_memslots_get_as_id(old, new);
1717
1718         kvm_swap_active_memslots(kvm, as_id);
1719
1720         /* Propagate the new memslot to the now inactive memslots. */
1721         kvm_replace_memslot(kvm, old, new);
1722 }
1723
1724 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1725                              const struct kvm_memory_slot *src)
1726 {
1727         dest->base_gfn = src->base_gfn;
1728         dest->npages = src->npages;
1729         dest->dirty_bitmap = src->dirty_bitmap;
1730         dest->arch = src->arch;
1731         dest->userspace_addr = src->userspace_addr;
1732         dest->flags = src->flags;
1733         dest->id = src->id;
1734         dest->as_id = src->as_id;
1735 }
1736
1737 static void kvm_invalidate_memslot(struct kvm *kvm,
1738                                    struct kvm_memory_slot *old,
1739                                    struct kvm_memory_slot *invalid_slot)
1740 {
1741         /*
1742          * Mark the current slot INVALID.  As with all memslot modifications,
1743          * this must be done on an unreachable slot to avoid modifying the
1744          * current slot in the active tree.
1745          */
1746         kvm_copy_memslot(invalid_slot, old);
1747         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1748         kvm_replace_memslot(kvm, old, invalid_slot);
1749
1750         /*
1751          * Activate the slot that is now marked INVALID, but don't propagate
1752          * the slot to the now inactive slots. The slot is either going to be
1753          * deleted or recreated as a new slot.
1754          */
1755         kvm_swap_active_memslots(kvm, old->as_id);
1756
1757         /*
1758          * From this point no new shadow pages pointing to a deleted, or moved,
1759          * memslot will be created.  Validation of sp->gfn happens in:
1760          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1761          *      - kvm_is_visible_gfn (mmu_check_root)
1762          */
1763         kvm_arch_flush_shadow_memslot(kvm, old);
1764         kvm_arch_guest_memory_reclaimed(kvm);
1765
1766         /* Was released by kvm_swap_active_memslots(), reacquire. */
1767         mutex_lock(&kvm->slots_arch_lock);
1768
1769         /*
1770          * Copy the arch-specific field of the newly-installed slot back to the
1771          * old slot as the arch data could have changed between releasing
1772          * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1773          * above.  Writers are required to retrieve memslots *after* acquiring
1774          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1775          */
1776         old->arch = invalid_slot->arch;
1777 }
1778
1779 static void kvm_create_memslot(struct kvm *kvm,
1780                                struct kvm_memory_slot *new)
1781 {
1782         /* Add the new memslot to the inactive set and activate. */
1783         kvm_replace_memslot(kvm, NULL, new);
1784         kvm_activate_memslot(kvm, NULL, new);
1785 }
1786
1787 static void kvm_delete_memslot(struct kvm *kvm,
1788                                struct kvm_memory_slot *old,
1789                                struct kvm_memory_slot *invalid_slot)
1790 {
1791         /*
1792          * Remove the old memslot (in the inactive memslots) by passing NULL as
1793          * the "new" slot, and for the invalid version in the active slots.
1794          */
1795         kvm_replace_memslot(kvm, old, NULL);
1796         kvm_activate_memslot(kvm, invalid_slot, NULL);
1797 }
1798
1799 static void kvm_move_memslot(struct kvm *kvm,
1800                              struct kvm_memory_slot *old,
1801                              struct kvm_memory_slot *new,
1802                              struct kvm_memory_slot *invalid_slot)
1803 {
1804         /*
1805          * Replace the old memslot in the inactive slots, and then swap slots
1806          * and replace the current INVALID with the new as well.
1807          */
1808         kvm_replace_memslot(kvm, old, new);
1809         kvm_activate_memslot(kvm, invalid_slot, new);
1810 }
1811
1812 static void kvm_update_flags_memslot(struct kvm *kvm,
1813                                      struct kvm_memory_slot *old,
1814                                      struct kvm_memory_slot *new)
1815 {
1816         /*
1817          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1818          * an intermediate step. Instead, the old memslot is simply replaced
1819          * with a new, updated copy in both memslot sets.
1820          */
1821         kvm_replace_memslot(kvm, old, new);
1822         kvm_activate_memslot(kvm, old, new);
1823 }
1824
1825 static int kvm_set_memslot(struct kvm *kvm,
1826                            struct kvm_memory_slot *old,
1827                            struct kvm_memory_slot *new,
1828                            enum kvm_mr_change change)
1829 {
1830         struct kvm_memory_slot *invalid_slot;
1831         int r;
1832
1833         /*
1834          * Released in kvm_swap_active_memslots().
1835          *
1836          * Must be held from before the current memslots are copied until after
1837          * the new memslots are installed with rcu_assign_pointer, then
1838          * released before the synchronize srcu in kvm_swap_active_memslots().
1839          *
1840          * When modifying memslots outside of the slots_lock, must be held
1841          * before reading the pointer to the current memslots until after all
1842          * changes to those memslots are complete.
1843          *
1844          * These rules ensure that installing new memslots does not lose
1845          * changes made to the previous memslots.
1846          */
1847         mutex_lock(&kvm->slots_arch_lock);
1848
1849         /*
1850          * Invalidate the old slot if it's being deleted or moved.  This is
1851          * done prior to actually deleting/moving the memslot to allow vCPUs to
1852          * continue running by ensuring there are no mappings or shadow pages
1853          * for the memslot when it is deleted/moved.  Without pre-invalidation
1854          * (and without a lock), a window would exist between effecting the
1855          * delete/move and committing the changes in arch code where KVM or a
1856          * guest could access a non-existent memslot.
1857          *
1858          * Modifications are done on a temporary, unreachable slot.  The old
1859          * slot needs to be preserved in case a later step fails and the
1860          * invalidation needs to be reverted.
1861          */
1862         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1863                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1864                 if (!invalid_slot) {
1865                         mutex_unlock(&kvm->slots_arch_lock);
1866                         return -ENOMEM;
1867                 }
1868                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1869         }
1870
1871         r = kvm_prepare_memory_region(kvm, old, new, change);
1872         if (r) {
1873                 /*
1874                  * For DELETE/MOVE, revert the above INVALID change.  No
1875                  * modifications required since the original slot was preserved
1876                  * in the inactive slots.  Changing the active memslots also
1877                  * release slots_arch_lock.
1878                  */
1879                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1880                         kvm_activate_memslot(kvm, invalid_slot, old);
1881                         kfree(invalid_slot);
1882                 } else {
1883                         mutex_unlock(&kvm->slots_arch_lock);
1884                 }
1885                 return r;
1886         }
1887
1888         /*
1889          * For DELETE and MOVE, the working slot is now active as the INVALID
1890          * version of the old slot.  MOVE is particularly special as it reuses
1891          * the old slot and returns a copy of the old slot (in working_slot).
1892          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1893          * old slot is detached but otherwise preserved.
1894          */
1895         if (change == KVM_MR_CREATE)
1896                 kvm_create_memslot(kvm, new);
1897         else if (change == KVM_MR_DELETE)
1898                 kvm_delete_memslot(kvm, old, invalid_slot);
1899         else if (change == KVM_MR_MOVE)
1900                 kvm_move_memslot(kvm, old, new, invalid_slot);
1901         else if (change == KVM_MR_FLAGS_ONLY)
1902                 kvm_update_flags_memslot(kvm, old, new);
1903         else
1904                 BUG();
1905
1906         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1907         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1908                 kfree(invalid_slot);
1909
1910         /*
1911          * No need to refresh new->arch, changes after dropping slots_arch_lock
1912          * will directly hit the final, active memslot.  Architectures are
1913          * responsible for knowing that new->arch may be stale.
1914          */
1915         kvm_commit_memory_region(kvm, old, new, change);
1916
1917         return 0;
1918 }
1919
1920 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1921                                       gfn_t start, gfn_t end)
1922 {
1923         struct kvm_memslot_iter iter;
1924
1925         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1926                 if (iter.slot->id != id)
1927                         return true;
1928         }
1929
1930         return false;
1931 }
1932
1933 /*
1934  * Allocate some memory and give it an address in the guest physical address
1935  * space.
1936  *
1937  * Discontiguous memory is allowed, mostly for framebuffers.
1938  *
1939  * Must be called holding kvm->slots_lock for write.
1940  */
1941 int __kvm_set_memory_region(struct kvm *kvm,
1942                             const struct kvm_userspace_memory_region *mem)
1943 {
1944         struct kvm_memory_slot *old, *new;
1945         struct kvm_memslots *slots;
1946         enum kvm_mr_change change;
1947         unsigned long npages;
1948         gfn_t base_gfn;
1949         int as_id, id;
1950         int r;
1951
1952         r = check_memory_region_flags(mem);
1953         if (r)
1954                 return r;
1955
1956         as_id = mem->slot >> 16;
1957         id = (u16)mem->slot;
1958
1959         /* General sanity checks */
1960         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1961             (mem->memory_size != (unsigned long)mem->memory_size))
1962                 return -EINVAL;
1963         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1964                 return -EINVAL;
1965         /* We can read the guest memory with __xxx_user() later on. */
1966         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1967             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1968              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1969                         mem->memory_size))
1970                 return -EINVAL;
1971         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1972                 return -EINVAL;
1973         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1974                 return -EINVAL;
1975         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1976                 return -EINVAL;
1977
1978         slots = __kvm_memslots(kvm, as_id);
1979
1980         /*
1981          * Note, the old memslot (and the pointer itself!) may be invalidated
1982          * and/or destroyed by kvm_set_memslot().
1983          */
1984         old = id_to_memslot(slots, id);
1985
1986         if (!mem->memory_size) {
1987                 if (!old || !old->npages)
1988                         return -EINVAL;
1989
1990                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1991                         return -EIO;
1992
1993                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1994         }
1995
1996         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1997         npages = (mem->memory_size >> PAGE_SHIFT);
1998
1999         if (!old || !old->npages) {
2000                 change = KVM_MR_CREATE;
2001
2002                 /*
2003                  * To simplify KVM internals, the total number of pages across
2004                  * all memslots must fit in an unsigned long.
2005                  */
2006                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2007                         return -EINVAL;
2008         } else { /* Modify an existing slot. */
2009                 if ((mem->userspace_addr != old->userspace_addr) ||
2010                     (npages != old->npages) ||
2011                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2012                         return -EINVAL;
2013
2014                 if (base_gfn != old->base_gfn)
2015                         change = KVM_MR_MOVE;
2016                 else if (mem->flags != old->flags)
2017                         change = KVM_MR_FLAGS_ONLY;
2018                 else /* Nothing to change. */
2019                         return 0;
2020         }
2021
2022         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2023             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2024                 return -EEXIST;
2025
2026         /* Allocate a slot that will persist in the memslot. */
2027         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2028         if (!new)
2029                 return -ENOMEM;
2030
2031         new->as_id = as_id;
2032         new->id = id;
2033         new->base_gfn = base_gfn;
2034         new->npages = npages;
2035         new->flags = mem->flags;
2036         new->userspace_addr = mem->userspace_addr;
2037
2038         r = kvm_set_memslot(kvm, old, new, change);
2039         if (r)
2040                 kfree(new);
2041         return r;
2042 }
2043 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2044
2045 int kvm_set_memory_region(struct kvm *kvm,
2046                           const struct kvm_userspace_memory_region *mem)
2047 {
2048         int r;
2049
2050         mutex_lock(&kvm->slots_lock);
2051         r = __kvm_set_memory_region(kvm, mem);
2052         mutex_unlock(&kvm->slots_lock);
2053         return r;
2054 }
2055 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2056
2057 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2058                                           struct kvm_userspace_memory_region *mem)
2059 {
2060         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2061                 return -EINVAL;
2062
2063         return kvm_set_memory_region(kvm, mem);
2064 }
2065
2066 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2067 /**
2068  * kvm_get_dirty_log - get a snapshot of dirty pages
2069  * @kvm:        pointer to kvm instance
2070  * @log:        slot id and address to which we copy the log
2071  * @is_dirty:   set to '1' if any dirty pages were found
2072  * @memslot:    set to the associated memslot, always valid on success
2073  */
2074 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2075                       int *is_dirty, struct kvm_memory_slot **memslot)
2076 {
2077         struct kvm_memslots *slots;
2078         int i, as_id, id;
2079         unsigned long n;
2080         unsigned long any = 0;
2081
2082         /* Dirty ring tracking may be exclusive to dirty log tracking */
2083         if (!kvm_use_dirty_bitmap(kvm))
2084                 return -ENXIO;
2085
2086         *memslot = NULL;
2087         *is_dirty = 0;
2088
2089         as_id = log->slot >> 16;
2090         id = (u16)log->slot;
2091         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2092                 return -EINVAL;
2093
2094         slots = __kvm_memslots(kvm, as_id);
2095         *memslot = id_to_memslot(slots, id);
2096         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2097                 return -ENOENT;
2098
2099         kvm_arch_sync_dirty_log(kvm, *memslot);
2100
2101         n = kvm_dirty_bitmap_bytes(*memslot);
2102
2103         for (i = 0; !any && i < n/sizeof(long); ++i)
2104                 any = (*memslot)->dirty_bitmap[i];
2105
2106         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2107                 return -EFAULT;
2108
2109         if (any)
2110                 *is_dirty = 1;
2111         return 0;
2112 }
2113 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2114
2115 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2116 /**
2117  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2118  *      and reenable dirty page tracking for the corresponding pages.
2119  * @kvm:        pointer to kvm instance
2120  * @log:        slot id and address to which we copy the log
2121  *
2122  * We need to keep it in mind that VCPU threads can write to the bitmap
2123  * concurrently. So, to avoid losing track of dirty pages we keep the
2124  * following order:
2125  *
2126  *    1. Take a snapshot of the bit and clear it if needed.
2127  *    2. Write protect the corresponding page.
2128  *    3. Copy the snapshot to the userspace.
2129  *    4. Upon return caller flushes TLB's if needed.
2130  *
2131  * Between 2 and 4, the guest may write to the page using the remaining TLB
2132  * entry.  This is not a problem because the page is reported dirty using
2133  * the snapshot taken before and step 4 ensures that writes done after
2134  * exiting to userspace will be logged for the next call.
2135  *
2136  */
2137 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2138 {
2139         struct kvm_memslots *slots;
2140         struct kvm_memory_slot *memslot;
2141         int i, as_id, id;
2142         unsigned long n;
2143         unsigned long *dirty_bitmap;
2144         unsigned long *dirty_bitmap_buffer;
2145         bool flush;
2146
2147         /* Dirty ring tracking may be exclusive to dirty log tracking */
2148         if (!kvm_use_dirty_bitmap(kvm))
2149                 return -ENXIO;
2150
2151         as_id = log->slot >> 16;
2152         id = (u16)log->slot;
2153         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2154                 return -EINVAL;
2155
2156         slots = __kvm_memslots(kvm, as_id);
2157         memslot = id_to_memslot(slots, id);
2158         if (!memslot || !memslot->dirty_bitmap)
2159                 return -ENOENT;
2160
2161         dirty_bitmap = memslot->dirty_bitmap;
2162
2163         kvm_arch_sync_dirty_log(kvm, memslot);
2164
2165         n = kvm_dirty_bitmap_bytes(memslot);
2166         flush = false;
2167         if (kvm->manual_dirty_log_protect) {
2168                 /*
2169                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2170                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2171                  * is some code duplication between this function and
2172                  * kvm_get_dirty_log, but hopefully all architecture
2173                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2174                  * can be eliminated.
2175                  */
2176                 dirty_bitmap_buffer = dirty_bitmap;
2177         } else {
2178                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2179                 memset(dirty_bitmap_buffer, 0, n);
2180
2181                 KVM_MMU_LOCK(kvm);
2182                 for (i = 0; i < n / sizeof(long); i++) {
2183                         unsigned long mask;
2184                         gfn_t offset;
2185
2186                         if (!dirty_bitmap[i])
2187                                 continue;
2188
2189                         flush = true;
2190                         mask = xchg(&dirty_bitmap[i], 0);
2191                         dirty_bitmap_buffer[i] = mask;
2192
2193                         offset = i * BITS_PER_LONG;
2194                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2195                                                                 offset, mask);
2196                 }
2197                 KVM_MMU_UNLOCK(kvm);
2198         }
2199
2200         if (flush)
2201                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2202
2203         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2204                 return -EFAULT;
2205         return 0;
2206 }
2207
2208
2209 /**
2210  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2211  * @kvm: kvm instance
2212  * @log: slot id and address to which we copy the log
2213  *
2214  * Steps 1-4 below provide general overview of dirty page logging. See
2215  * kvm_get_dirty_log_protect() function description for additional details.
2216  *
2217  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2218  * always flush the TLB (step 4) even if previous step failed  and the dirty
2219  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2220  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2221  * writes will be marked dirty for next log read.
2222  *
2223  *   1. Take a snapshot of the bit and clear it if needed.
2224  *   2. Write protect the corresponding page.
2225  *   3. Copy the snapshot to the userspace.
2226  *   4. Flush TLB's if needed.
2227  */
2228 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2229                                       struct kvm_dirty_log *log)
2230 {
2231         int r;
2232
2233         mutex_lock(&kvm->slots_lock);
2234
2235         r = kvm_get_dirty_log_protect(kvm, log);
2236
2237         mutex_unlock(&kvm->slots_lock);
2238         return r;
2239 }
2240
2241 /**
2242  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2243  *      and reenable dirty page tracking for the corresponding pages.
2244  * @kvm:        pointer to kvm instance
2245  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2246  */
2247 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2248                                        struct kvm_clear_dirty_log *log)
2249 {
2250         struct kvm_memslots *slots;
2251         struct kvm_memory_slot *memslot;
2252         int as_id, id;
2253         gfn_t offset;
2254         unsigned long i, n;
2255         unsigned long *dirty_bitmap;
2256         unsigned long *dirty_bitmap_buffer;
2257         bool flush;
2258
2259         /* Dirty ring tracking may be exclusive to dirty log tracking */
2260         if (!kvm_use_dirty_bitmap(kvm))
2261                 return -ENXIO;
2262
2263         as_id = log->slot >> 16;
2264         id = (u16)log->slot;
2265         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2266                 return -EINVAL;
2267
2268         if (log->first_page & 63)
2269                 return -EINVAL;
2270
2271         slots = __kvm_memslots(kvm, as_id);
2272         memslot = id_to_memslot(slots, id);
2273         if (!memslot || !memslot->dirty_bitmap)
2274                 return -ENOENT;
2275
2276         dirty_bitmap = memslot->dirty_bitmap;
2277
2278         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2279
2280         if (log->first_page > memslot->npages ||
2281             log->num_pages > memslot->npages - log->first_page ||
2282             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2283             return -EINVAL;
2284
2285         kvm_arch_sync_dirty_log(kvm, memslot);
2286
2287         flush = false;
2288         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2289         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2290                 return -EFAULT;
2291
2292         KVM_MMU_LOCK(kvm);
2293         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2294                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2295              i++, offset += BITS_PER_LONG) {
2296                 unsigned long mask = *dirty_bitmap_buffer++;
2297                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2298                 if (!mask)
2299                         continue;
2300
2301                 mask &= atomic_long_fetch_andnot(mask, p);
2302
2303                 /*
2304                  * mask contains the bits that really have been cleared.  This
2305                  * never includes any bits beyond the length of the memslot (if
2306                  * the length is not aligned to 64 pages), therefore it is not
2307                  * a problem if userspace sets them in log->dirty_bitmap.
2308                 */
2309                 if (mask) {
2310                         flush = true;
2311                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2312                                                                 offset, mask);
2313                 }
2314         }
2315         KVM_MMU_UNLOCK(kvm);
2316
2317         if (flush)
2318                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2319
2320         return 0;
2321 }
2322
2323 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2324                                         struct kvm_clear_dirty_log *log)
2325 {
2326         int r;
2327
2328         mutex_lock(&kvm->slots_lock);
2329
2330         r = kvm_clear_dirty_log_protect(kvm, log);
2331
2332         mutex_unlock(&kvm->slots_lock);
2333         return r;
2334 }
2335 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2336
2337 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2338 {
2339         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2340 }
2341 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2342
2343 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2344 {
2345         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2346         u64 gen = slots->generation;
2347         struct kvm_memory_slot *slot;
2348
2349         /*
2350          * This also protects against using a memslot from a different address space,
2351          * since different address spaces have different generation numbers.
2352          */
2353         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2354                 vcpu->last_used_slot = NULL;
2355                 vcpu->last_used_slot_gen = gen;
2356         }
2357
2358         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2359         if (slot)
2360                 return slot;
2361
2362         /*
2363          * Fall back to searching all memslots. We purposely use
2364          * search_memslots() instead of __gfn_to_memslot() to avoid
2365          * thrashing the VM-wide last_used_slot in kvm_memslots.
2366          */
2367         slot = search_memslots(slots, gfn, false);
2368         if (slot) {
2369                 vcpu->last_used_slot = slot;
2370                 return slot;
2371         }
2372
2373         return NULL;
2374 }
2375
2376 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2377 {
2378         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2379
2380         return kvm_is_visible_memslot(memslot);
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2383
2384 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2385 {
2386         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2387
2388         return kvm_is_visible_memslot(memslot);
2389 }
2390 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2391
2392 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2393 {
2394         struct vm_area_struct *vma;
2395         unsigned long addr, size;
2396
2397         size = PAGE_SIZE;
2398
2399         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2400         if (kvm_is_error_hva(addr))
2401                 return PAGE_SIZE;
2402
2403         mmap_read_lock(current->mm);
2404         vma = find_vma(current->mm, addr);
2405         if (!vma)
2406                 goto out;
2407
2408         size = vma_kernel_pagesize(vma);
2409
2410 out:
2411         mmap_read_unlock(current->mm);
2412
2413         return size;
2414 }
2415
2416 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2417 {
2418         return slot->flags & KVM_MEM_READONLY;
2419 }
2420
2421 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2422                                        gfn_t *nr_pages, bool write)
2423 {
2424         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2425                 return KVM_HVA_ERR_BAD;
2426
2427         if (memslot_is_readonly(slot) && write)
2428                 return KVM_HVA_ERR_RO_BAD;
2429
2430         if (nr_pages)
2431                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2432
2433         return __gfn_to_hva_memslot(slot, gfn);
2434 }
2435
2436 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2437                                      gfn_t *nr_pages)
2438 {
2439         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2440 }
2441
2442 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2443                                         gfn_t gfn)
2444 {
2445         return gfn_to_hva_many(slot, gfn, NULL);
2446 }
2447 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2448
2449 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2450 {
2451         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2452 }
2453 EXPORT_SYMBOL_GPL(gfn_to_hva);
2454
2455 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2456 {
2457         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2460
2461 /*
2462  * Return the hva of a @gfn and the R/W attribute if possible.
2463  *
2464  * @slot: the kvm_memory_slot which contains @gfn
2465  * @gfn: the gfn to be translated
2466  * @writable: used to return the read/write attribute of the @slot if the hva
2467  * is valid and @writable is not NULL
2468  */
2469 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2470                                       gfn_t gfn, bool *writable)
2471 {
2472         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2473
2474         if (!kvm_is_error_hva(hva) && writable)
2475                 *writable = !memslot_is_readonly(slot);
2476
2477         return hva;
2478 }
2479
2480 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2481 {
2482         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2483
2484         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2485 }
2486
2487 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2488 {
2489         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2490
2491         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2492 }
2493
2494 static inline int check_user_page_hwpoison(unsigned long addr)
2495 {
2496         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2497
2498         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2499         return rc == -EHWPOISON;
2500 }
2501
2502 /*
2503  * The fast path to get the writable pfn which will be stored in @pfn,
2504  * true indicates success, otherwise false is returned.  It's also the
2505  * only part that runs if we can in atomic context.
2506  */
2507 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2508                             bool *writable, kvm_pfn_t *pfn)
2509 {
2510         struct page *page[1];
2511
2512         /*
2513          * Fast pin a writable pfn only if it is a write fault request
2514          * or the caller allows to map a writable pfn for a read fault
2515          * request.
2516          */
2517         if (!(write_fault || writable))
2518                 return false;
2519
2520         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2521                 *pfn = page_to_pfn(page[0]);
2522
2523                 if (writable)
2524                         *writable = true;
2525                 return true;
2526         }
2527
2528         return false;
2529 }
2530
2531 /*
2532  * The slow path to get the pfn of the specified host virtual address,
2533  * 1 indicates success, -errno is returned if error is detected.
2534  */
2535 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2536                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2537 {
2538         unsigned int flags = FOLL_HWPOISON;
2539         struct page *page;
2540         int npages;
2541
2542         might_sleep();
2543
2544         if (writable)
2545                 *writable = write_fault;
2546
2547         if (write_fault)
2548                 flags |= FOLL_WRITE;
2549         if (async)
2550                 flags |= FOLL_NOWAIT;
2551         if (interruptible)
2552                 flags |= FOLL_INTERRUPTIBLE;
2553
2554         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2555         if (npages != 1)
2556                 return npages;
2557
2558         /* map read fault as writable if possible */
2559         if (unlikely(!write_fault) && writable) {
2560                 struct page *wpage;
2561
2562                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2563                         *writable = true;
2564                         put_page(page);
2565                         page = wpage;
2566                 }
2567         }
2568         *pfn = page_to_pfn(page);
2569         return npages;
2570 }
2571
2572 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2573 {
2574         if (unlikely(!(vma->vm_flags & VM_READ)))
2575                 return false;
2576
2577         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2578                 return false;
2579
2580         return true;
2581 }
2582
2583 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2584 {
2585         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2586
2587         if (!page)
2588                 return 1;
2589
2590         return get_page_unless_zero(page);
2591 }
2592
2593 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2594                                unsigned long addr, bool write_fault,
2595                                bool *writable, kvm_pfn_t *p_pfn)
2596 {
2597         kvm_pfn_t pfn;
2598         pte_t *ptep;
2599         spinlock_t *ptl;
2600         int r;
2601
2602         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2603         if (r) {
2604                 /*
2605                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2606                  * not call the fault handler, so do it here.
2607                  */
2608                 bool unlocked = false;
2609                 r = fixup_user_fault(current->mm, addr,
2610                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2611                                      &unlocked);
2612                 if (unlocked)
2613                         return -EAGAIN;
2614                 if (r)
2615                         return r;
2616
2617                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2618                 if (r)
2619                         return r;
2620         }
2621
2622         if (write_fault && !pte_write(*ptep)) {
2623                 pfn = KVM_PFN_ERR_RO_FAULT;
2624                 goto out;
2625         }
2626
2627         if (writable)
2628                 *writable = pte_write(*ptep);
2629         pfn = pte_pfn(*ptep);
2630
2631         /*
2632          * Get a reference here because callers of *hva_to_pfn* and
2633          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2634          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2635          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2636          * simply do nothing for reserved pfns.
2637          *
2638          * Whoever called remap_pfn_range is also going to call e.g.
2639          * unmap_mapping_range before the underlying pages are freed,
2640          * causing a call to our MMU notifier.
2641          *
2642          * Certain IO or PFNMAP mappings can be backed with valid
2643          * struct pages, but be allocated without refcounting e.g.,
2644          * tail pages of non-compound higher order allocations, which
2645          * would then underflow the refcount when the caller does the
2646          * required put_page. Don't allow those pages here.
2647          */ 
2648         if (!kvm_try_get_pfn(pfn))
2649                 r = -EFAULT;
2650
2651 out:
2652         pte_unmap_unlock(ptep, ptl);
2653         *p_pfn = pfn;
2654
2655         return r;
2656 }
2657
2658 /*
2659  * Pin guest page in memory and return its pfn.
2660  * @addr: host virtual address which maps memory to the guest
2661  * @atomic: whether this function can sleep
2662  * @interruptible: whether the process can be interrupted by non-fatal signals
2663  * @async: whether this function need to wait IO complete if the
2664  *         host page is not in the memory
2665  * @write_fault: whether we should get a writable host page
2666  * @writable: whether it allows to map a writable host page for !@write_fault
2667  *
2668  * The function will map a writable host page for these two cases:
2669  * 1): @write_fault = true
2670  * 2): @write_fault = false && @writable, @writable will tell the caller
2671  *     whether the mapping is writable.
2672  */
2673 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2674                      bool *async, bool write_fault, bool *writable)
2675 {
2676         struct vm_area_struct *vma;
2677         kvm_pfn_t pfn;
2678         int npages, r;
2679
2680         /* we can do it either atomically or asynchronously, not both */
2681         BUG_ON(atomic && async);
2682
2683         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2684                 return pfn;
2685
2686         if (atomic)
2687                 return KVM_PFN_ERR_FAULT;
2688
2689         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2690                                  writable, &pfn);
2691         if (npages == 1)
2692                 return pfn;
2693         if (npages == -EINTR)
2694                 return KVM_PFN_ERR_SIGPENDING;
2695
2696         mmap_read_lock(current->mm);
2697         if (npages == -EHWPOISON ||
2698               (!async && check_user_page_hwpoison(addr))) {
2699                 pfn = KVM_PFN_ERR_HWPOISON;
2700                 goto exit;
2701         }
2702
2703 retry:
2704         vma = vma_lookup(current->mm, addr);
2705
2706         if (vma == NULL)
2707                 pfn = KVM_PFN_ERR_FAULT;
2708         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2709                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2710                 if (r == -EAGAIN)
2711                         goto retry;
2712                 if (r < 0)
2713                         pfn = KVM_PFN_ERR_FAULT;
2714         } else {
2715                 if (async && vma_is_valid(vma, write_fault))
2716                         *async = true;
2717                 pfn = KVM_PFN_ERR_FAULT;
2718         }
2719 exit:
2720         mmap_read_unlock(current->mm);
2721         return pfn;
2722 }
2723
2724 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2725                                bool atomic, bool interruptible, bool *async,
2726                                bool write_fault, bool *writable, hva_t *hva)
2727 {
2728         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2729
2730         if (hva)
2731                 *hva = addr;
2732
2733         if (addr == KVM_HVA_ERR_RO_BAD) {
2734                 if (writable)
2735                         *writable = false;
2736                 return KVM_PFN_ERR_RO_FAULT;
2737         }
2738
2739         if (kvm_is_error_hva(addr)) {
2740                 if (writable)
2741                         *writable = false;
2742                 return KVM_PFN_NOSLOT;
2743         }
2744
2745         /* Do not map writable pfn in the readonly memslot. */
2746         if (writable && memslot_is_readonly(slot)) {
2747                 *writable = false;
2748                 writable = NULL;
2749         }
2750
2751         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2752                           writable);
2753 }
2754 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2755
2756 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2757                       bool *writable)
2758 {
2759         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2760                                     NULL, write_fault, writable, NULL);
2761 }
2762 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2763
2764 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2765 {
2766         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2767                                     NULL, NULL);
2768 }
2769 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2770
2771 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2772 {
2773         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2774                                     NULL, NULL);
2775 }
2776 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2777
2778 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2779 {
2780         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2781 }
2782 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2783
2784 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2785 {
2786         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2787 }
2788 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2789
2790 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2791 {
2792         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2795
2796 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2797                             struct page **pages, int nr_pages)
2798 {
2799         unsigned long addr;
2800         gfn_t entry = 0;
2801
2802         addr = gfn_to_hva_many(slot, gfn, &entry);
2803         if (kvm_is_error_hva(addr))
2804                 return -1;
2805
2806         if (entry < nr_pages)
2807                 return 0;
2808
2809         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2810 }
2811 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2812
2813 /*
2814  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2815  * backed by 'struct page'.  A valid example is if the backing memslot is
2816  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2817  * been elevated by gfn_to_pfn().
2818  */
2819 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2820 {
2821         struct page *page;
2822         kvm_pfn_t pfn;
2823
2824         pfn = gfn_to_pfn(kvm, gfn);
2825
2826         if (is_error_noslot_pfn(pfn))
2827                 return KVM_ERR_PTR_BAD_PAGE;
2828
2829         page = kvm_pfn_to_refcounted_page(pfn);
2830         if (!page)
2831                 return KVM_ERR_PTR_BAD_PAGE;
2832
2833         return page;
2834 }
2835 EXPORT_SYMBOL_GPL(gfn_to_page);
2836
2837 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2838 {
2839         if (dirty)
2840                 kvm_release_pfn_dirty(pfn);
2841         else
2842                 kvm_release_pfn_clean(pfn);
2843 }
2844
2845 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2846 {
2847         kvm_pfn_t pfn;
2848         void *hva = NULL;
2849         struct page *page = KVM_UNMAPPED_PAGE;
2850
2851         if (!map)
2852                 return -EINVAL;
2853
2854         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2855         if (is_error_noslot_pfn(pfn))
2856                 return -EINVAL;
2857
2858         if (pfn_valid(pfn)) {
2859                 page = pfn_to_page(pfn);
2860                 hva = kmap(page);
2861 #ifdef CONFIG_HAS_IOMEM
2862         } else {
2863                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2864 #endif
2865         }
2866
2867         if (!hva)
2868                 return -EFAULT;
2869
2870         map->page = page;
2871         map->hva = hva;
2872         map->pfn = pfn;
2873         map->gfn = gfn;
2874
2875         return 0;
2876 }
2877 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2878
2879 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2880 {
2881         if (!map)
2882                 return;
2883
2884         if (!map->hva)
2885                 return;
2886
2887         if (map->page != KVM_UNMAPPED_PAGE)
2888                 kunmap(map->page);
2889 #ifdef CONFIG_HAS_IOMEM
2890         else
2891                 memunmap(map->hva);
2892 #endif
2893
2894         if (dirty)
2895                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2896
2897         kvm_release_pfn(map->pfn, dirty);
2898
2899         map->hva = NULL;
2900         map->page = NULL;
2901 }
2902 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2903
2904 static bool kvm_is_ad_tracked_page(struct page *page)
2905 {
2906         /*
2907          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2908          * touched (e.g. set dirty) except by its owner".
2909          */
2910         return !PageReserved(page);
2911 }
2912
2913 static void kvm_set_page_dirty(struct page *page)
2914 {
2915         if (kvm_is_ad_tracked_page(page))
2916                 SetPageDirty(page);
2917 }
2918
2919 static void kvm_set_page_accessed(struct page *page)
2920 {
2921         if (kvm_is_ad_tracked_page(page))
2922                 mark_page_accessed(page);
2923 }
2924
2925 void kvm_release_page_clean(struct page *page)
2926 {
2927         WARN_ON(is_error_page(page));
2928
2929         kvm_set_page_accessed(page);
2930         put_page(page);
2931 }
2932 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2933
2934 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2935 {
2936         struct page *page;
2937
2938         if (is_error_noslot_pfn(pfn))
2939                 return;
2940
2941         page = kvm_pfn_to_refcounted_page(pfn);
2942         if (!page)
2943                 return;
2944
2945         kvm_release_page_clean(page);
2946 }
2947 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2948
2949 void kvm_release_page_dirty(struct page *page)
2950 {
2951         WARN_ON(is_error_page(page));
2952
2953         kvm_set_page_dirty(page);
2954         kvm_release_page_clean(page);
2955 }
2956 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2957
2958 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2959 {
2960         struct page *page;
2961
2962         if (is_error_noslot_pfn(pfn))
2963                 return;
2964
2965         page = kvm_pfn_to_refcounted_page(pfn);
2966         if (!page)
2967                 return;
2968
2969         kvm_release_page_dirty(page);
2970 }
2971 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2972
2973 /*
2974  * Note, checking for an error/noslot pfn is the caller's responsibility when
2975  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2976  * "set" helpers are not to be used when the pfn might point at garbage.
2977  */
2978 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2979 {
2980         if (WARN_ON(is_error_noslot_pfn(pfn)))
2981                 return;
2982
2983         if (pfn_valid(pfn))
2984                 kvm_set_page_dirty(pfn_to_page(pfn));
2985 }
2986 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2987
2988 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2989 {
2990         if (WARN_ON(is_error_noslot_pfn(pfn)))
2991                 return;
2992
2993         if (pfn_valid(pfn))
2994                 kvm_set_page_accessed(pfn_to_page(pfn));
2995 }
2996 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2997
2998 static int next_segment(unsigned long len, int offset)
2999 {
3000         if (len > PAGE_SIZE - offset)
3001                 return PAGE_SIZE - offset;
3002         else
3003                 return len;
3004 }
3005
3006 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3007                                  void *data, int offset, int len)
3008 {
3009         int r;
3010         unsigned long addr;
3011
3012         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3013         if (kvm_is_error_hva(addr))
3014                 return -EFAULT;
3015         r = __copy_from_user(data, (void __user *)addr + offset, len);
3016         if (r)
3017                 return -EFAULT;
3018         return 0;
3019 }
3020
3021 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3022                         int len)
3023 {
3024         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3025
3026         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3027 }
3028 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3029
3030 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3031                              int offset, int len)
3032 {
3033         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3034
3035         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3036 }
3037 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3038
3039 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3040 {
3041         gfn_t gfn = gpa >> PAGE_SHIFT;
3042         int seg;
3043         int offset = offset_in_page(gpa);
3044         int ret;
3045
3046         while ((seg = next_segment(len, offset)) != 0) {
3047                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3048                 if (ret < 0)
3049                         return ret;
3050                 offset = 0;
3051                 len -= seg;
3052                 data += seg;
3053                 ++gfn;
3054         }
3055         return 0;
3056 }
3057 EXPORT_SYMBOL_GPL(kvm_read_guest);
3058
3059 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3060 {
3061         gfn_t gfn = gpa >> PAGE_SHIFT;
3062         int seg;
3063         int offset = offset_in_page(gpa);
3064         int ret;
3065
3066         while ((seg = next_segment(len, offset)) != 0) {
3067                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3068                 if (ret < 0)
3069                         return ret;
3070                 offset = 0;
3071                 len -= seg;
3072                 data += seg;
3073                 ++gfn;
3074         }
3075         return 0;
3076 }
3077 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3078
3079 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3080                                    void *data, int offset, unsigned long len)
3081 {
3082         int r;
3083         unsigned long addr;
3084
3085         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3086         if (kvm_is_error_hva(addr))
3087                 return -EFAULT;
3088         pagefault_disable();
3089         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3090         pagefault_enable();
3091         if (r)
3092                 return -EFAULT;
3093         return 0;
3094 }
3095
3096 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3097                                void *data, unsigned long len)
3098 {
3099         gfn_t gfn = gpa >> PAGE_SHIFT;
3100         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3101         int offset = offset_in_page(gpa);
3102
3103         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3104 }
3105 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3106
3107 static int __kvm_write_guest_page(struct kvm *kvm,
3108                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3109                                   const void *data, int offset, int len)
3110 {
3111         int r;
3112         unsigned long addr;
3113
3114         addr = gfn_to_hva_memslot(memslot, gfn);
3115         if (kvm_is_error_hva(addr))
3116                 return -EFAULT;
3117         r = __copy_to_user((void __user *)addr + offset, data, len);
3118         if (r)
3119                 return -EFAULT;
3120         mark_page_dirty_in_slot(kvm, memslot, gfn);
3121         return 0;
3122 }
3123
3124 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3125                          const void *data, int offset, int len)
3126 {
3127         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3128
3129         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3130 }
3131 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3132
3133 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3134                               const void *data, int offset, int len)
3135 {
3136         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3137
3138         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3139 }
3140 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3141
3142 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3143                     unsigned long len)
3144 {
3145         gfn_t gfn = gpa >> PAGE_SHIFT;
3146         int seg;
3147         int offset = offset_in_page(gpa);
3148         int ret;
3149
3150         while ((seg = next_segment(len, offset)) != 0) {
3151                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3152                 if (ret < 0)
3153                         return ret;
3154                 offset = 0;
3155                 len -= seg;
3156                 data += seg;
3157                 ++gfn;
3158         }
3159         return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(kvm_write_guest);
3162
3163 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3164                          unsigned long len)
3165 {
3166         gfn_t gfn = gpa >> PAGE_SHIFT;
3167         int seg;
3168         int offset = offset_in_page(gpa);
3169         int ret;
3170
3171         while ((seg = next_segment(len, offset)) != 0) {
3172                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3173                 if (ret < 0)
3174                         return ret;
3175                 offset = 0;
3176                 len -= seg;
3177                 data += seg;
3178                 ++gfn;
3179         }
3180         return 0;
3181 }
3182 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3183
3184 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3185                                        struct gfn_to_hva_cache *ghc,
3186                                        gpa_t gpa, unsigned long len)
3187 {
3188         int offset = offset_in_page(gpa);
3189         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3190         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3191         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3192         gfn_t nr_pages_avail;
3193
3194         /* Update ghc->generation before performing any error checks. */
3195         ghc->generation = slots->generation;
3196
3197         if (start_gfn > end_gfn) {
3198                 ghc->hva = KVM_HVA_ERR_BAD;
3199                 return -EINVAL;
3200         }
3201
3202         /*
3203          * If the requested region crosses two memslots, we still
3204          * verify that the entire region is valid here.
3205          */
3206         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3207                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3208                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3209                                            &nr_pages_avail);
3210                 if (kvm_is_error_hva(ghc->hva))
3211                         return -EFAULT;
3212         }
3213
3214         /* Use the slow path for cross page reads and writes. */
3215         if (nr_pages_needed == 1)
3216                 ghc->hva += offset;
3217         else
3218                 ghc->memslot = NULL;
3219
3220         ghc->gpa = gpa;
3221         ghc->len = len;
3222         return 0;
3223 }
3224
3225 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3226                               gpa_t gpa, unsigned long len)
3227 {
3228         struct kvm_memslots *slots = kvm_memslots(kvm);
3229         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3230 }
3231 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3232
3233 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3234                                   void *data, unsigned int offset,
3235                                   unsigned long len)
3236 {
3237         struct kvm_memslots *slots = kvm_memslots(kvm);
3238         int r;
3239         gpa_t gpa = ghc->gpa + offset;
3240
3241         if (WARN_ON_ONCE(len + offset > ghc->len))
3242                 return -EINVAL;
3243
3244         if (slots->generation != ghc->generation) {
3245                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3246                         return -EFAULT;
3247         }
3248
3249         if (kvm_is_error_hva(ghc->hva))
3250                 return -EFAULT;
3251
3252         if (unlikely(!ghc->memslot))
3253                 return kvm_write_guest(kvm, gpa, data, len);
3254
3255         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3256         if (r)
3257                 return -EFAULT;
3258         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3259
3260         return 0;
3261 }
3262 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3263
3264 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3265                            void *data, unsigned long len)
3266 {
3267         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3268 }
3269 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3270
3271 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3272                                  void *data, unsigned int offset,
3273                                  unsigned long len)
3274 {
3275         struct kvm_memslots *slots = kvm_memslots(kvm);
3276         int r;
3277         gpa_t gpa = ghc->gpa + offset;
3278
3279         if (WARN_ON_ONCE(len + offset > ghc->len))
3280                 return -EINVAL;
3281
3282         if (slots->generation != ghc->generation) {
3283                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3284                         return -EFAULT;
3285         }
3286
3287         if (kvm_is_error_hva(ghc->hva))
3288                 return -EFAULT;
3289
3290         if (unlikely(!ghc->memslot))
3291                 return kvm_read_guest(kvm, gpa, data, len);
3292
3293         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3294         if (r)
3295                 return -EFAULT;
3296
3297         return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3300
3301 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3302                           void *data, unsigned long len)
3303 {
3304         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3305 }
3306 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3307
3308 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3309 {
3310         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3311         gfn_t gfn = gpa >> PAGE_SHIFT;
3312         int seg;
3313         int offset = offset_in_page(gpa);
3314         int ret;
3315
3316         while ((seg = next_segment(len, offset)) != 0) {
3317                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3318                 if (ret < 0)
3319                         return ret;
3320                 offset = 0;
3321                 len -= seg;
3322                 ++gfn;
3323         }
3324         return 0;
3325 }
3326 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3327
3328 void mark_page_dirty_in_slot(struct kvm *kvm,
3329                              const struct kvm_memory_slot *memslot,
3330                              gfn_t gfn)
3331 {
3332         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3333
3334 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3335         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3336                 return;
3337
3338         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3339 #endif
3340
3341         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3342                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3343                 u32 slot = (memslot->as_id << 16) | memslot->id;
3344
3345                 if (kvm->dirty_ring_size && vcpu)
3346                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3347                 else if (memslot->dirty_bitmap)
3348                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3349         }
3350 }
3351 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3352
3353 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3354 {
3355         struct kvm_memory_slot *memslot;
3356
3357         memslot = gfn_to_memslot(kvm, gfn);
3358         mark_page_dirty_in_slot(kvm, memslot, gfn);
3359 }
3360 EXPORT_SYMBOL_GPL(mark_page_dirty);
3361
3362 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3363 {
3364         struct kvm_memory_slot *memslot;
3365
3366         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3367         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3368 }
3369 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3370
3371 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3372 {
3373         if (!vcpu->sigset_active)
3374                 return;
3375
3376         /*
3377          * This does a lockless modification of ->real_blocked, which is fine
3378          * because, only current can change ->real_blocked and all readers of
3379          * ->real_blocked don't care as long ->real_blocked is always a subset
3380          * of ->blocked.
3381          */
3382         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3383 }
3384
3385 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3386 {
3387         if (!vcpu->sigset_active)
3388                 return;
3389
3390         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3391         sigemptyset(&current->real_blocked);
3392 }
3393
3394 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3395 {
3396         unsigned int old, val, grow, grow_start;
3397
3398         old = val = vcpu->halt_poll_ns;
3399         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3400         grow = READ_ONCE(halt_poll_ns_grow);
3401         if (!grow)
3402                 goto out;
3403
3404         val *= grow;
3405         if (val < grow_start)
3406                 val = grow_start;
3407
3408         vcpu->halt_poll_ns = val;
3409 out:
3410         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3411 }
3412
3413 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3414 {
3415         unsigned int old, val, shrink, grow_start;
3416
3417         old = val = vcpu->halt_poll_ns;
3418         shrink = READ_ONCE(halt_poll_ns_shrink);
3419         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3420         if (shrink == 0)
3421                 val = 0;
3422         else
3423                 val /= shrink;
3424
3425         if (val < grow_start)
3426                 val = 0;
3427
3428         vcpu->halt_poll_ns = val;
3429         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3430 }
3431
3432 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3433 {
3434         int ret = -EINTR;
3435         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3436
3437         if (kvm_arch_vcpu_runnable(vcpu))
3438                 goto out;
3439         if (kvm_cpu_has_pending_timer(vcpu))
3440                 goto out;
3441         if (signal_pending(current))
3442                 goto out;
3443         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3444                 goto out;
3445
3446         ret = 0;
3447 out:
3448         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3449         return ret;
3450 }
3451
3452 /*
3453  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3454  * pending.  This is mostly used when halting a vCPU, but may also be used
3455  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3456  */
3457 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3458 {
3459         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3460         bool waited = false;
3461
3462         vcpu->stat.generic.blocking = 1;
3463
3464         preempt_disable();
3465         kvm_arch_vcpu_blocking(vcpu);
3466         prepare_to_rcuwait(wait);
3467         preempt_enable();
3468
3469         for (;;) {
3470                 set_current_state(TASK_INTERRUPTIBLE);
3471
3472                 if (kvm_vcpu_check_block(vcpu) < 0)
3473                         break;
3474
3475                 waited = true;
3476                 schedule();
3477         }
3478
3479         preempt_disable();
3480         finish_rcuwait(wait);
3481         kvm_arch_vcpu_unblocking(vcpu);
3482         preempt_enable();
3483
3484         vcpu->stat.generic.blocking = 0;
3485
3486         return waited;
3487 }
3488
3489 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3490                                           ktime_t end, bool success)
3491 {
3492         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3493         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3494
3495         ++vcpu->stat.generic.halt_attempted_poll;
3496
3497         if (success) {
3498                 ++vcpu->stat.generic.halt_successful_poll;
3499
3500                 if (!vcpu_valid_wakeup(vcpu))
3501                         ++vcpu->stat.generic.halt_poll_invalid;
3502
3503                 stats->halt_poll_success_ns += poll_ns;
3504                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3505         } else {
3506                 stats->halt_poll_fail_ns += poll_ns;
3507                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3508         }
3509 }
3510
3511 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3512 {
3513         struct kvm *kvm = vcpu->kvm;
3514
3515         if (kvm->override_halt_poll_ns) {
3516                 /*
3517                  * Ensure kvm->max_halt_poll_ns is not read before
3518                  * kvm->override_halt_poll_ns.
3519                  *
3520                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3521                  */
3522                 smp_rmb();
3523                 return READ_ONCE(kvm->max_halt_poll_ns);
3524         }
3525
3526         return READ_ONCE(halt_poll_ns);
3527 }
3528
3529 /*
3530  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3531  * polling is enabled, busy wait for a short time before blocking to avoid the
3532  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3533  * is halted.
3534  */
3535 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3536 {
3537         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3538         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3539         ktime_t start, cur, poll_end;
3540         bool waited = false;
3541         bool do_halt_poll;
3542         u64 halt_ns;
3543
3544         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3545                 vcpu->halt_poll_ns = max_halt_poll_ns;
3546
3547         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3548
3549         start = cur = poll_end = ktime_get();
3550         if (do_halt_poll) {
3551                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3552
3553                 do {
3554                         if (kvm_vcpu_check_block(vcpu) < 0)
3555                                 goto out;
3556                         cpu_relax();
3557                         poll_end = cur = ktime_get();
3558                 } while (kvm_vcpu_can_poll(cur, stop));
3559         }
3560
3561         waited = kvm_vcpu_block(vcpu);
3562
3563         cur = ktime_get();
3564         if (waited) {
3565                 vcpu->stat.generic.halt_wait_ns +=
3566                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3567                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3568                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3569         }
3570 out:
3571         /* The total time the vCPU was "halted", including polling time. */
3572         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3573
3574         /*
3575          * Note, halt-polling is considered successful so long as the vCPU was
3576          * never actually scheduled out, i.e. even if the wake event arrived
3577          * after of the halt-polling loop itself, but before the full wait.
3578          */
3579         if (do_halt_poll)
3580                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3581
3582         if (halt_poll_allowed) {
3583                 /* Recompute the max halt poll time in case it changed. */
3584                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3585
3586                 if (!vcpu_valid_wakeup(vcpu)) {
3587                         shrink_halt_poll_ns(vcpu);
3588                 } else if (max_halt_poll_ns) {
3589                         if (halt_ns <= vcpu->halt_poll_ns)
3590                                 ;
3591                         /* we had a long block, shrink polling */
3592                         else if (vcpu->halt_poll_ns &&
3593                                  halt_ns > max_halt_poll_ns)
3594                                 shrink_halt_poll_ns(vcpu);
3595                         /* we had a short halt and our poll time is too small */
3596                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3597                                  halt_ns < max_halt_poll_ns)
3598                                 grow_halt_poll_ns(vcpu);
3599                 } else {
3600                         vcpu->halt_poll_ns = 0;
3601                 }
3602         }
3603
3604         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3605 }
3606 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3607
3608 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3609 {
3610         if (__kvm_vcpu_wake_up(vcpu)) {
3611                 WRITE_ONCE(vcpu->ready, true);
3612                 ++vcpu->stat.generic.halt_wakeup;
3613                 return true;
3614         }
3615
3616         return false;
3617 }
3618 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3619
3620 #ifndef CONFIG_S390
3621 /*
3622  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3623  */
3624 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3625 {
3626         int me, cpu;
3627
3628         if (kvm_vcpu_wake_up(vcpu))
3629                 return;
3630
3631         me = get_cpu();
3632         /*
3633          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3634          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3635          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3636          * within the vCPU thread itself.
3637          */
3638         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3639                 if (vcpu->mode == IN_GUEST_MODE)
3640                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3641                 goto out;
3642         }
3643
3644         /*
3645          * Note, the vCPU could get migrated to a different pCPU at any point
3646          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3647          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3648          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3649          * vCPU also requires it to leave IN_GUEST_MODE.
3650          */
3651         if (kvm_arch_vcpu_should_kick(vcpu)) {
3652                 cpu = READ_ONCE(vcpu->cpu);
3653                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3654                         smp_send_reschedule(cpu);
3655         }
3656 out:
3657         put_cpu();
3658 }
3659 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3660 #endif /* !CONFIG_S390 */
3661
3662 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3663 {
3664         struct pid *pid;
3665         struct task_struct *task = NULL;
3666         int ret = 0;
3667
3668         rcu_read_lock();
3669         pid = rcu_dereference(target->pid);
3670         if (pid)
3671                 task = get_pid_task(pid, PIDTYPE_PID);
3672         rcu_read_unlock();
3673         if (!task)
3674                 return ret;
3675         ret = yield_to(task, 1);
3676         put_task_struct(task);
3677
3678         return ret;
3679 }
3680 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3681
3682 /*
3683  * Helper that checks whether a VCPU is eligible for directed yield.
3684  * Most eligible candidate to yield is decided by following heuristics:
3685  *
3686  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3687  *  (preempted lock holder), indicated by @in_spin_loop.
3688  *  Set at the beginning and cleared at the end of interception/PLE handler.
3689  *
3690  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3691  *  chance last time (mostly it has become eligible now since we have probably
3692  *  yielded to lockholder in last iteration. This is done by toggling
3693  *  @dy_eligible each time a VCPU checked for eligibility.)
3694  *
3695  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3696  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3697  *  burning. Giving priority for a potential lock-holder increases lock
3698  *  progress.
3699  *
3700  *  Since algorithm is based on heuristics, accessing another VCPU data without
3701  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3702  *  and continue with next VCPU and so on.
3703  */
3704 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3705 {
3706 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3707         bool eligible;
3708
3709         eligible = !vcpu->spin_loop.in_spin_loop ||
3710                     vcpu->spin_loop.dy_eligible;
3711
3712         if (vcpu->spin_loop.in_spin_loop)
3713                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3714
3715         return eligible;
3716 #else
3717         return true;
3718 #endif
3719 }
3720
3721 /*
3722  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3723  * a vcpu_load/vcpu_put pair.  However, for most architectures
3724  * kvm_arch_vcpu_runnable does not require vcpu_load.
3725  */
3726 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3727 {
3728         return kvm_arch_vcpu_runnable(vcpu);
3729 }
3730
3731 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3732 {
3733         if (kvm_arch_dy_runnable(vcpu))
3734                 return true;
3735
3736 #ifdef CONFIG_KVM_ASYNC_PF
3737         if (!list_empty_careful(&vcpu->async_pf.done))
3738                 return true;
3739 #endif
3740
3741         return false;
3742 }
3743
3744 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3745 {
3746         return false;
3747 }
3748
3749 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3750 {
3751         struct kvm *kvm = me->kvm;
3752         struct kvm_vcpu *vcpu;
3753         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3754         unsigned long i;
3755         int yielded = 0;
3756         int try = 3;
3757         int pass;
3758
3759         kvm_vcpu_set_in_spin_loop(me, true);
3760         /*
3761          * We boost the priority of a VCPU that is runnable but not
3762          * currently running, because it got preempted by something
3763          * else and called schedule in __vcpu_run.  Hopefully that
3764          * VCPU is holding the lock that we need and will release it.
3765          * We approximate round-robin by starting at the last boosted VCPU.
3766          */
3767         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3768                 kvm_for_each_vcpu(i, vcpu, kvm) {
3769                         if (!pass && i <= last_boosted_vcpu) {
3770                                 i = last_boosted_vcpu;
3771                                 continue;
3772                         } else if (pass && i > last_boosted_vcpu)
3773                                 break;
3774                         if (!READ_ONCE(vcpu->ready))
3775                                 continue;
3776                         if (vcpu == me)
3777                                 continue;
3778                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3779                                 continue;
3780                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3781                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3782                             !kvm_arch_vcpu_in_kernel(vcpu))
3783                                 continue;
3784                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3785                                 continue;
3786
3787                         yielded = kvm_vcpu_yield_to(vcpu);
3788                         if (yielded > 0) {
3789                                 kvm->last_boosted_vcpu = i;
3790                                 break;
3791                         } else if (yielded < 0) {
3792                                 try--;
3793                                 if (!try)
3794                                         break;
3795                         }
3796                 }
3797         }
3798         kvm_vcpu_set_in_spin_loop(me, false);
3799
3800         /* Ensure vcpu is not eligible during next spinloop */
3801         kvm_vcpu_set_dy_eligible(me, false);
3802 }
3803 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3804
3805 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3806 {
3807 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3808         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3809             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3810              kvm->dirty_ring_size / PAGE_SIZE);
3811 #else
3812         return false;
3813 #endif
3814 }
3815
3816 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3817 {
3818         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3819         struct page *page;
3820
3821         if (vmf->pgoff == 0)
3822                 page = virt_to_page(vcpu->run);
3823 #ifdef CONFIG_X86
3824         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3825                 page = virt_to_page(vcpu->arch.pio_data);
3826 #endif
3827 #ifdef CONFIG_KVM_MMIO
3828         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3829                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3830 #endif
3831         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3832                 page = kvm_dirty_ring_get_page(
3833                     &vcpu->dirty_ring,
3834                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3835         else
3836                 return kvm_arch_vcpu_fault(vcpu, vmf);
3837         get_page(page);
3838         vmf->page = page;
3839         return 0;
3840 }
3841
3842 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3843         .fault = kvm_vcpu_fault,
3844 };
3845
3846 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3847 {
3848         struct kvm_vcpu *vcpu = file->private_data;
3849         unsigned long pages = vma_pages(vma);
3850
3851         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3852              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3853             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3854                 return -EINVAL;
3855
3856         vma->vm_ops = &kvm_vcpu_vm_ops;
3857         return 0;
3858 }
3859
3860 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3861 {
3862         struct kvm_vcpu *vcpu = filp->private_data;
3863
3864         kvm_put_kvm(vcpu->kvm);
3865         return 0;
3866 }
3867
3868 static const struct file_operations kvm_vcpu_fops = {
3869         .release        = kvm_vcpu_release,
3870         .unlocked_ioctl = kvm_vcpu_ioctl,
3871         .mmap           = kvm_vcpu_mmap,
3872         .llseek         = noop_llseek,
3873         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3874 };
3875
3876 /*
3877  * Allocates an inode for the vcpu.
3878  */
3879 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3880 {
3881         char name[8 + 1 + ITOA_MAX_LEN + 1];
3882
3883         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3884         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3885 }
3886
3887 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3888 static int vcpu_get_pid(void *data, u64 *val)
3889 {
3890         struct kvm_vcpu *vcpu = data;
3891         *val = pid_nr(rcu_access_pointer(vcpu->pid));
3892         return 0;
3893 }
3894
3895 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3896
3897 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3898 {
3899         struct dentry *debugfs_dentry;
3900         char dir_name[ITOA_MAX_LEN * 2];
3901
3902         if (!debugfs_initialized())
3903                 return;
3904
3905         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3906         debugfs_dentry = debugfs_create_dir(dir_name,
3907                                             vcpu->kvm->debugfs_dentry);
3908         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3909                             &vcpu_get_pid_fops);
3910
3911         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3912 }
3913 #endif
3914
3915 /*
3916  * Creates some virtual cpus.  Good luck creating more than one.
3917  */
3918 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3919 {
3920         int r;
3921         struct kvm_vcpu *vcpu;
3922         struct page *page;
3923
3924         if (id >= KVM_MAX_VCPU_IDS)
3925                 return -EINVAL;
3926
3927         mutex_lock(&kvm->lock);
3928         if (kvm->created_vcpus >= kvm->max_vcpus) {
3929                 mutex_unlock(&kvm->lock);
3930                 return -EINVAL;
3931         }
3932
3933         r = kvm_arch_vcpu_precreate(kvm, id);
3934         if (r) {
3935                 mutex_unlock(&kvm->lock);
3936                 return r;
3937         }
3938
3939         kvm->created_vcpus++;
3940         mutex_unlock(&kvm->lock);
3941
3942         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3943         if (!vcpu) {
3944                 r = -ENOMEM;
3945                 goto vcpu_decrement;
3946         }
3947
3948         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3949         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3950         if (!page) {
3951                 r = -ENOMEM;
3952                 goto vcpu_free;
3953         }
3954         vcpu->run = page_address(page);
3955
3956         kvm_vcpu_init(vcpu, kvm, id);
3957
3958         r = kvm_arch_vcpu_create(vcpu);
3959         if (r)
3960                 goto vcpu_free_run_page;
3961
3962         if (kvm->dirty_ring_size) {
3963                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3964                                          id, kvm->dirty_ring_size);
3965                 if (r)
3966                         goto arch_vcpu_destroy;
3967         }
3968
3969         mutex_lock(&kvm->lock);
3970
3971 #ifdef CONFIG_LOCKDEP
3972         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3973         mutex_lock(&vcpu->mutex);
3974         mutex_unlock(&vcpu->mutex);
3975 #endif
3976
3977         if (kvm_get_vcpu_by_id(kvm, id)) {
3978                 r = -EEXIST;
3979                 goto unlock_vcpu_destroy;
3980         }
3981
3982         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3983         r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3984         if (r)
3985                 goto unlock_vcpu_destroy;
3986
3987         /* Now it's all set up, let userspace reach it */
3988         kvm_get_kvm(kvm);
3989         r = create_vcpu_fd(vcpu);
3990         if (r < 0)
3991                 goto kvm_put_xa_release;
3992
3993         if (KVM_BUG_ON(!!xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3994                 r = -EINVAL;
3995                 goto kvm_put_xa_release;
3996         }
3997
3998         /*
3999          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4000          * pointer before kvm->online_vcpu's incremented value.
4001          */
4002         smp_wmb();
4003         atomic_inc(&kvm->online_vcpus);
4004
4005         mutex_unlock(&kvm->lock);
4006         kvm_arch_vcpu_postcreate(vcpu);
4007         kvm_create_vcpu_debugfs(vcpu);
4008         return r;
4009
4010 kvm_put_xa_release:
4011         kvm_put_kvm_no_destroy(kvm);
4012         xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4013 unlock_vcpu_destroy:
4014         mutex_unlock(&kvm->lock);
4015         kvm_dirty_ring_free(&vcpu->dirty_ring);
4016 arch_vcpu_destroy:
4017         kvm_arch_vcpu_destroy(vcpu);
4018 vcpu_free_run_page:
4019         free_page((unsigned long)vcpu->run);
4020 vcpu_free:
4021         kmem_cache_free(kvm_vcpu_cache, vcpu);
4022 vcpu_decrement:
4023         mutex_lock(&kvm->lock);
4024         kvm->created_vcpus--;
4025         mutex_unlock(&kvm->lock);
4026         return r;
4027 }
4028
4029 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4030 {
4031         if (sigset) {
4032                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4033                 vcpu->sigset_active = 1;
4034                 vcpu->sigset = *sigset;
4035         } else
4036                 vcpu->sigset_active = 0;
4037         return 0;
4038 }
4039
4040 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4041                               size_t size, loff_t *offset)
4042 {
4043         struct kvm_vcpu *vcpu = file->private_data;
4044
4045         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4046                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4047                         sizeof(vcpu->stat), user_buffer, size, offset);
4048 }
4049
4050 static const struct file_operations kvm_vcpu_stats_fops = {
4051         .read = kvm_vcpu_stats_read,
4052         .llseek = noop_llseek,
4053 };
4054
4055 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4056 {
4057         int fd;
4058         struct file *file;
4059         char name[15 + ITOA_MAX_LEN + 1];
4060
4061         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4062
4063         fd = get_unused_fd_flags(O_CLOEXEC);
4064         if (fd < 0)
4065                 return fd;
4066
4067         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4068         if (IS_ERR(file)) {
4069                 put_unused_fd(fd);
4070                 return PTR_ERR(file);
4071         }
4072         file->f_mode |= FMODE_PREAD;
4073         fd_install(fd, file);
4074
4075         return fd;
4076 }
4077
4078 static long kvm_vcpu_ioctl(struct file *filp,
4079                            unsigned int ioctl, unsigned long arg)
4080 {
4081         struct kvm_vcpu *vcpu = filp->private_data;
4082         void __user *argp = (void __user *)arg;
4083         int r;
4084         struct kvm_fpu *fpu = NULL;
4085         struct kvm_sregs *kvm_sregs = NULL;
4086
4087         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4088                 return -EIO;
4089
4090         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4091                 return -EINVAL;
4092
4093         /*
4094          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4095          * execution; mutex_lock() would break them.
4096          */
4097         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4098         if (r != -ENOIOCTLCMD)
4099                 return r;
4100
4101         if (mutex_lock_killable(&vcpu->mutex))
4102                 return -EINTR;
4103         switch (ioctl) {
4104         case KVM_RUN: {
4105                 struct pid *oldpid;
4106                 r = -EINVAL;
4107                 if (arg)
4108                         goto out;
4109                 oldpid = rcu_access_pointer(vcpu->pid);
4110                 if (unlikely(oldpid != task_pid(current))) {
4111                         /* The thread running this VCPU changed. */
4112                         struct pid *newpid;
4113
4114                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4115                         if (r)
4116                                 break;
4117
4118                         newpid = get_task_pid(current, PIDTYPE_PID);
4119                         rcu_assign_pointer(vcpu->pid, newpid);
4120                         if (oldpid)
4121                                 synchronize_rcu();
4122                         put_pid(oldpid);
4123                 }
4124                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4125                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4126                 break;
4127         }
4128         case KVM_GET_REGS: {
4129                 struct kvm_regs *kvm_regs;
4130
4131                 r = -ENOMEM;
4132                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4133                 if (!kvm_regs)
4134                         goto out;
4135                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4136                 if (r)
4137                         goto out_free1;
4138                 r = -EFAULT;
4139                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4140                         goto out_free1;
4141                 r = 0;
4142 out_free1:
4143                 kfree(kvm_regs);
4144                 break;
4145         }
4146         case KVM_SET_REGS: {
4147                 struct kvm_regs *kvm_regs;
4148
4149                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4150                 if (IS_ERR(kvm_regs)) {
4151                         r = PTR_ERR(kvm_regs);
4152                         goto out;
4153                 }
4154                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4155                 kfree(kvm_regs);
4156                 break;
4157         }
4158         case KVM_GET_SREGS: {
4159                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4160                                     GFP_KERNEL_ACCOUNT);
4161                 r = -ENOMEM;
4162                 if (!kvm_sregs)
4163                         goto out;
4164                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4165                 if (r)
4166                         goto out;
4167                 r = -EFAULT;
4168                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4169                         goto out;
4170                 r = 0;
4171                 break;
4172         }
4173         case KVM_SET_SREGS: {
4174                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4175                 if (IS_ERR(kvm_sregs)) {
4176                         r = PTR_ERR(kvm_sregs);
4177                         kvm_sregs = NULL;
4178                         goto out;
4179                 }
4180                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4181                 break;
4182         }
4183         case KVM_GET_MP_STATE: {
4184                 struct kvm_mp_state mp_state;
4185
4186                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4187                 if (r)
4188                         goto out;
4189                 r = -EFAULT;
4190                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4191                         goto out;
4192                 r = 0;
4193                 break;
4194         }
4195         case KVM_SET_MP_STATE: {
4196                 struct kvm_mp_state mp_state;
4197
4198                 r = -EFAULT;
4199                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4200                         goto out;
4201                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4202                 break;
4203         }
4204         case KVM_TRANSLATE: {
4205                 struct kvm_translation tr;
4206
4207                 r = -EFAULT;
4208                 if (copy_from_user(&tr, argp, sizeof(tr)))
4209                         goto out;
4210                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4211                 if (r)
4212                         goto out;
4213                 r = -EFAULT;
4214                 if (copy_to_user(argp, &tr, sizeof(tr)))
4215                         goto out;
4216                 r = 0;
4217                 break;
4218         }
4219         case KVM_SET_GUEST_DEBUG: {
4220                 struct kvm_guest_debug dbg;
4221
4222                 r = -EFAULT;
4223                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4224                         goto out;
4225                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4226                 break;
4227         }
4228         case KVM_SET_SIGNAL_MASK: {
4229                 struct kvm_signal_mask __user *sigmask_arg = argp;
4230                 struct kvm_signal_mask kvm_sigmask;
4231                 sigset_t sigset, *p;
4232
4233                 p = NULL;
4234                 if (argp) {
4235                         r = -EFAULT;
4236                         if (copy_from_user(&kvm_sigmask, argp,
4237                                            sizeof(kvm_sigmask)))
4238                                 goto out;
4239                         r = -EINVAL;
4240                         if (kvm_sigmask.len != sizeof(sigset))
4241                                 goto out;
4242                         r = -EFAULT;
4243                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4244                                            sizeof(sigset)))
4245                                 goto out;
4246                         p = &sigset;
4247                 }
4248                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4249                 break;
4250         }
4251         case KVM_GET_FPU: {
4252                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4253                 r = -ENOMEM;
4254                 if (!fpu)
4255                         goto out;
4256                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4257                 if (r)
4258                         goto out;
4259                 r = -EFAULT;
4260                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4261                         goto out;
4262                 r = 0;
4263                 break;
4264         }
4265         case KVM_SET_FPU: {
4266                 fpu = memdup_user(argp, sizeof(*fpu));
4267                 if (IS_ERR(fpu)) {
4268                         r = PTR_ERR(fpu);
4269                         fpu = NULL;
4270                         goto out;
4271                 }
4272                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4273                 break;
4274         }
4275         case KVM_GET_STATS_FD: {
4276                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4277                 break;
4278         }
4279         default:
4280                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4281         }
4282 out:
4283         mutex_unlock(&vcpu->mutex);
4284         kfree(fpu);
4285         kfree(kvm_sregs);
4286         return r;
4287 }
4288
4289 #ifdef CONFIG_KVM_COMPAT
4290 static long kvm_vcpu_compat_ioctl(struct file *filp,
4291                                   unsigned int ioctl, unsigned long arg)
4292 {
4293         struct kvm_vcpu *vcpu = filp->private_data;
4294         void __user *argp = compat_ptr(arg);
4295         int r;
4296
4297         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4298                 return -EIO;
4299
4300         switch (ioctl) {
4301         case KVM_SET_SIGNAL_MASK: {
4302                 struct kvm_signal_mask __user *sigmask_arg = argp;
4303                 struct kvm_signal_mask kvm_sigmask;
4304                 sigset_t sigset;
4305
4306                 if (argp) {
4307                         r = -EFAULT;
4308                         if (copy_from_user(&kvm_sigmask, argp,
4309                                            sizeof(kvm_sigmask)))
4310                                 goto out;
4311                         r = -EINVAL;
4312                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4313                                 goto out;
4314                         r = -EFAULT;
4315                         if (get_compat_sigset(&sigset,
4316                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4317                                 goto out;
4318                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4319                 } else
4320                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4321                 break;
4322         }
4323         default:
4324                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4325         }
4326
4327 out:
4328         return r;
4329 }
4330 #endif
4331
4332 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4333 {
4334         struct kvm_device *dev = filp->private_data;
4335
4336         if (dev->ops->mmap)
4337                 return dev->ops->mmap(dev, vma);
4338
4339         return -ENODEV;
4340 }
4341
4342 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4343                                  int (*accessor)(struct kvm_device *dev,
4344                                                  struct kvm_device_attr *attr),
4345                                  unsigned long arg)
4346 {
4347         struct kvm_device_attr attr;
4348
4349         if (!accessor)
4350                 return -EPERM;
4351
4352         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4353                 return -EFAULT;
4354
4355         return accessor(dev, &attr);
4356 }
4357
4358 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4359                              unsigned long arg)
4360 {
4361         struct kvm_device *dev = filp->private_data;
4362
4363         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4364                 return -EIO;
4365
4366         switch (ioctl) {
4367         case KVM_SET_DEVICE_ATTR:
4368                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4369         case KVM_GET_DEVICE_ATTR:
4370                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4371         case KVM_HAS_DEVICE_ATTR:
4372                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4373         default:
4374                 if (dev->ops->ioctl)
4375                         return dev->ops->ioctl(dev, ioctl, arg);
4376
4377                 return -ENOTTY;
4378         }
4379 }
4380
4381 static int kvm_device_release(struct inode *inode, struct file *filp)
4382 {
4383         struct kvm_device *dev = filp->private_data;
4384         struct kvm *kvm = dev->kvm;
4385
4386         if (dev->ops->release) {
4387                 mutex_lock(&kvm->lock);
4388                 list_del(&dev->vm_node);
4389                 dev->ops->release(dev);
4390                 mutex_unlock(&kvm->lock);
4391         }
4392
4393         kvm_put_kvm(kvm);
4394         return 0;
4395 }
4396
4397 static const struct file_operations kvm_device_fops = {
4398         .unlocked_ioctl = kvm_device_ioctl,
4399         .release = kvm_device_release,
4400         KVM_COMPAT(kvm_device_ioctl),
4401         .mmap = kvm_device_mmap,
4402 };
4403
4404 struct kvm_device *kvm_device_from_filp(struct file *filp)
4405 {
4406         if (filp->f_op != &kvm_device_fops)
4407                 return NULL;
4408
4409         return filp->private_data;
4410 }
4411
4412 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4413 #ifdef CONFIG_KVM_MPIC
4414         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4415         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4416 #endif
4417 };
4418
4419 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4420 {
4421         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4422                 return -ENOSPC;
4423
4424         if (kvm_device_ops_table[type] != NULL)
4425                 return -EEXIST;
4426
4427         kvm_device_ops_table[type] = ops;
4428         return 0;
4429 }
4430
4431 void kvm_unregister_device_ops(u32 type)
4432 {
4433         if (kvm_device_ops_table[type] != NULL)
4434                 kvm_device_ops_table[type] = NULL;
4435 }
4436
4437 static int kvm_ioctl_create_device(struct kvm *kvm,
4438                                    struct kvm_create_device *cd)
4439 {
4440         const struct kvm_device_ops *ops;
4441         struct kvm_device *dev;
4442         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4443         int type;
4444         int ret;
4445
4446         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4447                 return -ENODEV;
4448
4449         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4450         ops = kvm_device_ops_table[type];
4451         if (ops == NULL)
4452                 return -ENODEV;
4453
4454         if (test)
4455                 return 0;
4456
4457         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4458         if (!dev)
4459                 return -ENOMEM;
4460
4461         dev->ops = ops;
4462         dev->kvm = kvm;
4463
4464         mutex_lock(&kvm->lock);
4465         ret = ops->create(dev, type);
4466         if (ret < 0) {
4467                 mutex_unlock(&kvm->lock);
4468                 kfree(dev);
4469                 return ret;
4470         }
4471         list_add(&dev->vm_node, &kvm->devices);
4472         mutex_unlock(&kvm->lock);
4473
4474         if (ops->init)
4475                 ops->init(dev);
4476
4477         kvm_get_kvm(kvm);
4478         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4479         if (ret < 0) {
4480                 kvm_put_kvm_no_destroy(kvm);
4481                 mutex_lock(&kvm->lock);
4482                 list_del(&dev->vm_node);
4483                 if (ops->release)
4484                         ops->release(dev);
4485                 mutex_unlock(&kvm->lock);
4486                 if (ops->destroy)
4487                         ops->destroy(dev);
4488                 return ret;
4489         }
4490
4491         cd->fd = ret;
4492         return 0;
4493 }
4494
4495 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4496 {
4497         switch (arg) {
4498         case KVM_CAP_USER_MEMORY:
4499         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4500         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4501         case KVM_CAP_INTERNAL_ERROR_DATA:
4502 #ifdef CONFIG_HAVE_KVM_MSI
4503         case KVM_CAP_SIGNAL_MSI:
4504 #endif
4505 #ifdef CONFIG_HAVE_KVM_IRQFD
4506         case KVM_CAP_IRQFD:
4507 #endif
4508         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4509         case KVM_CAP_CHECK_EXTENSION_VM:
4510         case KVM_CAP_ENABLE_CAP_VM:
4511         case KVM_CAP_HALT_POLL:
4512                 return 1;
4513 #ifdef CONFIG_KVM_MMIO
4514         case KVM_CAP_COALESCED_MMIO:
4515                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4516         case KVM_CAP_COALESCED_PIO:
4517                 return 1;
4518 #endif
4519 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4520         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4521                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4522 #endif
4523 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4524         case KVM_CAP_IRQ_ROUTING:
4525                 return KVM_MAX_IRQ_ROUTES;
4526 #endif
4527 #if KVM_ADDRESS_SPACE_NUM > 1
4528         case KVM_CAP_MULTI_ADDRESS_SPACE:
4529                 return KVM_ADDRESS_SPACE_NUM;
4530 #endif
4531         case KVM_CAP_NR_MEMSLOTS:
4532                 return KVM_USER_MEM_SLOTS;
4533         case KVM_CAP_DIRTY_LOG_RING:
4534 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4535                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4536 #else
4537                 return 0;
4538 #endif
4539         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4540 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4541                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4542 #else
4543                 return 0;
4544 #endif
4545 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4546         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4547 #endif
4548         case KVM_CAP_BINARY_STATS_FD:
4549         case KVM_CAP_SYSTEM_EVENT_DATA:
4550                 return 1;
4551         default:
4552                 break;
4553         }
4554         return kvm_vm_ioctl_check_extension(kvm, arg);
4555 }
4556
4557 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4558 {
4559         int r;
4560
4561         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4562                 return -EINVAL;
4563
4564         /* the size should be power of 2 */
4565         if (!size || (size & (size - 1)))
4566                 return -EINVAL;
4567
4568         /* Should be bigger to keep the reserved entries, or a page */
4569         if (size < kvm_dirty_ring_get_rsvd_entries() *
4570             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4571                 return -EINVAL;
4572
4573         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4574             sizeof(struct kvm_dirty_gfn))
4575                 return -E2BIG;
4576
4577         /* We only allow it to set once */
4578         if (kvm->dirty_ring_size)
4579                 return -EINVAL;
4580
4581         mutex_lock(&kvm->lock);
4582
4583         if (kvm->created_vcpus) {
4584                 /* We don't allow to change this value after vcpu created */
4585                 r = -EINVAL;
4586         } else {
4587                 kvm->dirty_ring_size = size;
4588                 r = 0;
4589         }
4590
4591         mutex_unlock(&kvm->lock);
4592         return r;
4593 }
4594
4595 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4596 {
4597         unsigned long i;
4598         struct kvm_vcpu *vcpu;
4599         int cleared = 0;
4600
4601         if (!kvm->dirty_ring_size)
4602                 return -EINVAL;
4603
4604         mutex_lock(&kvm->slots_lock);
4605
4606         kvm_for_each_vcpu(i, vcpu, kvm)
4607                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4608
4609         mutex_unlock(&kvm->slots_lock);
4610
4611         if (cleared)
4612                 kvm_flush_remote_tlbs(kvm);
4613
4614         return cleared;
4615 }
4616
4617 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4618                                                   struct kvm_enable_cap *cap)
4619 {
4620         return -EINVAL;
4621 }
4622
4623 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4624 {
4625         int i;
4626
4627         lockdep_assert_held(&kvm->slots_lock);
4628
4629         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4630                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4631                         return false;
4632         }
4633
4634         return true;
4635 }
4636 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4637
4638 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4639                                            struct kvm_enable_cap *cap)
4640 {
4641         switch (cap->cap) {
4642 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4643         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4644                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4645
4646                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4647                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4648
4649                 if (cap->flags || (cap->args[0] & ~allowed_options))
4650                         return -EINVAL;
4651                 kvm->manual_dirty_log_protect = cap->args[0];
4652                 return 0;
4653         }
4654 #endif
4655         case KVM_CAP_HALT_POLL: {
4656                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4657                         return -EINVAL;
4658
4659                 kvm->max_halt_poll_ns = cap->args[0];
4660
4661                 /*
4662                  * Ensure kvm->override_halt_poll_ns does not become visible
4663                  * before kvm->max_halt_poll_ns.
4664                  *
4665                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4666                  */
4667                 smp_wmb();
4668                 kvm->override_halt_poll_ns = true;
4669
4670                 return 0;
4671         }
4672         case KVM_CAP_DIRTY_LOG_RING:
4673         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4674                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4675                         return -EINVAL;
4676
4677                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4678         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4679                 int r = -EINVAL;
4680
4681                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4682                     !kvm->dirty_ring_size || cap->flags)
4683                         return r;
4684
4685                 mutex_lock(&kvm->slots_lock);
4686
4687                 /*
4688                  * For simplicity, allow enabling ring+bitmap if and only if
4689                  * there are no memslots, e.g. to ensure all memslots allocate
4690                  * a bitmap after the capability is enabled.
4691                  */
4692                 if (kvm_are_all_memslots_empty(kvm)) {
4693                         kvm->dirty_ring_with_bitmap = true;
4694                         r = 0;
4695                 }
4696
4697                 mutex_unlock(&kvm->slots_lock);
4698
4699                 return r;
4700         }
4701         default:
4702                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4703         }
4704 }
4705
4706 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4707                               size_t size, loff_t *offset)
4708 {
4709         struct kvm *kvm = file->private_data;
4710
4711         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4712                                 &kvm_vm_stats_desc[0], &kvm->stat,
4713                                 sizeof(kvm->stat), user_buffer, size, offset);
4714 }
4715
4716 static const struct file_operations kvm_vm_stats_fops = {
4717         .read = kvm_vm_stats_read,
4718         .llseek = noop_llseek,
4719 };
4720
4721 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4722 {
4723         int fd;
4724         struct file *file;
4725
4726         fd = get_unused_fd_flags(O_CLOEXEC);
4727         if (fd < 0)
4728                 return fd;
4729
4730         file = anon_inode_getfile("kvm-vm-stats",
4731                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4732         if (IS_ERR(file)) {
4733                 put_unused_fd(fd);
4734                 return PTR_ERR(file);
4735         }
4736         file->f_mode |= FMODE_PREAD;
4737         fd_install(fd, file);
4738
4739         return fd;
4740 }
4741
4742 static long kvm_vm_ioctl(struct file *filp,
4743                            unsigned int ioctl, unsigned long arg)
4744 {
4745         struct kvm *kvm = filp->private_data;
4746         void __user *argp = (void __user *)arg;
4747         int r;
4748
4749         if (kvm->mm != current->mm || kvm->vm_dead)
4750                 return -EIO;
4751         switch (ioctl) {
4752         case KVM_CREATE_VCPU:
4753                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4754                 break;
4755         case KVM_ENABLE_CAP: {
4756                 struct kvm_enable_cap cap;
4757
4758                 r = -EFAULT;
4759                 if (copy_from_user(&cap, argp, sizeof(cap)))
4760                         goto out;
4761                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4762                 break;
4763         }
4764         case KVM_SET_USER_MEMORY_REGION: {
4765                 struct kvm_userspace_memory_region kvm_userspace_mem;
4766
4767                 r = -EFAULT;
4768                 if (copy_from_user(&kvm_userspace_mem, argp,
4769                                                 sizeof(kvm_userspace_mem)))
4770                         goto out;
4771
4772                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4773                 break;
4774         }
4775         case KVM_GET_DIRTY_LOG: {
4776                 struct kvm_dirty_log log;
4777
4778                 r = -EFAULT;
4779                 if (copy_from_user(&log, argp, sizeof(log)))
4780                         goto out;
4781                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4782                 break;
4783         }
4784 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4785         case KVM_CLEAR_DIRTY_LOG: {
4786                 struct kvm_clear_dirty_log log;
4787
4788                 r = -EFAULT;
4789                 if (copy_from_user(&log, argp, sizeof(log)))
4790                         goto out;
4791                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4792                 break;
4793         }
4794 #endif
4795 #ifdef CONFIG_KVM_MMIO
4796         case KVM_REGISTER_COALESCED_MMIO: {
4797                 struct kvm_coalesced_mmio_zone zone;
4798
4799                 r = -EFAULT;
4800                 if (copy_from_user(&zone, argp, sizeof(zone)))
4801                         goto out;
4802                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4803                 break;
4804         }
4805         case KVM_UNREGISTER_COALESCED_MMIO: {
4806                 struct kvm_coalesced_mmio_zone zone;
4807
4808                 r = -EFAULT;
4809                 if (copy_from_user(&zone, argp, sizeof(zone)))
4810                         goto out;
4811                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4812                 break;
4813         }
4814 #endif
4815         case KVM_IRQFD: {
4816                 struct kvm_irqfd data;
4817
4818                 r = -EFAULT;
4819                 if (copy_from_user(&data, argp, sizeof(data)))
4820                         goto out;
4821                 r = kvm_irqfd(kvm, &data);
4822                 break;
4823         }
4824         case KVM_IOEVENTFD: {
4825                 struct kvm_ioeventfd data;
4826
4827                 r = -EFAULT;
4828                 if (copy_from_user(&data, argp, sizeof(data)))
4829                         goto out;
4830                 r = kvm_ioeventfd(kvm, &data);
4831                 break;
4832         }
4833 #ifdef CONFIG_HAVE_KVM_MSI
4834         case KVM_SIGNAL_MSI: {
4835                 struct kvm_msi msi;
4836
4837                 r = -EFAULT;
4838                 if (copy_from_user(&msi, argp, sizeof(msi)))
4839                         goto out;
4840                 r = kvm_send_userspace_msi(kvm, &msi);
4841                 break;
4842         }
4843 #endif
4844 #ifdef __KVM_HAVE_IRQ_LINE
4845         case KVM_IRQ_LINE_STATUS:
4846         case KVM_IRQ_LINE: {
4847                 struct kvm_irq_level irq_event;
4848
4849                 r = -EFAULT;
4850                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4851                         goto out;
4852
4853                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4854                                         ioctl == KVM_IRQ_LINE_STATUS);
4855                 if (r)
4856                         goto out;
4857
4858                 r = -EFAULT;
4859                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4860                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4861                                 goto out;
4862                 }
4863
4864                 r = 0;
4865                 break;
4866         }
4867 #endif
4868 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4869         case KVM_SET_GSI_ROUTING: {
4870                 struct kvm_irq_routing routing;
4871                 struct kvm_irq_routing __user *urouting;
4872                 struct kvm_irq_routing_entry *entries = NULL;
4873
4874                 r = -EFAULT;
4875                 if (copy_from_user(&routing, argp, sizeof(routing)))
4876                         goto out;
4877                 r = -EINVAL;
4878                 if (!kvm_arch_can_set_irq_routing(kvm))
4879                         goto out;
4880                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4881                         goto out;
4882                 if (routing.flags)
4883                         goto out;
4884                 if (routing.nr) {
4885                         urouting = argp;
4886                         entries = vmemdup_user(urouting->entries,
4887                                                array_size(sizeof(*entries),
4888                                                           routing.nr));
4889                         if (IS_ERR(entries)) {
4890                                 r = PTR_ERR(entries);
4891                                 goto out;
4892                         }
4893                 }
4894                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4895                                         routing.flags);
4896                 kvfree(entries);
4897                 break;
4898         }
4899 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4900         case KVM_CREATE_DEVICE: {
4901                 struct kvm_create_device cd;
4902
4903                 r = -EFAULT;
4904                 if (copy_from_user(&cd, argp, sizeof(cd)))
4905                         goto out;
4906
4907                 r = kvm_ioctl_create_device(kvm, &cd);
4908                 if (r)
4909                         goto out;
4910
4911                 r = -EFAULT;
4912                 if (copy_to_user(argp, &cd, sizeof(cd)))
4913                         goto out;
4914
4915                 r = 0;
4916                 break;
4917         }
4918         case KVM_CHECK_EXTENSION:
4919                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4920                 break;
4921         case KVM_RESET_DIRTY_RINGS:
4922                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4923                 break;
4924         case KVM_GET_STATS_FD:
4925                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4926                 break;
4927         default:
4928                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4929         }
4930 out:
4931         return r;
4932 }
4933
4934 #ifdef CONFIG_KVM_COMPAT
4935 struct compat_kvm_dirty_log {
4936         __u32 slot;
4937         __u32 padding1;
4938         union {
4939                 compat_uptr_t dirty_bitmap; /* one bit per page */
4940                 __u64 padding2;
4941         };
4942 };
4943
4944 struct compat_kvm_clear_dirty_log {
4945         __u32 slot;
4946         __u32 num_pages;
4947         __u64 first_page;
4948         union {
4949                 compat_uptr_t dirty_bitmap; /* one bit per page */
4950                 __u64 padding2;
4951         };
4952 };
4953
4954 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4955                                      unsigned long arg)
4956 {
4957         return -ENOTTY;
4958 }
4959
4960 static long kvm_vm_compat_ioctl(struct file *filp,
4961                            unsigned int ioctl, unsigned long arg)
4962 {
4963         struct kvm *kvm = filp->private_data;
4964         int r;
4965
4966         if (kvm->mm != current->mm || kvm->vm_dead)
4967                 return -EIO;
4968
4969         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4970         if (r != -ENOTTY)
4971                 return r;
4972
4973         switch (ioctl) {
4974 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4975         case KVM_CLEAR_DIRTY_LOG: {
4976                 struct compat_kvm_clear_dirty_log compat_log;
4977                 struct kvm_clear_dirty_log log;
4978
4979                 if (copy_from_user(&compat_log, (void __user *)arg,
4980                                    sizeof(compat_log)))
4981                         return -EFAULT;
4982                 log.slot         = compat_log.slot;
4983                 log.num_pages    = compat_log.num_pages;
4984                 log.first_page   = compat_log.first_page;
4985                 log.padding2     = compat_log.padding2;
4986                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4987
4988                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4989                 break;
4990         }
4991 #endif
4992         case KVM_GET_DIRTY_LOG: {
4993                 struct compat_kvm_dirty_log compat_log;
4994                 struct kvm_dirty_log log;
4995
4996                 if (copy_from_user(&compat_log, (void __user *)arg,
4997                                    sizeof(compat_log)))
4998                         return -EFAULT;
4999                 log.slot         = compat_log.slot;
5000                 log.padding1     = compat_log.padding1;
5001                 log.padding2     = compat_log.padding2;
5002                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5003
5004                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5005                 break;
5006         }
5007         default:
5008                 r = kvm_vm_ioctl(filp, ioctl, arg);
5009         }
5010         return r;
5011 }
5012 #endif
5013
5014 static const struct file_operations kvm_vm_fops = {
5015         .release        = kvm_vm_release,
5016         .unlocked_ioctl = kvm_vm_ioctl,
5017         .llseek         = noop_llseek,
5018         KVM_COMPAT(kvm_vm_compat_ioctl),
5019 };
5020
5021 bool file_is_kvm(struct file *file)
5022 {
5023         return file && file->f_op == &kvm_vm_fops;
5024 }
5025 EXPORT_SYMBOL_GPL(file_is_kvm);
5026
5027 static int kvm_dev_ioctl_create_vm(unsigned long type)
5028 {
5029         char fdname[ITOA_MAX_LEN + 1];
5030         int r, fd;
5031         struct kvm *kvm;
5032         struct file *file;
5033
5034         fd = get_unused_fd_flags(O_CLOEXEC);
5035         if (fd < 0)
5036                 return fd;
5037
5038         snprintf(fdname, sizeof(fdname), "%d", fd);
5039
5040         kvm = kvm_create_vm(type, fdname);
5041         if (IS_ERR(kvm)) {
5042                 r = PTR_ERR(kvm);
5043                 goto put_fd;
5044         }
5045
5046         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5047         if (IS_ERR(file)) {
5048                 r = PTR_ERR(file);
5049                 goto put_kvm;
5050         }
5051
5052         /*
5053          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5054          * already set, with ->release() being kvm_vm_release().  In error
5055          * cases it will be called by the final fput(file) and will take
5056          * care of doing kvm_put_kvm(kvm).
5057          */
5058         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5059
5060         fd_install(fd, file);
5061         return fd;
5062
5063 put_kvm:
5064         kvm_put_kvm(kvm);
5065 put_fd:
5066         put_unused_fd(fd);
5067         return r;
5068 }
5069
5070 static long kvm_dev_ioctl(struct file *filp,
5071                           unsigned int ioctl, unsigned long arg)
5072 {
5073         int r = -EINVAL;
5074
5075         switch (ioctl) {
5076         case KVM_GET_API_VERSION:
5077                 if (arg)
5078                         goto out;
5079                 r = KVM_API_VERSION;
5080                 break;
5081         case KVM_CREATE_VM:
5082                 r = kvm_dev_ioctl_create_vm(arg);
5083                 break;
5084         case KVM_CHECK_EXTENSION:
5085                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5086                 break;
5087         case KVM_GET_VCPU_MMAP_SIZE:
5088                 if (arg)
5089                         goto out;
5090                 r = PAGE_SIZE;     /* struct kvm_run */
5091 #ifdef CONFIG_X86
5092                 r += PAGE_SIZE;    /* pio data page */
5093 #endif
5094 #ifdef CONFIG_KVM_MMIO
5095                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5096 #endif
5097                 break;
5098         case KVM_TRACE_ENABLE:
5099         case KVM_TRACE_PAUSE:
5100         case KVM_TRACE_DISABLE:
5101                 r = -EOPNOTSUPP;
5102                 break;
5103         default:
5104                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5105         }
5106 out:
5107         return r;
5108 }
5109
5110 static struct file_operations kvm_chardev_ops = {
5111         .unlocked_ioctl = kvm_dev_ioctl,
5112         .llseek         = noop_llseek,
5113         KVM_COMPAT(kvm_dev_ioctl),
5114 };
5115
5116 static struct miscdevice kvm_dev = {
5117         KVM_MINOR,
5118         "kvm",
5119         &kvm_chardev_ops,
5120 };
5121
5122 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5123 __visible bool kvm_rebooting;
5124 EXPORT_SYMBOL_GPL(kvm_rebooting);
5125
5126 static DEFINE_PER_CPU(bool, hardware_enabled);
5127 static int kvm_usage_count;
5128
5129 static int __hardware_enable_nolock(void)
5130 {
5131         if (__this_cpu_read(hardware_enabled))
5132                 return 0;
5133
5134         if (kvm_arch_hardware_enable()) {
5135                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5136                         raw_smp_processor_id());
5137                 return -EIO;
5138         }
5139
5140         __this_cpu_write(hardware_enabled, true);
5141         return 0;
5142 }
5143
5144 static void hardware_enable_nolock(void *failed)
5145 {
5146         if (__hardware_enable_nolock())
5147                 atomic_inc(failed);
5148 }
5149
5150 static int kvm_online_cpu(unsigned int cpu)
5151 {
5152         int ret = 0;
5153
5154         /*
5155          * Abort the CPU online process if hardware virtualization cannot
5156          * be enabled. Otherwise running VMs would encounter unrecoverable
5157          * errors when scheduled to this CPU.
5158          */
5159         mutex_lock(&kvm_lock);
5160         if (kvm_usage_count)
5161                 ret = __hardware_enable_nolock();
5162         mutex_unlock(&kvm_lock);
5163         return ret;
5164 }
5165
5166 static void hardware_disable_nolock(void *junk)
5167 {
5168         /*
5169          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5170          * hardware, not just CPUs that successfully enabled hardware!
5171          */
5172         if (!__this_cpu_read(hardware_enabled))
5173                 return;
5174
5175         kvm_arch_hardware_disable();
5176
5177         __this_cpu_write(hardware_enabled, false);
5178 }
5179
5180 static int kvm_offline_cpu(unsigned int cpu)
5181 {
5182         mutex_lock(&kvm_lock);
5183         if (kvm_usage_count)
5184                 hardware_disable_nolock(NULL);
5185         mutex_unlock(&kvm_lock);
5186         return 0;
5187 }
5188
5189 static void hardware_disable_all_nolock(void)
5190 {
5191         BUG_ON(!kvm_usage_count);
5192
5193         kvm_usage_count--;
5194         if (!kvm_usage_count)
5195                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5196 }
5197
5198 static void hardware_disable_all(void)
5199 {
5200         cpus_read_lock();
5201         mutex_lock(&kvm_lock);
5202         hardware_disable_all_nolock();
5203         mutex_unlock(&kvm_lock);
5204         cpus_read_unlock();
5205 }
5206
5207 static int hardware_enable_all(void)
5208 {
5209         atomic_t failed = ATOMIC_INIT(0);
5210         int r;
5211
5212         /*
5213          * Do not enable hardware virtualization if the system is going down.
5214          * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5215          * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5216          * after kvm_reboot() is called.  Note, this relies on system_state
5217          * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5218          * hook instead of registering a dedicated reboot notifier (the latter
5219          * runs before system_state is updated).
5220          */
5221         if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5222             system_state == SYSTEM_RESTART)
5223                 return -EBUSY;
5224
5225         /*
5226          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5227          * is called, and so on_each_cpu() between them includes the CPU that
5228          * is being onlined.  As a result, hardware_enable_nolock() may get
5229          * invoked before kvm_online_cpu(), which also enables hardware if the
5230          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5231          * enable hardware multiple times.
5232          */
5233         cpus_read_lock();
5234         mutex_lock(&kvm_lock);
5235
5236         r = 0;
5237
5238         kvm_usage_count++;
5239         if (kvm_usage_count == 1) {
5240                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5241
5242                 if (atomic_read(&failed)) {
5243                         hardware_disable_all_nolock();
5244                         r = -EBUSY;
5245                 }
5246         }
5247
5248         mutex_unlock(&kvm_lock);
5249         cpus_read_unlock();
5250
5251         return r;
5252 }
5253
5254 static void kvm_shutdown(void)
5255 {
5256         /*
5257          * Disable hardware virtualization and set kvm_rebooting to indicate
5258          * that KVM has asynchronously disabled hardware virtualization, i.e.
5259          * that relevant errors and exceptions aren't entirely unexpected.
5260          * Some flavors of hardware virtualization need to be disabled before
5261          * transferring control to firmware (to perform shutdown/reboot), e.g.
5262          * on x86, virtualization can block INIT interrupts, which are used by
5263          * firmware to pull APs back under firmware control.  Note, this path
5264          * is used for both shutdown and reboot scenarios, i.e. neither name is
5265          * 100% comprehensive.
5266          */
5267         pr_info("kvm: exiting hardware virtualization\n");
5268         kvm_rebooting = true;
5269         on_each_cpu(hardware_disable_nolock, NULL, 1);
5270 }
5271
5272 static int kvm_suspend(void)
5273 {
5274         /*
5275          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5276          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5277          * is stable.  Assert that kvm_lock is not held to ensure the system
5278          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5279          * can be preempted, but the task cannot be frozen until it has dropped
5280          * all locks (userspace tasks are frozen via a fake signal).
5281          */
5282         lockdep_assert_not_held(&kvm_lock);
5283         lockdep_assert_irqs_disabled();
5284
5285         if (kvm_usage_count)
5286                 hardware_disable_nolock(NULL);
5287         return 0;
5288 }
5289
5290 static void kvm_resume(void)
5291 {
5292         lockdep_assert_not_held(&kvm_lock);
5293         lockdep_assert_irqs_disabled();
5294
5295         if (kvm_usage_count)
5296                 WARN_ON_ONCE(__hardware_enable_nolock());
5297 }
5298
5299 static struct syscore_ops kvm_syscore_ops = {
5300         .suspend = kvm_suspend,
5301         .resume = kvm_resume,
5302         .shutdown = kvm_shutdown,
5303 };
5304 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5305 static int hardware_enable_all(void)
5306 {
5307         return 0;
5308 }
5309
5310 static void hardware_disable_all(void)
5311 {
5312
5313 }
5314 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5315
5316 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5317 {
5318         int i;
5319
5320         for (i = 0; i < bus->dev_count; i++) {
5321                 struct kvm_io_device *pos = bus->range[i].dev;
5322
5323                 kvm_iodevice_destructor(pos);
5324         }
5325         kfree(bus);
5326 }
5327
5328 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5329                                  const struct kvm_io_range *r2)
5330 {
5331         gpa_t addr1 = r1->addr;
5332         gpa_t addr2 = r2->addr;
5333
5334         if (addr1 < addr2)
5335                 return -1;
5336
5337         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5338          * accept any overlapping write.  Any order is acceptable for
5339          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5340          * we process all of them.
5341          */
5342         if (r2->len) {
5343                 addr1 += r1->len;
5344                 addr2 += r2->len;
5345         }
5346
5347         if (addr1 > addr2)
5348                 return 1;
5349
5350         return 0;
5351 }
5352
5353 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5354 {
5355         return kvm_io_bus_cmp(p1, p2);
5356 }
5357
5358 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5359                              gpa_t addr, int len)
5360 {
5361         struct kvm_io_range *range, key;
5362         int off;
5363
5364         key = (struct kvm_io_range) {
5365                 .addr = addr,
5366                 .len = len,
5367         };
5368
5369         range = bsearch(&key, bus->range, bus->dev_count,
5370                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5371         if (range == NULL)
5372                 return -ENOENT;
5373
5374         off = range - bus->range;
5375
5376         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5377                 off--;
5378
5379         return off;
5380 }
5381
5382 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5383                               struct kvm_io_range *range, const void *val)
5384 {
5385         int idx;
5386
5387         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5388         if (idx < 0)
5389                 return -EOPNOTSUPP;
5390
5391         while (idx < bus->dev_count &&
5392                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5393                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5394                                         range->len, val))
5395                         return idx;
5396                 idx++;
5397         }
5398
5399         return -EOPNOTSUPP;
5400 }
5401
5402 /* kvm_io_bus_write - called under kvm->slots_lock */
5403 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5404                      int len, const void *val)
5405 {
5406         struct kvm_io_bus *bus;
5407         struct kvm_io_range range;
5408         int r;
5409
5410         range = (struct kvm_io_range) {
5411                 .addr = addr,
5412                 .len = len,
5413         };
5414
5415         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5416         if (!bus)
5417                 return -ENOMEM;
5418         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5419         return r < 0 ? r : 0;
5420 }
5421 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5422
5423 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5424 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5425                             gpa_t addr, int len, const void *val, long cookie)
5426 {
5427         struct kvm_io_bus *bus;
5428         struct kvm_io_range range;
5429
5430         range = (struct kvm_io_range) {
5431                 .addr = addr,
5432                 .len = len,
5433         };
5434
5435         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5436         if (!bus)
5437                 return -ENOMEM;
5438
5439         /* First try the device referenced by cookie. */
5440         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5441             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5442                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5443                                         val))
5444                         return cookie;
5445
5446         /*
5447          * cookie contained garbage; fall back to search and return the
5448          * correct cookie value.
5449          */
5450         return __kvm_io_bus_write(vcpu, bus, &range, val);
5451 }
5452
5453 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5454                              struct kvm_io_range *range, void *val)
5455 {
5456         int idx;
5457
5458         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5459         if (idx < 0)
5460                 return -EOPNOTSUPP;
5461
5462         while (idx < bus->dev_count &&
5463                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5464                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5465                                        range->len, val))
5466                         return idx;
5467                 idx++;
5468         }
5469
5470         return -EOPNOTSUPP;
5471 }
5472
5473 /* kvm_io_bus_read - called under kvm->slots_lock */
5474 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5475                     int len, void *val)
5476 {
5477         struct kvm_io_bus *bus;
5478         struct kvm_io_range range;
5479         int r;
5480
5481         range = (struct kvm_io_range) {
5482                 .addr = addr,
5483                 .len = len,
5484         };
5485
5486         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5487         if (!bus)
5488                 return -ENOMEM;
5489         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5490         return r < 0 ? r : 0;
5491 }
5492
5493 /* Caller must hold slots_lock. */
5494 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5495                             int len, struct kvm_io_device *dev)
5496 {
5497         int i;
5498         struct kvm_io_bus *new_bus, *bus;
5499         struct kvm_io_range range;
5500
5501         bus = kvm_get_bus(kvm, bus_idx);
5502         if (!bus)
5503                 return -ENOMEM;
5504
5505         /* exclude ioeventfd which is limited by maximum fd */
5506         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5507                 return -ENOSPC;
5508
5509         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5510                           GFP_KERNEL_ACCOUNT);
5511         if (!new_bus)
5512                 return -ENOMEM;
5513
5514         range = (struct kvm_io_range) {
5515                 .addr = addr,
5516                 .len = len,
5517                 .dev = dev,
5518         };
5519
5520         for (i = 0; i < bus->dev_count; i++)
5521                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5522                         break;
5523
5524         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5525         new_bus->dev_count++;
5526         new_bus->range[i] = range;
5527         memcpy(new_bus->range + i + 1, bus->range + i,
5528                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5529         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5530         synchronize_srcu_expedited(&kvm->srcu);
5531         kfree(bus);
5532
5533         return 0;
5534 }
5535
5536 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5537                               struct kvm_io_device *dev)
5538 {
5539         int i, j;
5540         struct kvm_io_bus *new_bus, *bus;
5541
5542         lockdep_assert_held(&kvm->slots_lock);
5543
5544         bus = kvm_get_bus(kvm, bus_idx);
5545         if (!bus)
5546                 return 0;
5547
5548         for (i = 0; i < bus->dev_count; i++) {
5549                 if (bus->range[i].dev == dev) {
5550                         break;
5551                 }
5552         }
5553
5554         if (i == bus->dev_count)
5555                 return 0;
5556
5557         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5558                           GFP_KERNEL_ACCOUNT);
5559         if (new_bus) {
5560                 memcpy(new_bus, bus, struct_size(bus, range, i));
5561                 new_bus->dev_count--;
5562                 memcpy(new_bus->range + i, bus->range + i + 1,
5563                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5564         }
5565
5566         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5567         synchronize_srcu_expedited(&kvm->srcu);
5568
5569         /* Destroy the old bus _after_ installing the (null) bus. */
5570         if (!new_bus) {
5571                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5572                 for (j = 0; j < bus->dev_count; j++) {
5573                         if (j == i)
5574                                 continue;
5575                         kvm_iodevice_destructor(bus->range[j].dev);
5576                 }
5577         }
5578
5579         kfree(bus);
5580         return new_bus ? 0 : -ENOMEM;
5581 }
5582
5583 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5584                                          gpa_t addr)
5585 {
5586         struct kvm_io_bus *bus;
5587         int dev_idx, srcu_idx;
5588         struct kvm_io_device *iodev = NULL;
5589
5590         srcu_idx = srcu_read_lock(&kvm->srcu);
5591
5592         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5593         if (!bus)
5594                 goto out_unlock;
5595
5596         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5597         if (dev_idx < 0)
5598                 goto out_unlock;
5599
5600         iodev = bus->range[dev_idx].dev;
5601
5602 out_unlock:
5603         srcu_read_unlock(&kvm->srcu, srcu_idx);
5604
5605         return iodev;
5606 }
5607 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5608
5609 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5610                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5611                            const char *fmt)
5612 {
5613         int ret;
5614         struct kvm_stat_data *stat_data = inode->i_private;
5615
5616         /*
5617          * The debugfs files are a reference to the kvm struct which
5618         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5619         * avoids the race between open and the removal of the debugfs directory.
5620          */
5621         if (!kvm_get_kvm_safe(stat_data->kvm))
5622                 return -ENOENT;
5623
5624         ret = simple_attr_open(inode, file, get,
5625                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
5626                                ? set : NULL, fmt);
5627         if (ret)
5628                 kvm_put_kvm(stat_data->kvm);
5629
5630         return ret;
5631 }
5632
5633 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5634 {
5635         struct kvm_stat_data *stat_data = inode->i_private;
5636
5637         simple_attr_release(inode, file);
5638         kvm_put_kvm(stat_data->kvm);
5639
5640         return 0;
5641 }
5642
5643 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5644 {
5645         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5646
5647         return 0;
5648 }
5649
5650 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5651 {
5652         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5653
5654         return 0;
5655 }
5656
5657 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5658 {
5659         unsigned long i;
5660         struct kvm_vcpu *vcpu;
5661
5662         *val = 0;
5663
5664         kvm_for_each_vcpu(i, vcpu, kvm)
5665                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5666
5667         return 0;
5668 }
5669
5670 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5671 {
5672         unsigned long i;
5673         struct kvm_vcpu *vcpu;
5674
5675         kvm_for_each_vcpu(i, vcpu, kvm)
5676                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5677
5678         return 0;
5679 }
5680
5681 static int kvm_stat_data_get(void *data, u64 *val)
5682 {
5683         int r = -EFAULT;
5684         struct kvm_stat_data *stat_data = data;
5685
5686         switch (stat_data->kind) {
5687         case KVM_STAT_VM:
5688                 r = kvm_get_stat_per_vm(stat_data->kvm,
5689                                         stat_data->desc->desc.offset, val);
5690                 break;
5691         case KVM_STAT_VCPU:
5692                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5693                                           stat_data->desc->desc.offset, val);
5694                 break;
5695         }
5696
5697         return r;
5698 }
5699
5700 static int kvm_stat_data_clear(void *data, u64 val)
5701 {
5702         int r = -EFAULT;
5703         struct kvm_stat_data *stat_data = data;
5704
5705         if (val)
5706                 return -EINVAL;
5707
5708         switch (stat_data->kind) {
5709         case KVM_STAT_VM:
5710                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5711                                           stat_data->desc->desc.offset);
5712                 break;
5713         case KVM_STAT_VCPU:
5714                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5715                                             stat_data->desc->desc.offset);
5716                 break;
5717         }
5718
5719         return r;
5720 }
5721
5722 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5723 {
5724         __simple_attr_check_format("%llu\n", 0ull);
5725         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5726                                 kvm_stat_data_clear, "%llu\n");
5727 }
5728
5729 static const struct file_operations stat_fops_per_vm = {
5730         .owner = THIS_MODULE,
5731         .open = kvm_stat_data_open,
5732         .release = kvm_debugfs_release,
5733         .read = simple_attr_read,
5734         .write = simple_attr_write,
5735         .llseek = no_llseek,
5736 };
5737
5738 static int vm_stat_get(void *_offset, u64 *val)
5739 {
5740         unsigned offset = (long)_offset;
5741         struct kvm *kvm;
5742         u64 tmp_val;
5743
5744         *val = 0;
5745         mutex_lock(&kvm_lock);
5746         list_for_each_entry(kvm, &vm_list, vm_list) {
5747                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5748                 *val += tmp_val;
5749         }
5750         mutex_unlock(&kvm_lock);
5751         return 0;
5752 }
5753
5754 static int vm_stat_clear(void *_offset, u64 val)
5755 {
5756         unsigned offset = (long)_offset;
5757         struct kvm *kvm;
5758
5759         if (val)
5760                 return -EINVAL;
5761
5762         mutex_lock(&kvm_lock);
5763         list_for_each_entry(kvm, &vm_list, vm_list) {
5764                 kvm_clear_stat_per_vm(kvm, offset);
5765         }
5766         mutex_unlock(&kvm_lock);
5767
5768         return 0;
5769 }
5770
5771 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5772 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5773
5774 static int vcpu_stat_get(void *_offset, u64 *val)
5775 {
5776         unsigned offset = (long)_offset;
5777         struct kvm *kvm;
5778         u64 tmp_val;
5779
5780         *val = 0;
5781         mutex_lock(&kvm_lock);
5782         list_for_each_entry(kvm, &vm_list, vm_list) {
5783                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5784                 *val += tmp_val;
5785         }
5786         mutex_unlock(&kvm_lock);
5787         return 0;
5788 }
5789
5790 static int vcpu_stat_clear(void *_offset, u64 val)
5791 {
5792         unsigned offset = (long)_offset;
5793         struct kvm *kvm;
5794
5795         if (val)
5796                 return -EINVAL;
5797
5798         mutex_lock(&kvm_lock);
5799         list_for_each_entry(kvm, &vm_list, vm_list) {
5800                 kvm_clear_stat_per_vcpu(kvm, offset);
5801         }
5802         mutex_unlock(&kvm_lock);
5803
5804         return 0;
5805 }
5806
5807 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5808                         "%llu\n");
5809 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5810
5811 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5812 {
5813         struct kobj_uevent_env *env;
5814         unsigned long long created, active;
5815
5816         if (!kvm_dev.this_device || !kvm)
5817                 return;
5818
5819         mutex_lock(&kvm_lock);
5820         if (type == KVM_EVENT_CREATE_VM) {
5821                 kvm_createvm_count++;
5822                 kvm_active_vms++;
5823         } else if (type == KVM_EVENT_DESTROY_VM) {
5824                 kvm_active_vms--;
5825         }
5826         created = kvm_createvm_count;
5827         active = kvm_active_vms;
5828         mutex_unlock(&kvm_lock);
5829
5830         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5831         if (!env)
5832                 return;
5833
5834         add_uevent_var(env, "CREATED=%llu", created);
5835         add_uevent_var(env, "COUNT=%llu", active);
5836
5837         if (type == KVM_EVENT_CREATE_VM) {
5838                 add_uevent_var(env, "EVENT=create");
5839                 kvm->userspace_pid = task_pid_nr(current);
5840         } else if (type == KVM_EVENT_DESTROY_VM) {
5841                 add_uevent_var(env, "EVENT=destroy");
5842         }
5843         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5844
5845         if (!IS_ERR(kvm->debugfs_dentry)) {
5846                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5847
5848                 if (p) {
5849                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5850                         if (!IS_ERR(tmp))
5851                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5852                         kfree(p);
5853                 }
5854         }
5855         /* no need for checks, since we are adding at most only 5 keys */
5856         env->envp[env->envp_idx++] = NULL;
5857         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5858         kfree(env);
5859 }
5860
5861 static void kvm_init_debug(void)
5862 {
5863         const struct file_operations *fops;
5864         const struct _kvm_stats_desc *pdesc;
5865         int i;
5866
5867         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5868
5869         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5870                 pdesc = &kvm_vm_stats_desc[i];
5871                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5872                         fops = &vm_stat_fops;
5873                 else
5874                         fops = &vm_stat_readonly_fops;
5875                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5876                                 kvm_debugfs_dir,
5877                                 (void *)(long)pdesc->desc.offset, fops);
5878         }
5879
5880         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5881                 pdesc = &kvm_vcpu_stats_desc[i];
5882                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5883                         fops = &vcpu_stat_fops;
5884                 else
5885                         fops = &vcpu_stat_readonly_fops;
5886                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5887                                 kvm_debugfs_dir,
5888                                 (void *)(long)pdesc->desc.offset, fops);
5889         }
5890 }
5891
5892 static inline
5893 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5894 {
5895         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5896 }
5897
5898 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5899 {
5900         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5901
5902         WRITE_ONCE(vcpu->preempted, false);
5903         WRITE_ONCE(vcpu->ready, false);
5904
5905         __this_cpu_write(kvm_running_vcpu, vcpu);
5906         kvm_arch_sched_in(vcpu, cpu);
5907         kvm_arch_vcpu_load(vcpu, cpu);
5908 }
5909
5910 static void kvm_sched_out(struct preempt_notifier *pn,
5911                           struct task_struct *next)
5912 {
5913         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5914
5915         if (current->on_rq) {
5916                 WRITE_ONCE(vcpu->preempted, true);
5917                 WRITE_ONCE(vcpu->ready, true);
5918         }
5919         kvm_arch_vcpu_put(vcpu);
5920         __this_cpu_write(kvm_running_vcpu, NULL);
5921 }
5922
5923 /**
5924  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5925  *
5926  * We can disable preemption locally around accessing the per-CPU variable,
5927  * and use the resolved vcpu pointer after enabling preemption again,
5928  * because even if the current thread is migrated to another CPU, reading
5929  * the per-CPU value later will give us the same value as we update the
5930  * per-CPU variable in the preempt notifier handlers.
5931  */
5932 struct kvm_vcpu *kvm_get_running_vcpu(void)
5933 {
5934         struct kvm_vcpu *vcpu;
5935
5936         preempt_disable();
5937         vcpu = __this_cpu_read(kvm_running_vcpu);
5938         preempt_enable();
5939
5940         return vcpu;
5941 }
5942 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5943
5944 /**
5945  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5946  */
5947 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5948 {
5949         return &kvm_running_vcpu;
5950 }
5951
5952 #ifdef CONFIG_GUEST_PERF_EVENTS
5953 static unsigned int kvm_guest_state(void)
5954 {
5955         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5956         unsigned int state;
5957
5958         if (!kvm_arch_pmi_in_guest(vcpu))
5959                 return 0;
5960
5961         state = PERF_GUEST_ACTIVE;
5962         if (!kvm_arch_vcpu_in_kernel(vcpu))
5963                 state |= PERF_GUEST_USER;
5964
5965         return state;
5966 }
5967
5968 static unsigned long kvm_guest_get_ip(void)
5969 {
5970         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5971
5972         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5973         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5974                 return 0;
5975
5976         return kvm_arch_vcpu_get_ip(vcpu);
5977 }
5978
5979 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5980         .state                  = kvm_guest_state,
5981         .get_ip                 = kvm_guest_get_ip,
5982         .handle_intel_pt_intr   = NULL,
5983 };
5984
5985 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5986 {
5987         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5988         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5989 }
5990 void kvm_unregister_perf_callbacks(void)
5991 {
5992         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5993 }
5994 #endif
5995
5996 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
5997 {
5998         int r;
5999         int cpu;
6000
6001 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6002         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6003                                       kvm_online_cpu, kvm_offline_cpu);
6004         if (r)
6005                 return r;
6006
6007         register_syscore_ops(&kvm_syscore_ops);
6008 #endif
6009
6010         /* A kmem cache lets us meet the alignment requirements of fx_save. */
6011         if (!vcpu_align)
6012                 vcpu_align = __alignof__(struct kvm_vcpu);
6013         kvm_vcpu_cache =
6014                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6015                                            SLAB_ACCOUNT,
6016                                            offsetof(struct kvm_vcpu, arch),
6017                                            offsetofend(struct kvm_vcpu, stats_id)
6018                                            - offsetof(struct kvm_vcpu, arch),
6019                                            NULL);
6020         if (!kvm_vcpu_cache) {
6021                 r = -ENOMEM;
6022                 goto err_vcpu_cache;
6023         }
6024
6025         for_each_possible_cpu(cpu) {
6026                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6027                                             GFP_KERNEL, cpu_to_node(cpu))) {
6028                         r = -ENOMEM;
6029                         goto err_cpu_kick_mask;
6030                 }
6031         }
6032
6033         r = kvm_irqfd_init();
6034         if (r)
6035                 goto err_irqfd;
6036
6037         r = kvm_async_pf_init();
6038         if (r)
6039                 goto err_async_pf;
6040
6041         kvm_chardev_ops.owner = module;
6042
6043         kvm_preempt_ops.sched_in = kvm_sched_in;
6044         kvm_preempt_ops.sched_out = kvm_sched_out;
6045
6046         kvm_init_debug();
6047
6048         r = kvm_vfio_ops_init();
6049         if (WARN_ON_ONCE(r))
6050                 goto err_vfio;
6051
6052         /*
6053          * Registration _must_ be the very last thing done, as this exposes
6054          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6055          */
6056         r = misc_register(&kvm_dev);
6057         if (r) {
6058                 pr_err("kvm: misc device register failed\n");
6059                 goto err_register;
6060         }
6061
6062         return 0;
6063
6064 err_register:
6065         kvm_vfio_ops_exit();
6066 err_vfio:
6067         kvm_async_pf_deinit();
6068 err_async_pf:
6069         kvm_irqfd_exit();
6070 err_irqfd:
6071 err_cpu_kick_mask:
6072         for_each_possible_cpu(cpu)
6073                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6074         kmem_cache_destroy(kvm_vcpu_cache);
6075 err_vcpu_cache:
6076 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6077         unregister_syscore_ops(&kvm_syscore_ops);
6078         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6079 #endif
6080         return r;
6081 }
6082 EXPORT_SYMBOL_GPL(kvm_init);
6083
6084 void kvm_exit(void)
6085 {
6086         int cpu;
6087
6088         /*
6089          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6090          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6091          * to KVM while the module is being stopped.
6092          */
6093         misc_deregister(&kvm_dev);
6094
6095         debugfs_remove_recursive(kvm_debugfs_dir);
6096         for_each_possible_cpu(cpu)
6097                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6098         kmem_cache_destroy(kvm_vcpu_cache);
6099         kvm_vfio_ops_exit();
6100         kvm_async_pf_deinit();
6101 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6102         unregister_syscore_ops(&kvm_syscore_ops);
6103         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6104 #endif
6105         kvm_irqfd_exit();
6106 }
6107 EXPORT_SYMBOL_GPL(kvm_exit);
6108
6109 struct kvm_vm_worker_thread_context {
6110         struct kvm *kvm;
6111         struct task_struct *parent;
6112         struct completion init_done;
6113         kvm_vm_thread_fn_t thread_fn;
6114         uintptr_t data;
6115         int err;
6116 };
6117
6118 static int kvm_vm_worker_thread(void *context)
6119 {
6120         /*
6121          * The init_context is allocated on the stack of the parent thread, so
6122          * we have to locally copy anything that is needed beyond initialization
6123          */
6124         struct kvm_vm_worker_thread_context *init_context = context;
6125         struct task_struct *parent;
6126         struct kvm *kvm = init_context->kvm;
6127         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6128         uintptr_t data = init_context->data;
6129         int err;
6130
6131         err = kthread_park(current);
6132         /* kthread_park(current) is never supposed to return an error */
6133         WARN_ON(err != 0);
6134         if (err)
6135                 goto init_complete;
6136
6137         err = cgroup_attach_task_all(init_context->parent, current);
6138         if (err) {
6139                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6140                         __func__, err);
6141                 goto init_complete;
6142         }
6143
6144         set_user_nice(current, task_nice(init_context->parent));
6145
6146 init_complete:
6147         init_context->err = err;
6148         complete(&init_context->init_done);
6149         init_context = NULL;
6150
6151         if (err)
6152                 goto out;
6153
6154         /* Wait to be woken up by the spawner before proceeding. */
6155         kthread_parkme();
6156
6157         if (!kthread_should_stop())
6158                 err = thread_fn(kvm, data);
6159
6160 out:
6161         /*
6162          * Move kthread back to its original cgroup to prevent it lingering in
6163          * the cgroup of the VM process, after the latter finishes its
6164          * execution.
6165          *
6166          * kthread_stop() waits on the 'exited' completion condition which is
6167          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6168          * kthread is removed from the cgroup in the cgroup_exit() which is
6169          * called after the exit_mm(). This causes the kthread_stop() to return
6170          * before the kthread actually quits the cgroup.
6171          */
6172         rcu_read_lock();
6173         parent = rcu_dereference(current->real_parent);
6174         get_task_struct(parent);
6175         rcu_read_unlock();
6176         cgroup_attach_task_all(parent, current);
6177         put_task_struct(parent);
6178
6179         return err;
6180 }
6181
6182 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6183                                 uintptr_t data, const char *name,
6184                                 struct task_struct **thread_ptr)
6185 {
6186         struct kvm_vm_worker_thread_context init_context = {};
6187         struct task_struct *thread;
6188
6189         *thread_ptr = NULL;
6190         init_context.kvm = kvm;
6191         init_context.parent = current;
6192         init_context.thread_fn = thread_fn;
6193         init_context.data = data;
6194         init_completion(&init_context.init_done);
6195
6196         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6197                              "%s-%d", name, task_pid_nr(current));
6198         if (IS_ERR(thread))
6199                 return PTR_ERR(thread);
6200
6201         /* kthread_run is never supposed to return NULL */
6202         WARN_ON(thread == NULL);
6203
6204         wait_for_completion(&init_context.init_done);
6205
6206         if (!init_context.err)
6207                 *thread_ptr = thread;
6208
6209         return init_context.err;
6210 }