bonding: improve nl error msg when device can't be enslaved because of IFF_MASTER
[platform/kernel/linux-starfive.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                                                    unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194         struct page *page = pfn_to_page(pfn);
195
196         if (!PageTransCompoundMap(page))
197                 return false;
198
199         return is_transparent_hugepage(compound_head(page));
200 }
201
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243
244 static void ack_flush(void *_completed)
245 {
246 }
247
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250         if (unlikely(!cpus))
251                 cpus = cpu_online_mask;
252
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_flush, NULL, wait);
257         return true;
258 }
259
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261                                  struct kvm_vcpu *except,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272                     vcpu == except)
273                         continue;
274
275                 kvm_make_request(req, vcpu);
276                 cpu = vcpu->cpu;
277
278                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279                         continue;
280
281                 if (tmp != NULL && cpu != -1 && cpu != me &&
282                     kvm_request_needs_ipi(vcpu, req))
283                         __cpumask_set_cpu(cpu, tmp);
284         }
285
286         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287         put_cpu();
288
289         return called;
290 }
291
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293                                       struct kvm_vcpu *except)
294 {
295         cpumask_var_t cpus;
296         bool called;
297
298         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301
302         free_cpumask_var(cpus);
303         return called;
304 }
305
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308         return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
311
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315         /*
316          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317          * kvm_make_all_cpus_request.
318          */
319         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321         /*
322          * We want to publish modifications to the page tables before reading
323          * mode. Pairs with a memory barrier in arch-specific code.
324          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325          * and smp_mb in walk_shadow_page_lockless_begin/end.
326          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327          *
328          * There is already an smp_mb__after_atomic() before
329          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330          * barrier here.
331          */
332         if (!kvm_arch_flush_remote_tlb(kvm)
333             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334                 ++kvm->stat.generic.remote_tlb_flush;
335         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344
345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347                                                gfp_t gfp_flags)
348 {
349         gfp_flags |= mc->gfp_zero;
350
351         if (mc->kmem_cache)
352                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
353         else
354                 return (void *)__get_free_page(gfp_flags);
355 }
356
357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
358 {
359         void *obj;
360
361         if (mc->nobjs >= min)
362                 return 0;
363         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
364                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
365                 if (!obj)
366                         return mc->nobjs >= min ? 0 : -ENOMEM;
367                 mc->objects[mc->nobjs++] = obj;
368         }
369         return 0;
370 }
371
372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
373 {
374         return mc->nobjs;
375 }
376
377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
378 {
379         while (mc->nobjs) {
380                 if (mc->kmem_cache)
381                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
382                 else
383                         free_page((unsigned long)mc->objects[--mc->nobjs]);
384         }
385 }
386
387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
388 {
389         void *p;
390
391         if (WARN_ON(!mc->nobjs))
392                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
393         else
394                 p = mc->objects[--mc->nobjs];
395         BUG_ON(!p);
396         return p;
397 }
398 #endif
399
400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
401 {
402         mutex_init(&vcpu->mutex);
403         vcpu->cpu = -1;
404         vcpu->kvm = kvm;
405         vcpu->vcpu_id = id;
406         vcpu->pid = NULL;
407         rcuwait_init(&vcpu->wait);
408         kvm_async_pf_vcpu_init(vcpu);
409
410         vcpu->pre_pcpu = -1;
411         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
412
413         kvm_vcpu_set_in_spin_loop(vcpu, false);
414         kvm_vcpu_set_dy_eligible(vcpu, false);
415         vcpu->preempted = false;
416         vcpu->ready = false;
417         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
418 }
419
420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
421 {
422         kvm_dirty_ring_free(&vcpu->dirty_ring);
423         kvm_arch_vcpu_destroy(vcpu);
424
425         /*
426          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
427          * the vcpu->pid pointer, and at destruction time all file descriptors
428          * are already gone.
429          */
430         put_pid(rcu_dereference_protected(vcpu->pid, 1));
431
432         free_page((unsigned long)vcpu->run);
433         kmem_cache_free(kvm_vcpu_cache, vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
436
437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
439 {
440         return container_of(mn, struct kvm, mmu_notifier);
441 }
442
443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
444                                               struct mm_struct *mm,
445                                               unsigned long start, unsigned long end)
446 {
447         struct kvm *kvm = mmu_notifier_to_kvm(mn);
448         int idx;
449
450         idx = srcu_read_lock(&kvm->srcu);
451         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
452         srcu_read_unlock(&kvm->srcu, idx);
453 }
454
455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
456
457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
458                              unsigned long end);
459
460 struct kvm_hva_range {
461         unsigned long start;
462         unsigned long end;
463         pte_t pte;
464         hva_handler_t handler;
465         on_lock_fn_t on_lock;
466         bool flush_on_ret;
467         bool may_block;
468 };
469
470 /*
471  * Use a dedicated stub instead of NULL to indicate that there is no callback
472  * function/handler.  The compiler technically can't guarantee that a real
473  * function will have a non-zero address, and so it will generate code to
474  * check for !NULL, whereas comparing against a stub will be elided at compile
475  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
476  */
477 static void kvm_null_fn(void)
478 {
479
480 }
481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
482
483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
484                                                   const struct kvm_hva_range *range)
485 {
486         bool ret = false, locked = false;
487         struct kvm_gfn_range gfn_range;
488         struct kvm_memory_slot *slot;
489         struct kvm_memslots *slots;
490         int i, idx;
491
492         /* A null handler is allowed if and only if on_lock() is provided. */
493         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
494                          IS_KVM_NULL_FN(range->handler)))
495                 return 0;
496
497         idx = srcu_read_lock(&kvm->srcu);
498
499         /* The on_lock() path does not yet support lock elision. */
500         if (!IS_KVM_NULL_FN(range->on_lock)) {
501                 locked = true;
502                 KVM_MMU_LOCK(kvm);
503
504                 range->on_lock(kvm, range->start, range->end);
505
506                 if (IS_KVM_NULL_FN(range->handler))
507                         goto out_unlock;
508         }
509
510         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
511                 slots = __kvm_memslots(kvm, i);
512                 kvm_for_each_memslot(slot, slots) {
513                         unsigned long hva_start, hva_end;
514
515                         hva_start = max(range->start, slot->userspace_addr);
516                         hva_end = min(range->end, slot->userspace_addr +
517                                                   (slot->npages << PAGE_SHIFT));
518                         if (hva_start >= hva_end)
519                                 continue;
520
521                         /*
522                          * To optimize for the likely case where the address
523                          * range is covered by zero or one memslots, don't
524                          * bother making these conditional (to avoid writes on
525                          * the second or later invocation of the handler).
526                          */
527                         gfn_range.pte = range->pte;
528                         gfn_range.may_block = range->may_block;
529
530                         /*
531                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
532                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
533                          */
534                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
535                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
536                         gfn_range.slot = slot;
537
538                         if (!locked) {
539                                 locked = true;
540                                 KVM_MMU_LOCK(kvm);
541                         }
542                         ret |= range->handler(kvm, &gfn_range);
543                 }
544         }
545
546         if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
547                 kvm_flush_remote_tlbs(kvm);
548
549 out_unlock:
550         if (locked)
551                 KVM_MMU_UNLOCK(kvm);
552
553         srcu_read_unlock(&kvm->srcu, idx);
554
555         /* The notifiers are averse to booleans. :-( */
556         return (int)ret;
557 }
558
559 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
560                                                 unsigned long start,
561                                                 unsigned long end,
562                                                 pte_t pte,
563                                                 hva_handler_t handler)
564 {
565         struct kvm *kvm = mmu_notifier_to_kvm(mn);
566         const struct kvm_hva_range range = {
567                 .start          = start,
568                 .end            = end,
569                 .pte            = pte,
570                 .handler        = handler,
571                 .on_lock        = (void *)kvm_null_fn,
572                 .flush_on_ret   = true,
573                 .may_block      = false,
574         };
575
576         return __kvm_handle_hva_range(kvm, &range);
577 }
578
579 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
580                                                          unsigned long start,
581                                                          unsigned long end,
582                                                          hva_handler_t handler)
583 {
584         struct kvm *kvm = mmu_notifier_to_kvm(mn);
585         const struct kvm_hva_range range = {
586                 .start          = start,
587                 .end            = end,
588                 .pte            = __pte(0),
589                 .handler        = handler,
590                 .on_lock        = (void *)kvm_null_fn,
591                 .flush_on_ret   = false,
592                 .may_block      = false,
593         };
594
595         return __kvm_handle_hva_range(kvm, &range);
596 }
597 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
598                                         struct mm_struct *mm,
599                                         unsigned long address,
600                                         pte_t pte)
601 {
602         struct kvm *kvm = mmu_notifier_to_kvm(mn);
603
604         trace_kvm_set_spte_hva(address);
605
606         /*
607          * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
608          * and so always runs with an elevated notifier count.  This obviates
609          * the need to bump the sequence count.
610          */
611         WARN_ON_ONCE(!kvm->mmu_notifier_count);
612
613         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
614 }
615
616 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
617                                    unsigned long end)
618 {
619         /*
620          * The count increase must become visible at unlock time as no
621          * spte can be established without taking the mmu_lock and
622          * count is also read inside the mmu_lock critical section.
623          */
624         kvm->mmu_notifier_count++;
625         if (likely(kvm->mmu_notifier_count == 1)) {
626                 kvm->mmu_notifier_range_start = start;
627                 kvm->mmu_notifier_range_end = end;
628         } else {
629                 /*
630                  * Fully tracking multiple concurrent ranges has dimishing
631                  * returns. Keep things simple and just find the minimal range
632                  * which includes the current and new ranges. As there won't be
633                  * enough information to subtract a range after its invalidate
634                  * completes, any ranges invalidated concurrently will
635                  * accumulate and persist until all outstanding invalidates
636                  * complete.
637                  */
638                 kvm->mmu_notifier_range_start =
639                         min(kvm->mmu_notifier_range_start, start);
640                 kvm->mmu_notifier_range_end =
641                         max(kvm->mmu_notifier_range_end, end);
642         }
643 }
644
645 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
646                                         const struct mmu_notifier_range *range)
647 {
648         struct kvm *kvm = mmu_notifier_to_kvm(mn);
649         const struct kvm_hva_range hva_range = {
650                 .start          = range->start,
651                 .end            = range->end,
652                 .pte            = __pte(0),
653                 .handler        = kvm_unmap_gfn_range,
654                 .on_lock        = kvm_inc_notifier_count,
655                 .flush_on_ret   = true,
656                 .may_block      = mmu_notifier_range_blockable(range),
657         };
658
659         trace_kvm_unmap_hva_range(range->start, range->end);
660
661         __kvm_handle_hva_range(kvm, &hva_range);
662
663         return 0;
664 }
665
666 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
667                                    unsigned long end)
668 {
669         /*
670          * This sequence increase will notify the kvm page fault that
671          * the page that is going to be mapped in the spte could have
672          * been freed.
673          */
674         kvm->mmu_notifier_seq++;
675         smp_wmb();
676         /*
677          * The above sequence increase must be visible before the
678          * below count decrease, which is ensured by the smp_wmb above
679          * in conjunction with the smp_rmb in mmu_notifier_retry().
680          */
681         kvm->mmu_notifier_count--;
682 }
683
684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
685                                         const struct mmu_notifier_range *range)
686 {
687         struct kvm *kvm = mmu_notifier_to_kvm(mn);
688         const struct kvm_hva_range hva_range = {
689                 .start          = range->start,
690                 .end            = range->end,
691                 .pte            = __pte(0),
692                 .handler        = (void *)kvm_null_fn,
693                 .on_lock        = kvm_dec_notifier_count,
694                 .flush_on_ret   = false,
695                 .may_block      = mmu_notifier_range_blockable(range),
696         };
697
698         __kvm_handle_hva_range(kvm, &hva_range);
699
700         BUG_ON(kvm->mmu_notifier_count < 0);
701 }
702
703 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
704                                               struct mm_struct *mm,
705                                               unsigned long start,
706                                               unsigned long end)
707 {
708         trace_kvm_age_hva(start, end);
709
710         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
711 }
712
713 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
714                                         struct mm_struct *mm,
715                                         unsigned long start,
716                                         unsigned long end)
717 {
718         trace_kvm_age_hva(start, end);
719
720         /*
721          * Even though we do not flush TLB, this will still adversely
722          * affect performance on pre-Haswell Intel EPT, where there is
723          * no EPT Access Bit to clear so that we have to tear down EPT
724          * tables instead. If we find this unacceptable, we can always
725          * add a parameter to kvm_age_hva so that it effectively doesn't
726          * do anything on clear_young.
727          *
728          * Also note that currently we never issue secondary TLB flushes
729          * from clear_young, leaving this job up to the regular system
730          * cadence. If we find this inaccurate, we might come up with a
731          * more sophisticated heuristic later.
732          */
733         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
734 }
735
736 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
737                                        struct mm_struct *mm,
738                                        unsigned long address)
739 {
740         trace_kvm_test_age_hva(address);
741
742         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
743                                              kvm_test_age_gfn);
744 }
745
746 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
747                                      struct mm_struct *mm)
748 {
749         struct kvm *kvm = mmu_notifier_to_kvm(mn);
750         int idx;
751
752         idx = srcu_read_lock(&kvm->srcu);
753         kvm_arch_flush_shadow_all(kvm);
754         srcu_read_unlock(&kvm->srcu, idx);
755 }
756
757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
758         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
759         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
760         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
761         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
762         .clear_young            = kvm_mmu_notifier_clear_young,
763         .test_young             = kvm_mmu_notifier_test_young,
764         .change_pte             = kvm_mmu_notifier_change_pte,
765         .release                = kvm_mmu_notifier_release,
766 };
767
768 static int kvm_init_mmu_notifier(struct kvm *kvm)
769 {
770         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
771         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
772 }
773
774 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
775
776 static int kvm_init_mmu_notifier(struct kvm *kvm)
777 {
778         return 0;
779 }
780
781 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
782
783 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
784 static int kvm_pm_notifier_call(struct notifier_block *bl,
785                                 unsigned long state,
786                                 void *unused)
787 {
788         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
789
790         return kvm_arch_pm_notifier(kvm, state);
791 }
792
793 static void kvm_init_pm_notifier(struct kvm *kvm)
794 {
795         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
796         /* Suspend KVM before we suspend ftrace, RCU, etc. */
797         kvm->pm_notifier.priority = INT_MAX;
798         register_pm_notifier(&kvm->pm_notifier);
799 }
800
801 static void kvm_destroy_pm_notifier(struct kvm *kvm)
802 {
803         unregister_pm_notifier(&kvm->pm_notifier);
804 }
805 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
806 static void kvm_init_pm_notifier(struct kvm *kvm)
807 {
808 }
809
810 static void kvm_destroy_pm_notifier(struct kvm *kvm)
811 {
812 }
813 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
814
815 static struct kvm_memslots *kvm_alloc_memslots(void)
816 {
817         int i;
818         struct kvm_memslots *slots;
819
820         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
821         if (!slots)
822                 return NULL;
823
824         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
825                 slots->id_to_index[i] = -1;
826
827         return slots;
828 }
829
830 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
831 {
832         if (!memslot->dirty_bitmap)
833                 return;
834
835         kvfree(memslot->dirty_bitmap);
836         memslot->dirty_bitmap = NULL;
837 }
838
839 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
840 {
841         kvm_destroy_dirty_bitmap(slot);
842
843         kvm_arch_free_memslot(kvm, slot);
844
845         slot->flags = 0;
846         slot->npages = 0;
847 }
848
849 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
850 {
851         struct kvm_memory_slot *memslot;
852
853         if (!slots)
854                 return;
855
856         kvm_for_each_memslot(memslot, slots)
857                 kvm_free_memslot(kvm, memslot);
858
859         kvfree(slots);
860 }
861
862 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
863 {
864         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
865         case KVM_STATS_TYPE_INSTANT:
866                 return 0444;
867         case KVM_STATS_TYPE_CUMULATIVE:
868         case KVM_STATS_TYPE_PEAK:
869         default:
870                 return 0644;
871         }
872 }
873
874
875 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
876 {
877         int i;
878         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
879                                       kvm_vcpu_stats_header.num_desc;
880
881         if (!kvm->debugfs_dentry)
882                 return;
883
884         debugfs_remove_recursive(kvm->debugfs_dentry);
885
886         if (kvm->debugfs_stat_data) {
887                 for (i = 0; i < kvm_debugfs_num_entries; i++)
888                         kfree(kvm->debugfs_stat_data[i]);
889                 kfree(kvm->debugfs_stat_data);
890         }
891 }
892
893 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
894 {
895         static DEFINE_MUTEX(kvm_debugfs_lock);
896         struct dentry *dent;
897         char dir_name[ITOA_MAX_LEN * 2];
898         struct kvm_stat_data *stat_data;
899         const struct _kvm_stats_desc *pdesc;
900         int i;
901         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
902                                       kvm_vcpu_stats_header.num_desc;
903
904         if (!debugfs_initialized())
905                 return 0;
906
907         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
908         mutex_lock(&kvm_debugfs_lock);
909         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
910         if (dent) {
911                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
912                 dput(dent);
913                 mutex_unlock(&kvm_debugfs_lock);
914                 return 0;
915         }
916         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
917         mutex_unlock(&kvm_debugfs_lock);
918         if (IS_ERR(dent))
919                 return 0;
920
921         kvm->debugfs_dentry = dent;
922         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
923                                          sizeof(*kvm->debugfs_stat_data),
924                                          GFP_KERNEL_ACCOUNT);
925         if (!kvm->debugfs_stat_data)
926                 return -ENOMEM;
927
928         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
929                 pdesc = &kvm_vm_stats_desc[i];
930                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
931                 if (!stat_data)
932                         return -ENOMEM;
933
934                 stat_data->kvm = kvm;
935                 stat_data->desc = pdesc;
936                 stat_data->kind = KVM_STAT_VM;
937                 kvm->debugfs_stat_data[i] = stat_data;
938                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
939                                     kvm->debugfs_dentry, stat_data,
940                                     &stat_fops_per_vm);
941         }
942
943         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
944                 pdesc = &kvm_vcpu_stats_desc[i];
945                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
946                 if (!stat_data)
947                         return -ENOMEM;
948
949                 stat_data->kvm = kvm;
950                 stat_data->desc = pdesc;
951                 stat_data->kind = KVM_STAT_VCPU;
952                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
953                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
954                                     kvm->debugfs_dentry, stat_data,
955                                     &stat_fops_per_vm);
956         }
957         return 0;
958 }
959
960 /*
961  * Called after the VM is otherwise initialized, but just before adding it to
962  * the vm_list.
963  */
964 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
965 {
966         return 0;
967 }
968
969 /*
970  * Called just after removing the VM from the vm_list, but before doing any
971  * other destruction.
972  */
973 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
974 {
975 }
976
977 static struct kvm *kvm_create_vm(unsigned long type)
978 {
979         struct kvm *kvm = kvm_arch_alloc_vm();
980         int r = -ENOMEM;
981         int i;
982
983         if (!kvm)
984                 return ERR_PTR(-ENOMEM);
985
986         KVM_MMU_LOCK_INIT(kvm);
987         mmgrab(current->mm);
988         kvm->mm = current->mm;
989         kvm_eventfd_init(kvm);
990         mutex_init(&kvm->lock);
991         mutex_init(&kvm->irq_lock);
992         mutex_init(&kvm->slots_lock);
993         mutex_init(&kvm->slots_arch_lock);
994         INIT_LIST_HEAD(&kvm->devices);
995
996         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
997
998         if (init_srcu_struct(&kvm->srcu))
999                 goto out_err_no_srcu;
1000         if (init_srcu_struct(&kvm->irq_srcu))
1001                 goto out_err_no_irq_srcu;
1002
1003         refcount_set(&kvm->users_count, 1);
1004         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1005                 struct kvm_memslots *slots = kvm_alloc_memslots();
1006
1007                 if (!slots)
1008                         goto out_err_no_arch_destroy_vm;
1009                 /* Generations must be different for each address space. */
1010                 slots->generation = i;
1011                 rcu_assign_pointer(kvm->memslots[i], slots);
1012         }
1013
1014         for (i = 0; i < KVM_NR_BUSES; i++) {
1015                 rcu_assign_pointer(kvm->buses[i],
1016                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1017                 if (!kvm->buses[i])
1018                         goto out_err_no_arch_destroy_vm;
1019         }
1020
1021         kvm->max_halt_poll_ns = halt_poll_ns;
1022
1023         r = kvm_arch_init_vm(kvm, type);
1024         if (r)
1025                 goto out_err_no_arch_destroy_vm;
1026
1027         r = hardware_enable_all();
1028         if (r)
1029                 goto out_err_no_disable;
1030
1031 #ifdef CONFIG_HAVE_KVM_IRQFD
1032         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1033 #endif
1034
1035         r = kvm_init_mmu_notifier(kvm);
1036         if (r)
1037                 goto out_err_no_mmu_notifier;
1038
1039         r = kvm_arch_post_init_vm(kvm);
1040         if (r)
1041                 goto out_err;
1042
1043         mutex_lock(&kvm_lock);
1044         list_add(&kvm->vm_list, &vm_list);
1045         mutex_unlock(&kvm_lock);
1046
1047         preempt_notifier_inc();
1048         kvm_init_pm_notifier(kvm);
1049
1050         return kvm;
1051
1052 out_err:
1053 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1054         if (kvm->mmu_notifier.ops)
1055                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1056 #endif
1057 out_err_no_mmu_notifier:
1058         hardware_disable_all();
1059 out_err_no_disable:
1060         kvm_arch_destroy_vm(kvm);
1061 out_err_no_arch_destroy_vm:
1062         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1063         for (i = 0; i < KVM_NR_BUSES; i++)
1064                 kfree(kvm_get_bus(kvm, i));
1065         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1066                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1067         cleanup_srcu_struct(&kvm->irq_srcu);
1068 out_err_no_irq_srcu:
1069         cleanup_srcu_struct(&kvm->srcu);
1070 out_err_no_srcu:
1071         kvm_arch_free_vm(kvm);
1072         mmdrop(current->mm);
1073         return ERR_PTR(r);
1074 }
1075
1076 static void kvm_destroy_devices(struct kvm *kvm)
1077 {
1078         struct kvm_device *dev, *tmp;
1079
1080         /*
1081          * We do not need to take the kvm->lock here, because nobody else
1082          * has a reference to the struct kvm at this point and therefore
1083          * cannot access the devices list anyhow.
1084          */
1085         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1086                 list_del(&dev->vm_node);
1087                 dev->ops->destroy(dev);
1088         }
1089 }
1090
1091 static void kvm_destroy_vm(struct kvm *kvm)
1092 {
1093         int i;
1094         struct mm_struct *mm = kvm->mm;
1095
1096         kvm_destroy_pm_notifier(kvm);
1097         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1098         kvm_destroy_vm_debugfs(kvm);
1099         kvm_arch_sync_events(kvm);
1100         mutex_lock(&kvm_lock);
1101         list_del(&kvm->vm_list);
1102         mutex_unlock(&kvm_lock);
1103         kvm_arch_pre_destroy_vm(kvm);
1104
1105         kvm_free_irq_routing(kvm);
1106         for (i = 0; i < KVM_NR_BUSES; i++) {
1107                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1108
1109                 if (bus)
1110                         kvm_io_bus_destroy(bus);
1111                 kvm->buses[i] = NULL;
1112         }
1113         kvm_coalesced_mmio_free(kvm);
1114 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1115         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1116 #else
1117         kvm_arch_flush_shadow_all(kvm);
1118 #endif
1119         kvm_arch_destroy_vm(kvm);
1120         kvm_destroy_devices(kvm);
1121         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1122                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1123         cleanup_srcu_struct(&kvm->irq_srcu);
1124         cleanup_srcu_struct(&kvm->srcu);
1125         kvm_arch_free_vm(kvm);
1126         preempt_notifier_dec();
1127         hardware_disable_all();
1128         mmdrop(mm);
1129 }
1130
1131 void kvm_get_kvm(struct kvm *kvm)
1132 {
1133         refcount_inc(&kvm->users_count);
1134 }
1135 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1136
1137 void kvm_put_kvm(struct kvm *kvm)
1138 {
1139         if (refcount_dec_and_test(&kvm->users_count))
1140                 kvm_destroy_vm(kvm);
1141 }
1142 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1143
1144 /*
1145  * Used to put a reference that was taken on behalf of an object associated
1146  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1147  * of the new file descriptor fails and the reference cannot be transferred to
1148  * its final owner.  In such cases, the caller is still actively using @kvm and
1149  * will fail miserably if the refcount unexpectedly hits zero.
1150  */
1151 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1152 {
1153         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1156
1157 static int kvm_vm_release(struct inode *inode, struct file *filp)
1158 {
1159         struct kvm *kvm = filp->private_data;
1160
1161         kvm_irqfd_release(kvm);
1162
1163         kvm_put_kvm(kvm);
1164         return 0;
1165 }
1166
1167 /*
1168  * Allocation size is twice as large as the actual dirty bitmap size.
1169  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1170  */
1171 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1172 {
1173         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1174
1175         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1176         if (!memslot->dirty_bitmap)
1177                 return -ENOMEM;
1178
1179         return 0;
1180 }
1181
1182 /*
1183  * Delete a memslot by decrementing the number of used slots and shifting all
1184  * other entries in the array forward one spot.
1185  */
1186 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1187                                       struct kvm_memory_slot *memslot)
1188 {
1189         struct kvm_memory_slot *mslots = slots->memslots;
1190         int i;
1191
1192         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1193                 return;
1194
1195         slots->used_slots--;
1196
1197         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1198                 atomic_set(&slots->lru_slot, 0);
1199
1200         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1201                 mslots[i] = mslots[i + 1];
1202                 slots->id_to_index[mslots[i].id] = i;
1203         }
1204         mslots[i] = *memslot;
1205         slots->id_to_index[memslot->id] = -1;
1206 }
1207
1208 /*
1209  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1210  * the new slot's initial index into the memslots array.
1211  */
1212 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1213 {
1214         return slots->used_slots++;
1215 }
1216
1217 /*
1218  * Move a changed memslot backwards in the array by shifting existing slots
1219  * with a higher GFN toward the front of the array.  Note, the changed memslot
1220  * itself is not preserved in the array, i.e. not swapped at this time, only
1221  * its new index into the array is tracked.  Returns the changed memslot's
1222  * current index into the memslots array.
1223  */
1224 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1225                                             struct kvm_memory_slot *memslot)
1226 {
1227         struct kvm_memory_slot *mslots = slots->memslots;
1228         int i;
1229
1230         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1231             WARN_ON_ONCE(!slots->used_slots))
1232                 return -1;
1233
1234         /*
1235          * Move the target memslot backward in the array by shifting existing
1236          * memslots with a higher GFN (than the target memslot) towards the
1237          * front of the array.
1238          */
1239         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1240                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1241                         break;
1242
1243                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1244
1245                 /* Shift the next memslot forward one and update its index. */
1246                 mslots[i] = mslots[i + 1];
1247                 slots->id_to_index[mslots[i].id] = i;
1248         }
1249         return i;
1250 }
1251
1252 /*
1253  * Move a changed memslot forwards in the array by shifting existing slots with
1254  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1255  * is not preserved in the array, i.e. not swapped at this time, only its new
1256  * index into the array is tracked.  Returns the changed memslot's final index
1257  * into the memslots array.
1258  */
1259 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1260                                            struct kvm_memory_slot *memslot,
1261                                            int start)
1262 {
1263         struct kvm_memory_slot *mslots = slots->memslots;
1264         int i;
1265
1266         for (i = start; i > 0; i--) {
1267                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1268                         break;
1269
1270                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1271
1272                 /* Shift the next memslot back one and update its index. */
1273                 mslots[i] = mslots[i - 1];
1274                 slots->id_to_index[mslots[i].id] = i;
1275         }
1276         return i;
1277 }
1278
1279 /*
1280  * Re-sort memslots based on their GFN to account for an added, deleted, or
1281  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1282  * memslot lookup.
1283  *
1284  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1285  * at memslots[0] has the highest GFN.
1286  *
1287  * The sorting algorithm takes advantage of having initially sorted memslots
1288  * and knowing the position of the changed memslot.  Sorting is also optimized
1289  * by not swapping the updated memslot and instead only shifting other memslots
1290  * and tracking the new index for the update memslot.  Only once its final
1291  * index is known is the updated memslot copied into its position in the array.
1292  *
1293  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1294  *    the end of the array.
1295  *
1296  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1297  *    end of the array and then it forward to its correct location.
1298  *
1299  *  - When moving a memslot, the algorithm first moves the updated memslot
1300  *    backward to handle the scenario where the memslot's GFN was changed to a
1301  *    lower value.  update_memslots() then falls through and runs the same flow
1302  *    as creating a memslot to move the memslot forward to handle the scenario
1303  *    where its GFN was changed to a higher value.
1304  *
1305  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1306  * historical reasons.  Originally, invalid memslots where denoted by having
1307  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1308  * to the end of the array.  The current algorithm uses dedicated logic to
1309  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1310  *
1311  * The other historical motiviation for highest->lowest was to improve the
1312  * performance of memslot lookup.  KVM originally used a linear search starting
1313  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1314  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1315  * single memslot above the 4gb boundary.  As the largest memslot is also the
1316  * most likely to be referenced, sorting it to the front of the array was
1317  * advantageous.  The current binary search starts from the middle of the array
1318  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1319  */
1320 static void update_memslots(struct kvm_memslots *slots,
1321                             struct kvm_memory_slot *memslot,
1322                             enum kvm_mr_change change)
1323 {
1324         int i;
1325
1326         if (change == KVM_MR_DELETE) {
1327                 kvm_memslot_delete(slots, memslot);
1328         } else {
1329                 if (change == KVM_MR_CREATE)
1330                         i = kvm_memslot_insert_back(slots);
1331                 else
1332                         i = kvm_memslot_move_backward(slots, memslot);
1333                 i = kvm_memslot_move_forward(slots, memslot, i);
1334
1335                 /*
1336                  * Copy the memslot to its new position in memslots and update
1337                  * its index accordingly.
1338                  */
1339                 slots->memslots[i] = *memslot;
1340                 slots->id_to_index[memslot->id] = i;
1341         }
1342 }
1343
1344 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1345 {
1346         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1347
1348 #ifdef __KVM_HAVE_READONLY_MEM
1349         valid_flags |= KVM_MEM_READONLY;
1350 #endif
1351
1352         if (mem->flags & ~valid_flags)
1353                 return -EINVAL;
1354
1355         return 0;
1356 }
1357
1358 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1359                 int as_id, struct kvm_memslots *slots)
1360 {
1361         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1362         u64 gen = old_memslots->generation;
1363
1364         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1365         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1366
1367         rcu_assign_pointer(kvm->memslots[as_id], slots);
1368
1369         /*
1370          * Acquired in kvm_set_memslot. Must be released before synchronize
1371          * SRCU below in order to avoid deadlock with another thread
1372          * acquiring the slots_arch_lock in an srcu critical section.
1373          */
1374         mutex_unlock(&kvm->slots_arch_lock);
1375
1376         synchronize_srcu_expedited(&kvm->srcu);
1377
1378         /*
1379          * Increment the new memslot generation a second time, dropping the
1380          * update in-progress flag and incrementing the generation based on
1381          * the number of address spaces.  This provides a unique and easily
1382          * identifiable generation number while the memslots are in flux.
1383          */
1384         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1385
1386         /*
1387          * Generations must be unique even across address spaces.  We do not need
1388          * a global counter for that, instead the generation space is evenly split
1389          * across address spaces.  For example, with two address spaces, address
1390          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1391          * use generations 1, 3, 5, ...
1392          */
1393         gen += KVM_ADDRESS_SPACE_NUM;
1394
1395         kvm_arch_memslots_updated(kvm, gen);
1396
1397         slots->generation = gen;
1398
1399         return old_memslots;
1400 }
1401
1402 static size_t kvm_memslots_size(int slots)
1403 {
1404         return sizeof(struct kvm_memslots) +
1405                (sizeof(struct kvm_memory_slot) * slots);
1406 }
1407
1408 static void kvm_copy_memslots(struct kvm_memslots *to,
1409                               struct kvm_memslots *from)
1410 {
1411         memcpy(to, from, kvm_memslots_size(from->used_slots));
1412 }
1413
1414 /*
1415  * Note, at a minimum, the current number of used slots must be allocated, even
1416  * when deleting a memslot, as we need a complete duplicate of the memslots for
1417  * use when invalidating a memslot prior to deleting/moving the memslot.
1418  */
1419 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1420                                              enum kvm_mr_change change)
1421 {
1422         struct kvm_memslots *slots;
1423         size_t new_size;
1424
1425         if (change == KVM_MR_CREATE)
1426                 new_size = kvm_memslots_size(old->used_slots + 1);
1427         else
1428                 new_size = kvm_memslots_size(old->used_slots);
1429
1430         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1431         if (likely(slots))
1432                 kvm_copy_memslots(slots, old);
1433
1434         return slots;
1435 }
1436
1437 static int kvm_set_memslot(struct kvm *kvm,
1438                            const struct kvm_userspace_memory_region *mem,
1439                            struct kvm_memory_slot *old,
1440                            struct kvm_memory_slot *new, int as_id,
1441                            enum kvm_mr_change change)
1442 {
1443         struct kvm_memory_slot *slot;
1444         struct kvm_memslots *slots;
1445         int r;
1446
1447         /*
1448          * Released in install_new_memslots.
1449          *
1450          * Must be held from before the current memslots are copied until
1451          * after the new memslots are installed with rcu_assign_pointer,
1452          * then released before the synchronize srcu in install_new_memslots.
1453          *
1454          * When modifying memslots outside of the slots_lock, must be held
1455          * before reading the pointer to the current memslots until after all
1456          * changes to those memslots are complete.
1457          *
1458          * These rules ensure that installing new memslots does not lose
1459          * changes made to the previous memslots.
1460          */
1461         mutex_lock(&kvm->slots_arch_lock);
1462
1463         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1464         if (!slots) {
1465                 mutex_unlock(&kvm->slots_arch_lock);
1466                 return -ENOMEM;
1467         }
1468
1469         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1470                 /*
1471                  * Note, the INVALID flag needs to be in the appropriate entry
1472                  * in the freshly allocated memslots, not in @old or @new.
1473                  */
1474                 slot = id_to_memslot(slots, old->id);
1475                 slot->flags |= KVM_MEMSLOT_INVALID;
1476
1477                 /*
1478                  * We can re-use the memory from the old memslots.
1479                  * It will be overwritten with a copy of the new memslots
1480                  * after reacquiring the slots_arch_lock below.
1481                  */
1482                 slots = install_new_memslots(kvm, as_id, slots);
1483
1484                 /* From this point no new shadow pages pointing to a deleted,
1485                  * or moved, memslot will be created.
1486                  *
1487                  * validation of sp->gfn happens in:
1488                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1489                  *      - kvm_is_visible_gfn (mmu_check_root)
1490                  */
1491                 kvm_arch_flush_shadow_memslot(kvm, slot);
1492
1493                 /* Released in install_new_memslots. */
1494                 mutex_lock(&kvm->slots_arch_lock);
1495
1496                 /*
1497                  * The arch-specific fields of the memslots could have changed
1498                  * between releasing the slots_arch_lock in
1499                  * install_new_memslots and here, so get a fresh copy of the
1500                  * slots.
1501                  */
1502                 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1503         }
1504
1505         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1506         if (r)
1507                 goto out_slots;
1508
1509         update_memslots(slots, new, change);
1510         slots = install_new_memslots(kvm, as_id, slots);
1511
1512         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1513
1514         kvfree(slots);
1515         return 0;
1516
1517 out_slots:
1518         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1519                 slot = id_to_memslot(slots, old->id);
1520                 slot->flags &= ~KVM_MEMSLOT_INVALID;
1521                 slots = install_new_memslots(kvm, as_id, slots);
1522         } else {
1523                 mutex_unlock(&kvm->slots_arch_lock);
1524         }
1525         kvfree(slots);
1526         return r;
1527 }
1528
1529 static int kvm_delete_memslot(struct kvm *kvm,
1530                               const struct kvm_userspace_memory_region *mem,
1531                               struct kvm_memory_slot *old, int as_id)
1532 {
1533         struct kvm_memory_slot new;
1534         int r;
1535
1536         if (!old->npages)
1537                 return -EINVAL;
1538
1539         memset(&new, 0, sizeof(new));
1540         new.id = old->id;
1541         /*
1542          * This is only for debugging purpose; it should never be referenced
1543          * for a removed memslot.
1544          */
1545         new.as_id = as_id;
1546
1547         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1548         if (r)
1549                 return r;
1550
1551         kvm_free_memslot(kvm, old);
1552         return 0;
1553 }
1554
1555 /*
1556  * Allocate some memory and give it an address in the guest physical address
1557  * space.
1558  *
1559  * Discontiguous memory is allowed, mostly for framebuffers.
1560  *
1561  * Must be called holding kvm->slots_lock for write.
1562  */
1563 int __kvm_set_memory_region(struct kvm *kvm,
1564                             const struct kvm_userspace_memory_region *mem)
1565 {
1566         struct kvm_memory_slot old, new;
1567         struct kvm_memory_slot *tmp;
1568         enum kvm_mr_change change;
1569         int as_id, id;
1570         int r;
1571
1572         r = check_memory_region_flags(mem);
1573         if (r)
1574                 return r;
1575
1576         as_id = mem->slot >> 16;
1577         id = (u16)mem->slot;
1578
1579         /* General sanity checks */
1580         if (mem->memory_size & (PAGE_SIZE - 1))
1581                 return -EINVAL;
1582         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1583                 return -EINVAL;
1584         /* We can read the guest memory with __xxx_user() later on. */
1585         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1586             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1587              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1588                         mem->memory_size))
1589                 return -EINVAL;
1590         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1591                 return -EINVAL;
1592         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1593                 return -EINVAL;
1594
1595         /*
1596          * Make a full copy of the old memslot, the pointer will become stale
1597          * when the memslots are re-sorted by update_memslots(), and the old
1598          * memslot needs to be referenced after calling update_memslots(), e.g.
1599          * to free its resources and for arch specific behavior.
1600          */
1601         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1602         if (tmp) {
1603                 old = *tmp;
1604                 tmp = NULL;
1605         } else {
1606                 memset(&old, 0, sizeof(old));
1607                 old.id = id;
1608         }
1609
1610         if (!mem->memory_size)
1611                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1612
1613         new.as_id = as_id;
1614         new.id = id;
1615         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1616         new.npages = mem->memory_size >> PAGE_SHIFT;
1617         new.flags = mem->flags;
1618         new.userspace_addr = mem->userspace_addr;
1619
1620         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1621                 return -EINVAL;
1622
1623         if (!old.npages) {
1624                 change = KVM_MR_CREATE;
1625                 new.dirty_bitmap = NULL;
1626                 memset(&new.arch, 0, sizeof(new.arch));
1627         } else { /* Modify an existing slot. */
1628                 if ((new.userspace_addr != old.userspace_addr) ||
1629                     (new.npages != old.npages) ||
1630                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1631                         return -EINVAL;
1632
1633                 if (new.base_gfn != old.base_gfn)
1634                         change = KVM_MR_MOVE;
1635                 else if (new.flags != old.flags)
1636                         change = KVM_MR_FLAGS_ONLY;
1637                 else /* Nothing to change. */
1638                         return 0;
1639
1640                 /* Copy dirty_bitmap and arch from the current memslot. */
1641                 new.dirty_bitmap = old.dirty_bitmap;
1642                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1643         }
1644
1645         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1646                 /* Check for overlaps */
1647                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1648                         if (tmp->id == id)
1649                                 continue;
1650                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1651                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1652                                 return -EEXIST;
1653                 }
1654         }
1655
1656         /* Allocate/free page dirty bitmap as needed */
1657         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1658                 new.dirty_bitmap = NULL;
1659         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1660                 r = kvm_alloc_dirty_bitmap(&new);
1661                 if (r)
1662                         return r;
1663
1664                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1665                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1666         }
1667
1668         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1669         if (r)
1670                 goto out_bitmap;
1671
1672         if (old.dirty_bitmap && !new.dirty_bitmap)
1673                 kvm_destroy_dirty_bitmap(&old);
1674         return 0;
1675
1676 out_bitmap:
1677         if (new.dirty_bitmap && !old.dirty_bitmap)
1678                 kvm_destroy_dirty_bitmap(&new);
1679         return r;
1680 }
1681 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1682
1683 int kvm_set_memory_region(struct kvm *kvm,
1684                           const struct kvm_userspace_memory_region *mem)
1685 {
1686         int r;
1687
1688         mutex_lock(&kvm->slots_lock);
1689         r = __kvm_set_memory_region(kvm, mem);
1690         mutex_unlock(&kvm->slots_lock);
1691         return r;
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1694
1695 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1696                                           struct kvm_userspace_memory_region *mem)
1697 {
1698         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1699                 return -EINVAL;
1700
1701         return kvm_set_memory_region(kvm, mem);
1702 }
1703
1704 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1705 /**
1706  * kvm_get_dirty_log - get a snapshot of dirty pages
1707  * @kvm:        pointer to kvm instance
1708  * @log:        slot id and address to which we copy the log
1709  * @is_dirty:   set to '1' if any dirty pages were found
1710  * @memslot:    set to the associated memslot, always valid on success
1711  */
1712 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1713                       int *is_dirty, struct kvm_memory_slot **memslot)
1714 {
1715         struct kvm_memslots *slots;
1716         int i, as_id, id;
1717         unsigned long n;
1718         unsigned long any = 0;
1719
1720         /* Dirty ring tracking is exclusive to dirty log tracking */
1721         if (kvm->dirty_ring_size)
1722                 return -ENXIO;
1723
1724         *memslot = NULL;
1725         *is_dirty = 0;
1726
1727         as_id = log->slot >> 16;
1728         id = (u16)log->slot;
1729         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1730                 return -EINVAL;
1731
1732         slots = __kvm_memslots(kvm, as_id);
1733         *memslot = id_to_memslot(slots, id);
1734         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1735                 return -ENOENT;
1736
1737         kvm_arch_sync_dirty_log(kvm, *memslot);
1738
1739         n = kvm_dirty_bitmap_bytes(*memslot);
1740
1741         for (i = 0; !any && i < n/sizeof(long); ++i)
1742                 any = (*memslot)->dirty_bitmap[i];
1743
1744         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1745                 return -EFAULT;
1746
1747         if (any)
1748                 *is_dirty = 1;
1749         return 0;
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1752
1753 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1754 /**
1755  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1756  *      and reenable dirty page tracking for the corresponding pages.
1757  * @kvm:        pointer to kvm instance
1758  * @log:        slot id and address to which we copy the log
1759  *
1760  * We need to keep it in mind that VCPU threads can write to the bitmap
1761  * concurrently. So, to avoid losing track of dirty pages we keep the
1762  * following order:
1763  *
1764  *    1. Take a snapshot of the bit and clear it if needed.
1765  *    2. Write protect the corresponding page.
1766  *    3. Copy the snapshot to the userspace.
1767  *    4. Upon return caller flushes TLB's if needed.
1768  *
1769  * Between 2 and 4, the guest may write to the page using the remaining TLB
1770  * entry.  This is not a problem because the page is reported dirty using
1771  * the snapshot taken before and step 4 ensures that writes done after
1772  * exiting to userspace will be logged for the next call.
1773  *
1774  */
1775 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1776 {
1777         struct kvm_memslots *slots;
1778         struct kvm_memory_slot *memslot;
1779         int i, as_id, id;
1780         unsigned long n;
1781         unsigned long *dirty_bitmap;
1782         unsigned long *dirty_bitmap_buffer;
1783         bool flush;
1784
1785         /* Dirty ring tracking is exclusive to dirty log tracking */
1786         if (kvm->dirty_ring_size)
1787                 return -ENXIO;
1788
1789         as_id = log->slot >> 16;
1790         id = (u16)log->slot;
1791         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1792                 return -EINVAL;
1793
1794         slots = __kvm_memslots(kvm, as_id);
1795         memslot = id_to_memslot(slots, id);
1796         if (!memslot || !memslot->dirty_bitmap)
1797                 return -ENOENT;
1798
1799         dirty_bitmap = memslot->dirty_bitmap;
1800
1801         kvm_arch_sync_dirty_log(kvm, memslot);
1802
1803         n = kvm_dirty_bitmap_bytes(memslot);
1804         flush = false;
1805         if (kvm->manual_dirty_log_protect) {
1806                 /*
1807                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1808                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1809                  * is some code duplication between this function and
1810                  * kvm_get_dirty_log, but hopefully all architecture
1811                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1812                  * can be eliminated.
1813                  */
1814                 dirty_bitmap_buffer = dirty_bitmap;
1815         } else {
1816                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1817                 memset(dirty_bitmap_buffer, 0, n);
1818
1819                 KVM_MMU_LOCK(kvm);
1820                 for (i = 0; i < n / sizeof(long); i++) {
1821                         unsigned long mask;
1822                         gfn_t offset;
1823
1824                         if (!dirty_bitmap[i])
1825                                 continue;
1826
1827                         flush = true;
1828                         mask = xchg(&dirty_bitmap[i], 0);
1829                         dirty_bitmap_buffer[i] = mask;
1830
1831                         offset = i * BITS_PER_LONG;
1832                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1833                                                                 offset, mask);
1834                 }
1835                 KVM_MMU_UNLOCK(kvm);
1836         }
1837
1838         if (flush)
1839                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1840
1841         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1842                 return -EFAULT;
1843         return 0;
1844 }
1845
1846
1847 /**
1848  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1849  * @kvm: kvm instance
1850  * @log: slot id and address to which we copy the log
1851  *
1852  * Steps 1-4 below provide general overview of dirty page logging. See
1853  * kvm_get_dirty_log_protect() function description for additional details.
1854  *
1855  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1856  * always flush the TLB (step 4) even if previous step failed  and the dirty
1857  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1858  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1859  * writes will be marked dirty for next log read.
1860  *
1861  *   1. Take a snapshot of the bit and clear it if needed.
1862  *   2. Write protect the corresponding page.
1863  *   3. Copy the snapshot to the userspace.
1864  *   4. Flush TLB's if needed.
1865  */
1866 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1867                                       struct kvm_dirty_log *log)
1868 {
1869         int r;
1870
1871         mutex_lock(&kvm->slots_lock);
1872
1873         r = kvm_get_dirty_log_protect(kvm, log);
1874
1875         mutex_unlock(&kvm->slots_lock);
1876         return r;
1877 }
1878
1879 /**
1880  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1881  *      and reenable dirty page tracking for the corresponding pages.
1882  * @kvm:        pointer to kvm instance
1883  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1884  */
1885 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1886                                        struct kvm_clear_dirty_log *log)
1887 {
1888         struct kvm_memslots *slots;
1889         struct kvm_memory_slot *memslot;
1890         int as_id, id;
1891         gfn_t offset;
1892         unsigned long i, n;
1893         unsigned long *dirty_bitmap;
1894         unsigned long *dirty_bitmap_buffer;
1895         bool flush;
1896
1897         /* Dirty ring tracking is exclusive to dirty log tracking */
1898         if (kvm->dirty_ring_size)
1899                 return -ENXIO;
1900
1901         as_id = log->slot >> 16;
1902         id = (u16)log->slot;
1903         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1904                 return -EINVAL;
1905
1906         if (log->first_page & 63)
1907                 return -EINVAL;
1908
1909         slots = __kvm_memslots(kvm, as_id);
1910         memslot = id_to_memslot(slots, id);
1911         if (!memslot || !memslot->dirty_bitmap)
1912                 return -ENOENT;
1913
1914         dirty_bitmap = memslot->dirty_bitmap;
1915
1916         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1917
1918         if (log->first_page > memslot->npages ||
1919             log->num_pages > memslot->npages - log->first_page ||
1920             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1921             return -EINVAL;
1922
1923         kvm_arch_sync_dirty_log(kvm, memslot);
1924
1925         flush = false;
1926         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1927         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1928                 return -EFAULT;
1929
1930         KVM_MMU_LOCK(kvm);
1931         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1932                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1933              i++, offset += BITS_PER_LONG) {
1934                 unsigned long mask = *dirty_bitmap_buffer++;
1935                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1936                 if (!mask)
1937                         continue;
1938
1939                 mask &= atomic_long_fetch_andnot(mask, p);
1940
1941                 /*
1942                  * mask contains the bits that really have been cleared.  This
1943                  * never includes any bits beyond the length of the memslot (if
1944                  * the length is not aligned to 64 pages), therefore it is not
1945                  * a problem if userspace sets them in log->dirty_bitmap.
1946                 */
1947                 if (mask) {
1948                         flush = true;
1949                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1950                                                                 offset, mask);
1951                 }
1952         }
1953         KVM_MMU_UNLOCK(kvm);
1954
1955         if (flush)
1956                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1957
1958         return 0;
1959 }
1960
1961 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1962                                         struct kvm_clear_dirty_log *log)
1963 {
1964         int r;
1965
1966         mutex_lock(&kvm->slots_lock);
1967
1968         r = kvm_clear_dirty_log_protect(kvm, log);
1969
1970         mutex_unlock(&kvm->slots_lock);
1971         return r;
1972 }
1973 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1974
1975 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1976 {
1977         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1978 }
1979 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1980
1981 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1982 {
1983         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1986
1987 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1988 {
1989         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1990
1991         return kvm_is_visible_memslot(memslot);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1994
1995 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1996 {
1997         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1998
1999         return kvm_is_visible_memslot(memslot);
2000 }
2001 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2002
2003 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2004 {
2005         struct vm_area_struct *vma;
2006         unsigned long addr, size;
2007
2008         size = PAGE_SIZE;
2009
2010         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2011         if (kvm_is_error_hva(addr))
2012                 return PAGE_SIZE;
2013
2014         mmap_read_lock(current->mm);
2015         vma = find_vma(current->mm, addr);
2016         if (!vma)
2017                 goto out;
2018
2019         size = vma_kernel_pagesize(vma);
2020
2021 out:
2022         mmap_read_unlock(current->mm);
2023
2024         return size;
2025 }
2026
2027 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2028 {
2029         return slot->flags & KVM_MEM_READONLY;
2030 }
2031
2032 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2033                                        gfn_t *nr_pages, bool write)
2034 {
2035         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2036                 return KVM_HVA_ERR_BAD;
2037
2038         if (memslot_is_readonly(slot) && write)
2039                 return KVM_HVA_ERR_RO_BAD;
2040
2041         if (nr_pages)
2042                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2043
2044         return __gfn_to_hva_memslot(slot, gfn);
2045 }
2046
2047 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2048                                      gfn_t *nr_pages)
2049 {
2050         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2051 }
2052
2053 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2054                                         gfn_t gfn)
2055 {
2056         return gfn_to_hva_many(slot, gfn, NULL);
2057 }
2058 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2059
2060 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2061 {
2062         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2063 }
2064 EXPORT_SYMBOL_GPL(gfn_to_hva);
2065
2066 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2067 {
2068         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2071
2072 /*
2073  * Return the hva of a @gfn and the R/W attribute if possible.
2074  *
2075  * @slot: the kvm_memory_slot which contains @gfn
2076  * @gfn: the gfn to be translated
2077  * @writable: used to return the read/write attribute of the @slot if the hva
2078  * is valid and @writable is not NULL
2079  */
2080 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2081                                       gfn_t gfn, bool *writable)
2082 {
2083         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2084
2085         if (!kvm_is_error_hva(hva) && writable)
2086                 *writable = !memslot_is_readonly(slot);
2087
2088         return hva;
2089 }
2090
2091 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2092 {
2093         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2094
2095         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2096 }
2097
2098 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2099 {
2100         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2101
2102         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2103 }
2104
2105 static inline int check_user_page_hwpoison(unsigned long addr)
2106 {
2107         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2108
2109         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2110         return rc == -EHWPOISON;
2111 }
2112
2113 /*
2114  * The fast path to get the writable pfn which will be stored in @pfn,
2115  * true indicates success, otherwise false is returned.  It's also the
2116  * only part that runs if we can in atomic context.
2117  */
2118 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2119                             bool *writable, kvm_pfn_t *pfn)
2120 {
2121         struct page *page[1];
2122
2123         /*
2124          * Fast pin a writable pfn only if it is a write fault request
2125          * or the caller allows to map a writable pfn for a read fault
2126          * request.
2127          */
2128         if (!(write_fault || writable))
2129                 return false;
2130
2131         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2132                 *pfn = page_to_pfn(page[0]);
2133
2134                 if (writable)
2135                         *writable = true;
2136                 return true;
2137         }
2138
2139         return false;
2140 }
2141
2142 /*
2143  * The slow path to get the pfn of the specified host virtual address,
2144  * 1 indicates success, -errno is returned if error is detected.
2145  */
2146 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2147                            bool *writable, kvm_pfn_t *pfn)
2148 {
2149         unsigned int flags = FOLL_HWPOISON;
2150         struct page *page;
2151         int npages = 0;
2152
2153         might_sleep();
2154
2155         if (writable)
2156                 *writable = write_fault;
2157
2158         if (write_fault)
2159                 flags |= FOLL_WRITE;
2160         if (async)
2161                 flags |= FOLL_NOWAIT;
2162
2163         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2164         if (npages != 1)
2165                 return npages;
2166
2167         /* map read fault as writable if possible */
2168         if (unlikely(!write_fault) && writable) {
2169                 struct page *wpage;
2170
2171                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2172                         *writable = true;
2173                         put_page(page);
2174                         page = wpage;
2175                 }
2176         }
2177         *pfn = page_to_pfn(page);
2178         return npages;
2179 }
2180
2181 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2182 {
2183         if (unlikely(!(vma->vm_flags & VM_READ)))
2184                 return false;
2185
2186         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2187                 return false;
2188
2189         return true;
2190 }
2191
2192 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2193 {
2194         if (kvm_is_reserved_pfn(pfn))
2195                 return 1;
2196         return get_page_unless_zero(pfn_to_page(pfn));
2197 }
2198
2199 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2200                                unsigned long addr, bool *async,
2201                                bool write_fault, bool *writable,
2202                                kvm_pfn_t *p_pfn)
2203 {
2204         kvm_pfn_t pfn;
2205         pte_t *ptep;
2206         spinlock_t *ptl;
2207         int r;
2208
2209         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2210         if (r) {
2211                 /*
2212                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2213                  * not call the fault handler, so do it here.
2214                  */
2215                 bool unlocked = false;
2216                 r = fixup_user_fault(current->mm, addr,
2217                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2218                                      &unlocked);
2219                 if (unlocked)
2220                         return -EAGAIN;
2221                 if (r)
2222                         return r;
2223
2224                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2225                 if (r)
2226                         return r;
2227         }
2228
2229         if (write_fault && !pte_write(*ptep)) {
2230                 pfn = KVM_PFN_ERR_RO_FAULT;
2231                 goto out;
2232         }
2233
2234         if (writable)
2235                 *writable = pte_write(*ptep);
2236         pfn = pte_pfn(*ptep);
2237
2238         /*
2239          * Get a reference here because callers of *hva_to_pfn* and
2240          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2241          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2242          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2243          * simply do nothing for reserved pfns.
2244          *
2245          * Whoever called remap_pfn_range is also going to call e.g.
2246          * unmap_mapping_range before the underlying pages are freed,
2247          * causing a call to our MMU notifier.
2248          *
2249          * Certain IO or PFNMAP mappings can be backed with valid
2250          * struct pages, but be allocated without refcounting e.g.,
2251          * tail pages of non-compound higher order allocations, which
2252          * would then underflow the refcount when the caller does the
2253          * required put_page. Don't allow those pages here.
2254          */ 
2255         if (!kvm_try_get_pfn(pfn))
2256                 r = -EFAULT;
2257
2258 out:
2259         pte_unmap_unlock(ptep, ptl);
2260         *p_pfn = pfn;
2261
2262         return r;
2263 }
2264
2265 /*
2266  * Pin guest page in memory and return its pfn.
2267  * @addr: host virtual address which maps memory to the guest
2268  * @atomic: whether this function can sleep
2269  * @async: whether this function need to wait IO complete if the
2270  *         host page is not in the memory
2271  * @write_fault: whether we should get a writable host page
2272  * @writable: whether it allows to map a writable host page for !@write_fault
2273  *
2274  * The function will map a writable host page for these two cases:
2275  * 1): @write_fault = true
2276  * 2): @write_fault = false && @writable, @writable will tell the caller
2277  *     whether the mapping is writable.
2278  */
2279 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2280                         bool write_fault, bool *writable)
2281 {
2282         struct vm_area_struct *vma;
2283         kvm_pfn_t pfn = 0;
2284         int npages, r;
2285
2286         /* we can do it either atomically or asynchronously, not both */
2287         BUG_ON(atomic && async);
2288
2289         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2290                 return pfn;
2291
2292         if (atomic)
2293                 return KVM_PFN_ERR_FAULT;
2294
2295         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2296         if (npages == 1)
2297                 return pfn;
2298
2299         mmap_read_lock(current->mm);
2300         if (npages == -EHWPOISON ||
2301               (!async && check_user_page_hwpoison(addr))) {
2302                 pfn = KVM_PFN_ERR_HWPOISON;
2303                 goto exit;
2304         }
2305
2306 retry:
2307         vma = vma_lookup(current->mm, addr);
2308
2309         if (vma == NULL)
2310                 pfn = KVM_PFN_ERR_FAULT;
2311         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2312                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2313                 if (r == -EAGAIN)
2314                         goto retry;
2315                 if (r < 0)
2316                         pfn = KVM_PFN_ERR_FAULT;
2317         } else {
2318                 if (async && vma_is_valid(vma, write_fault))
2319                         *async = true;
2320                 pfn = KVM_PFN_ERR_FAULT;
2321         }
2322 exit:
2323         mmap_read_unlock(current->mm);
2324         return pfn;
2325 }
2326
2327 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2328                                bool atomic, bool *async, bool write_fault,
2329                                bool *writable, hva_t *hva)
2330 {
2331         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2332
2333         if (hva)
2334                 *hva = addr;
2335
2336         if (addr == KVM_HVA_ERR_RO_BAD) {
2337                 if (writable)
2338                         *writable = false;
2339                 return KVM_PFN_ERR_RO_FAULT;
2340         }
2341
2342         if (kvm_is_error_hva(addr)) {
2343                 if (writable)
2344                         *writable = false;
2345                 return KVM_PFN_NOSLOT;
2346         }
2347
2348         /* Do not map writable pfn in the readonly memslot. */
2349         if (writable && memslot_is_readonly(slot)) {
2350                 *writable = false;
2351                 writable = NULL;
2352         }
2353
2354         return hva_to_pfn(addr, atomic, async, write_fault,
2355                           writable);
2356 }
2357 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2358
2359 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2360                       bool *writable)
2361 {
2362         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2363                                     write_fault, writable, NULL);
2364 }
2365 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2366
2367 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2368 {
2369         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2370 }
2371 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2372
2373 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2374 {
2375         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2376 }
2377 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2378
2379 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2380 {
2381         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2382 }
2383 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2384
2385 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2386 {
2387         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2388 }
2389 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2390
2391 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2392 {
2393         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2394 }
2395 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2396
2397 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2398                             struct page **pages, int nr_pages)
2399 {
2400         unsigned long addr;
2401         gfn_t entry = 0;
2402
2403         addr = gfn_to_hva_many(slot, gfn, &entry);
2404         if (kvm_is_error_hva(addr))
2405                 return -1;
2406
2407         if (entry < nr_pages)
2408                 return 0;
2409
2410         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2411 }
2412 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2413
2414 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2415 {
2416         if (is_error_noslot_pfn(pfn))
2417                 return KVM_ERR_PTR_BAD_PAGE;
2418
2419         if (kvm_is_reserved_pfn(pfn)) {
2420                 WARN_ON(1);
2421                 return KVM_ERR_PTR_BAD_PAGE;
2422         }
2423
2424         return pfn_to_page(pfn);
2425 }
2426
2427 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2428 {
2429         kvm_pfn_t pfn;
2430
2431         pfn = gfn_to_pfn(kvm, gfn);
2432
2433         return kvm_pfn_to_page(pfn);
2434 }
2435 EXPORT_SYMBOL_GPL(gfn_to_page);
2436
2437 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2438 {
2439         if (pfn == 0)
2440                 return;
2441
2442         if (cache)
2443                 cache->pfn = cache->gfn = 0;
2444
2445         if (dirty)
2446                 kvm_release_pfn_dirty(pfn);
2447         else
2448                 kvm_release_pfn_clean(pfn);
2449 }
2450
2451 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2452                                  struct gfn_to_pfn_cache *cache, u64 gen)
2453 {
2454         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2455
2456         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2457         cache->gfn = gfn;
2458         cache->dirty = false;
2459         cache->generation = gen;
2460 }
2461
2462 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2463                          struct kvm_host_map *map,
2464                          struct gfn_to_pfn_cache *cache,
2465                          bool atomic)
2466 {
2467         kvm_pfn_t pfn;
2468         void *hva = NULL;
2469         struct page *page = KVM_UNMAPPED_PAGE;
2470         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2471         u64 gen = slots->generation;
2472
2473         if (!map)
2474                 return -EINVAL;
2475
2476         if (cache) {
2477                 if (!cache->pfn || cache->gfn != gfn ||
2478                         cache->generation != gen) {
2479                         if (atomic)
2480                                 return -EAGAIN;
2481                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2482                 }
2483                 pfn = cache->pfn;
2484         } else {
2485                 if (atomic)
2486                         return -EAGAIN;
2487                 pfn = gfn_to_pfn_memslot(slot, gfn);
2488         }
2489         if (is_error_noslot_pfn(pfn))
2490                 return -EINVAL;
2491
2492         if (pfn_valid(pfn)) {
2493                 page = pfn_to_page(pfn);
2494                 if (atomic)
2495                         hva = kmap_atomic(page);
2496                 else
2497                         hva = kmap(page);
2498 #ifdef CONFIG_HAS_IOMEM
2499         } else if (!atomic) {
2500                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2501         } else {
2502                 return -EINVAL;
2503 #endif
2504         }
2505
2506         if (!hva)
2507                 return -EFAULT;
2508
2509         map->page = page;
2510         map->hva = hva;
2511         map->pfn = pfn;
2512         map->gfn = gfn;
2513
2514         return 0;
2515 }
2516
2517 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2518                 struct gfn_to_pfn_cache *cache, bool atomic)
2519 {
2520         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2521                         cache, atomic);
2522 }
2523 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2524
2525 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2526 {
2527         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2528                 NULL, false);
2529 }
2530 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2531
2532 static void __kvm_unmap_gfn(struct kvm *kvm,
2533                         struct kvm_memory_slot *memslot,
2534                         struct kvm_host_map *map,
2535                         struct gfn_to_pfn_cache *cache,
2536                         bool dirty, bool atomic)
2537 {
2538         if (!map)
2539                 return;
2540
2541         if (!map->hva)
2542                 return;
2543
2544         if (map->page != KVM_UNMAPPED_PAGE) {
2545                 if (atomic)
2546                         kunmap_atomic(map->hva);
2547                 else
2548                         kunmap(map->page);
2549         }
2550 #ifdef CONFIG_HAS_IOMEM
2551         else if (!atomic)
2552                 memunmap(map->hva);
2553         else
2554                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2555 #endif
2556
2557         if (dirty)
2558                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2559
2560         if (cache)
2561                 cache->dirty |= dirty;
2562         else
2563                 kvm_release_pfn(map->pfn, dirty, NULL);
2564
2565         map->hva = NULL;
2566         map->page = NULL;
2567 }
2568
2569 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2570                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2571 {
2572         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2573                         cache, dirty, atomic);
2574         return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2577
2578 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2579 {
2580         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2581                         map, NULL, dirty, false);
2582 }
2583 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2584
2585 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2586 {
2587         kvm_pfn_t pfn;
2588
2589         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2590
2591         return kvm_pfn_to_page(pfn);
2592 }
2593 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2594
2595 void kvm_release_page_clean(struct page *page)
2596 {
2597         WARN_ON(is_error_page(page));
2598
2599         kvm_release_pfn_clean(page_to_pfn(page));
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2602
2603 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2604 {
2605         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2606                 put_page(pfn_to_page(pfn));
2607 }
2608 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2609
2610 void kvm_release_page_dirty(struct page *page)
2611 {
2612         WARN_ON(is_error_page(page));
2613
2614         kvm_release_pfn_dirty(page_to_pfn(page));
2615 }
2616 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2617
2618 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2619 {
2620         kvm_set_pfn_dirty(pfn);
2621         kvm_release_pfn_clean(pfn);
2622 }
2623 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2624
2625 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2626 {
2627         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2628                 SetPageDirty(pfn_to_page(pfn));
2629 }
2630 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2631
2632 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2633 {
2634         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2635                 mark_page_accessed(pfn_to_page(pfn));
2636 }
2637 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2638
2639 void kvm_get_pfn(kvm_pfn_t pfn)
2640 {
2641         if (!kvm_is_reserved_pfn(pfn))
2642                 get_page(pfn_to_page(pfn));
2643 }
2644 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2645
2646 static int next_segment(unsigned long len, int offset)
2647 {
2648         if (len > PAGE_SIZE - offset)
2649                 return PAGE_SIZE - offset;
2650         else
2651                 return len;
2652 }
2653
2654 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2655                                  void *data, int offset, int len)
2656 {
2657         int r;
2658         unsigned long addr;
2659
2660         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2661         if (kvm_is_error_hva(addr))
2662                 return -EFAULT;
2663         r = __copy_from_user(data, (void __user *)addr + offset, len);
2664         if (r)
2665                 return -EFAULT;
2666         return 0;
2667 }
2668
2669 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2670                         int len)
2671 {
2672         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2673
2674         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2675 }
2676 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2677
2678 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2679                              int offset, int len)
2680 {
2681         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2682
2683         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2684 }
2685 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2686
2687 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2688 {
2689         gfn_t gfn = gpa >> PAGE_SHIFT;
2690         int seg;
2691         int offset = offset_in_page(gpa);
2692         int ret;
2693
2694         while ((seg = next_segment(len, offset)) != 0) {
2695                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2696                 if (ret < 0)
2697                         return ret;
2698                 offset = 0;
2699                 len -= seg;
2700                 data += seg;
2701                 ++gfn;
2702         }
2703         return 0;
2704 }
2705 EXPORT_SYMBOL_GPL(kvm_read_guest);
2706
2707 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2708 {
2709         gfn_t gfn = gpa >> PAGE_SHIFT;
2710         int seg;
2711         int offset = offset_in_page(gpa);
2712         int ret;
2713
2714         while ((seg = next_segment(len, offset)) != 0) {
2715                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2716                 if (ret < 0)
2717                         return ret;
2718                 offset = 0;
2719                 len -= seg;
2720                 data += seg;
2721                 ++gfn;
2722         }
2723         return 0;
2724 }
2725 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2726
2727 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2728                                    void *data, int offset, unsigned long len)
2729 {
2730         int r;
2731         unsigned long addr;
2732
2733         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2734         if (kvm_is_error_hva(addr))
2735                 return -EFAULT;
2736         pagefault_disable();
2737         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2738         pagefault_enable();
2739         if (r)
2740                 return -EFAULT;
2741         return 0;
2742 }
2743
2744 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2745                                void *data, unsigned long len)
2746 {
2747         gfn_t gfn = gpa >> PAGE_SHIFT;
2748         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2749         int offset = offset_in_page(gpa);
2750
2751         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2752 }
2753 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2754
2755 static int __kvm_write_guest_page(struct kvm *kvm,
2756                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2757                                   const void *data, int offset, int len)
2758 {
2759         int r;
2760         unsigned long addr;
2761
2762         addr = gfn_to_hva_memslot(memslot, gfn);
2763         if (kvm_is_error_hva(addr))
2764                 return -EFAULT;
2765         r = __copy_to_user((void __user *)addr + offset, data, len);
2766         if (r)
2767                 return -EFAULT;
2768         mark_page_dirty_in_slot(kvm, memslot, gfn);
2769         return 0;
2770 }
2771
2772 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2773                          const void *data, int offset, int len)
2774 {
2775         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2776
2777         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2778 }
2779 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2780
2781 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2782                               const void *data, int offset, int len)
2783 {
2784         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2785
2786         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2787 }
2788 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2789
2790 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2791                     unsigned long len)
2792 {
2793         gfn_t gfn = gpa >> PAGE_SHIFT;
2794         int seg;
2795         int offset = offset_in_page(gpa);
2796         int ret;
2797
2798         while ((seg = next_segment(len, offset)) != 0) {
2799                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2800                 if (ret < 0)
2801                         return ret;
2802                 offset = 0;
2803                 len -= seg;
2804                 data += seg;
2805                 ++gfn;
2806         }
2807         return 0;
2808 }
2809 EXPORT_SYMBOL_GPL(kvm_write_guest);
2810
2811 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2812                          unsigned long len)
2813 {
2814         gfn_t gfn = gpa >> PAGE_SHIFT;
2815         int seg;
2816         int offset = offset_in_page(gpa);
2817         int ret;
2818
2819         while ((seg = next_segment(len, offset)) != 0) {
2820                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2821                 if (ret < 0)
2822                         return ret;
2823                 offset = 0;
2824                 len -= seg;
2825                 data += seg;
2826                 ++gfn;
2827         }
2828         return 0;
2829 }
2830 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2831
2832 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2833                                        struct gfn_to_hva_cache *ghc,
2834                                        gpa_t gpa, unsigned long len)
2835 {
2836         int offset = offset_in_page(gpa);
2837         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2838         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2839         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2840         gfn_t nr_pages_avail;
2841
2842         /* Update ghc->generation before performing any error checks. */
2843         ghc->generation = slots->generation;
2844
2845         if (start_gfn > end_gfn) {
2846                 ghc->hva = KVM_HVA_ERR_BAD;
2847                 return -EINVAL;
2848         }
2849
2850         /*
2851          * If the requested region crosses two memslots, we still
2852          * verify that the entire region is valid here.
2853          */
2854         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2855                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2856                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2857                                            &nr_pages_avail);
2858                 if (kvm_is_error_hva(ghc->hva))
2859                         return -EFAULT;
2860         }
2861
2862         /* Use the slow path for cross page reads and writes. */
2863         if (nr_pages_needed == 1)
2864                 ghc->hva += offset;
2865         else
2866                 ghc->memslot = NULL;
2867
2868         ghc->gpa = gpa;
2869         ghc->len = len;
2870         return 0;
2871 }
2872
2873 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2874                               gpa_t gpa, unsigned long len)
2875 {
2876         struct kvm_memslots *slots = kvm_memslots(kvm);
2877         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2878 }
2879 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2880
2881 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2882                                   void *data, unsigned int offset,
2883                                   unsigned long len)
2884 {
2885         struct kvm_memslots *slots = kvm_memslots(kvm);
2886         int r;
2887         gpa_t gpa = ghc->gpa + offset;
2888
2889         BUG_ON(len + offset > ghc->len);
2890
2891         if (slots->generation != ghc->generation) {
2892                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2893                         return -EFAULT;
2894         }
2895
2896         if (kvm_is_error_hva(ghc->hva))
2897                 return -EFAULT;
2898
2899         if (unlikely(!ghc->memslot))
2900                 return kvm_write_guest(kvm, gpa, data, len);
2901
2902         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2903         if (r)
2904                 return -EFAULT;
2905         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2906
2907         return 0;
2908 }
2909 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2910
2911 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2912                            void *data, unsigned long len)
2913 {
2914         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2915 }
2916 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2917
2918 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2919                                  void *data, unsigned int offset,
2920                                  unsigned long len)
2921 {
2922         struct kvm_memslots *slots = kvm_memslots(kvm);
2923         int r;
2924         gpa_t gpa = ghc->gpa + offset;
2925
2926         BUG_ON(len + offset > ghc->len);
2927
2928         if (slots->generation != ghc->generation) {
2929                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2930                         return -EFAULT;
2931         }
2932
2933         if (kvm_is_error_hva(ghc->hva))
2934                 return -EFAULT;
2935
2936         if (unlikely(!ghc->memslot))
2937                 return kvm_read_guest(kvm, gpa, data, len);
2938
2939         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2940         if (r)
2941                 return -EFAULT;
2942
2943         return 0;
2944 }
2945 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2946
2947 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2948                           void *data, unsigned long len)
2949 {
2950         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2951 }
2952 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2953
2954 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2955 {
2956         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2957         gfn_t gfn = gpa >> PAGE_SHIFT;
2958         int seg;
2959         int offset = offset_in_page(gpa);
2960         int ret;
2961
2962         while ((seg = next_segment(len, offset)) != 0) {
2963                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2964                 if (ret < 0)
2965                         return ret;
2966                 offset = 0;
2967                 len -= seg;
2968                 ++gfn;
2969         }
2970         return 0;
2971 }
2972 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2973
2974 void mark_page_dirty_in_slot(struct kvm *kvm,
2975                              struct kvm_memory_slot *memslot,
2976                              gfn_t gfn)
2977 {
2978         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2979                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2980                 u32 slot = (memslot->as_id << 16) | memslot->id;
2981
2982                 if (kvm->dirty_ring_size)
2983                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2984                                             slot, rel_gfn);
2985                 else
2986                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
2987         }
2988 }
2989 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2990
2991 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2992 {
2993         struct kvm_memory_slot *memslot;
2994
2995         memslot = gfn_to_memslot(kvm, gfn);
2996         mark_page_dirty_in_slot(kvm, memslot, gfn);
2997 }
2998 EXPORT_SYMBOL_GPL(mark_page_dirty);
2999
3000 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3001 {
3002         struct kvm_memory_slot *memslot;
3003
3004         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3005         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3006 }
3007 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3008
3009 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3010 {
3011         if (!vcpu->sigset_active)
3012                 return;
3013
3014         /*
3015          * This does a lockless modification of ->real_blocked, which is fine
3016          * because, only current can change ->real_blocked and all readers of
3017          * ->real_blocked don't care as long ->real_blocked is always a subset
3018          * of ->blocked.
3019          */
3020         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3021 }
3022
3023 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3024 {
3025         if (!vcpu->sigset_active)
3026                 return;
3027
3028         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3029         sigemptyset(&current->real_blocked);
3030 }
3031
3032 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3033 {
3034         unsigned int old, val, grow, grow_start;
3035
3036         old = val = vcpu->halt_poll_ns;
3037         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3038         grow = READ_ONCE(halt_poll_ns_grow);
3039         if (!grow)
3040                 goto out;
3041
3042         val *= grow;
3043         if (val < grow_start)
3044                 val = grow_start;
3045
3046         if (val > vcpu->kvm->max_halt_poll_ns)
3047                 val = vcpu->kvm->max_halt_poll_ns;
3048
3049         vcpu->halt_poll_ns = val;
3050 out:
3051         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3052 }
3053
3054 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3055 {
3056         unsigned int old, val, shrink;
3057
3058         old = val = vcpu->halt_poll_ns;
3059         shrink = READ_ONCE(halt_poll_ns_shrink);
3060         if (shrink == 0)
3061                 val = 0;
3062         else
3063                 val /= shrink;
3064
3065         vcpu->halt_poll_ns = val;
3066         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3067 }
3068
3069 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3070 {
3071         int ret = -EINTR;
3072         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3073
3074         if (kvm_arch_vcpu_runnable(vcpu)) {
3075                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3076                 goto out;
3077         }
3078         if (kvm_cpu_has_pending_timer(vcpu))
3079                 goto out;
3080         if (signal_pending(current))
3081                 goto out;
3082         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3083                 goto out;
3084
3085         ret = 0;
3086 out:
3087         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3088         return ret;
3089 }
3090
3091 static inline void
3092 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3093 {
3094         if (waited)
3095                 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3096         else
3097                 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3098 }
3099
3100 /*
3101  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3102  */
3103 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3104 {
3105         ktime_t start, cur, poll_end;
3106         bool waited = false;
3107         u64 block_ns;
3108
3109         kvm_arch_vcpu_blocking(vcpu);
3110
3111         start = cur = poll_end = ktime_get();
3112         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3113                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3114
3115                 ++vcpu->stat.generic.halt_attempted_poll;
3116                 do {
3117                         /*
3118                          * This sets KVM_REQ_UNHALT if an interrupt
3119                          * arrives.
3120                          */
3121                         if (kvm_vcpu_check_block(vcpu) < 0) {
3122                                 ++vcpu->stat.generic.halt_successful_poll;
3123                                 if (!vcpu_valid_wakeup(vcpu))
3124                                         ++vcpu->stat.generic.halt_poll_invalid;
3125                                 goto out;
3126                         }
3127                         cpu_relax();
3128                         poll_end = cur = ktime_get();
3129                 } while (kvm_vcpu_can_poll(cur, stop));
3130         }
3131
3132         prepare_to_rcuwait(&vcpu->wait);
3133         for (;;) {
3134                 set_current_state(TASK_INTERRUPTIBLE);
3135
3136                 if (kvm_vcpu_check_block(vcpu) < 0)
3137                         break;
3138
3139                 waited = true;
3140                 schedule();
3141         }
3142         finish_rcuwait(&vcpu->wait);
3143         cur = ktime_get();
3144 out:
3145         kvm_arch_vcpu_unblocking(vcpu);
3146         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3147
3148         update_halt_poll_stats(
3149                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3150
3151         if (!kvm_arch_no_poll(vcpu)) {
3152                 if (!vcpu_valid_wakeup(vcpu)) {
3153                         shrink_halt_poll_ns(vcpu);
3154                 } else if (vcpu->kvm->max_halt_poll_ns) {
3155                         if (block_ns <= vcpu->halt_poll_ns)
3156                                 ;
3157                         /* we had a long block, shrink polling */
3158                         else if (vcpu->halt_poll_ns &&
3159                                         block_ns > vcpu->kvm->max_halt_poll_ns)
3160                                 shrink_halt_poll_ns(vcpu);
3161                         /* we had a short halt and our poll time is too small */
3162                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3163                                         block_ns < vcpu->kvm->max_halt_poll_ns)
3164                                 grow_halt_poll_ns(vcpu);
3165                 } else {
3166                         vcpu->halt_poll_ns = 0;
3167                 }
3168         }
3169
3170         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3171         kvm_arch_vcpu_block_finish(vcpu);
3172 }
3173 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3174
3175 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3176 {
3177         struct rcuwait *waitp;
3178
3179         waitp = kvm_arch_vcpu_get_wait(vcpu);
3180         if (rcuwait_wake_up(waitp)) {
3181                 WRITE_ONCE(vcpu->ready, true);
3182                 ++vcpu->stat.generic.halt_wakeup;
3183                 return true;
3184         }
3185
3186         return false;
3187 }
3188 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3189
3190 #ifndef CONFIG_S390
3191 /*
3192  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3193  */
3194 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3195 {
3196         int me;
3197         int cpu = vcpu->cpu;
3198
3199         if (kvm_vcpu_wake_up(vcpu))
3200                 return;
3201
3202         me = get_cpu();
3203         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3204                 if (kvm_arch_vcpu_should_kick(vcpu))
3205                         smp_send_reschedule(cpu);
3206         put_cpu();
3207 }
3208 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3209 #endif /* !CONFIG_S390 */
3210
3211 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3212 {
3213         struct pid *pid;
3214         struct task_struct *task = NULL;
3215         int ret = 0;
3216
3217         rcu_read_lock();
3218         pid = rcu_dereference(target->pid);
3219         if (pid)
3220                 task = get_pid_task(pid, PIDTYPE_PID);
3221         rcu_read_unlock();
3222         if (!task)
3223                 return ret;
3224         ret = yield_to(task, 1);
3225         put_task_struct(task);
3226
3227         return ret;
3228 }
3229 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3230
3231 /*
3232  * Helper that checks whether a VCPU is eligible for directed yield.
3233  * Most eligible candidate to yield is decided by following heuristics:
3234  *
3235  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3236  *  (preempted lock holder), indicated by @in_spin_loop.
3237  *  Set at the beginning and cleared at the end of interception/PLE handler.
3238  *
3239  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3240  *  chance last time (mostly it has become eligible now since we have probably
3241  *  yielded to lockholder in last iteration. This is done by toggling
3242  *  @dy_eligible each time a VCPU checked for eligibility.)
3243  *
3244  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3245  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3246  *  burning. Giving priority for a potential lock-holder increases lock
3247  *  progress.
3248  *
3249  *  Since algorithm is based on heuristics, accessing another VCPU data without
3250  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3251  *  and continue with next VCPU and so on.
3252  */
3253 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3254 {
3255 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3256         bool eligible;
3257
3258         eligible = !vcpu->spin_loop.in_spin_loop ||
3259                     vcpu->spin_loop.dy_eligible;
3260
3261         if (vcpu->spin_loop.in_spin_loop)
3262                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3263
3264         return eligible;
3265 #else
3266         return true;
3267 #endif
3268 }
3269
3270 /*
3271  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3272  * a vcpu_load/vcpu_put pair.  However, for most architectures
3273  * kvm_arch_vcpu_runnable does not require vcpu_load.
3274  */
3275 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3276 {
3277         return kvm_arch_vcpu_runnable(vcpu);
3278 }
3279
3280 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3281 {
3282         if (kvm_arch_dy_runnable(vcpu))
3283                 return true;
3284
3285 #ifdef CONFIG_KVM_ASYNC_PF
3286         if (!list_empty_careful(&vcpu->async_pf.done))
3287                 return true;
3288 #endif
3289
3290         return false;
3291 }
3292
3293 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3294 {
3295         return false;
3296 }
3297
3298 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3299 {
3300         struct kvm *kvm = me->kvm;
3301         struct kvm_vcpu *vcpu;
3302         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3303         int yielded = 0;
3304         int try = 3;
3305         int pass;
3306         int i;
3307
3308         kvm_vcpu_set_in_spin_loop(me, true);
3309         /*
3310          * We boost the priority of a VCPU that is runnable but not
3311          * currently running, because it got preempted by something
3312          * else and called schedule in __vcpu_run.  Hopefully that
3313          * VCPU is holding the lock that we need and will release it.
3314          * We approximate round-robin by starting at the last boosted VCPU.
3315          */
3316         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3317                 kvm_for_each_vcpu(i, vcpu, kvm) {
3318                         if (!pass && i <= last_boosted_vcpu) {
3319                                 i = last_boosted_vcpu;
3320                                 continue;
3321                         } else if (pass && i > last_boosted_vcpu)
3322                                 break;
3323                         if (!READ_ONCE(vcpu->ready))
3324                                 continue;
3325                         if (vcpu == me)
3326                                 continue;
3327                         if (rcuwait_active(&vcpu->wait) &&
3328                             !vcpu_dy_runnable(vcpu))
3329                                 continue;
3330                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3331                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3332                             !kvm_arch_vcpu_in_kernel(vcpu))
3333                                 continue;
3334                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3335                                 continue;
3336
3337                         yielded = kvm_vcpu_yield_to(vcpu);
3338                         if (yielded > 0) {
3339                                 kvm->last_boosted_vcpu = i;
3340                                 break;
3341                         } else if (yielded < 0) {
3342                                 try--;
3343                                 if (!try)
3344                                         break;
3345                         }
3346                 }
3347         }
3348         kvm_vcpu_set_in_spin_loop(me, false);
3349
3350         /* Ensure vcpu is not eligible during next spinloop */
3351         kvm_vcpu_set_dy_eligible(me, false);
3352 }
3353 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3354
3355 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3356 {
3357 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3358         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3359             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3360              kvm->dirty_ring_size / PAGE_SIZE);
3361 #else
3362         return false;
3363 #endif
3364 }
3365
3366 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3367 {
3368         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3369         struct page *page;
3370
3371         if (vmf->pgoff == 0)
3372                 page = virt_to_page(vcpu->run);
3373 #ifdef CONFIG_X86
3374         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3375                 page = virt_to_page(vcpu->arch.pio_data);
3376 #endif
3377 #ifdef CONFIG_KVM_MMIO
3378         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3379                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3380 #endif
3381         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3382                 page = kvm_dirty_ring_get_page(
3383                     &vcpu->dirty_ring,
3384                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3385         else
3386                 return kvm_arch_vcpu_fault(vcpu, vmf);
3387         get_page(page);
3388         vmf->page = page;
3389         return 0;
3390 }
3391
3392 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3393         .fault = kvm_vcpu_fault,
3394 };
3395
3396 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3397 {
3398         struct kvm_vcpu *vcpu = file->private_data;
3399         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3400
3401         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3402              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3403             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3404                 return -EINVAL;
3405
3406         vma->vm_ops = &kvm_vcpu_vm_ops;
3407         return 0;
3408 }
3409
3410 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3411 {
3412         struct kvm_vcpu *vcpu = filp->private_data;
3413
3414         kvm_put_kvm(vcpu->kvm);
3415         return 0;
3416 }
3417
3418 static struct file_operations kvm_vcpu_fops = {
3419         .release        = kvm_vcpu_release,
3420         .unlocked_ioctl = kvm_vcpu_ioctl,
3421         .mmap           = kvm_vcpu_mmap,
3422         .llseek         = noop_llseek,
3423         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3424 };
3425
3426 /*
3427  * Allocates an inode for the vcpu.
3428  */
3429 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3430 {
3431         char name[8 + 1 + ITOA_MAX_LEN + 1];
3432
3433         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3434         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3435 }
3436
3437 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3438 {
3439 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3440         struct dentry *debugfs_dentry;
3441         char dir_name[ITOA_MAX_LEN * 2];
3442
3443         if (!debugfs_initialized())
3444                 return;
3445
3446         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3447         debugfs_dentry = debugfs_create_dir(dir_name,
3448                                             vcpu->kvm->debugfs_dentry);
3449
3450         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3451 #endif
3452 }
3453
3454 /*
3455  * Creates some virtual cpus.  Good luck creating more than one.
3456  */
3457 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3458 {
3459         int r;
3460         struct kvm_vcpu *vcpu;
3461         struct page *page;
3462
3463         if (id >= KVM_MAX_VCPU_ID)
3464                 return -EINVAL;
3465
3466         mutex_lock(&kvm->lock);
3467         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3468                 mutex_unlock(&kvm->lock);
3469                 return -EINVAL;
3470         }
3471
3472         kvm->created_vcpus++;
3473         mutex_unlock(&kvm->lock);
3474
3475         r = kvm_arch_vcpu_precreate(kvm, id);
3476         if (r)
3477                 goto vcpu_decrement;
3478
3479         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3480         if (!vcpu) {
3481                 r = -ENOMEM;
3482                 goto vcpu_decrement;
3483         }
3484
3485         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3486         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3487         if (!page) {
3488                 r = -ENOMEM;
3489                 goto vcpu_free;
3490         }
3491         vcpu->run = page_address(page);
3492
3493         kvm_vcpu_init(vcpu, kvm, id);
3494
3495         r = kvm_arch_vcpu_create(vcpu);
3496         if (r)
3497                 goto vcpu_free_run_page;
3498
3499         if (kvm->dirty_ring_size) {
3500                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3501                                          id, kvm->dirty_ring_size);
3502                 if (r)
3503                         goto arch_vcpu_destroy;
3504         }
3505
3506         mutex_lock(&kvm->lock);
3507         if (kvm_get_vcpu_by_id(kvm, id)) {
3508                 r = -EEXIST;
3509                 goto unlock_vcpu_destroy;
3510         }
3511
3512         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3513         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3514
3515         /* Fill the stats id string for the vcpu */
3516         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3517                  task_pid_nr(current), id);
3518
3519         /* Now it's all set up, let userspace reach it */
3520         kvm_get_kvm(kvm);
3521         r = create_vcpu_fd(vcpu);
3522         if (r < 0) {
3523                 kvm_put_kvm_no_destroy(kvm);
3524                 goto unlock_vcpu_destroy;
3525         }
3526
3527         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3528
3529         /*
3530          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3531          * before kvm->online_vcpu's incremented value.
3532          */
3533         smp_wmb();
3534         atomic_inc(&kvm->online_vcpus);
3535
3536         mutex_unlock(&kvm->lock);
3537         kvm_arch_vcpu_postcreate(vcpu);
3538         kvm_create_vcpu_debugfs(vcpu);
3539         return r;
3540
3541 unlock_vcpu_destroy:
3542         mutex_unlock(&kvm->lock);
3543         kvm_dirty_ring_free(&vcpu->dirty_ring);
3544 arch_vcpu_destroy:
3545         kvm_arch_vcpu_destroy(vcpu);
3546 vcpu_free_run_page:
3547         free_page((unsigned long)vcpu->run);
3548 vcpu_free:
3549         kmem_cache_free(kvm_vcpu_cache, vcpu);
3550 vcpu_decrement:
3551         mutex_lock(&kvm->lock);
3552         kvm->created_vcpus--;
3553         mutex_unlock(&kvm->lock);
3554         return r;
3555 }
3556
3557 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3558 {
3559         if (sigset) {
3560                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3561                 vcpu->sigset_active = 1;
3562                 vcpu->sigset = *sigset;
3563         } else
3564                 vcpu->sigset_active = 0;
3565         return 0;
3566 }
3567
3568 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3569                               size_t size, loff_t *offset)
3570 {
3571         struct kvm_vcpu *vcpu = file->private_data;
3572
3573         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3574                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3575                         sizeof(vcpu->stat), user_buffer, size, offset);
3576 }
3577
3578 static const struct file_operations kvm_vcpu_stats_fops = {
3579         .read = kvm_vcpu_stats_read,
3580         .llseek = noop_llseek,
3581 };
3582
3583 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3584 {
3585         int fd;
3586         struct file *file;
3587         char name[15 + ITOA_MAX_LEN + 1];
3588
3589         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3590
3591         fd = get_unused_fd_flags(O_CLOEXEC);
3592         if (fd < 0)
3593                 return fd;
3594
3595         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3596         if (IS_ERR(file)) {
3597                 put_unused_fd(fd);
3598                 return PTR_ERR(file);
3599         }
3600         file->f_mode |= FMODE_PREAD;
3601         fd_install(fd, file);
3602
3603         return fd;
3604 }
3605
3606 static long kvm_vcpu_ioctl(struct file *filp,
3607                            unsigned int ioctl, unsigned long arg)
3608 {
3609         struct kvm_vcpu *vcpu = filp->private_data;
3610         void __user *argp = (void __user *)arg;
3611         int r;
3612         struct kvm_fpu *fpu = NULL;
3613         struct kvm_sregs *kvm_sregs = NULL;
3614
3615         if (vcpu->kvm->mm != current->mm)
3616                 return -EIO;
3617
3618         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3619                 return -EINVAL;
3620
3621         /*
3622          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3623          * execution; mutex_lock() would break them.
3624          */
3625         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3626         if (r != -ENOIOCTLCMD)
3627                 return r;
3628
3629         if (mutex_lock_killable(&vcpu->mutex))
3630                 return -EINTR;
3631         switch (ioctl) {
3632         case KVM_RUN: {
3633                 struct pid *oldpid;
3634                 r = -EINVAL;
3635                 if (arg)
3636                         goto out;
3637                 oldpid = rcu_access_pointer(vcpu->pid);
3638                 if (unlikely(oldpid != task_pid(current))) {
3639                         /* The thread running this VCPU changed. */
3640                         struct pid *newpid;
3641
3642                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3643                         if (r)
3644                                 break;
3645
3646                         newpid = get_task_pid(current, PIDTYPE_PID);
3647                         rcu_assign_pointer(vcpu->pid, newpid);
3648                         if (oldpid)
3649                                 synchronize_rcu();
3650                         put_pid(oldpid);
3651                 }
3652                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3653                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3654                 break;
3655         }
3656         case KVM_GET_REGS: {
3657                 struct kvm_regs *kvm_regs;
3658
3659                 r = -ENOMEM;
3660                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3661                 if (!kvm_regs)
3662                         goto out;
3663                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3664                 if (r)
3665                         goto out_free1;
3666                 r = -EFAULT;
3667                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3668                         goto out_free1;
3669                 r = 0;
3670 out_free1:
3671                 kfree(kvm_regs);
3672                 break;
3673         }
3674         case KVM_SET_REGS: {
3675                 struct kvm_regs *kvm_regs;
3676
3677                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3678                 if (IS_ERR(kvm_regs)) {
3679                         r = PTR_ERR(kvm_regs);
3680                         goto out;
3681                 }
3682                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3683                 kfree(kvm_regs);
3684                 break;
3685         }
3686         case KVM_GET_SREGS: {
3687                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3688                                     GFP_KERNEL_ACCOUNT);
3689                 r = -ENOMEM;
3690                 if (!kvm_sregs)
3691                         goto out;
3692                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3693                 if (r)
3694                         goto out;
3695                 r = -EFAULT;
3696                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3697                         goto out;
3698                 r = 0;
3699                 break;
3700         }
3701         case KVM_SET_SREGS: {
3702                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3703                 if (IS_ERR(kvm_sregs)) {
3704                         r = PTR_ERR(kvm_sregs);
3705                         kvm_sregs = NULL;
3706                         goto out;
3707                 }
3708                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3709                 break;
3710         }
3711         case KVM_GET_MP_STATE: {
3712                 struct kvm_mp_state mp_state;
3713
3714                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3715                 if (r)
3716                         goto out;
3717                 r = -EFAULT;
3718                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3719                         goto out;
3720                 r = 0;
3721                 break;
3722         }
3723         case KVM_SET_MP_STATE: {
3724                 struct kvm_mp_state mp_state;
3725
3726                 r = -EFAULT;
3727                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3728                         goto out;
3729                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3730                 break;
3731         }
3732         case KVM_TRANSLATE: {
3733                 struct kvm_translation tr;
3734
3735                 r = -EFAULT;
3736                 if (copy_from_user(&tr, argp, sizeof(tr)))
3737                         goto out;
3738                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3739                 if (r)
3740                         goto out;
3741                 r = -EFAULT;
3742                 if (copy_to_user(argp, &tr, sizeof(tr)))
3743                         goto out;
3744                 r = 0;
3745                 break;
3746         }
3747         case KVM_SET_GUEST_DEBUG: {
3748                 struct kvm_guest_debug dbg;
3749
3750                 r = -EFAULT;
3751                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3752                         goto out;
3753                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3754                 break;
3755         }
3756         case KVM_SET_SIGNAL_MASK: {
3757                 struct kvm_signal_mask __user *sigmask_arg = argp;
3758                 struct kvm_signal_mask kvm_sigmask;
3759                 sigset_t sigset, *p;
3760
3761                 p = NULL;
3762                 if (argp) {
3763                         r = -EFAULT;
3764                         if (copy_from_user(&kvm_sigmask, argp,
3765                                            sizeof(kvm_sigmask)))
3766                                 goto out;
3767                         r = -EINVAL;
3768                         if (kvm_sigmask.len != sizeof(sigset))
3769                                 goto out;
3770                         r = -EFAULT;
3771                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3772                                            sizeof(sigset)))
3773                                 goto out;
3774                         p = &sigset;
3775                 }
3776                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3777                 break;
3778         }
3779         case KVM_GET_FPU: {
3780                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3781                 r = -ENOMEM;
3782                 if (!fpu)
3783                         goto out;
3784                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3785                 if (r)
3786                         goto out;
3787                 r = -EFAULT;
3788                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3789                         goto out;
3790                 r = 0;
3791                 break;
3792         }
3793         case KVM_SET_FPU: {
3794                 fpu = memdup_user(argp, sizeof(*fpu));
3795                 if (IS_ERR(fpu)) {
3796                         r = PTR_ERR(fpu);
3797                         fpu = NULL;
3798                         goto out;
3799                 }
3800                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3801                 break;
3802         }
3803         case KVM_GET_STATS_FD: {
3804                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3805                 break;
3806         }
3807         default:
3808                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3809         }
3810 out:
3811         mutex_unlock(&vcpu->mutex);
3812         kfree(fpu);
3813         kfree(kvm_sregs);
3814         return r;
3815 }
3816
3817 #ifdef CONFIG_KVM_COMPAT
3818 static long kvm_vcpu_compat_ioctl(struct file *filp,
3819                                   unsigned int ioctl, unsigned long arg)
3820 {
3821         struct kvm_vcpu *vcpu = filp->private_data;
3822         void __user *argp = compat_ptr(arg);
3823         int r;
3824
3825         if (vcpu->kvm->mm != current->mm)
3826                 return -EIO;
3827
3828         switch (ioctl) {
3829         case KVM_SET_SIGNAL_MASK: {
3830                 struct kvm_signal_mask __user *sigmask_arg = argp;
3831                 struct kvm_signal_mask kvm_sigmask;
3832                 sigset_t sigset;
3833
3834                 if (argp) {
3835                         r = -EFAULT;
3836                         if (copy_from_user(&kvm_sigmask, argp,
3837                                            sizeof(kvm_sigmask)))
3838                                 goto out;
3839                         r = -EINVAL;
3840                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3841                                 goto out;
3842                         r = -EFAULT;
3843                         if (get_compat_sigset(&sigset,
3844                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3845                                 goto out;
3846                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3847                 } else
3848                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3849                 break;
3850         }
3851         default:
3852                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3853         }
3854
3855 out:
3856         return r;
3857 }
3858 #endif
3859
3860 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3861 {
3862         struct kvm_device *dev = filp->private_data;
3863
3864         if (dev->ops->mmap)
3865                 return dev->ops->mmap(dev, vma);
3866
3867         return -ENODEV;
3868 }
3869
3870 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3871                                  int (*accessor)(struct kvm_device *dev,
3872                                                  struct kvm_device_attr *attr),
3873                                  unsigned long arg)
3874 {
3875         struct kvm_device_attr attr;
3876
3877         if (!accessor)
3878                 return -EPERM;
3879
3880         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3881                 return -EFAULT;
3882
3883         return accessor(dev, &attr);
3884 }
3885
3886 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3887                              unsigned long arg)
3888 {
3889         struct kvm_device *dev = filp->private_data;
3890
3891         if (dev->kvm->mm != current->mm)
3892                 return -EIO;
3893
3894         switch (ioctl) {
3895         case KVM_SET_DEVICE_ATTR:
3896                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3897         case KVM_GET_DEVICE_ATTR:
3898                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3899         case KVM_HAS_DEVICE_ATTR:
3900                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3901         default:
3902                 if (dev->ops->ioctl)
3903                         return dev->ops->ioctl(dev, ioctl, arg);
3904
3905                 return -ENOTTY;
3906         }
3907 }
3908
3909 static int kvm_device_release(struct inode *inode, struct file *filp)
3910 {
3911         struct kvm_device *dev = filp->private_data;
3912         struct kvm *kvm = dev->kvm;
3913
3914         if (dev->ops->release) {
3915                 mutex_lock(&kvm->lock);
3916                 list_del(&dev->vm_node);
3917                 dev->ops->release(dev);
3918                 mutex_unlock(&kvm->lock);
3919         }
3920
3921         kvm_put_kvm(kvm);
3922         return 0;
3923 }
3924
3925 static const struct file_operations kvm_device_fops = {
3926         .unlocked_ioctl = kvm_device_ioctl,
3927         .release = kvm_device_release,
3928         KVM_COMPAT(kvm_device_ioctl),
3929         .mmap = kvm_device_mmap,
3930 };
3931
3932 struct kvm_device *kvm_device_from_filp(struct file *filp)
3933 {
3934         if (filp->f_op != &kvm_device_fops)
3935                 return NULL;
3936
3937         return filp->private_data;
3938 }
3939
3940 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3941 #ifdef CONFIG_KVM_MPIC
3942         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3943         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3944 #endif
3945 };
3946
3947 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3948 {
3949         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3950                 return -ENOSPC;
3951
3952         if (kvm_device_ops_table[type] != NULL)
3953                 return -EEXIST;
3954
3955         kvm_device_ops_table[type] = ops;
3956         return 0;
3957 }
3958
3959 void kvm_unregister_device_ops(u32 type)
3960 {
3961         if (kvm_device_ops_table[type] != NULL)
3962                 kvm_device_ops_table[type] = NULL;
3963 }
3964
3965 static int kvm_ioctl_create_device(struct kvm *kvm,
3966                                    struct kvm_create_device *cd)
3967 {
3968         const struct kvm_device_ops *ops = NULL;
3969         struct kvm_device *dev;
3970         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3971         int type;
3972         int ret;
3973
3974         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3975                 return -ENODEV;
3976
3977         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3978         ops = kvm_device_ops_table[type];
3979         if (ops == NULL)
3980                 return -ENODEV;
3981
3982         if (test)
3983                 return 0;
3984
3985         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3986         if (!dev)
3987                 return -ENOMEM;
3988
3989         dev->ops = ops;
3990         dev->kvm = kvm;
3991
3992         mutex_lock(&kvm->lock);
3993         ret = ops->create(dev, type);
3994         if (ret < 0) {
3995                 mutex_unlock(&kvm->lock);
3996                 kfree(dev);
3997                 return ret;
3998         }
3999         list_add(&dev->vm_node, &kvm->devices);
4000         mutex_unlock(&kvm->lock);
4001
4002         if (ops->init)
4003                 ops->init(dev);
4004
4005         kvm_get_kvm(kvm);
4006         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4007         if (ret < 0) {
4008                 kvm_put_kvm_no_destroy(kvm);
4009                 mutex_lock(&kvm->lock);
4010                 list_del(&dev->vm_node);
4011                 mutex_unlock(&kvm->lock);
4012                 ops->destroy(dev);
4013                 return ret;
4014         }
4015
4016         cd->fd = ret;
4017         return 0;
4018 }
4019
4020 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4021 {
4022         switch (arg) {
4023         case KVM_CAP_USER_MEMORY:
4024         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4025         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4026         case KVM_CAP_INTERNAL_ERROR_DATA:
4027 #ifdef CONFIG_HAVE_KVM_MSI
4028         case KVM_CAP_SIGNAL_MSI:
4029 #endif
4030 #ifdef CONFIG_HAVE_KVM_IRQFD
4031         case KVM_CAP_IRQFD:
4032         case KVM_CAP_IRQFD_RESAMPLE:
4033 #endif
4034         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4035         case KVM_CAP_CHECK_EXTENSION_VM:
4036         case KVM_CAP_ENABLE_CAP_VM:
4037         case KVM_CAP_HALT_POLL:
4038                 return 1;
4039 #ifdef CONFIG_KVM_MMIO
4040         case KVM_CAP_COALESCED_MMIO:
4041                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4042         case KVM_CAP_COALESCED_PIO:
4043                 return 1;
4044 #endif
4045 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4046         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4047                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4048 #endif
4049 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4050         case KVM_CAP_IRQ_ROUTING:
4051                 return KVM_MAX_IRQ_ROUTES;
4052 #endif
4053 #if KVM_ADDRESS_SPACE_NUM > 1
4054         case KVM_CAP_MULTI_ADDRESS_SPACE:
4055                 return KVM_ADDRESS_SPACE_NUM;
4056 #endif
4057         case KVM_CAP_NR_MEMSLOTS:
4058                 return KVM_USER_MEM_SLOTS;
4059         case KVM_CAP_DIRTY_LOG_RING:
4060 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4061                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4062 #else
4063                 return 0;
4064 #endif
4065         case KVM_CAP_BINARY_STATS_FD:
4066                 return 1;
4067         default:
4068                 break;
4069         }
4070         return kvm_vm_ioctl_check_extension(kvm, arg);
4071 }
4072
4073 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4074 {
4075         int r;
4076
4077         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4078                 return -EINVAL;
4079
4080         /* the size should be power of 2 */
4081         if (!size || (size & (size - 1)))
4082                 return -EINVAL;
4083
4084         /* Should be bigger to keep the reserved entries, or a page */
4085         if (size < kvm_dirty_ring_get_rsvd_entries() *
4086             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4087                 return -EINVAL;
4088
4089         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4090             sizeof(struct kvm_dirty_gfn))
4091                 return -E2BIG;
4092
4093         /* We only allow it to set once */
4094         if (kvm->dirty_ring_size)
4095                 return -EINVAL;
4096
4097         mutex_lock(&kvm->lock);
4098
4099         if (kvm->created_vcpus) {
4100                 /* We don't allow to change this value after vcpu created */
4101                 r = -EINVAL;
4102         } else {
4103                 kvm->dirty_ring_size = size;
4104                 r = 0;
4105         }
4106
4107         mutex_unlock(&kvm->lock);
4108         return r;
4109 }
4110
4111 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4112 {
4113         int i;
4114         struct kvm_vcpu *vcpu;
4115         int cleared = 0;
4116
4117         if (!kvm->dirty_ring_size)
4118                 return -EINVAL;
4119
4120         mutex_lock(&kvm->slots_lock);
4121
4122         kvm_for_each_vcpu(i, vcpu, kvm)
4123                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4124
4125         mutex_unlock(&kvm->slots_lock);
4126
4127         if (cleared)
4128                 kvm_flush_remote_tlbs(kvm);
4129
4130         return cleared;
4131 }
4132
4133 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4134                                                   struct kvm_enable_cap *cap)
4135 {
4136         return -EINVAL;
4137 }
4138
4139 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4140                                            struct kvm_enable_cap *cap)
4141 {
4142         switch (cap->cap) {
4143 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4144         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4145                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4146
4147                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4148                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4149
4150                 if (cap->flags || (cap->args[0] & ~allowed_options))
4151                         return -EINVAL;
4152                 kvm->manual_dirty_log_protect = cap->args[0];
4153                 return 0;
4154         }
4155 #endif
4156         case KVM_CAP_HALT_POLL: {
4157                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4158                         return -EINVAL;
4159
4160                 kvm->max_halt_poll_ns = cap->args[0];
4161                 return 0;
4162         }
4163         case KVM_CAP_DIRTY_LOG_RING:
4164                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4165         default:
4166                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4167         }
4168 }
4169
4170 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4171                               size_t size, loff_t *offset)
4172 {
4173         struct kvm *kvm = file->private_data;
4174
4175         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4176                                 &kvm_vm_stats_desc[0], &kvm->stat,
4177                                 sizeof(kvm->stat), user_buffer, size, offset);
4178 }
4179
4180 static const struct file_operations kvm_vm_stats_fops = {
4181         .read = kvm_vm_stats_read,
4182         .llseek = noop_llseek,
4183 };
4184
4185 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4186 {
4187         int fd;
4188         struct file *file;
4189
4190         fd = get_unused_fd_flags(O_CLOEXEC);
4191         if (fd < 0)
4192                 return fd;
4193
4194         file = anon_inode_getfile("kvm-vm-stats",
4195                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4196         if (IS_ERR(file)) {
4197                 put_unused_fd(fd);
4198                 return PTR_ERR(file);
4199         }
4200         file->f_mode |= FMODE_PREAD;
4201         fd_install(fd, file);
4202
4203         return fd;
4204 }
4205
4206 static long kvm_vm_ioctl(struct file *filp,
4207                            unsigned int ioctl, unsigned long arg)
4208 {
4209         struct kvm *kvm = filp->private_data;
4210         void __user *argp = (void __user *)arg;
4211         int r;
4212
4213         if (kvm->mm != current->mm)
4214                 return -EIO;
4215         switch (ioctl) {
4216         case KVM_CREATE_VCPU:
4217                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4218                 break;
4219         case KVM_ENABLE_CAP: {
4220                 struct kvm_enable_cap cap;
4221
4222                 r = -EFAULT;
4223                 if (copy_from_user(&cap, argp, sizeof(cap)))
4224                         goto out;
4225                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4226                 break;
4227         }
4228         case KVM_SET_USER_MEMORY_REGION: {
4229                 struct kvm_userspace_memory_region kvm_userspace_mem;
4230
4231                 r = -EFAULT;
4232                 if (copy_from_user(&kvm_userspace_mem, argp,
4233                                                 sizeof(kvm_userspace_mem)))
4234                         goto out;
4235
4236                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4237                 break;
4238         }
4239         case KVM_GET_DIRTY_LOG: {
4240                 struct kvm_dirty_log log;
4241
4242                 r = -EFAULT;
4243                 if (copy_from_user(&log, argp, sizeof(log)))
4244                         goto out;
4245                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4246                 break;
4247         }
4248 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4249         case KVM_CLEAR_DIRTY_LOG: {
4250                 struct kvm_clear_dirty_log log;
4251
4252                 r = -EFAULT;
4253                 if (copy_from_user(&log, argp, sizeof(log)))
4254                         goto out;
4255                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4256                 break;
4257         }
4258 #endif
4259 #ifdef CONFIG_KVM_MMIO
4260         case KVM_REGISTER_COALESCED_MMIO: {
4261                 struct kvm_coalesced_mmio_zone zone;
4262
4263                 r = -EFAULT;
4264                 if (copy_from_user(&zone, argp, sizeof(zone)))
4265                         goto out;
4266                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4267                 break;
4268         }
4269         case KVM_UNREGISTER_COALESCED_MMIO: {
4270                 struct kvm_coalesced_mmio_zone zone;
4271
4272                 r = -EFAULT;
4273                 if (copy_from_user(&zone, argp, sizeof(zone)))
4274                         goto out;
4275                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4276                 break;
4277         }
4278 #endif
4279         case KVM_IRQFD: {
4280                 struct kvm_irqfd data;
4281
4282                 r = -EFAULT;
4283                 if (copy_from_user(&data, argp, sizeof(data)))
4284                         goto out;
4285                 r = kvm_irqfd(kvm, &data);
4286                 break;
4287         }
4288         case KVM_IOEVENTFD: {
4289                 struct kvm_ioeventfd data;
4290
4291                 r = -EFAULT;
4292                 if (copy_from_user(&data, argp, sizeof(data)))
4293                         goto out;
4294                 r = kvm_ioeventfd(kvm, &data);
4295                 break;
4296         }
4297 #ifdef CONFIG_HAVE_KVM_MSI
4298         case KVM_SIGNAL_MSI: {
4299                 struct kvm_msi msi;
4300
4301                 r = -EFAULT;
4302                 if (copy_from_user(&msi, argp, sizeof(msi)))
4303                         goto out;
4304                 r = kvm_send_userspace_msi(kvm, &msi);
4305                 break;
4306         }
4307 #endif
4308 #ifdef __KVM_HAVE_IRQ_LINE
4309         case KVM_IRQ_LINE_STATUS:
4310         case KVM_IRQ_LINE: {
4311                 struct kvm_irq_level irq_event;
4312
4313                 r = -EFAULT;
4314                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4315                         goto out;
4316
4317                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4318                                         ioctl == KVM_IRQ_LINE_STATUS);
4319                 if (r)
4320                         goto out;
4321
4322                 r = -EFAULT;
4323                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4324                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4325                                 goto out;
4326                 }
4327
4328                 r = 0;
4329                 break;
4330         }
4331 #endif
4332 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4333         case KVM_SET_GSI_ROUTING: {
4334                 struct kvm_irq_routing routing;
4335                 struct kvm_irq_routing __user *urouting;
4336                 struct kvm_irq_routing_entry *entries = NULL;
4337
4338                 r = -EFAULT;
4339                 if (copy_from_user(&routing, argp, sizeof(routing)))
4340                         goto out;
4341                 r = -EINVAL;
4342                 if (!kvm_arch_can_set_irq_routing(kvm))
4343                         goto out;
4344                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4345                         goto out;
4346                 if (routing.flags)
4347                         goto out;
4348                 if (routing.nr) {
4349                         urouting = argp;
4350                         entries = vmemdup_user(urouting->entries,
4351                                                array_size(sizeof(*entries),
4352                                                           routing.nr));
4353                         if (IS_ERR(entries)) {
4354                                 r = PTR_ERR(entries);
4355                                 goto out;
4356                         }
4357                 }
4358                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4359                                         routing.flags);
4360                 kvfree(entries);
4361                 break;
4362         }
4363 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4364         case KVM_CREATE_DEVICE: {
4365                 struct kvm_create_device cd;
4366
4367                 r = -EFAULT;
4368                 if (copy_from_user(&cd, argp, sizeof(cd)))
4369                         goto out;
4370
4371                 r = kvm_ioctl_create_device(kvm, &cd);
4372                 if (r)
4373                         goto out;
4374
4375                 r = -EFAULT;
4376                 if (copy_to_user(argp, &cd, sizeof(cd)))
4377                         goto out;
4378
4379                 r = 0;
4380                 break;
4381         }
4382         case KVM_CHECK_EXTENSION:
4383                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4384                 break;
4385         case KVM_RESET_DIRTY_RINGS:
4386                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4387                 break;
4388         case KVM_GET_STATS_FD:
4389                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4390                 break;
4391         default:
4392                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4393         }
4394 out:
4395         return r;
4396 }
4397
4398 #ifdef CONFIG_KVM_COMPAT
4399 struct compat_kvm_dirty_log {
4400         __u32 slot;
4401         __u32 padding1;
4402         union {
4403                 compat_uptr_t dirty_bitmap; /* one bit per page */
4404                 __u64 padding2;
4405         };
4406 };
4407
4408 struct compat_kvm_clear_dirty_log {
4409         __u32 slot;
4410         __u32 num_pages;
4411         __u64 first_page;
4412         union {
4413                 compat_uptr_t dirty_bitmap; /* one bit per page */
4414                 __u64 padding2;
4415         };
4416 };
4417
4418 static long kvm_vm_compat_ioctl(struct file *filp,
4419                            unsigned int ioctl, unsigned long arg)
4420 {
4421         struct kvm *kvm = filp->private_data;
4422         int r;
4423
4424         if (kvm->mm != current->mm)
4425                 return -EIO;
4426         switch (ioctl) {
4427 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4428         case KVM_CLEAR_DIRTY_LOG: {
4429                 struct compat_kvm_clear_dirty_log compat_log;
4430                 struct kvm_clear_dirty_log log;
4431
4432                 if (copy_from_user(&compat_log, (void __user *)arg,
4433                                    sizeof(compat_log)))
4434                         return -EFAULT;
4435                 log.slot         = compat_log.slot;
4436                 log.num_pages    = compat_log.num_pages;
4437                 log.first_page   = compat_log.first_page;
4438                 log.padding2     = compat_log.padding2;
4439                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4440
4441                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4442                 break;
4443         }
4444 #endif
4445         case KVM_GET_DIRTY_LOG: {
4446                 struct compat_kvm_dirty_log compat_log;
4447                 struct kvm_dirty_log log;
4448
4449                 if (copy_from_user(&compat_log, (void __user *)arg,
4450                                    sizeof(compat_log)))
4451                         return -EFAULT;
4452                 log.slot         = compat_log.slot;
4453                 log.padding1     = compat_log.padding1;
4454                 log.padding2     = compat_log.padding2;
4455                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4456
4457                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4458                 break;
4459         }
4460         default:
4461                 r = kvm_vm_ioctl(filp, ioctl, arg);
4462         }
4463         return r;
4464 }
4465 #endif
4466
4467 static struct file_operations kvm_vm_fops = {
4468         .release        = kvm_vm_release,
4469         .unlocked_ioctl = kvm_vm_ioctl,
4470         .llseek         = noop_llseek,
4471         KVM_COMPAT(kvm_vm_compat_ioctl),
4472 };
4473
4474 bool file_is_kvm(struct file *file)
4475 {
4476         return file && file->f_op == &kvm_vm_fops;
4477 }
4478 EXPORT_SYMBOL_GPL(file_is_kvm);
4479
4480 static int kvm_dev_ioctl_create_vm(unsigned long type)
4481 {
4482         int r;
4483         struct kvm *kvm;
4484         struct file *file;
4485
4486         kvm = kvm_create_vm(type);
4487         if (IS_ERR(kvm))
4488                 return PTR_ERR(kvm);
4489 #ifdef CONFIG_KVM_MMIO
4490         r = kvm_coalesced_mmio_init(kvm);
4491         if (r < 0)
4492                 goto put_kvm;
4493 #endif
4494         r = get_unused_fd_flags(O_CLOEXEC);
4495         if (r < 0)
4496                 goto put_kvm;
4497
4498         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4499                         "kvm-%d", task_pid_nr(current));
4500
4501         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4502         if (IS_ERR(file)) {
4503                 put_unused_fd(r);
4504                 r = PTR_ERR(file);
4505                 goto put_kvm;
4506         }
4507
4508         /*
4509          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4510          * already set, with ->release() being kvm_vm_release().  In error
4511          * cases it will be called by the final fput(file) and will take
4512          * care of doing kvm_put_kvm(kvm).
4513          */
4514         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4515                 put_unused_fd(r);
4516                 fput(file);
4517                 return -ENOMEM;
4518         }
4519         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4520
4521         fd_install(r, file);
4522         return r;
4523
4524 put_kvm:
4525         kvm_put_kvm(kvm);
4526         return r;
4527 }
4528
4529 static long kvm_dev_ioctl(struct file *filp,
4530                           unsigned int ioctl, unsigned long arg)
4531 {
4532         long r = -EINVAL;
4533
4534         switch (ioctl) {
4535         case KVM_GET_API_VERSION:
4536                 if (arg)
4537                         goto out;
4538                 r = KVM_API_VERSION;
4539                 break;
4540         case KVM_CREATE_VM:
4541                 r = kvm_dev_ioctl_create_vm(arg);
4542                 break;
4543         case KVM_CHECK_EXTENSION:
4544                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4545                 break;
4546         case KVM_GET_VCPU_MMAP_SIZE:
4547                 if (arg)
4548                         goto out;
4549                 r = PAGE_SIZE;     /* struct kvm_run */
4550 #ifdef CONFIG_X86
4551                 r += PAGE_SIZE;    /* pio data page */
4552 #endif
4553 #ifdef CONFIG_KVM_MMIO
4554                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4555 #endif
4556                 break;
4557         case KVM_TRACE_ENABLE:
4558         case KVM_TRACE_PAUSE:
4559         case KVM_TRACE_DISABLE:
4560                 r = -EOPNOTSUPP;
4561                 break;
4562         default:
4563                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4564         }
4565 out:
4566         return r;
4567 }
4568
4569 static struct file_operations kvm_chardev_ops = {
4570         .unlocked_ioctl = kvm_dev_ioctl,
4571         .llseek         = noop_llseek,
4572         KVM_COMPAT(kvm_dev_ioctl),
4573 };
4574
4575 static struct miscdevice kvm_dev = {
4576         KVM_MINOR,
4577         "kvm",
4578         &kvm_chardev_ops,
4579 };
4580
4581 static void hardware_enable_nolock(void *junk)
4582 {
4583         int cpu = raw_smp_processor_id();
4584         int r;
4585
4586         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4587                 return;
4588
4589         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4590
4591         r = kvm_arch_hardware_enable();
4592
4593         if (r) {
4594                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4595                 atomic_inc(&hardware_enable_failed);
4596                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4597         }
4598 }
4599
4600 static int kvm_starting_cpu(unsigned int cpu)
4601 {
4602         raw_spin_lock(&kvm_count_lock);
4603         if (kvm_usage_count)
4604                 hardware_enable_nolock(NULL);
4605         raw_spin_unlock(&kvm_count_lock);
4606         return 0;
4607 }
4608
4609 static void hardware_disable_nolock(void *junk)
4610 {
4611         int cpu = raw_smp_processor_id();
4612
4613         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4614                 return;
4615         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4616         kvm_arch_hardware_disable();
4617 }
4618
4619 static int kvm_dying_cpu(unsigned int cpu)
4620 {
4621         raw_spin_lock(&kvm_count_lock);
4622         if (kvm_usage_count)
4623                 hardware_disable_nolock(NULL);
4624         raw_spin_unlock(&kvm_count_lock);
4625         return 0;
4626 }
4627
4628 static void hardware_disable_all_nolock(void)
4629 {
4630         BUG_ON(!kvm_usage_count);
4631
4632         kvm_usage_count--;
4633         if (!kvm_usage_count)
4634                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4635 }
4636
4637 static void hardware_disable_all(void)
4638 {
4639         raw_spin_lock(&kvm_count_lock);
4640         hardware_disable_all_nolock();
4641         raw_spin_unlock(&kvm_count_lock);
4642 }
4643
4644 static int hardware_enable_all(void)
4645 {
4646         int r = 0;
4647
4648         raw_spin_lock(&kvm_count_lock);
4649
4650         kvm_usage_count++;
4651         if (kvm_usage_count == 1) {
4652                 atomic_set(&hardware_enable_failed, 0);
4653                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4654
4655                 if (atomic_read(&hardware_enable_failed)) {
4656                         hardware_disable_all_nolock();
4657                         r = -EBUSY;
4658                 }
4659         }
4660
4661         raw_spin_unlock(&kvm_count_lock);
4662
4663         return r;
4664 }
4665
4666 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4667                       void *v)
4668 {
4669         /*
4670          * Some (well, at least mine) BIOSes hang on reboot if
4671          * in vmx root mode.
4672          *
4673          * And Intel TXT required VMX off for all cpu when system shutdown.
4674          */
4675         pr_info("kvm: exiting hardware virtualization\n");
4676         kvm_rebooting = true;
4677         on_each_cpu(hardware_disable_nolock, NULL, 1);
4678         return NOTIFY_OK;
4679 }
4680
4681 static struct notifier_block kvm_reboot_notifier = {
4682         .notifier_call = kvm_reboot,
4683         .priority = 0,
4684 };
4685
4686 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4687 {
4688         int i;
4689
4690         for (i = 0; i < bus->dev_count; i++) {
4691                 struct kvm_io_device *pos = bus->range[i].dev;
4692
4693                 kvm_iodevice_destructor(pos);
4694         }
4695         kfree(bus);
4696 }
4697
4698 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4699                                  const struct kvm_io_range *r2)
4700 {
4701         gpa_t addr1 = r1->addr;
4702         gpa_t addr2 = r2->addr;
4703
4704         if (addr1 < addr2)
4705                 return -1;
4706
4707         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4708          * accept any overlapping write.  Any order is acceptable for
4709          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4710          * we process all of them.
4711          */
4712         if (r2->len) {
4713                 addr1 += r1->len;
4714                 addr2 += r2->len;
4715         }
4716
4717         if (addr1 > addr2)
4718                 return 1;
4719
4720         return 0;
4721 }
4722
4723 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4724 {
4725         return kvm_io_bus_cmp(p1, p2);
4726 }
4727
4728 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4729                              gpa_t addr, int len)
4730 {
4731         struct kvm_io_range *range, key;
4732         int off;
4733
4734         key = (struct kvm_io_range) {
4735                 .addr = addr,
4736                 .len = len,
4737         };
4738
4739         range = bsearch(&key, bus->range, bus->dev_count,
4740                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4741         if (range == NULL)
4742                 return -ENOENT;
4743
4744         off = range - bus->range;
4745
4746         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4747                 off--;
4748
4749         return off;
4750 }
4751
4752 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4753                               struct kvm_io_range *range, const void *val)
4754 {
4755         int idx;
4756
4757         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4758         if (idx < 0)
4759                 return -EOPNOTSUPP;
4760
4761         while (idx < bus->dev_count &&
4762                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4763                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4764                                         range->len, val))
4765                         return idx;
4766                 idx++;
4767         }
4768
4769         return -EOPNOTSUPP;
4770 }
4771
4772 /* kvm_io_bus_write - called under kvm->slots_lock */
4773 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4774                      int len, const void *val)
4775 {
4776         struct kvm_io_bus *bus;
4777         struct kvm_io_range range;
4778         int r;
4779
4780         range = (struct kvm_io_range) {
4781                 .addr = addr,
4782                 .len = len,
4783         };
4784
4785         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4786         if (!bus)
4787                 return -ENOMEM;
4788         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4789         return r < 0 ? r : 0;
4790 }
4791 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4792
4793 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4794 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4795                             gpa_t addr, int len, const void *val, long cookie)
4796 {
4797         struct kvm_io_bus *bus;
4798         struct kvm_io_range range;
4799
4800         range = (struct kvm_io_range) {
4801                 .addr = addr,
4802                 .len = len,
4803         };
4804
4805         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4806         if (!bus)
4807                 return -ENOMEM;
4808
4809         /* First try the device referenced by cookie. */
4810         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4811             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4812                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4813                                         val))
4814                         return cookie;
4815
4816         /*
4817          * cookie contained garbage; fall back to search and return the
4818          * correct cookie value.
4819          */
4820         return __kvm_io_bus_write(vcpu, bus, &range, val);
4821 }
4822
4823 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4824                              struct kvm_io_range *range, void *val)
4825 {
4826         int idx;
4827
4828         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4829         if (idx < 0)
4830                 return -EOPNOTSUPP;
4831
4832         while (idx < bus->dev_count &&
4833                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4834                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4835                                        range->len, val))
4836                         return idx;
4837                 idx++;
4838         }
4839
4840         return -EOPNOTSUPP;
4841 }
4842
4843 /* kvm_io_bus_read - called under kvm->slots_lock */
4844 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4845                     int len, void *val)
4846 {
4847         struct kvm_io_bus *bus;
4848         struct kvm_io_range range;
4849         int r;
4850
4851         range = (struct kvm_io_range) {
4852                 .addr = addr,
4853                 .len = len,
4854         };
4855
4856         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4857         if (!bus)
4858                 return -ENOMEM;
4859         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4860         return r < 0 ? r : 0;
4861 }
4862
4863 /* Caller must hold slots_lock. */
4864 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4865                             int len, struct kvm_io_device *dev)
4866 {
4867         int i;
4868         struct kvm_io_bus *new_bus, *bus;
4869         struct kvm_io_range range;
4870
4871         bus = kvm_get_bus(kvm, bus_idx);
4872         if (!bus)
4873                 return -ENOMEM;
4874
4875         /* exclude ioeventfd which is limited by maximum fd */
4876         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4877                 return -ENOSPC;
4878
4879         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4880                           GFP_KERNEL_ACCOUNT);
4881         if (!new_bus)
4882                 return -ENOMEM;
4883
4884         range = (struct kvm_io_range) {
4885                 .addr = addr,
4886                 .len = len,
4887                 .dev = dev,
4888         };
4889
4890         for (i = 0; i < bus->dev_count; i++)
4891                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4892                         break;
4893
4894         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4895         new_bus->dev_count++;
4896         new_bus->range[i] = range;
4897         memcpy(new_bus->range + i + 1, bus->range + i,
4898                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4899         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4900         synchronize_srcu_expedited(&kvm->srcu);
4901         kfree(bus);
4902
4903         return 0;
4904 }
4905
4906 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4907                               struct kvm_io_device *dev)
4908 {
4909         int i, j;
4910         struct kvm_io_bus *new_bus, *bus;
4911
4912         lockdep_assert_held(&kvm->slots_lock);
4913
4914         bus = kvm_get_bus(kvm, bus_idx);
4915         if (!bus)
4916                 return 0;
4917
4918         for (i = 0; i < bus->dev_count; i++) {
4919                 if (bus->range[i].dev == dev) {
4920                         break;
4921                 }
4922         }
4923
4924         if (i == bus->dev_count)
4925                 return 0;
4926
4927         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4928                           GFP_KERNEL_ACCOUNT);
4929         if (new_bus) {
4930                 memcpy(new_bus, bus, struct_size(bus, range, i));
4931                 new_bus->dev_count--;
4932                 memcpy(new_bus->range + i, bus->range + i + 1,
4933                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4934         }
4935
4936         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4937         synchronize_srcu_expedited(&kvm->srcu);
4938
4939         /* Destroy the old bus _after_ installing the (null) bus. */
4940         if (!new_bus) {
4941                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4942                 for (j = 0; j < bus->dev_count; j++) {
4943                         if (j == i)
4944                                 continue;
4945                         kvm_iodevice_destructor(bus->range[j].dev);
4946                 }
4947         }
4948
4949         kfree(bus);
4950         return new_bus ? 0 : -ENOMEM;
4951 }
4952
4953 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4954                                          gpa_t addr)
4955 {
4956         struct kvm_io_bus *bus;
4957         int dev_idx, srcu_idx;
4958         struct kvm_io_device *iodev = NULL;
4959
4960         srcu_idx = srcu_read_lock(&kvm->srcu);
4961
4962         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4963         if (!bus)
4964                 goto out_unlock;
4965
4966         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4967         if (dev_idx < 0)
4968                 goto out_unlock;
4969
4970         iodev = bus->range[dev_idx].dev;
4971
4972 out_unlock:
4973         srcu_read_unlock(&kvm->srcu, srcu_idx);
4974
4975         return iodev;
4976 }
4977 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4978
4979 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4980                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4981                            const char *fmt)
4982 {
4983         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4984                                           inode->i_private;
4985
4986         /* The debugfs files are a reference to the kvm struct which
4987          * is still valid when kvm_destroy_vm is called.
4988          * To avoid the race between open and the removal of the debugfs
4989          * directory we test against the users count.
4990          */
4991         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4992                 return -ENOENT;
4993
4994         if (simple_attr_open(inode, file, get,
4995                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
4996                     ? set : NULL,
4997                     fmt)) {
4998                 kvm_put_kvm(stat_data->kvm);
4999                 return -ENOMEM;
5000         }
5001
5002         return 0;
5003 }
5004
5005 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5006 {
5007         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5008                                           inode->i_private;
5009
5010         simple_attr_release(inode, file);
5011         kvm_put_kvm(stat_data->kvm);
5012
5013         return 0;
5014 }
5015
5016 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5017 {
5018         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5019
5020         return 0;
5021 }
5022
5023 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5024 {
5025         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5026
5027         return 0;
5028 }
5029
5030 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5031 {
5032         int i;
5033         struct kvm_vcpu *vcpu;
5034
5035         *val = 0;
5036
5037         kvm_for_each_vcpu(i, vcpu, kvm)
5038                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5039
5040         return 0;
5041 }
5042
5043 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5044 {
5045         int i;
5046         struct kvm_vcpu *vcpu;
5047
5048         kvm_for_each_vcpu(i, vcpu, kvm)
5049                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5050
5051         return 0;
5052 }
5053
5054 static int kvm_stat_data_get(void *data, u64 *val)
5055 {
5056         int r = -EFAULT;
5057         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5058
5059         switch (stat_data->kind) {
5060         case KVM_STAT_VM:
5061                 r = kvm_get_stat_per_vm(stat_data->kvm,
5062                                         stat_data->desc->desc.offset, val);
5063                 break;
5064         case KVM_STAT_VCPU:
5065                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5066                                           stat_data->desc->desc.offset, val);
5067                 break;
5068         }
5069
5070         return r;
5071 }
5072
5073 static int kvm_stat_data_clear(void *data, u64 val)
5074 {
5075         int r = -EFAULT;
5076         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5077
5078         if (val)
5079                 return -EINVAL;
5080
5081         switch (stat_data->kind) {
5082         case KVM_STAT_VM:
5083                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5084                                           stat_data->desc->desc.offset);
5085                 break;
5086         case KVM_STAT_VCPU:
5087                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5088                                             stat_data->desc->desc.offset);
5089                 break;
5090         }
5091
5092         return r;
5093 }
5094
5095 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5096 {
5097         __simple_attr_check_format("%llu\n", 0ull);
5098         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5099                                 kvm_stat_data_clear, "%llu\n");
5100 }
5101
5102 static const struct file_operations stat_fops_per_vm = {
5103         .owner = THIS_MODULE,
5104         .open = kvm_stat_data_open,
5105         .release = kvm_debugfs_release,
5106         .read = simple_attr_read,
5107         .write = simple_attr_write,
5108         .llseek = no_llseek,
5109 };
5110
5111 static int vm_stat_get(void *_offset, u64 *val)
5112 {
5113         unsigned offset = (long)_offset;
5114         struct kvm *kvm;
5115         u64 tmp_val;
5116
5117         *val = 0;
5118         mutex_lock(&kvm_lock);
5119         list_for_each_entry(kvm, &vm_list, vm_list) {
5120                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5121                 *val += tmp_val;
5122         }
5123         mutex_unlock(&kvm_lock);
5124         return 0;
5125 }
5126
5127 static int vm_stat_clear(void *_offset, u64 val)
5128 {
5129         unsigned offset = (long)_offset;
5130         struct kvm *kvm;
5131
5132         if (val)
5133                 return -EINVAL;
5134
5135         mutex_lock(&kvm_lock);
5136         list_for_each_entry(kvm, &vm_list, vm_list) {
5137                 kvm_clear_stat_per_vm(kvm, offset);
5138         }
5139         mutex_unlock(&kvm_lock);
5140
5141         return 0;
5142 }
5143
5144 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5145 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5146
5147 static int vcpu_stat_get(void *_offset, u64 *val)
5148 {
5149         unsigned offset = (long)_offset;
5150         struct kvm *kvm;
5151         u64 tmp_val;
5152
5153         *val = 0;
5154         mutex_lock(&kvm_lock);
5155         list_for_each_entry(kvm, &vm_list, vm_list) {
5156                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5157                 *val += tmp_val;
5158         }
5159         mutex_unlock(&kvm_lock);
5160         return 0;
5161 }
5162
5163 static int vcpu_stat_clear(void *_offset, u64 val)
5164 {
5165         unsigned offset = (long)_offset;
5166         struct kvm *kvm;
5167
5168         if (val)
5169                 return -EINVAL;
5170
5171         mutex_lock(&kvm_lock);
5172         list_for_each_entry(kvm, &vm_list, vm_list) {
5173                 kvm_clear_stat_per_vcpu(kvm, offset);
5174         }
5175         mutex_unlock(&kvm_lock);
5176
5177         return 0;
5178 }
5179
5180 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5181                         "%llu\n");
5182 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5183
5184 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5185 {
5186         struct kobj_uevent_env *env;
5187         unsigned long long created, active;
5188
5189         if (!kvm_dev.this_device || !kvm)
5190                 return;
5191
5192         mutex_lock(&kvm_lock);
5193         if (type == KVM_EVENT_CREATE_VM) {
5194                 kvm_createvm_count++;
5195                 kvm_active_vms++;
5196         } else if (type == KVM_EVENT_DESTROY_VM) {
5197                 kvm_active_vms--;
5198         }
5199         created = kvm_createvm_count;
5200         active = kvm_active_vms;
5201         mutex_unlock(&kvm_lock);
5202
5203         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5204         if (!env)
5205                 return;
5206
5207         add_uevent_var(env, "CREATED=%llu", created);
5208         add_uevent_var(env, "COUNT=%llu", active);
5209
5210         if (type == KVM_EVENT_CREATE_VM) {
5211                 add_uevent_var(env, "EVENT=create");
5212                 kvm->userspace_pid = task_pid_nr(current);
5213         } else if (type == KVM_EVENT_DESTROY_VM) {
5214                 add_uevent_var(env, "EVENT=destroy");
5215         }
5216         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5217
5218         if (kvm->debugfs_dentry) {
5219                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5220
5221                 if (p) {
5222                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5223                         if (!IS_ERR(tmp))
5224                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5225                         kfree(p);
5226                 }
5227         }
5228         /* no need for checks, since we are adding at most only 5 keys */
5229         env->envp[env->envp_idx++] = NULL;
5230         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5231         kfree(env);
5232 }
5233
5234 static void kvm_init_debug(void)
5235 {
5236         const struct file_operations *fops;
5237         const struct _kvm_stats_desc *pdesc;
5238         int i;
5239
5240         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5241
5242         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5243                 pdesc = &kvm_vm_stats_desc[i];
5244                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5245                         fops = &vm_stat_fops;
5246                 else
5247                         fops = &vm_stat_readonly_fops;
5248                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5249                                 kvm_debugfs_dir,
5250                                 (void *)(long)pdesc->desc.offset, fops);
5251         }
5252
5253         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5254                 pdesc = &kvm_vcpu_stats_desc[i];
5255                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5256                         fops = &vcpu_stat_fops;
5257                 else
5258                         fops = &vcpu_stat_readonly_fops;
5259                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5260                                 kvm_debugfs_dir,
5261                                 (void *)(long)pdesc->desc.offset, fops);
5262         }
5263 }
5264
5265 static int kvm_suspend(void)
5266 {
5267         if (kvm_usage_count)
5268                 hardware_disable_nolock(NULL);
5269         return 0;
5270 }
5271
5272 static void kvm_resume(void)
5273 {
5274         if (kvm_usage_count) {
5275 #ifdef CONFIG_LOCKDEP
5276                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5277 #endif
5278                 hardware_enable_nolock(NULL);
5279         }
5280 }
5281
5282 static struct syscore_ops kvm_syscore_ops = {
5283         .suspend = kvm_suspend,
5284         .resume = kvm_resume,
5285 };
5286
5287 static inline
5288 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5289 {
5290         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5291 }
5292
5293 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5294 {
5295         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5296
5297         WRITE_ONCE(vcpu->preempted, false);
5298         WRITE_ONCE(vcpu->ready, false);
5299
5300         __this_cpu_write(kvm_running_vcpu, vcpu);
5301         kvm_arch_sched_in(vcpu, cpu);
5302         kvm_arch_vcpu_load(vcpu, cpu);
5303 }
5304
5305 static void kvm_sched_out(struct preempt_notifier *pn,
5306                           struct task_struct *next)
5307 {
5308         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5309
5310         if (current->on_rq) {
5311                 WRITE_ONCE(vcpu->preempted, true);
5312                 WRITE_ONCE(vcpu->ready, true);
5313         }
5314         kvm_arch_vcpu_put(vcpu);
5315         __this_cpu_write(kvm_running_vcpu, NULL);
5316 }
5317
5318 /**
5319  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5320  *
5321  * We can disable preemption locally around accessing the per-CPU variable,
5322  * and use the resolved vcpu pointer after enabling preemption again,
5323  * because even if the current thread is migrated to another CPU, reading
5324  * the per-CPU value later will give us the same value as we update the
5325  * per-CPU variable in the preempt notifier handlers.
5326  */
5327 struct kvm_vcpu *kvm_get_running_vcpu(void)
5328 {
5329         struct kvm_vcpu *vcpu;
5330
5331         preempt_disable();
5332         vcpu = __this_cpu_read(kvm_running_vcpu);
5333         preempt_enable();
5334
5335         return vcpu;
5336 }
5337 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5338
5339 /**
5340  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5341  */
5342 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5343 {
5344         return &kvm_running_vcpu;
5345 }
5346
5347 struct kvm_cpu_compat_check {
5348         void *opaque;
5349         int *ret;
5350 };
5351
5352 static void check_processor_compat(void *data)
5353 {
5354         struct kvm_cpu_compat_check *c = data;
5355
5356         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5357 }
5358
5359 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5360                   struct module *module)
5361 {
5362         struct kvm_cpu_compat_check c;
5363         int r;
5364         int cpu;
5365
5366         r = kvm_arch_init(opaque);
5367         if (r)
5368                 goto out_fail;
5369
5370         /*
5371          * kvm_arch_init makes sure there's at most one caller
5372          * for architectures that support multiple implementations,
5373          * like intel and amd on x86.
5374          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5375          * conflicts in case kvm is already setup for another implementation.
5376          */
5377         r = kvm_irqfd_init();
5378         if (r)
5379                 goto out_irqfd;
5380
5381         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5382                 r = -ENOMEM;
5383                 goto out_free_0;
5384         }
5385
5386         r = kvm_arch_hardware_setup(opaque);
5387         if (r < 0)
5388                 goto out_free_1;
5389
5390         c.ret = &r;
5391         c.opaque = opaque;
5392         for_each_online_cpu(cpu) {
5393                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5394                 if (r < 0)
5395                         goto out_free_2;
5396         }
5397
5398         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5399                                       kvm_starting_cpu, kvm_dying_cpu);
5400         if (r)
5401                 goto out_free_2;
5402         register_reboot_notifier(&kvm_reboot_notifier);
5403
5404         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5405         if (!vcpu_align)
5406                 vcpu_align = __alignof__(struct kvm_vcpu);
5407         kvm_vcpu_cache =
5408                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5409                                            SLAB_ACCOUNT,
5410                                            offsetof(struct kvm_vcpu, arch),
5411                                            offsetofend(struct kvm_vcpu, stats_id)
5412                                            - offsetof(struct kvm_vcpu, arch),
5413                                            NULL);
5414         if (!kvm_vcpu_cache) {
5415                 r = -ENOMEM;
5416                 goto out_free_3;
5417         }
5418
5419         r = kvm_async_pf_init();
5420         if (r)
5421                 goto out_free;
5422
5423         kvm_chardev_ops.owner = module;
5424         kvm_vm_fops.owner = module;
5425         kvm_vcpu_fops.owner = module;
5426
5427         r = misc_register(&kvm_dev);
5428         if (r) {
5429                 pr_err("kvm: misc device register failed\n");
5430                 goto out_unreg;
5431         }
5432
5433         register_syscore_ops(&kvm_syscore_ops);
5434
5435         kvm_preempt_ops.sched_in = kvm_sched_in;
5436         kvm_preempt_ops.sched_out = kvm_sched_out;
5437
5438         kvm_init_debug();
5439
5440         r = kvm_vfio_ops_init();
5441         WARN_ON(r);
5442
5443         return 0;
5444
5445 out_unreg:
5446         kvm_async_pf_deinit();
5447 out_free:
5448         kmem_cache_destroy(kvm_vcpu_cache);
5449 out_free_3:
5450         unregister_reboot_notifier(&kvm_reboot_notifier);
5451         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5452 out_free_2:
5453         kvm_arch_hardware_unsetup();
5454 out_free_1:
5455         free_cpumask_var(cpus_hardware_enabled);
5456 out_free_0:
5457         kvm_irqfd_exit();
5458 out_irqfd:
5459         kvm_arch_exit();
5460 out_fail:
5461         return r;
5462 }
5463 EXPORT_SYMBOL_GPL(kvm_init);
5464
5465 void kvm_exit(void)
5466 {
5467         debugfs_remove_recursive(kvm_debugfs_dir);
5468         misc_deregister(&kvm_dev);
5469         kmem_cache_destroy(kvm_vcpu_cache);
5470         kvm_async_pf_deinit();
5471         unregister_syscore_ops(&kvm_syscore_ops);
5472         unregister_reboot_notifier(&kvm_reboot_notifier);
5473         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5474         on_each_cpu(hardware_disable_nolock, NULL, 1);
5475         kvm_arch_hardware_unsetup();
5476         kvm_arch_exit();
5477         kvm_irqfd_exit();
5478         free_cpumask_var(cpus_hardware_enabled);
5479         kvm_vfio_ops_exit();
5480 }
5481 EXPORT_SYMBOL_GPL(kvm_exit);
5482
5483 struct kvm_vm_worker_thread_context {
5484         struct kvm *kvm;
5485         struct task_struct *parent;
5486         struct completion init_done;
5487         kvm_vm_thread_fn_t thread_fn;
5488         uintptr_t data;
5489         int err;
5490 };
5491
5492 static int kvm_vm_worker_thread(void *context)
5493 {
5494         /*
5495          * The init_context is allocated on the stack of the parent thread, so
5496          * we have to locally copy anything that is needed beyond initialization
5497          */
5498         struct kvm_vm_worker_thread_context *init_context = context;
5499         struct kvm *kvm = init_context->kvm;
5500         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5501         uintptr_t data = init_context->data;
5502         int err;
5503
5504         err = kthread_park(current);
5505         /* kthread_park(current) is never supposed to return an error */
5506         WARN_ON(err != 0);
5507         if (err)
5508                 goto init_complete;
5509
5510         err = cgroup_attach_task_all(init_context->parent, current);
5511         if (err) {
5512                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5513                         __func__, err);
5514                 goto init_complete;
5515         }
5516
5517         set_user_nice(current, task_nice(init_context->parent));
5518
5519 init_complete:
5520         init_context->err = err;
5521         complete(&init_context->init_done);
5522         init_context = NULL;
5523
5524         if (err)
5525                 return err;
5526
5527         /* Wait to be woken up by the spawner before proceeding. */
5528         kthread_parkme();
5529
5530         if (!kthread_should_stop())
5531                 err = thread_fn(kvm, data);
5532
5533         return err;
5534 }
5535
5536 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5537                                 uintptr_t data, const char *name,
5538                                 struct task_struct **thread_ptr)
5539 {
5540         struct kvm_vm_worker_thread_context init_context = {};
5541         struct task_struct *thread;
5542
5543         *thread_ptr = NULL;
5544         init_context.kvm = kvm;
5545         init_context.parent = current;
5546         init_context.thread_fn = thread_fn;
5547         init_context.data = data;
5548         init_completion(&init_context.init_done);
5549
5550         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5551                              "%s-%d", name, task_pid_nr(current));
5552         if (IS_ERR(thread))
5553                 return PTR_ERR(thread);
5554
5555         /* kthread_run is never supposed to return NULL */
5556         WARN_ON(thread == NULL);
5557
5558         wait_for_completion(&init_context.init_done);
5559
5560         if (!init_context.err)
5561                 *thread_ptr = thread;
5562
5563         return init_context.err;
5564 }