Merge tag 'iio-for-6.4b' of https://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[platform/kernel/linux-starfive.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 LIST_HEAD(vm_list);
104
105 static struct kmem_cache *kvm_vcpu_cache;
106
107 static __read_mostly struct preempt_ops kvm_preempt_ops;
108 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
109
110 struct dentry *kvm_debugfs_dir;
111 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
112
113 static const struct file_operations stat_fops_per_vm;
114
115 static struct file_operations kvm_chardev_ops;
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132                                 unsigned long arg) { return -EINVAL; }
133
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136         return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
139                         .open           = kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145
146 #define KVM_EVENT_CREATE_VM 0
147 #define KVM_EVENT_DESTROY_VM 1
148 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
149 static unsigned long long kvm_createvm_count;
150 static unsigned long long kvm_active_vms;
151
152 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
153
154 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
155                                                    unsigned long start, unsigned long end)
156 {
157 }
158
159 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
160 {
161 }
162
163 bool kvm_is_zone_device_page(struct page *page)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (WARN_ON_ONCE(!page_count(page)))
172                 return false;
173
174         return is_zone_device_page(page);
175 }
176
177 /*
178  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
179  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
180  * is likely incomplete, it has been compiled purely through people wanting to
181  * back guest with a certain type of memory and encountering issues.
182  */
183 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
184 {
185         struct page *page;
186
187         if (!pfn_valid(pfn))
188                 return NULL;
189
190         page = pfn_to_page(pfn);
191         if (!PageReserved(page))
192                 return page;
193
194         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
195         if (is_zero_pfn(pfn))
196                 return page;
197
198         /*
199          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
200          * perspective they are "normal" pages, albeit with slightly different
201          * usage rules.
202          */
203         if (kvm_is_zone_device_page(page))
204                 return page;
205
206         return NULL;
207 }
208
209 /*
210  * Switches to specified vcpu, until a matching vcpu_put()
211  */
212 void vcpu_load(struct kvm_vcpu *vcpu)
213 {
214         int cpu = get_cpu();
215
216         __this_cpu_write(kvm_running_vcpu, vcpu);
217         preempt_notifier_register(&vcpu->preempt_notifier);
218         kvm_arch_vcpu_load(vcpu, cpu);
219         put_cpu();
220 }
221 EXPORT_SYMBOL_GPL(vcpu_load);
222
223 void vcpu_put(struct kvm_vcpu *vcpu)
224 {
225         preempt_disable();
226         kvm_arch_vcpu_put(vcpu);
227         preempt_notifier_unregister(&vcpu->preempt_notifier);
228         __this_cpu_write(kvm_running_vcpu, NULL);
229         preempt_enable();
230 }
231 EXPORT_SYMBOL_GPL(vcpu_put);
232
233 /* TODO: merge with kvm_arch_vcpu_should_kick */
234 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
235 {
236         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
237
238         /*
239          * We need to wait for the VCPU to reenable interrupts and get out of
240          * READING_SHADOW_PAGE_TABLES mode.
241          */
242         if (req & KVM_REQUEST_WAIT)
243                 return mode != OUTSIDE_GUEST_MODE;
244
245         /*
246          * Need to kick a running VCPU, but otherwise there is nothing to do.
247          */
248         return mode == IN_GUEST_MODE;
249 }
250
251 static void ack_kick(void *_completed)
252 {
253 }
254
255 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
256 {
257         if (cpumask_empty(cpus))
258                 return false;
259
260         smp_call_function_many(cpus, ack_kick, NULL, wait);
261         return true;
262 }
263
264 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
265                                   struct cpumask *tmp, int current_cpu)
266 {
267         int cpu;
268
269         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
270                 __kvm_make_request(req, vcpu);
271
272         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
273                 return;
274
275         /*
276          * Note, the vCPU could get migrated to a different pCPU at any point
277          * after kvm_request_needs_ipi(), which could result in sending an IPI
278          * to the previous pCPU.  But, that's OK because the purpose of the IPI
279          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
280          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
281          * after this point is also OK, as the requirement is only that KVM wait
282          * for vCPUs that were reading SPTEs _before_ any changes were
283          * finalized. See kvm_vcpu_kick() for more details on handling requests.
284          */
285         if (kvm_request_needs_ipi(vcpu, req)) {
286                 cpu = READ_ONCE(vcpu->cpu);
287                 if (cpu != -1 && cpu != current_cpu)
288                         __cpumask_set_cpu(cpu, tmp);
289         }
290 }
291
292 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
293                                  unsigned long *vcpu_bitmap)
294 {
295         struct kvm_vcpu *vcpu;
296         struct cpumask *cpus;
297         int i, me;
298         bool called;
299
300         me = get_cpu();
301
302         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
303         cpumask_clear(cpus);
304
305         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
306                 vcpu = kvm_get_vcpu(kvm, i);
307                 if (!vcpu)
308                         continue;
309                 kvm_make_vcpu_request(vcpu, req, cpus, me);
310         }
311
312         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
313         put_cpu();
314
315         return called;
316 }
317
318 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
319                                       struct kvm_vcpu *except)
320 {
321         struct kvm_vcpu *vcpu;
322         struct cpumask *cpus;
323         unsigned long i;
324         bool called;
325         int me;
326
327         me = get_cpu();
328
329         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
330         cpumask_clear(cpus);
331
332         kvm_for_each_vcpu(i, vcpu, kvm) {
333                 if (vcpu == except)
334                         continue;
335                 kvm_make_vcpu_request(vcpu, req, cpus, me);
336         }
337
338         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
339         put_cpu();
340
341         return called;
342 }
343
344 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
345 {
346         return kvm_make_all_cpus_request_except(kvm, req, NULL);
347 }
348 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
349
350 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
351 void kvm_flush_remote_tlbs(struct kvm *kvm)
352 {
353         ++kvm->stat.generic.remote_tlb_flush_requests;
354
355         /*
356          * We want to publish modifications to the page tables before reading
357          * mode. Pairs with a memory barrier in arch-specific code.
358          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
359          * and smp_mb in walk_shadow_page_lockless_begin/end.
360          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
361          *
362          * There is already an smp_mb__after_atomic() before
363          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
364          * barrier here.
365          */
366         if (!kvm_arch_flush_remote_tlb(kvm)
367             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
368                 ++kvm->stat.generic.remote_tlb_flush;
369 }
370 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
371 #endif
372
373 static void kvm_flush_shadow_all(struct kvm *kvm)
374 {
375         kvm_arch_flush_shadow_all(kvm);
376         kvm_arch_guest_memory_reclaimed(kvm);
377 }
378
379 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
380 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
381                                                gfp_t gfp_flags)
382 {
383         gfp_flags |= mc->gfp_zero;
384
385         if (mc->kmem_cache)
386                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
387         else
388                 return (void *)__get_free_page(gfp_flags);
389 }
390
391 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
392 {
393         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
394         void *obj;
395
396         if (mc->nobjs >= min)
397                 return 0;
398
399         if (unlikely(!mc->objects)) {
400                 if (WARN_ON_ONCE(!capacity))
401                         return -EIO;
402
403                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
404                 if (!mc->objects)
405                         return -ENOMEM;
406
407                 mc->capacity = capacity;
408         }
409
410         /* It is illegal to request a different capacity across topups. */
411         if (WARN_ON_ONCE(mc->capacity != capacity))
412                 return -EIO;
413
414         while (mc->nobjs < mc->capacity) {
415                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
416                 if (!obj)
417                         return mc->nobjs >= min ? 0 : -ENOMEM;
418                 mc->objects[mc->nobjs++] = obj;
419         }
420         return 0;
421 }
422
423 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
424 {
425         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
426 }
427
428 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
429 {
430         return mc->nobjs;
431 }
432
433 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
434 {
435         while (mc->nobjs) {
436                 if (mc->kmem_cache)
437                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
438                 else
439                         free_page((unsigned long)mc->objects[--mc->nobjs]);
440         }
441
442         kvfree(mc->objects);
443
444         mc->objects = NULL;
445         mc->capacity = 0;
446 }
447
448 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
449 {
450         void *p;
451
452         if (WARN_ON(!mc->nobjs))
453                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
454         else
455                 p = mc->objects[--mc->nobjs];
456         BUG_ON(!p);
457         return p;
458 }
459 #endif
460
461 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
462 {
463         mutex_init(&vcpu->mutex);
464         vcpu->cpu = -1;
465         vcpu->kvm = kvm;
466         vcpu->vcpu_id = id;
467         vcpu->pid = NULL;
468 #ifndef __KVM_HAVE_ARCH_WQP
469         rcuwait_init(&vcpu->wait);
470 #endif
471         kvm_async_pf_vcpu_init(vcpu);
472
473         kvm_vcpu_set_in_spin_loop(vcpu, false);
474         kvm_vcpu_set_dy_eligible(vcpu, false);
475         vcpu->preempted = false;
476         vcpu->ready = false;
477         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
478         vcpu->last_used_slot = NULL;
479
480         /* Fill the stats id string for the vcpu */
481         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
482                  task_pid_nr(current), id);
483 }
484
485 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
486 {
487         kvm_arch_vcpu_destroy(vcpu);
488         kvm_dirty_ring_free(&vcpu->dirty_ring);
489
490         /*
491          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
492          * the vcpu->pid pointer, and at destruction time all file descriptors
493          * are already gone.
494          */
495         put_pid(rcu_dereference_protected(vcpu->pid, 1));
496
497         free_page((unsigned long)vcpu->run);
498         kmem_cache_free(kvm_vcpu_cache, vcpu);
499 }
500
501 void kvm_destroy_vcpus(struct kvm *kvm)
502 {
503         unsigned long i;
504         struct kvm_vcpu *vcpu;
505
506         kvm_for_each_vcpu(i, vcpu, kvm) {
507                 kvm_vcpu_destroy(vcpu);
508                 xa_erase(&kvm->vcpu_array, i);
509         }
510
511         atomic_set(&kvm->online_vcpus, 0);
512 }
513 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
514
515 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
516 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
517 {
518         return container_of(mn, struct kvm, mmu_notifier);
519 }
520
521 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
522                                               struct mm_struct *mm,
523                                               unsigned long start, unsigned long end)
524 {
525         struct kvm *kvm = mmu_notifier_to_kvm(mn);
526         int idx;
527
528         idx = srcu_read_lock(&kvm->srcu);
529         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
530         srcu_read_unlock(&kvm->srcu, idx);
531 }
532
533 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
534
535 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
536                              unsigned long end);
537
538 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
539
540 struct kvm_hva_range {
541         unsigned long start;
542         unsigned long end;
543         pte_t pte;
544         hva_handler_t handler;
545         on_lock_fn_t on_lock;
546         on_unlock_fn_t on_unlock;
547         bool flush_on_ret;
548         bool may_block;
549 };
550
551 /*
552  * Use a dedicated stub instead of NULL to indicate that there is no callback
553  * function/handler.  The compiler technically can't guarantee that a real
554  * function will have a non-zero address, and so it will generate code to
555  * check for !NULL, whereas comparing against a stub will be elided at compile
556  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
557  */
558 static void kvm_null_fn(void)
559 {
560
561 }
562 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
563
564 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
565 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
566         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
567              node;                                                           \
568              node = interval_tree_iter_next(node, start, last))      \
569
570 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
571                                                   const struct kvm_hva_range *range)
572 {
573         bool ret = false, locked = false;
574         struct kvm_gfn_range gfn_range;
575         struct kvm_memory_slot *slot;
576         struct kvm_memslots *slots;
577         int i, idx;
578
579         if (WARN_ON_ONCE(range->end <= range->start))
580                 return 0;
581
582         /* A null handler is allowed if and only if on_lock() is provided. */
583         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
584                          IS_KVM_NULL_FN(range->handler)))
585                 return 0;
586
587         idx = srcu_read_lock(&kvm->srcu);
588
589         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
590                 struct interval_tree_node *node;
591
592                 slots = __kvm_memslots(kvm, i);
593                 kvm_for_each_memslot_in_hva_range(node, slots,
594                                                   range->start, range->end - 1) {
595                         unsigned long hva_start, hva_end;
596
597                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
598                         hva_start = max(range->start, slot->userspace_addr);
599                         hva_end = min(range->end, slot->userspace_addr +
600                                                   (slot->npages << PAGE_SHIFT));
601
602                         /*
603                          * To optimize for the likely case where the address
604                          * range is covered by zero or one memslots, don't
605                          * bother making these conditional (to avoid writes on
606                          * the second or later invocation of the handler).
607                          */
608                         gfn_range.pte = range->pte;
609                         gfn_range.may_block = range->may_block;
610
611                         /*
612                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
613                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
614                          */
615                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
616                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
617                         gfn_range.slot = slot;
618
619                         if (!locked) {
620                                 locked = true;
621                                 KVM_MMU_LOCK(kvm);
622                                 if (!IS_KVM_NULL_FN(range->on_lock))
623                                         range->on_lock(kvm, range->start, range->end);
624                                 if (IS_KVM_NULL_FN(range->handler))
625                                         break;
626                         }
627                         ret |= range->handler(kvm, &gfn_range);
628                 }
629         }
630
631         if (range->flush_on_ret && ret)
632                 kvm_flush_remote_tlbs(kvm);
633
634         if (locked) {
635                 KVM_MMU_UNLOCK(kvm);
636                 if (!IS_KVM_NULL_FN(range->on_unlock))
637                         range->on_unlock(kvm);
638         }
639
640         srcu_read_unlock(&kvm->srcu, idx);
641
642         /* The notifiers are averse to booleans. :-( */
643         return (int)ret;
644 }
645
646 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
647                                                 unsigned long start,
648                                                 unsigned long end,
649                                                 pte_t pte,
650                                                 hva_handler_t handler)
651 {
652         struct kvm *kvm = mmu_notifier_to_kvm(mn);
653         const struct kvm_hva_range range = {
654                 .start          = start,
655                 .end            = end,
656                 .pte            = pte,
657                 .handler        = handler,
658                 .on_lock        = (void *)kvm_null_fn,
659                 .on_unlock      = (void *)kvm_null_fn,
660                 .flush_on_ret   = true,
661                 .may_block      = false,
662         };
663
664         return __kvm_handle_hva_range(kvm, &range);
665 }
666
667 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
668                                                          unsigned long start,
669                                                          unsigned long end,
670                                                          hva_handler_t handler)
671 {
672         struct kvm *kvm = mmu_notifier_to_kvm(mn);
673         const struct kvm_hva_range range = {
674                 .start          = start,
675                 .end            = end,
676                 .pte            = __pte(0),
677                 .handler        = handler,
678                 .on_lock        = (void *)kvm_null_fn,
679                 .on_unlock      = (void *)kvm_null_fn,
680                 .flush_on_ret   = false,
681                 .may_block      = false,
682         };
683
684         return __kvm_handle_hva_range(kvm, &range);
685 }
686 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
687                                         struct mm_struct *mm,
688                                         unsigned long address,
689                                         pte_t pte)
690 {
691         struct kvm *kvm = mmu_notifier_to_kvm(mn);
692
693         trace_kvm_set_spte_hva(address);
694
695         /*
696          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
697          * If mmu_invalidate_in_progress is zero, then no in-progress
698          * invalidations, including this one, found a relevant memslot at
699          * start(); rechecking memslots here is unnecessary.  Note, a false
700          * positive (count elevated by a different invalidation) is sub-optimal
701          * but functionally ok.
702          */
703         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
704         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
705                 return;
706
707         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
708 }
709
710 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
711                               unsigned long end)
712 {
713         /*
714          * The count increase must become visible at unlock time as no
715          * spte can be established without taking the mmu_lock and
716          * count is also read inside the mmu_lock critical section.
717          */
718         kvm->mmu_invalidate_in_progress++;
719         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
720                 kvm->mmu_invalidate_range_start = start;
721                 kvm->mmu_invalidate_range_end = end;
722         } else {
723                 /*
724                  * Fully tracking multiple concurrent ranges has diminishing
725                  * returns. Keep things simple and just find the minimal range
726                  * which includes the current and new ranges. As there won't be
727                  * enough information to subtract a range after its invalidate
728                  * completes, any ranges invalidated concurrently will
729                  * accumulate and persist until all outstanding invalidates
730                  * complete.
731                  */
732                 kvm->mmu_invalidate_range_start =
733                         min(kvm->mmu_invalidate_range_start, start);
734                 kvm->mmu_invalidate_range_end =
735                         max(kvm->mmu_invalidate_range_end, end);
736         }
737 }
738
739 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
740                                         const struct mmu_notifier_range *range)
741 {
742         struct kvm *kvm = mmu_notifier_to_kvm(mn);
743         const struct kvm_hva_range hva_range = {
744                 .start          = range->start,
745                 .end            = range->end,
746                 .pte            = __pte(0),
747                 .handler        = kvm_unmap_gfn_range,
748                 .on_lock        = kvm_mmu_invalidate_begin,
749                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
750                 .flush_on_ret   = true,
751                 .may_block      = mmu_notifier_range_blockable(range),
752         };
753
754         trace_kvm_unmap_hva_range(range->start, range->end);
755
756         /*
757          * Prevent memslot modification between range_start() and range_end()
758          * so that conditionally locking provides the same result in both
759          * functions.  Without that guarantee, the mmu_invalidate_in_progress
760          * adjustments will be imbalanced.
761          *
762          * Pairs with the decrement in range_end().
763          */
764         spin_lock(&kvm->mn_invalidate_lock);
765         kvm->mn_active_invalidate_count++;
766         spin_unlock(&kvm->mn_invalidate_lock);
767
768         /*
769          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
770          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
771          * each cache's lock.  There are relatively few caches in existence at
772          * any given time, and the caches themselves can check for hva overlap,
773          * i.e. don't need to rely on memslot overlap checks for performance.
774          * Because this runs without holding mmu_lock, the pfn caches must use
775          * mn_active_invalidate_count (see above) instead of
776          * mmu_invalidate_in_progress.
777          */
778         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
779                                           hva_range.may_block);
780
781         __kvm_handle_hva_range(kvm, &hva_range);
782
783         return 0;
784 }
785
786 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
787                             unsigned long end)
788 {
789         /*
790          * This sequence increase will notify the kvm page fault that
791          * the page that is going to be mapped in the spte could have
792          * been freed.
793          */
794         kvm->mmu_invalidate_seq++;
795         smp_wmb();
796         /*
797          * The above sequence increase must be visible before the
798          * below count decrease, which is ensured by the smp_wmb above
799          * in conjunction with the smp_rmb in mmu_invalidate_retry().
800          */
801         kvm->mmu_invalidate_in_progress--;
802 }
803
804 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
805                                         const struct mmu_notifier_range *range)
806 {
807         struct kvm *kvm = mmu_notifier_to_kvm(mn);
808         const struct kvm_hva_range hva_range = {
809                 .start          = range->start,
810                 .end            = range->end,
811                 .pte            = __pte(0),
812                 .handler        = (void *)kvm_null_fn,
813                 .on_lock        = kvm_mmu_invalidate_end,
814                 .on_unlock      = (void *)kvm_null_fn,
815                 .flush_on_ret   = false,
816                 .may_block      = mmu_notifier_range_blockable(range),
817         };
818         bool wake;
819
820         __kvm_handle_hva_range(kvm, &hva_range);
821
822         /* Pairs with the increment in range_start(). */
823         spin_lock(&kvm->mn_invalidate_lock);
824         wake = (--kvm->mn_active_invalidate_count == 0);
825         spin_unlock(&kvm->mn_invalidate_lock);
826
827         /*
828          * There can only be one waiter, since the wait happens under
829          * slots_lock.
830          */
831         if (wake)
832                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
833
834         BUG_ON(kvm->mmu_invalidate_in_progress < 0);
835 }
836
837 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
838                                               struct mm_struct *mm,
839                                               unsigned long start,
840                                               unsigned long end)
841 {
842         trace_kvm_age_hva(start, end);
843
844         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
845 }
846
847 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
848                                         struct mm_struct *mm,
849                                         unsigned long start,
850                                         unsigned long end)
851 {
852         trace_kvm_age_hva(start, end);
853
854         /*
855          * Even though we do not flush TLB, this will still adversely
856          * affect performance on pre-Haswell Intel EPT, where there is
857          * no EPT Access Bit to clear so that we have to tear down EPT
858          * tables instead. If we find this unacceptable, we can always
859          * add a parameter to kvm_age_hva so that it effectively doesn't
860          * do anything on clear_young.
861          *
862          * Also note that currently we never issue secondary TLB flushes
863          * from clear_young, leaving this job up to the regular system
864          * cadence. If we find this inaccurate, we might come up with a
865          * more sophisticated heuristic later.
866          */
867         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
868 }
869
870 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
871                                        struct mm_struct *mm,
872                                        unsigned long address)
873 {
874         trace_kvm_test_age_hva(address);
875
876         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
877                                              kvm_test_age_gfn);
878 }
879
880 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
881                                      struct mm_struct *mm)
882 {
883         struct kvm *kvm = mmu_notifier_to_kvm(mn);
884         int idx;
885
886         idx = srcu_read_lock(&kvm->srcu);
887         kvm_flush_shadow_all(kvm);
888         srcu_read_unlock(&kvm->srcu, idx);
889 }
890
891 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
892         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
893         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
894         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
895         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
896         .clear_young            = kvm_mmu_notifier_clear_young,
897         .test_young             = kvm_mmu_notifier_test_young,
898         .change_pte             = kvm_mmu_notifier_change_pte,
899         .release                = kvm_mmu_notifier_release,
900 };
901
902 static int kvm_init_mmu_notifier(struct kvm *kvm)
903 {
904         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
905         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
906 }
907
908 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
909
910 static int kvm_init_mmu_notifier(struct kvm *kvm)
911 {
912         return 0;
913 }
914
915 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
916
917 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
918 static int kvm_pm_notifier_call(struct notifier_block *bl,
919                                 unsigned long state,
920                                 void *unused)
921 {
922         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
923
924         return kvm_arch_pm_notifier(kvm, state);
925 }
926
927 static void kvm_init_pm_notifier(struct kvm *kvm)
928 {
929         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
930         /* Suspend KVM before we suspend ftrace, RCU, etc. */
931         kvm->pm_notifier.priority = INT_MAX;
932         register_pm_notifier(&kvm->pm_notifier);
933 }
934
935 static void kvm_destroy_pm_notifier(struct kvm *kvm)
936 {
937         unregister_pm_notifier(&kvm->pm_notifier);
938 }
939 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
940 static void kvm_init_pm_notifier(struct kvm *kvm)
941 {
942 }
943
944 static void kvm_destroy_pm_notifier(struct kvm *kvm)
945 {
946 }
947 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
948
949 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
950 {
951         if (!memslot->dirty_bitmap)
952                 return;
953
954         kvfree(memslot->dirty_bitmap);
955         memslot->dirty_bitmap = NULL;
956 }
957
958 /* This does not remove the slot from struct kvm_memslots data structures */
959 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
960 {
961         kvm_destroy_dirty_bitmap(slot);
962
963         kvm_arch_free_memslot(kvm, slot);
964
965         kfree(slot);
966 }
967
968 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
969 {
970         struct hlist_node *idnode;
971         struct kvm_memory_slot *memslot;
972         int bkt;
973
974         /*
975          * The same memslot objects live in both active and inactive sets,
976          * arbitrarily free using index '1' so the second invocation of this
977          * function isn't operating over a structure with dangling pointers
978          * (even though this function isn't actually touching them).
979          */
980         if (!slots->node_idx)
981                 return;
982
983         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
984                 kvm_free_memslot(kvm, memslot);
985 }
986
987 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
988 {
989         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
990         case KVM_STATS_TYPE_INSTANT:
991                 return 0444;
992         case KVM_STATS_TYPE_CUMULATIVE:
993         case KVM_STATS_TYPE_PEAK:
994         default:
995                 return 0644;
996         }
997 }
998
999
1000 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1001 {
1002         int i;
1003         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1004                                       kvm_vcpu_stats_header.num_desc;
1005
1006         if (IS_ERR(kvm->debugfs_dentry))
1007                 return;
1008
1009         debugfs_remove_recursive(kvm->debugfs_dentry);
1010
1011         if (kvm->debugfs_stat_data) {
1012                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1013                         kfree(kvm->debugfs_stat_data[i]);
1014                 kfree(kvm->debugfs_stat_data);
1015         }
1016 }
1017
1018 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1019 {
1020         static DEFINE_MUTEX(kvm_debugfs_lock);
1021         struct dentry *dent;
1022         char dir_name[ITOA_MAX_LEN * 2];
1023         struct kvm_stat_data *stat_data;
1024         const struct _kvm_stats_desc *pdesc;
1025         int i, ret = -ENOMEM;
1026         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1027                                       kvm_vcpu_stats_header.num_desc;
1028
1029         if (!debugfs_initialized())
1030                 return 0;
1031
1032         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1033         mutex_lock(&kvm_debugfs_lock);
1034         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1035         if (dent) {
1036                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1037                 dput(dent);
1038                 mutex_unlock(&kvm_debugfs_lock);
1039                 return 0;
1040         }
1041         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1042         mutex_unlock(&kvm_debugfs_lock);
1043         if (IS_ERR(dent))
1044                 return 0;
1045
1046         kvm->debugfs_dentry = dent;
1047         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1048                                          sizeof(*kvm->debugfs_stat_data),
1049                                          GFP_KERNEL_ACCOUNT);
1050         if (!kvm->debugfs_stat_data)
1051                 goto out_err;
1052
1053         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1054                 pdesc = &kvm_vm_stats_desc[i];
1055                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1056                 if (!stat_data)
1057                         goto out_err;
1058
1059                 stat_data->kvm = kvm;
1060                 stat_data->desc = pdesc;
1061                 stat_data->kind = KVM_STAT_VM;
1062                 kvm->debugfs_stat_data[i] = stat_data;
1063                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1064                                     kvm->debugfs_dentry, stat_data,
1065                                     &stat_fops_per_vm);
1066         }
1067
1068         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1069                 pdesc = &kvm_vcpu_stats_desc[i];
1070                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1071                 if (!stat_data)
1072                         goto out_err;
1073
1074                 stat_data->kvm = kvm;
1075                 stat_data->desc = pdesc;
1076                 stat_data->kind = KVM_STAT_VCPU;
1077                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1078                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1079                                     kvm->debugfs_dentry, stat_data,
1080                                     &stat_fops_per_vm);
1081         }
1082
1083         ret = kvm_arch_create_vm_debugfs(kvm);
1084         if (ret)
1085                 goto out_err;
1086
1087         return 0;
1088 out_err:
1089         kvm_destroy_vm_debugfs(kvm);
1090         return ret;
1091 }
1092
1093 /*
1094  * Called after the VM is otherwise initialized, but just before adding it to
1095  * the vm_list.
1096  */
1097 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1098 {
1099         return 0;
1100 }
1101
1102 /*
1103  * Called just after removing the VM from the vm_list, but before doing any
1104  * other destruction.
1105  */
1106 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1107 {
1108 }
1109
1110 /*
1111  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1112  * be setup already, so we can create arch-specific debugfs entries under it.
1113  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1114  * a per-arch destroy interface is not needed.
1115  */
1116 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1117 {
1118         return 0;
1119 }
1120
1121 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1122 {
1123         struct kvm *kvm = kvm_arch_alloc_vm();
1124         struct kvm_memslots *slots;
1125         int r = -ENOMEM;
1126         int i, j;
1127
1128         if (!kvm)
1129                 return ERR_PTR(-ENOMEM);
1130
1131         /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1132         __module_get(kvm_chardev_ops.owner);
1133
1134         KVM_MMU_LOCK_INIT(kvm);
1135         mmgrab(current->mm);
1136         kvm->mm = current->mm;
1137         kvm_eventfd_init(kvm);
1138         mutex_init(&kvm->lock);
1139         mutex_init(&kvm->irq_lock);
1140         mutex_init(&kvm->slots_lock);
1141         mutex_init(&kvm->slots_arch_lock);
1142         spin_lock_init(&kvm->mn_invalidate_lock);
1143         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1144         xa_init(&kvm->vcpu_array);
1145
1146         INIT_LIST_HEAD(&kvm->gpc_list);
1147         spin_lock_init(&kvm->gpc_lock);
1148
1149         INIT_LIST_HEAD(&kvm->devices);
1150         kvm->max_vcpus = KVM_MAX_VCPUS;
1151
1152         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1153
1154         /*
1155          * Force subsequent debugfs file creations to fail if the VM directory
1156          * is not created (by kvm_create_vm_debugfs()).
1157          */
1158         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1159
1160         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1161                  task_pid_nr(current));
1162
1163         if (init_srcu_struct(&kvm->srcu))
1164                 goto out_err_no_srcu;
1165         if (init_srcu_struct(&kvm->irq_srcu))
1166                 goto out_err_no_irq_srcu;
1167
1168         refcount_set(&kvm->users_count, 1);
1169         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1170                 for (j = 0; j < 2; j++) {
1171                         slots = &kvm->__memslots[i][j];
1172
1173                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1174                         slots->hva_tree = RB_ROOT_CACHED;
1175                         slots->gfn_tree = RB_ROOT;
1176                         hash_init(slots->id_hash);
1177                         slots->node_idx = j;
1178
1179                         /* Generations must be different for each address space. */
1180                         slots->generation = i;
1181                 }
1182
1183                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1184         }
1185
1186         for (i = 0; i < KVM_NR_BUSES; i++) {
1187                 rcu_assign_pointer(kvm->buses[i],
1188                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1189                 if (!kvm->buses[i])
1190                         goto out_err_no_arch_destroy_vm;
1191         }
1192
1193         r = kvm_arch_init_vm(kvm, type);
1194         if (r)
1195                 goto out_err_no_arch_destroy_vm;
1196
1197         r = hardware_enable_all();
1198         if (r)
1199                 goto out_err_no_disable;
1200
1201 #ifdef CONFIG_HAVE_KVM_IRQFD
1202         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1203 #endif
1204
1205         r = kvm_init_mmu_notifier(kvm);
1206         if (r)
1207                 goto out_err_no_mmu_notifier;
1208
1209         r = kvm_coalesced_mmio_init(kvm);
1210         if (r < 0)
1211                 goto out_no_coalesced_mmio;
1212
1213         r = kvm_create_vm_debugfs(kvm, fdname);
1214         if (r)
1215                 goto out_err_no_debugfs;
1216
1217         r = kvm_arch_post_init_vm(kvm);
1218         if (r)
1219                 goto out_err;
1220
1221         mutex_lock(&kvm_lock);
1222         list_add(&kvm->vm_list, &vm_list);
1223         mutex_unlock(&kvm_lock);
1224
1225         preempt_notifier_inc();
1226         kvm_init_pm_notifier(kvm);
1227
1228         return kvm;
1229
1230 out_err:
1231         kvm_destroy_vm_debugfs(kvm);
1232 out_err_no_debugfs:
1233         kvm_coalesced_mmio_free(kvm);
1234 out_no_coalesced_mmio:
1235 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1236         if (kvm->mmu_notifier.ops)
1237                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1238 #endif
1239 out_err_no_mmu_notifier:
1240         hardware_disable_all();
1241 out_err_no_disable:
1242         kvm_arch_destroy_vm(kvm);
1243 out_err_no_arch_destroy_vm:
1244         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1245         for (i = 0; i < KVM_NR_BUSES; i++)
1246                 kfree(kvm_get_bus(kvm, i));
1247         cleanup_srcu_struct(&kvm->irq_srcu);
1248 out_err_no_irq_srcu:
1249         cleanup_srcu_struct(&kvm->srcu);
1250 out_err_no_srcu:
1251         kvm_arch_free_vm(kvm);
1252         mmdrop(current->mm);
1253         module_put(kvm_chardev_ops.owner);
1254         return ERR_PTR(r);
1255 }
1256
1257 static void kvm_destroy_devices(struct kvm *kvm)
1258 {
1259         struct kvm_device *dev, *tmp;
1260
1261         /*
1262          * We do not need to take the kvm->lock here, because nobody else
1263          * has a reference to the struct kvm at this point and therefore
1264          * cannot access the devices list anyhow.
1265          */
1266         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1267                 list_del(&dev->vm_node);
1268                 dev->ops->destroy(dev);
1269         }
1270 }
1271
1272 static void kvm_destroy_vm(struct kvm *kvm)
1273 {
1274         int i;
1275         struct mm_struct *mm = kvm->mm;
1276
1277         kvm_destroy_pm_notifier(kvm);
1278         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1279         kvm_destroy_vm_debugfs(kvm);
1280         kvm_arch_sync_events(kvm);
1281         mutex_lock(&kvm_lock);
1282         list_del(&kvm->vm_list);
1283         mutex_unlock(&kvm_lock);
1284         kvm_arch_pre_destroy_vm(kvm);
1285
1286         kvm_free_irq_routing(kvm);
1287         for (i = 0; i < KVM_NR_BUSES; i++) {
1288                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1289
1290                 if (bus)
1291                         kvm_io_bus_destroy(bus);
1292                 kvm->buses[i] = NULL;
1293         }
1294         kvm_coalesced_mmio_free(kvm);
1295 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1296         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1297         /*
1298          * At this point, pending calls to invalidate_range_start()
1299          * have completed but no more MMU notifiers will run, so
1300          * mn_active_invalidate_count may remain unbalanced.
1301          * No threads can be waiting in install_new_memslots as the
1302          * last reference on KVM has been dropped, but freeing
1303          * memslots would deadlock without this manual intervention.
1304          */
1305         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1306         kvm->mn_active_invalidate_count = 0;
1307 #else
1308         kvm_flush_shadow_all(kvm);
1309 #endif
1310         kvm_arch_destroy_vm(kvm);
1311         kvm_destroy_devices(kvm);
1312         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1313                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1314                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1315         }
1316         cleanup_srcu_struct(&kvm->irq_srcu);
1317         cleanup_srcu_struct(&kvm->srcu);
1318         kvm_arch_free_vm(kvm);
1319         preempt_notifier_dec();
1320         hardware_disable_all();
1321         mmdrop(mm);
1322         module_put(kvm_chardev_ops.owner);
1323 }
1324
1325 void kvm_get_kvm(struct kvm *kvm)
1326 {
1327         refcount_inc(&kvm->users_count);
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1330
1331 /*
1332  * Make sure the vm is not during destruction, which is a safe version of
1333  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1334  */
1335 bool kvm_get_kvm_safe(struct kvm *kvm)
1336 {
1337         return refcount_inc_not_zero(&kvm->users_count);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1340
1341 void kvm_put_kvm(struct kvm *kvm)
1342 {
1343         if (refcount_dec_and_test(&kvm->users_count))
1344                 kvm_destroy_vm(kvm);
1345 }
1346 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1347
1348 /*
1349  * Used to put a reference that was taken on behalf of an object associated
1350  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1351  * of the new file descriptor fails and the reference cannot be transferred to
1352  * its final owner.  In such cases, the caller is still actively using @kvm and
1353  * will fail miserably if the refcount unexpectedly hits zero.
1354  */
1355 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1356 {
1357         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1360
1361 static int kvm_vm_release(struct inode *inode, struct file *filp)
1362 {
1363         struct kvm *kvm = filp->private_data;
1364
1365         kvm_irqfd_release(kvm);
1366
1367         kvm_put_kvm(kvm);
1368         return 0;
1369 }
1370
1371 /*
1372  * Allocation size is twice as large as the actual dirty bitmap size.
1373  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1374  */
1375 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1376 {
1377         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1378
1379         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1380         if (!memslot->dirty_bitmap)
1381                 return -ENOMEM;
1382
1383         return 0;
1384 }
1385
1386 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1387 {
1388         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1389         int node_idx_inactive = active->node_idx ^ 1;
1390
1391         return &kvm->__memslots[as_id][node_idx_inactive];
1392 }
1393
1394 /*
1395  * Helper to get the address space ID when one of memslot pointers may be NULL.
1396  * This also serves as a sanity that at least one of the pointers is non-NULL,
1397  * and that their address space IDs don't diverge.
1398  */
1399 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1400                                   struct kvm_memory_slot *b)
1401 {
1402         if (WARN_ON_ONCE(!a && !b))
1403                 return 0;
1404
1405         if (!a)
1406                 return b->as_id;
1407         if (!b)
1408                 return a->as_id;
1409
1410         WARN_ON_ONCE(a->as_id != b->as_id);
1411         return a->as_id;
1412 }
1413
1414 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1415                                 struct kvm_memory_slot *slot)
1416 {
1417         struct rb_root *gfn_tree = &slots->gfn_tree;
1418         struct rb_node **node, *parent;
1419         int idx = slots->node_idx;
1420
1421         parent = NULL;
1422         for (node = &gfn_tree->rb_node; *node; ) {
1423                 struct kvm_memory_slot *tmp;
1424
1425                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1426                 parent = *node;
1427                 if (slot->base_gfn < tmp->base_gfn)
1428                         node = &(*node)->rb_left;
1429                 else if (slot->base_gfn > tmp->base_gfn)
1430                         node = &(*node)->rb_right;
1431                 else
1432                         BUG();
1433         }
1434
1435         rb_link_node(&slot->gfn_node[idx], parent, node);
1436         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1437 }
1438
1439 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1440                                struct kvm_memory_slot *slot)
1441 {
1442         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1443 }
1444
1445 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1446                                  struct kvm_memory_slot *old,
1447                                  struct kvm_memory_slot *new)
1448 {
1449         int idx = slots->node_idx;
1450
1451         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1452
1453         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1454                         &slots->gfn_tree);
1455 }
1456
1457 /*
1458  * Replace @old with @new in the inactive memslots.
1459  *
1460  * With NULL @old this simply adds @new.
1461  * With NULL @new this simply removes @old.
1462  *
1463  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1464  * appropriately.
1465  */
1466 static void kvm_replace_memslot(struct kvm *kvm,
1467                                 struct kvm_memory_slot *old,
1468                                 struct kvm_memory_slot *new)
1469 {
1470         int as_id = kvm_memslots_get_as_id(old, new);
1471         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1472         int idx = slots->node_idx;
1473
1474         if (old) {
1475                 hash_del(&old->id_node[idx]);
1476                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1477
1478                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1479                         atomic_long_set(&slots->last_used_slot, (long)new);
1480
1481                 if (!new) {
1482                         kvm_erase_gfn_node(slots, old);
1483                         return;
1484                 }
1485         }
1486
1487         /*
1488          * Initialize @new's hva range.  Do this even when replacing an @old
1489          * slot, kvm_copy_memslot() deliberately does not touch node data.
1490          */
1491         new->hva_node[idx].start = new->userspace_addr;
1492         new->hva_node[idx].last = new->userspace_addr +
1493                                   (new->npages << PAGE_SHIFT) - 1;
1494
1495         /*
1496          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1497          * hva_node needs to be swapped with remove+insert even though hva can't
1498          * change when replacing an existing slot.
1499          */
1500         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1501         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1502
1503         /*
1504          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1505          * switch the node in the gfn tree instead of removing the old and
1506          * inserting the new as two separate operations. Replacement is a
1507          * single O(1) operation versus two O(log(n)) operations for
1508          * remove+insert.
1509          */
1510         if (old && old->base_gfn == new->base_gfn) {
1511                 kvm_replace_gfn_node(slots, old, new);
1512         } else {
1513                 if (old)
1514                         kvm_erase_gfn_node(slots, old);
1515                 kvm_insert_gfn_node(slots, new);
1516         }
1517 }
1518
1519 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1520 {
1521         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1522
1523 #ifdef __KVM_HAVE_READONLY_MEM
1524         valid_flags |= KVM_MEM_READONLY;
1525 #endif
1526
1527         if (mem->flags & ~valid_flags)
1528                 return -EINVAL;
1529
1530         return 0;
1531 }
1532
1533 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1534 {
1535         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1536
1537         /* Grab the generation from the activate memslots. */
1538         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1539
1540         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1541         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1542
1543         /*
1544          * Do not store the new memslots while there are invalidations in
1545          * progress, otherwise the locking in invalidate_range_start and
1546          * invalidate_range_end will be unbalanced.
1547          */
1548         spin_lock(&kvm->mn_invalidate_lock);
1549         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1550         while (kvm->mn_active_invalidate_count) {
1551                 set_current_state(TASK_UNINTERRUPTIBLE);
1552                 spin_unlock(&kvm->mn_invalidate_lock);
1553                 schedule();
1554                 spin_lock(&kvm->mn_invalidate_lock);
1555         }
1556         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1557         rcu_assign_pointer(kvm->memslots[as_id], slots);
1558         spin_unlock(&kvm->mn_invalidate_lock);
1559
1560         /*
1561          * Acquired in kvm_set_memslot. Must be released before synchronize
1562          * SRCU below in order to avoid deadlock with another thread
1563          * acquiring the slots_arch_lock in an srcu critical section.
1564          */
1565         mutex_unlock(&kvm->slots_arch_lock);
1566
1567         synchronize_srcu_expedited(&kvm->srcu);
1568
1569         /*
1570          * Increment the new memslot generation a second time, dropping the
1571          * update in-progress flag and incrementing the generation based on
1572          * the number of address spaces.  This provides a unique and easily
1573          * identifiable generation number while the memslots are in flux.
1574          */
1575         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1576
1577         /*
1578          * Generations must be unique even across address spaces.  We do not need
1579          * a global counter for that, instead the generation space is evenly split
1580          * across address spaces.  For example, with two address spaces, address
1581          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1582          * use generations 1, 3, 5, ...
1583          */
1584         gen += KVM_ADDRESS_SPACE_NUM;
1585
1586         kvm_arch_memslots_updated(kvm, gen);
1587
1588         slots->generation = gen;
1589 }
1590
1591 static int kvm_prepare_memory_region(struct kvm *kvm,
1592                                      const struct kvm_memory_slot *old,
1593                                      struct kvm_memory_slot *new,
1594                                      enum kvm_mr_change change)
1595 {
1596         int r;
1597
1598         /*
1599          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1600          * will be freed on "commit".  If logging is enabled in both old and
1601          * new, reuse the existing bitmap.  If logging is enabled only in the
1602          * new and KVM isn't using a ring buffer, allocate and initialize a
1603          * new bitmap.
1604          */
1605         if (change != KVM_MR_DELETE) {
1606                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1607                         new->dirty_bitmap = NULL;
1608                 else if (old && old->dirty_bitmap)
1609                         new->dirty_bitmap = old->dirty_bitmap;
1610                 else if (kvm_use_dirty_bitmap(kvm)) {
1611                         r = kvm_alloc_dirty_bitmap(new);
1612                         if (r)
1613                                 return r;
1614
1615                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1616                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1617                 }
1618         }
1619
1620         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1621
1622         /* Free the bitmap on failure if it was allocated above. */
1623         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1624                 kvm_destroy_dirty_bitmap(new);
1625
1626         return r;
1627 }
1628
1629 static void kvm_commit_memory_region(struct kvm *kvm,
1630                                      struct kvm_memory_slot *old,
1631                                      const struct kvm_memory_slot *new,
1632                                      enum kvm_mr_change change)
1633 {
1634         int old_flags = old ? old->flags : 0;
1635         int new_flags = new ? new->flags : 0;
1636         /*
1637          * Update the total number of memslot pages before calling the arch
1638          * hook so that architectures can consume the result directly.
1639          */
1640         if (change == KVM_MR_DELETE)
1641                 kvm->nr_memslot_pages -= old->npages;
1642         else if (change == KVM_MR_CREATE)
1643                 kvm->nr_memslot_pages += new->npages;
1644
1645         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1646                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1647                 atomic_set(&kvm->nr_memslots_dirty_logging,
1648                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1649         }
1650
1651         kvm_arch_commit_memory_region(kvm, old, new, change);
1652
1653         switch (change) {
1654         case KVM_MR_CREATE:
1655                 /* Nothing more to do. */
1656                 break;
1657         case KVM_MR_DELETE:
1658                 /* Free the old memslot and all its metadata. */
1659                 kvm_free_memslot(kvm, old);
1660                 break;
1661         case KVM_MR_MOVE:
1662         case KVM_MR_FLAGS_ONLY:
1663                 /*
1664                  * Free the dirty bitmap as needed; the below check encompasses
1665                  * both the flags and whether a ring buffer is being used)
1666                  */
1667                 if (old->dirty_bitmap && !new->dirty_bitmap)
1668                         kvm_destroy_dirty_bitmap(old);
1669
1670                 /*
1671                  * The final quirk.  Free the detached, old slot, but only its
1672                  * memory, not any metadata.  Metadata, including arch specific
1673                  * data, may be reused by @new.
1674                  */
1675                 kfree(old);
1676                 break;
1677         default:
1678                 BUG();
1679         }
1680 }
1681
1682 /*
1683  * Activate @new, which must be installed in the inactive slots by the caller,
1684  * by swapping the active slots and then propagating @new to @old once @old is
1685  * unreachable and can be safely modified.
1686  *
1687  * With NULL @old this simply adds @new to @active (while swapping the sets).
1688  * With NULL @new this simply removes @old from @active and frees it
1689  * (while also swapping the sets).
1690  */
1691 static void kvm_activate_memslot(struct kvm *kvm,
1692                                  struct kvm_memory_slot *old,
1693                                  struct kvm_memory_slot *new)
1694 {
1695         int as_id = kvm_memslots_get_as_id(old, new);
1696
1697         kvm_swap_active_memslots(kvm, as_id);
1698
1699         /* Propagate the new memslot to the now inactive memslots. */
1700         kvm_replace_memslot(kvm, old, new);
1701 }
1702
1703 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1704                              const struct kvm_memory_slot *src)
1705 {
1706         dest->base_gfn = src->base_gfn;
1707         dest->npages = src->npages;
1708         dest->dirty_bitmap = src->dirty_bitmap;
1709         dest->arch = src->arch;
1710         dest->userspace_addr = src->userspace_addr;
1711         dest->flags = src->flags;
1712         dest->id = src->id;
1713         dest->as_id = src->as_id;
1714 }
1715
1716 static void kvm_invalidate_memslot(struct kvm *kvm,
1717                                    struct kvm_memory_slot *old,
1718                                    struct kvm_memory_slot *invalid_slot)
1719 {
1720         /*
1721          * Mark the current slot INVALID.  As with all memslot modifications,
1722          * this must be done on an unreachable slot to avoid modifying the
1723          * current slot in the active tree.
1724          */
1725         kvm_copy_memslot(invalid_slot, old);
1726         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1727         kvm_replace_memslot(kvm, old, invalid_slot);
1728
1729         /*
1730          * Activate the slot that is now marked INVALID, but don't propagate
1731          * the slot to the now inactive slots. The slot is either going to be
1732          * deleted or recreated as a new slot.
1733          */
1734         kvm_swap_active_memslots(kvm, old->as_id);
1735
1736         /*
1737          * From this point no new shadow pages pointing to a deleted, or moved,
1738          * memslot will be created.  Validation of sp->gfn happens in:
1739          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1740          *      - kvm_is_visible_gfn (mmu_check_root)
1741          */
1742         kvm_arch_flush_shadow_memslot(kvm, old);
1743         kvm_arch_guest_memory_reclaimed(kvm);
1744
1745         /* Was released by kvm_swap_active_memslots, reacquire. */
1746         mutex_lock(&kvm->slots_arch_lock);
1747
1748         /*
1749          * Copy the arch-specific field of the newly-installed slot back to the
1750          * old slot as the arch data could have changed between releasing
1751          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1752          * above.  Writers are required to retrieve memslots *after* acquiring
1753          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1754          */
1755         old->arch = invalid_slot->arch;
1756 }
1757
1758 static void kvm_create_memslot(struct kvm *kvm,
1759                                struct kvm_memory_slot *new)
1760 {
1761         /* Add the new memslot to the inactive set and activate. */
1762         kvm_replace_memslot(kvm, NULL, new);
1763         kvm_activate_memslot(kvm, NULL, new);
1764 }
1765
1766 static void kvm_delete_memslot(struct kvm *kvm,
1767                                struct kvm_memory_slot *old,
1768                                struct kvm_memory_slot *invalid_slot)
1769 {
1770         /*
1771          * Remove the old memslot (in the inactive memslots) by passing NULL as
1772          * the "new" slot, and for the invalid version in the active slots.
1773          */
1774         kvm_replace_memslot(kvm, old, NULL);
1775         kvm_activate_memslot(kvm, invalid_slot, NULL);
1776 }
1777
1778 static void kvm_move_memslot(struct kvm *kvm,
1779                              struct kvm_memory_slot *old,
1780                              struct kvm_memory_slot *new,
1781                              struct kvm_memory_slot *invalid_slot)
1782 {
1783         /*
1784          * Replace the old memslot in the inactive slots, and then swap slots
1785          * and replace the current INVALID with the new as well.
1786          */
1787         kvm_replace_memslot(kvm, old, new);
1788         kvm_activate_memslot(kvm, invalid_slot, new);
1789 }
1790
1791 static void kvm_update_flags_memslot(struct kvm *kvm,
1792                                      struct kvm_memory_slot *old,
1793                                      struct kvm_memory_slot *new)
1794 {
1795         /*
1796          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1797          * an intermediate step. Instead, the old memslot is simply replaced
1798          * with a new, updated copy in both memslot sets.
1799          */
1800         kvm_replace_memslot(kvm, old, new);
1801         kvm_activate_memslot(kvm, old, new);
1802 }
1803
1804 static int kvm_set_memslot(struct kvm *kvm,
1805                            struct kvm_memory_slot *old,
1806                            struct kvm_memory_slot *new,
1807                            enum kvm_mr_change change)
1808 {
1809         struct kvm_memory_slot *invalid_slot;
1810         int r;
1811
1812         /*
1813          * Released in kvm_swap_active_memslots.
1814          *
1815          * Must be held from before the current memslots are copied until
1816          * after the new memslots are installed with rcu_assign_pointer,
1817          * then released before the synchronize srcu in kvm_swap_active_memslots.
1818          *
1819          * When modifying memslots outside of the slots_lock, must be held
1820          * before reading the pointer to the current memslots until after all
1821          * changes to those memslots are complete.
1822          *
1823          * These rules ensure that installing new memslots does not lose
1824          * changes made to the previous memslots.
1825          */
1826         mutex_lock(&kvm->slots_arch_lock);
1827
1828         /*
1829          * Invalidate the old slot if it's being deleted or moved.  This is
1830          * done prior to actually deleting/moving the memslot to allow vCPUs to
1831          * continue running by ensuring there are no mappings or shadow pages
1832          * for the memslot when it is deleted/moved.  Without pre-invalidation
1833          * (and without a lock), a window would exist between effecting the
1834          * delete/move and committing the changes in arch code where KVM or a
1835          * guest could access a non-existent memslot.
1836          *
1837          * Modifications are done on a temporary, unreachable slot.  The old
1838          * slot needs to be preserved in case a later step fails and the
1839          * invalidation needs to be reverted.
1840          */
1841         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1842                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1843                 if (!invalid_slot) {
1844                         mutex_unlock(&kvm->slots_arch_lock);
1845                         return -ENOMEM;
1846                 }
1847                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1848         }
1849
1850         r = kvm_prepare_memory_region(kvm, old, new, change);
1851         if (r) {
1852                 /*
1853                  * For DELETE/MOVE, revert the above INVALID change.  No
1854                  * modifications required since the original slot was preserved
1855                  * in the inactive slots.  Changing the active memslots also
1856                  * release slots_arch_lock.
1857                  */
1858                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1859                         kvm_activate_memslot(kvm, invalid_slot, old);
1860                         kfree(invalid_slot);
1861                 } else {
1862                         mutex_unlock(&kvm->slots_arch_lock);
1863                 }
1864                 return r;
1865         }
1866
1867         /*
1868          * For DELETE and MOVE, the working slot is now active as the INVALID
1869          * version of the old slot.  MOVE is particularly special as it reuses
1870          * the old slot and returns a copy of the old slot (in working_slot).
1871          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1872          * old slot is detached but otherwise preserved.
1873          */
1874         if (change == KVM_MR_CREATE)
1875                 kvm_create_memslot(kvm, new);
1876         else if (change == KVM_MR_DELETE)
1877                 kvm_delete_memslot(kvm, old, invalid_slot);
1878         else if (change == KVM_MR_MOVE)
1879                 kvm_move_memslot(kvm, old, new, invalid_slot);
1880         else if (change == KVM_MR_FLAGS_ONLY)
1881                 kvm_update_flags_memslot(kvm, old, new);
1882         else
1883                 BUG();
1884
1885         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1886         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1887                 kfree(invalid_slot);
1888
1889         /*
1890          * No need to refresh new->arch, changes after dropping slots_arch_lock
1891          * will directly hit the final, active memslot.  Architectures are
1892          * responsible for knowing that new->arch may be stale.
1893          */
1894         kvm_commit_memory_region(kvm, old, new, change);
1895
1896         return 0;
1897 }
1898
1899 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1900                                       gfn_t start, gfn_t end)
1901 {
1902         struct kvm_memslot_iter iter;
1903
1904         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1905                 if (iter.slot->id != id)
1906                         return true;
1907         }
1908
1909         return false;
1910 }
1911
1912 /*
1913  * Allocate some memory and give it an address in the guest physical address
1914  * space.
1915  *
1916  * Discontiguous memory is allowed, mostly for framebuffers.
1917  *
1918  * Must be called holding kvm->slots_lock for write.
1919  */
1920 int __kvm_set_memory_region(struct kvm *kvm,
1921                             const struct kvm_userspace_memory_region *mem)
1922 {
1923         struct kvm_memory_slot *old, *new;
1924         struct kvm_memslots *slots;
1925         enum kvm_mr_change change;
1926         unsigned long npages;
1927         gfn_t base_gfn;
1928         int as_id, id;
1929         int r;
1930
1931         r = check_memory_region_flags(mem);
1932         if (r)
1933                 return r;
1934
1935         as_id = mem->slot >> 16;
1936         id = (u16)mem->slot;
1937
1938         /* General sanity checks */
1939         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1940             (mem->memory_size != (unsigned long)mem->memory_size))
1941                 return -EINVAL;
1942         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1943                 return -EINVAL;
1944         /* We can read the guest memory with __xxx_user() later on. */
1945         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1946             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1947              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1948                         mem->memory_size))
1949                 return -EINVAL;
1950         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1951                 return -EINVAL;
1952         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1953                 return -EINVAL;
1954         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1955                 return -EINVAL;
1956
1957         slots = __kvm_memslots(kvm, as_id);
1958
1959         /*
1960          * Note, the old memslot (and the pointer itself!) may be invalidated
1961          * and/or destroyed by kvm_set_memslot().
1962          */
1963         old = id_to_memslot(slots, id);
1964
1965         if (!mem->memory_size) {
1966                 if (!old || !old->npages)
1967                         return -EINVAL;
1968
1969                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1970                         return -EIO;
1971
1972                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1973         }
1974
1975         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1976         npages = (mem->memory_size >> PAGE_SHIFT);
1977
1978         if (!old || !old->npages) {
1979                 change = KVM_MR_CREATE;
1980
1981                 /*
1982                  * To simplify KVM internals, the total number of pages across
1983                  * all memslots must fit in an unsigned long.
1984                  */
1985                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1986                         return -EINVAL;
1987         } else { /* Modify an existing slot. */
1988                 if ((mem->userspace_addr != old->userspace_addr) ||
1989                     (npages != old->npages) ||
1990                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1991                         return -EINVAL;
1992
1993                 if (base_gfn != old->base_gfn)
1994                         change = KVM_MR_MOVE;
1995                 else if (mem->flags != old->flags)
1996                         change = KVM_MR_FLAGS_ONLY;
1997                 else /* Nothing to change. */
1998                         return 0;
1999         }
2000
2001         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2002             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2003                 return -EEXIST;
2004
2005         /* Allocate a slot that will persist in the memslot. */
2006         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2007         if (!new)
2008                 return -ENOMEM;
2009
2010         new->as_id = as_id;
2011         new->id = id;
2012         new->base_gfn = base_gfn;
2013         new->npages = npages;
2014         new->flags = mem->flags;
2015         new->userspace_addr = mem->userspace_addr;
2016
2017         r = kvm_set_memslot(kvm, old, new, change);
2018         if (r)
2019                 kfree(new);
2020         return r;
2021 }
2022 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2023
2024 int kvm_set_memory_region(struct kvm *kvm,
2025                           const struct kvm_userspace_memory_region *mem)
2026 {
2027         int r;
2028
2029         mutex_lock(&kvm->slots_lock);
2030         r = __kvm_set_memory_region(kvm, mem);
2031         mutex_unlock(&kvm->slots_lock);
2032         return r;
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2035
2036 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2037                                           struct kvm_userspace_memory_region *mem)
2038 {
2039         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2040                 return -EINVAL;
2041
2042         return kvm_set_memory_region(kvm, mem);
2043 }
2044
2045 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2046 /**
2047  * kvm_get_dirty_log - get a snapshot of dirty pages
2048  * @kvm:        pointer to kvm instance
2049  * @log:        slot id and address to which we copy the log
2050  * @is_dirty:   set to '1' if any dirty pages were found
2051  * @memslot:    set to the associated memslot, always valid on success
2052  */
2053 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2054                       int *is_dirty, struct kvm_memory_slot **memslot)
2055 {
2056         struct kvm_memslots *slots;
2057         int i, as_id, id;
2058         unsigned long n;
2059         unsigned long any = 0;
2060
2061         /* Dirty ring tracking may be exclusive to dirty log tracking */
2062         if (!kvm_use_dirty_bitmap(kvm))
2063                 return -ENXIO;
2064
2065         *memslot = NULL;
2066         *is_dirty = 0;
2067
2068         as_id = log->slot >> 16;
2069         id = (u16)log->slot;
2070         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2071                 return -EINVAL;
2072
2073         slots = __kvm_memslots(kvm, as_id);
2074         *memslot = id_to_memslot(slots, id);
2075         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2076                 return -ENOENT;
2077
2078         kvm_arch_sync_dirty_log(kvm, *memslot);
2079
2080         n = kvm_dirty_bitmap_bytes(*memslot);
2081
2082         for (i = 0; !any && i < n/sizeof(long); ++i)
2083                 any = (*memslot)->dirty_bitmap[i];
2084
2085         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2086                 return -EFAULT;
2087
2088         if (any)
2089                 *is_dirty = 1;
2090         return 0;
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2093
2094 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2095 /**
2096  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2097  *      and reenable dirty page tracking for the corresponding pages.
2098  * @kvm:        pointer to kvm instance
2099  * @log:        slot id and address to which we copy the log
2100  *
2101  * We need to keep it in mind that VCPU threads can write to the bitmap
2102  * concurrently. So, to avoid losing track of dirty pages we keep the
2103  * following order:
2104  *
2105  *    1. Take a snapshot of the bit and clear it if needed.
2106  *    2. Write protect the corresponding page.
2107  *    3. Copy the snapshot to the userspace.
2108  *    4. Upon return caller flushes TLB's if needed.
2109  *
2110  * Between 2 and 4, the guest may write to the page using the remaining TLB
2111  * entry.  This is not a problem because the page is reported dirty using
2112  * the snapshot taken before and step 4 ensures that writes done after
2113  * exiting to userspace will be logged for the next call.
2114  *
2115  */
2116 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2117 {
2118         struct kvm_memslots *slots;
2119         struct kvm_memory_slot *memslot;
2120         int i, as_id, id;
2121         unsigned long n;
2122         unsigned long *dirty_bitmap;
2123         unsigned long *dirty_bitmap_buffer;
2124         bool flush;
2125
2126         /* Dirty ring tracking may be exclusive to dirty log tracking */
2127         if (!kvm_use_dirty_bitmap(kvm))
2128                 return -ENXIO;
2129
2130         as_id = log->slot >> 16;
2131         id = (u16)log->slot;
2132         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2133                 return -EINVAL;
2134
2135         slots = __kvm_memslots(kvm, as_id);
2136         memslot = id_to_memslot(slots, id);
2137         if (!memslot || !memslot->dirty_bitmap)
2138                 return -ENOENT;
2139
2140         dirty_bitmap = memslot->dirty_bitmap;
2141
2142         kvm_arch_sync_dirty_log(kvm, memslot);
2143
2144         n = kvm_dirty_bitmap_bytes(memslot);
2145         flush = false;
2146         if (kvm->manual_dirty_log_protect) {
2147                 /*
2148                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2149                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2150                  * is some code duplication between this function and
2151                  * kvm_get_dirty_log, but hopefully all architecture
2152                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2153                  * can be eliminated.
2154                  */
2155                 dirty_bitmap_buffer = dirty_bitmap;
2156         } else {
2157                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2158                 memset(dirty_bitmap_buffer, 0, n);
2159
2160                 KVM_MMU_LOCK(kvm);
2161                 for (i = 0; i < n / sizeof(long); i++) {
2162                         unsigned long mask;
2163                         gfn_t offset;
2164
2165                         if (!dirty_bitmap[i])
2166                                 continue;
2167
2168                         flush = true;
2169                         mask = xchg(&dirty_bitmap[i], 0);
2170                         dirty_bitmap_buffer[i] = mask;
2171
2172                         offset = i * BITS_PER_LONG;
2173                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2174                                                                 offset, mask);
2175                 }
2176                 KVM_MMU_UNLOCK(kvm);
2177         }
2178
2179         if (flush)
2180                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2181
2182         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2183                 return -EFAULT;
2184         return 0;
2185 }
2186
2187
2188 /**
2189  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2190  * @kvm: kvm instance
2191  * @log: slot id and address to which we copy the log
2192  *
2193  * Steps 1-4 below provide general overview of dirty page logging. See
2194  * kvm_get_dirty_log_protect() function description for additional details.
2195  *
2196  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2197  * always flush the TLB (step 4) even if previous step failed  and the dirty
2198  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2199  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2200  * writes will be marked dirty for next log read.
2201  *
2202  *   1. Take a snapshot of the bit and clear it if needed.
2203  *   2. Write protect the corresponding page.
2204  *   3. Copy the snapshot to the userspace.
2205  *   4. Flush TLB's if needed.
2206  */
2207 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2208                                       struct kvm_dirty_log *log)
2209 {
2210         int r;
2211
2212         mutex_lock(&kvm->slots_lock);
2213
2214         r = kvm_get_dirty_log_protect(kvm, log);
2215
2216         mutex_unlock(&kvm->slots_lock);
2217         return r;
2218 }
2219
2220 /**
2221  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2222  *      and reenable dirty page tracking for the corresponding pages.
2223  * @kvm:        pointer to kvm instance
2224  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2225  */
2226 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2227                                        struct kvm_clear_dirty_log *log)
2228 {
2229         struct kvm_memslots *slots;
2230         struct kvm_memory_slot *memslot;
2231         int as_id, id;
2232         gfn_t offset;
2233         unsigned long i, n;
2234         unsigned long *dirty_bitmap;
2235         unsigned long *dirty_bitmap_buffer;
2236         bool flush;
2237
2238         /* Dirty ring tracking may be exclusive to dirty log tracking */
2239         if (!kvm_use_dirty_bitmap(kvm))
2240                 return -ENXIO;
2241
2242         as_id = log->slot >> 16;
2243         id = (u16)log->slot;
2244         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2245                 return -EINVAL;
2246
2247         if (log->first_page & 63)
2248                 return -EINVAL;
2249
2250         slots = __kvm_memslots(kvm, as_id);
2251         memslot = id_to_memslot(slots, id);
2252         if (!memslot || !memslot->dirty_bitmap)
2253                 return -ENOENT;
2254
2255         dirty_bitmap = memslot->dirty_bitmap;
2256
2257         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2258
2259         if (log->first_page > memslot->npages ||
2260             log->num_pages > memslot->npages - log->first_page ||
2261             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2262             return -EINVAL;
2263
2264         kvm_arch_sync_dirty_log(kvm, memslot);
2265
2266         flush = false;
2267         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2268         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2269                 return -EFAULT;
2270
2271         KVM_MMU_LOCK(kvm);
2272         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2273                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2274              i++, offset += BITS_PER_LONG) {
2275                 unsigned long mask = *dirty_bitmap_buffer++;
2276                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2277                 if (!mask)
2278                         continue;
2279
2280                 mask &= atomic_long_fetch_andnot(mask, p);
2281
2282                 /*
2283                  * mask contains the bits that really have been cleared.  This
2284                  * never includes any bits beyond the length of the memslot (if
2285                  * the length is not aligned to 64 pages), therefore it is not
2286                  * a problem if userspace sets them in log->dirty_bitmap.
2287                 */
2288                 if (mask) {
2289                         flush = true;
2290                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2291                                                                 offset, mask);
2292                 }
2293         }
2294         KVM_MMU_UNLOCK(kvm);
2295
2296         if (flush)
2297                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2298
2299         return 0;
2300 }
2301
2302 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2303                                         struct kvm_clear_dirty_log *log)
2304 {
2305         int r;
2306
2307         mutex_lock(&kvm->slots_lock);
2308
2309         r = kvm_clear_dirty_log_protect(kvm, log);
2310
2311         mutex_unlock(&kvm->slots_lock);
2312         return r;
2313 }
2314 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2315
2316 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2317 {
2318         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2319 }
2320 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2321
2322 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2323 {
2324         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2325         u64 gen = slots->generation;
2326         struct kvm_memory_slot *slot;
2327
2328         /*
2329          * This also protects against using a memslot from a different address space,
2330          * since different address spaces have different generation numbers.
2331          */
2332         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2333                 vcpu->last_used_slot = NULL;
2334                 vcpu->last_used_slot_gen = gen;
2335         }
2336
2337         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2338         if (slot)
2339                 return slot;
2340
2341         /*
2342          * Fall back to searching all memslots. We purposely use
2343          * search_memslots() instead of __gfn_to_memslot() to avoid
2344          * thrashing the VM-wide last_used_slot in kvm_memslots.
2345          */
2346         slot = search_memslots(slots, gfn, false);
2347         if (slot) {
2348                 vcpu->last_used_slot = slot;
2349                 return slot;
2350         }
2351
2352         return NULL;
2353 }
2354
2355 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2356 {
2357         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2358
2359         return kvm_is_visible_memslot(memslot);
2360 }
2361 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2362
2363 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2364 {
2365         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2366
2367         return kvm_is_visible_memslot(memslot);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2370
2371 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2372 {
2373         struct vm_area_struct *vma;
2374         unsigned long addr, size;
2375
2376         size = PAGE_SIZE;
2377
2378         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2379         if (kvm_is_error_hva(addr))
2380                 return PAGE_SIZE;
2381
2382         mmap_read_lock(current->mm);
2383         vma = find_vma(current->mm, addr);
2384         if (!vma)
2385                 goto out;
2386
2387         size = vma_kernel_pagesize(vma);
2388
2389 out:
2390         mmap_read_unlock(current->mm);
2391
2392         return size;
2393 }
2394
2395 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2396 {
2397         return slot->flags & KVM_MEM_READONLY;
2398 }
2399
2400 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2401                                        gfn_t *nr_pages, bool write)
2402 {
2403         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2404                 return KVM_HVA_ERR_BAD;
2405
2406         if (memslot_is_readonly(slot) && write)
2407                 return KVM_HVA_ERR_RO_BAD;
2408
2409         if (nr_pages)
2410                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2411
2412         return __gfn_to_hva_memslot(slot, gfn);
2413 }
2414
2415 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2416                                      gfn_t *nr_pages)
2417 {
2418         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2419 }
2420
2421 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2422                                         gfn_t gfn)
2423 {
2424         return gfn_to_hva_many(slot, gfn, NULL);
2425 }
2426 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2427
2428 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2429 {
2430         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2431 }
2432 EXPORT_SYMBOL_GPL(gfn_to_hva);
2433
2434 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2435 {
2436         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2439
2440 /*
2441  * Return the hva of a @gfn and the R/W attribute if possible.
2442  *
2443  * @slot: the kvm_memory_slot which contains @gfn
2444  * @gfn: the gfn to be translated
2445  * @writable: used to return the read/write attribute of the @slot if the hva
2446  * is valid and @writable is not NULL
2447  */
2448 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2449                                       gfn_t gfn, bool *writable)
2450 {
2451         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2452
2453         if (!kvm_is_error_hva(hva) && writable)
2454                 *writable = !memslot_is_readonly(slot);
2455
2456         return hva;
2457 }
2458
2459 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2460 {
2461         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2462
2463         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2464 }
2465
2466 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2467 {
2468         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2469
2470         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2471 }
2472
2473 static inline int check_user_page_hwpoison(unsigned long addr)
2474 {
2475         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2476
2477         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2478         return rc == -EHWPOISON;
2479 }
2480
2481 /*
2482  * The fast path to get the writable pfn which will be stored in @pfn,
2483  * true indicates success, otherwise false is returned.  It's also the
2484  * only part that runs if we can in atomic context.
2485  */
2486 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2487                             bool *writable, kvm_pfn_t *pfn)
2488 {
2489         struct page *page[1];
2490
2491         /*
2492          * Fast pin a writable pfn only if it is a write fault request
2493          * or the caller allows to map a writable pfn for a read fault
2494          * request.
2495          */
2496         if (!(write_fault || writable))
2497                 return false;
2498
2499         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2500                 *pfn = page_to_pfn(page[0]);
2501
2502                 if (writable)
2503                         *writable = true;
2504                 return true;
2505         }
2506
2507         return false;
2508 }
2509
2510 /*
2511  * The slow path to get the pfn of the specified host virtual address,
2512  * 1 indicates success, -errno is returned if error is detected.
2513  */
2514 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2515                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2516 {
2517         unsigned int flags = FOLL_HWPOISON;
2518         struct page *page;
2519         int npages;
2520
2521         might_sleep();
2522
2523         if (writable)
2524                 *writable = write_fault;
2525
2526         if (write_fault)
2527                 flags |= FOLL_WRITE;
2528         if (async)
2529                 flags |= FOLL_NOWAIT;
2530         if (interruptible)
2531                 flags |= FOLL_INTERRUPTIBLE;
2532
2533         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2534         if (npages != 1)
2535                 return npages;
2536
2537         /* map read fault as writable if possible */
2538         if (unlikely(!write_fault) && writable) {
2539                 struct page *wpage;
2540
2541                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2542                         *writable = true;
2543                         put_page(page);
2544                         page = wpage;
2545                 }
2546         }
2547         *pfn = page_to_pfn(page);
2548         return npages;
2549 }
2550
2551 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2552 {
2553         if (unlikely(!(vma->vm_flags & VM_READ)))
2554                 return false;
2555
2556         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2557                 return false;
2558
2559         return true;
2560 }
2561
2562 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2563 {
2564         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2565
2566         if (!page)
2567                 return 1;
2568
2569         return get_page_unless_zero(page);
2570 }
2571
2572 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2573                                unsigned long addr, bool write_fault,
2574                                bool *writable, kvm_pfn_t *p_pfn)
2575 {
2576         kvm_pfn_t pfn;
2577         pte_t *ptep;
2578         spinlock_t *ptl;
2579         int r;
2580
2581         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2582         if (r) {
2583                 /*
2584                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2585                  * not call the fault handler, so do it here.
2586                  */
2587                 bool unlocked = false;
2588                 r = fixup_user_fault(current->mm, addr,
2589                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2590                                      &unlocked);
2591                 if (unlocked)
2592                         return -EAGAIN;
2593                 if (r)
2594                         return r;
2595
2596                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2597                 if (r)
2598                         return r;
2599         }
2600
2601         if (write_fault && !pte_write(*ptep)) {
2602                 pfn = KVM_PFN_ERR_RO_FAULT;
2603                 goto out;
2604         }
2605
2606         if (writable)
2607                 *writable = pte_write(*ptep);
2608         pfn = pte_pfn(*ptep);
2609
2610         /*
2611          * Get a reference here because callers of *hva_to_pfn* and
2612          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2613          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2614          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2615          * simply do nothing for reserved pfns.
2616          *
2617          * Whoever called remap_pfn_range is also going to call e.g.
2618          * unmap_mapping_range before the underlying pages are freed,
2619          * causing a call to our MMU notifier.
2620          *
2621          * Certain IO or PFNMAP mappings can be backed with valid
2622          * struct pages, but be allocated without refcounting e.g.,
2623          * tail pages of non-compound higher order allocations, which
2624          * would then underflow the refcount when the caller does the
2625          * required put_page. Don't allow those pages here.
2626          */ 
2627         if (!kvm_try_get_pfn(pfn))
2628                 r = -EFAULT;
2629
2630 out:
2631         pte_unmap_unlock(ptep, ptl);
2632         *p_pfn = pfn;
2633
2634         return r;
2635 }
2636
2637 /*
2638  * Pin guest page in memory and return its pfn.
2639  * @addr: host virtual address which maps memory to the guest
2640  * @atomic: whether this function can sleep
2641  * @interruptible: whether the process can be interrupted by non-fatal signals
2642  * @async: whether this function need to wait IO complete if the
2643  *         host page is not in the memory
2644  * @write_fault: whether we should get a writable host page
2645  * @writable: whether it allows to map a writable host page for !@write_fault
2646  *
2647  * The function will map a writable host page for these two cases:
2648  * 1): @write_fault = true
2649  * 2): @write_fault = false && @writable, @writable will tell the caller
2650  *     whether the mapping is writable.
2651  */
2652 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2653                      bool *async, bool write_fault, bool *writable)
2654 {
2655         struct vm_area_struct *vma;
2656         kvm_pfn_t pfn;
2657         int npages, r;
2658
2659         /* we can do it either atomically or asynchronously, not both */
2660         BUG_ON(atomic && async);
2661
2662         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2663                 return pfn;
2664
2665         if (atomic)
2666                 return KVM_PFN_ERR_FAULT;
2667
2668         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2669                                  writable, &pfn);
2670         if (npages == 1)
2671                 return pfn;
2672         if (npages == -EINTR)
2673                 return KVM_PFN_ERR_SIGPENDING;
2674
2675         mmap_read_lock(current->mm);
2676         if (npages == -EHWPOISON ||
2677               (!async && check_user_page_hwpoison(addr))) {
2678                 pfn = KVM_PFN_ERR_HWPOISON;
2679                 goto exit;
2680         }
2681
2682 retry:
2683         vma = vma_lookup(current->mm, addr);
2684
2685         if (vma == NULL)
2686                 pfn = KVM_PFN_ERR_FAULT;
2687         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2688                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2689                 if (r == -EAGAIN)
2690                         goto retry;
2691                 if (r < 0)
2692                         pfn = KVM_PFN_ERR_FAULT;
2693         } else {
2694                 if (async && vma_is_valid(vma, write_fault))
2695                         *async = true;
2696                 pfn = KVM_PFN_ERR_FAULT;
2697         }
2698 exit:
2699         mmap_read_unlock(current->mm);
2700         return pfn;
2701 }
2702
2703 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2704                                bool atomic, bool interruptible, bool *async,
2705                                bool write_fault, bool *writable, hva_t *hva)
2706 {
2707         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2708
2709         if (hva)
2710                 *hva = addr;
2711
2712         if (addr == KVM_HVA_ERR_RO_BAD) {
2713                 if (writable)
2714                         *writable = false;
2715                 return KVM_PFN_ERR_RO_FAULT;
2716         }
2717
2718         if (kvm_is_error_hva(addr)) {
2719                 if (writable)
2720                         *writable = false;
2721                 return KVM_PFN_NOSLOT;
2722         }
2723
2724         /* Do not map writable pfn in the readonly memslot. */
2725         if (writable && memslot_is_readonly(slot)) {
2726                 *writable = false;
2727                 writable = NULL;
2728         }
2729
2730         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2731                           writable);
2732 }
2733 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2734
2735 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2736                       bool *writable)
2737 {
2738         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2739                                     NULL, write_fault, writable, NULL);
2740 }
2741 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2742
2743 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2744 {
2745         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2746                                     NULL, NULL);
2747 }
2748 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2749
2750 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2751 {
2752         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2753                                     NULL, NULL);
2754 }
2755 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2756
2757 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2758 {
2759         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2762
2763 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2764 {
2765         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2766 }
2767 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2768
2769 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2770 {
2771         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2772 }
2773 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2774
2775 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2776                             struct page **pages, int nr_pages)
2777 {
2778         unsigned long addr;
2779         gfn_t entry = 0;
2780
2781         addr = gfn_to_hva_many(slot, gfn, &entry);
2782         if (kvm_is_error_hva(addr))
2783                 return -1;
2784
2785         if (entry < nr_pages)
2786                 return 0;
2787
2788         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2789 }
2790 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2791
2792 /*
2793  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2794  * backed by 'struct page'.  A valid example is if the backing memslot is
2795  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2796  * been elevated by gfn_to_pfn().
2797  */
2798 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2799 {
2800         struct page *page;
2801         kvm_pfn_t pfn;
2802
2803         pfn = gfn_to_pfn(kvm, gfn);
2804
2805         if (is_error_noslot_pfn(pfn))
2806                 return KVM_ERR_PTR_BAD_PAGE;
2807
2808         page = kvm_pfn_to_refcounted_page(pfn);
2809         if (!page)
2810                 return KVM_ERR_PTR_BAD_PAGE;
2811
2812         return page;
2813 }
2814 EXPORT_SYMBOL_GPL(gfn_to_page);
2815
2816 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2817 {
2818         if (dirty)
2819                 kvm_release_pfn_dirty(pfn);
2820         else
2821                 kvm_release_pfn_clean(pfn);
2822 }
2823
2824 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2825 {
2826         kvm_pfn_t pfn;
2827         void *hva = NULL;
2828         struct page *page = KVM_UNMAPPED_PAGE;
2829
2830         if (!map)
2831                 return -EINVAL;
2832
2833         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2834         if (is_error_noslot_pfn(pfn))
2835                 return -EINVAL;
2836
2837         if (pfn_valid(pfn)) {
2838                 page = pfn_to_page(pfn);
2839                 hva = kmap(page);
2840 #ifdef CONFIG_HAS_IOMEM
2841         } else {
2842                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2843 #endif
2844         }
2845
2846         if (!hva)
2847                 return -EFAULT;
2848
2849         map->page = page;
2850         map->hva = hva;
2851         map->pfn = pfn;
2852         map->gfn = gfn;
2853
2854         return 0;
2855 }
2856 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2857
2858 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2859 {
2860         if (!map)
2861                 return;
2862
2863         if (!map->hva)
2864                 return;
2865
2866         if (map->page != KVM_UNMAPPED_PAGE)
2867                 kunmap(map->page);
2868 #ifdef CONFIG_HAS_IOMEM
2869         else
2870                 memunmap(map->hva);
2871 #endif
2872
2873         if (dirty)
2874                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2875
2876         kvm_release_pfn(map->pfn, dirty);
2877
2878         map->hva = NULL;
2879         map->page = NULL;
2880 }
2881 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2882
2883 static bool kvm_is_ad_tracked_page(struct page *page)
2884 {
2885         /*
2886          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2887          * touched (e.g. set dirty) except by its owner".
2888          */
2889         return !PageReserved(page);
2890 }
2891
2892 static void kvm_set_page_dirty(struct page *page)
2893 {
2894         if (kvm_is_ad_tracked_page(page))
2895                 SetPageDirty(page);
2896 }
2897
2898 static void kvm_set_page_accessed(struct page *page)
2899 {
2900         if (kvm_is_ad_tracked_page(page))
2901                 mark_page_accessed(page);
2902 }
2903
2904 void kvm_release_page_clean(struct page *page)
2905 {
2906         WARN_ON(is_error_page(page));
2907
2908         kvm_set_page_accessed(page);
2909         put_page(page);
2910 }
2911 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2912
2913 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2914 {
2915         struct page *page;
2916
2917         if (is_error_noslot_pfn(pfn))
2918                 return;
2919
2920         page = kvm_pfn_to_refcounted_page(pfn);
2921         if (!page)
2922                 return;
2923
2924         kvm_release_page_clean(page);
2925 }
2926 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2927
2928 void kvm_release_page_dirty(struct page *page)
2929 {
2930         WARN_ON(is_error_page(page));
2931
2932         kvm_set_page_dirty(page);
2933         kvm_release_page_clean(page);
2934 }
2935 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2936
2937 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2938 {
2939         struct page *page;
2940
2941         if (is_error_noslot_pfn(pfn))
2942                 return;
2943
2944         page = kvm_pfn_to_refcounted_page(pfn);
2945         if (!page)
2946                 return;
2947
2948         kvm_release_page_dirty(page);
2949 }
2950 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2951
2952 /*
2953  * Note, checking for an error/noslot pfn is the caller's responsibility when
2954  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2955  * "set" helpers are not to be used when the pfn might point at garbage.
2956  */
2957 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2958 {
2959         if (WARN_ON(is_error_noslot_pfn(pfn)))
2960                 return;
2961
2962         if (pfn_valid(pfn))
2963                 kvm_set_page_dirty(pfn_to_page(pfn));
2964 }
2965 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2966
2967 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2968 {
2969         if (WARN_ON(is_error_noslot_pfn(pfn)))
2970                 return;
2971
2972         if (pfn_valid(pfn))
2973                 kvm_set_page_accessed(pfn_to_page(pfn));
2974 }
2975 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2976
2977 static int next_segment(unsigned long len, int offset)
2978 {
2979         if (len > PAGE_SIZE - offset)
2980                 return PAGE_SIZE - offset;
2981         else
2982                 return len;
2983 }
2984
2985 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2986                                  void *data, int offset, int len)
2987 {
2988         int r;
2989         unsigned long addr;
2990
2991         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2992         if (kvm_is_error_hva(addr))
2993                 return -EFAULT;
2994         r = __copy_from_user(data, (void __user *)addr + offset, len);
2995         if (r)
2996                 return -EFAULT;
2997         return 0;
2998 }
2999
3000 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3001                         int len)
3002 {
3003         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3004
3005         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3006 }
3007 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3008
3009 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3010                              int offset, int len)
3011 {
3012         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3013
3014         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3015 }
3016 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3017
3018 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3019 {
3020         gfn_t gfn = gpa >> PAGE_SHIFT;
3021         int seg;
3022         int offset = offset_in_page(gpa);
3023         int ret;
3024
3025         while ((seg = next_segment(len, offset)) != 0) {
3026                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3027                 if (ret < 0)
3028                         return ret;
3029                 offset = 0;
3030                 len -= seg;
3031                 data += seg;
3032                 ++gfn;
3033         }
3034         return 0;
3035 }
3036 EXPORT_SYMBOL_GPL(kvm_read_guest);
3037
3038 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3039 {
3040         gfn_t gfn = gpa >> PAGE_SHIFT;
3041         int seg;
3042         int offset = offset_in_page(gpa);
3043         int ret;
3044
3045         while ((seg = next_segment(len, offset)) != 0) {
3046                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3047                 if (ret < 0)
3048                         return ret;
3049                 offset = 0;
3050                 len -= seg;
3051                 data += seg;
3052                 ++gfn;
3053         }
3054         return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3057
3058 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3059                                    void *data, int offset, unsigned long len)
3060 {
3061         int r;
3062         unsigned long addr;
3063
3064         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3065         if (kvm_is_error_hva(addr))
3066                 return -EFAULT;
3067         pagefault_disable();
3068         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3069         pagefault_enable();
3070         if (r)
3071                 return -EFAULT;
3072         return 0;
3073 }
3074
3075 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3076                                void *data, unsigned long len)
3077 {
3078         gfn_t gfn = gpa >> PAGE_SHIFT;
3079         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3080         int offset = offset_in_page(gpa);
3081
3082         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3083 }
3084 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3085
3086 static int __kvm_write_guest_page(struct kvm *kvm,
3087                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3088                                   const void *data, int offset, int len)
3089 {
3090         int r;
3091         unsigned long addr;
3092
3093         addr = gfn_to_hva_memslot(memslot, gfn);
3094         if (kvm_is_error_hva(addr))
3095                 return -EFAULT;
3096         r = __copy_to_user((void __user *)addr + offset, data, len);
3097         if (r)
3098                 return -EFAULT;
3099         mark_page_dirty_in_slot(kvm, memslot, gfn);
3100         return 0;
3101 }
3102
3103 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3104                          const void *data, int offset, int len)
3105 {
3106         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3107
3108         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3109 }
3110 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3111
3112 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3113                               const void *data, int offset, int len)
3114 {
3115         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3116
3117         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3118 }
3119 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3120
3121 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3122                     unsigned long len)
3123 {
3124         gfn_t gfn = gpa >> PAGE_SHIFT;
3125         int seg;
3126         int offset = offset_in_page(gpa);
3127         int ret;
3128
3129         while ((seg = next_segment(len, offset)) != 0) {
3130                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3131                 if (ret < 0)
3132                         return ret;
3133                 offset = 0;
3134                 len -= seg;
3135                 data += seg;
3136                 ++gfn;
3137         }
3138         return 0;
3139 }
3140 EXPORT_SYMBOL_GPL(kvm_write_guest);
3141
3142 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3143                          unsigned long len)
3144 {
3145         gfn_t gfn = gpa >> PAGE_SHIFT;
3146         int seg;
3147         int offset = offset_in_page(gpa);
3148         int ret;
3149
3150         while ((seg = next_segment(len, offset)) != 0) {
3151                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3152                 if (ret < 0)
3153                         return ret;
3154                 offset = 0;
3155                 len -= seg;
3156                 data += seg;
3157                 ++gfn;
3158         }
3159         return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3162
3163 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3164                                        struct gfn_to_hva_cache *ghc,
3165                                        gpa_t gpa, unsigned long len)
3166 {
3167         int offset = offset_in_page(gpa);
3168         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3169         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3170         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3171         gfn_t nr_pages_avail;
3172
3173         /* Update ghc->generation before performing any error checks. */
3174         ghc->generation = slots->generation;
3175
3176         if (start_gfn > end_gfn) {
3177                 ghc->hva = KVM_HVA_ERR_BAD;
3178                 return -EINVAL;
3179         }
3180
3181         /*
3182          * If the requested region crosses two memslots, we still
3183          * verify that the entire region is valid here.
3184          */
3185         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3186                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3187                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3188                                            &nr_pages_avail);
3189                 if (kvm_is_error_hva(ghc->hva))
3190                         return -EFAULT;
3191         }
3192
3193         /* Use the slow path for cross page reads and writes. */
3194         if (nr_pages_needed == 1)
3195                 ghc->hva += offset;
3196         else
3197                 ghc->memslot = NULL;
3198
3199         ghc->gpa = gpa;
3200         ghc->len = len;
3201         return 0;
3202 }
3203
3204 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3205                               gpa_t gpa, unsigned long len)
3206 {
3207         struct kvm_memslots *slots = kvm_memslots(kvm);
3208         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3209 }
3210 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3211
3212 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3213                                   void *data, unsigned int offset,
3214                                   unsigned long len)
3215 {
3216         struct kvm_memslots *slots = kvm_memslots(kvm);
3217         int r;
3218         gpa_t gpa = ghc->gpa + offset;
3219
3220         if (WARN_ON_ONCE(len + offset > ghc->len))
3221                 return -EINVAL;
3222
3223         if (slots->generation != ghc->generation) {
3224                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3225                         return -EFAULT;
3226         }
3227
3228         if (kvm_is_error_hva(ghc->hva))
3229                 return -EFAULT;
3230
3231         if (unlikely(!ghc->memslot))
3232                 return kvm_write_guest(kvm, gpa, data, len);
3233
3234         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3235         if (r)
3236                 return -EFAULT;
3237         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3238
3239         return 0;
3240 }
3241 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3242
3243 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3244                            void *data, unsigned long len)
3245 {
3246         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3247 }
3248 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3249
3250 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3251                                  void *data, unsigned int offset,
3252                                  unsigned long len)
3253 {
3254         struct kvm_memslots *slots = kvm_memslots(kvm);
3255         int r;
3256         gpa_t gpa = ghc->gpa + offset;
3257
3258         if (WARN_ON_ONCE(len + offset > ghc->len))
3259                 return -EINVAL;
3260
3261         if (slots->generation != ghc->generation) {
3262                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3263                         return -EFAULT;
3264         }
3265
3266         if (kvm_is_error_hva(ghc->hva))
3267                 return -EFAULT;
3268
3269         if (unlikely(!ghc->memslot))
3270                 return kvm_read_guest(kvm, gpa, data, len);
3271
3272         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3273         if (r)
3274                 return -EFAULT;
3275
3276         return 0;
3277 }
3278 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3279
3280 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3281                           void *data, unsigned long len)
3282 {
3283         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3284 }
3285 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3286
3287 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3288 {
3289         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3290         gfn_t gfn = gpa >> PAGE_SHIFT;
3291         int seg;
3292         int offset = offset_in_page(gpa);
3293         int ret;
3294
3295         while ((seg = next_segment(len, offset)) != 0) {
3296                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3297                 if (ret < 0)
3298                         return ret;
3299                 offset = 0;
3300                 len -= seg;
3301                 ++gfn;
3302         }
3303         return 0;
3304 }
3305 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3306
3307 void mark_page_dirty_in_slot(struct kvm *kvm,
3308                              const struct kvm_memory_slot *memslot,
3309                              gfn_t gfn)
3310 {
3311         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3312
3313 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3314         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3315                 return;
3316
3317         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3318 #endif
3319
3320         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3321                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3322                 u32 slot = (memslot->as_id << 16) | memslot->id;
3323
3324                 if (kvm->dirty_ring_size && vcpu)
3325                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3326                 else if (memslot->dirty_bitmap)
3327                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3328         }
3329 }
3330 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3331
3332 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3333 {
3334         struct kvm_memory_slot *memslot;
3335
3336         memslot = gfn_to_memslot(kvm, gfn);
3337         mark_page_dirty_in_slot(kvm, memslot, gfn);
3338 }
3339 EXPORT_SYMBOL_GPL(mark_page_dirty);
3340
3341 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3342 {
3343         struct kvm_memory_slot *memslot;
3344
3345         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3346         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3347 }
3348 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3349
3350 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3351 {
3352         if (!vcpu->sigset_active)
3353                 return;
3354
3355         /*
3356          * This does a lockless modification of ->real_blocked, which is fine
3357          * because, only current can change ->real_blocked and all readers of
3358          * ->real_blocked don't care as long ->real_blocked is always a subset
3359          * of ->blocked.
3360          */
3361         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3362 }
3363
3364 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3365 {
3366         if (!vcpu->sigset_active)
3367                 return;
3368
3369         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3370         sigemptyset(&current->real_blocked);
3371 }
3372
3373 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3374 {
3375         unsigned int old, val, grow, grow_start;
3376
3377         old = val = vcpu->halt_poll_ns;
3378         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3379         grow = READ_ONCE(halt_poll_ns_grow);
3380         if (!grow)
3381                 goto out;
3382
3383         val *= grow;
3384         if (val < grow_start)
3385                 val = grow_start;
3386
3387         vcpu->halt_poll_ns = val;
3388 out:
3389         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3390 }
3391
3392 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3393 {
3394         unsigned int old, val, shrink, grow_start;
3395
3396         old = val = vcpu->halt_poll_ns;
3397         shrink = READ_ONCE(halt_poll_ns_shrink);
3398         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3399         if (shrink == 0)
3400                 val = 0;
3401         else
3402                 val /= shrink;
3403
3404         if (val < grow_start)
3405                 val = 0;
3406
3407         vcpu->halt_poll_ns = val;
3408         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3409 }
3410
3411 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3412 {
3413         int ret = -EINTR;
3414         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3415
3416         if (kvm_arch_vcpu_runnable(vcpu))
3417                 goto out;
3418         if (kvm_cpu_has_pending_timer(vcpu))
3419                 goto out;
3420         if (signal_pending(current))
3421                 goto out;
3422         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3423                 goto out;
3424
3425         ret = 0;
3426 out:
3427         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3428         return ret;
3429 }
3430
3431 /*
3432  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3433  * pending.  This is mostly used when halting a vCPU, but may also be used
3434  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3435  */
3436 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3437 {
3438         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3439         bool waited = false;
3440
3441         vcpu->stat.generic.blocking = 1;
3442
3443         preempt_disable();
3444         kvm_arch_vcpu_blocking(vcpu);
3445         prepare_to_rcuwait(wait);
3446         preempt_enable();
3447
3448         for (;;) {
3449                 set_current_state(TASK_INTERRUPTIBLE);
3450
3451                 if (kvm_vcpu_check_block(vcpu) < 0)
3452                         break;
3453
3454                 waited = true;
3455                 schedule();
3456         }
3457
3458         preempt_disable();
3459         finish_rcuwait(wait);
3460         kvm_arch_vcpu_unblocking(vcpu);
3461         preempt_enable();
3462
3463         vcpu->stat.generic.blocking = 0;
3464
3465         return waited;
3466 }
3467
3468 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3469                                           ktime_t end, bool success)
3470 {
3471         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3472         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3473
3474         ++vcpu->stat.generic.halt_attempted_poll;
3475
3476         if (success) {
3477                 ++vcpu->stat.generic.halt_successful_poll;
3478
3479                 if (!vcpu_valid_wakeup(vcpu))
3480                         ++vcpu->stat.generic.halt_poll_invalid;
3481
3482                 stats->halt_poll_success_ns += poll_ns;
3483                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3484         } else {
3485                 stats->halt_poll_fail_ns += poll_ns;
3486                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3487         }
3488 }
3489
3490 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3491 {
3492         struct kvm *kvm = vcpu->kvm;
3493
3494         if (kvm->override_halt_poll_ns) {
3495                 /*
3496                  * Ensure kvm->max_halt_poll_ns is not read before
3497                  * kvm->override_halt_poll_ns.
3498                  *
3499                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3500                  */
3501                 smp_rmb();
3502                 return READ_ONCE(kvm->max_halt_poll_ns);
3503         }
3504
3505         return READ_ONCE(halt_poll_ns);
3506 }
3507
3508 /*
3509  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3510  * polling is enabled, busy wait for a short time before blocking to avoid the
3511  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3512  * is halted.
3513  */
3514 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3515 {
3516         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3517         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3518         ktime_t start, cur, poll_end;
3519         bool waited = false;
3520         bool do_halt_poll;
3521         u64 halt_ns;
3522
3523         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3524                 vcpu->halt_poll_ns = max_halt_poll_ns;
3525
3526         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3527
3528         start = cur = poll_end = ktime_get();
3529         if (do_halt_poll) {
3530                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3531
3532                 do {
3533                         if (kvm_vcpu_check_block(vcpu) < 0)
3534                                 goto out;
3535                         cpu_relax();
3536                         poll_end = cur = ktime_get();
3537                 } while (kvm_vcpu_can_poll(cur, stop));
3538         }
3539
3540         waited = kvm_vcpu_block(vcpu);
3541
3542         cur = ktime_get();
3543         if (waited) {
3544                 vcpu->stat.generic.halt_wait_ns +=
3545                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3546                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3547                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3548         }
3549 out:
3550         /* The total time the vCPU was "halted", including polling time. */
3551         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3552
3553         /*
3554          * Note, halt-polling is considered successful so long as the vCPU was
3555          * never actually scheduled out, i.e. even if the wake event arrived
3556          * after of the halt-polling loop itself, but before the full wait.
3557          */
3558         if (do_halt_poll)
3559                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3560
3561         if (halt_poll_allowed) {
3562                 /* Recompute the max halt poll time in case it changed. */
3563                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3564
3565                 if (!vcpu_valid_wakeup(vcpu)) {
3566                         shrink_halt_poll_ns(vcpu);
3567                 } else if (max_halt_poll_ns) {
3568                         if (halt_ns <= vcpu->halt_poll_ns)
3569                                 ;
3570                         /* we had a long block, shrink polling */
3571                         else if (vcpu->halt_poll_ns &&
3572                                  halt_ns > max_halt_poll_ns)
3573                                 shrink_halt_poll_ns(vcpu);
3574                         /* we had a short halt and our poll time is too small */
3575                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3576                                  halt_ns < max_halt_poll_ns)
3577                                 grow_halt_poll_ns(vcpu);
3578                 } else {
3579                         vcpu->halt_poll_ns = 0;
3580                 }
3581         }
3582
3583         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3584 }
3585 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3586
3587 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3588 {
3589         if (__kvm_vcpu_wake_up(vcpu)) {
3590                 WRITE_ONCE(vcpu->ready, true);
3591                 ++vcpu->stat.generic.halt_wakeup;
3592                 return true;
3593         }
3594
3595         return false;
3596 }
3597 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3598
3599 #ifndef CONFIG_S390
3600 /*
3601  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3602  */
3603 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3604 {
3605         int me, cpu;
3606
3607         if (kvm_vcpu_wake_up(vcpu))
3608                 return;
3609
3610         me = get_cpu();
3611         /*
3612          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3613          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3614          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3615          * within the vCPU thread itself.
3616          */
3617         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3618                 if (vcpu->mode == IN_GUEST_MODE)
3619                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3620                 goto out;
3621         }
3622
3623         /*
3624          * Note, the vCPU could get migrated to a different pCPU at any point
3625          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3626          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3627          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3628          * vCPU also requires it to leave IN_GUEST_MODE.
3629          */
3630         if (kvm_arch_vcpu_should_kick(vcpu)) {
3631                 cpu = READ_ONCE(vcpu->cpu);
3632                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3633                         smp_send_reschedule(cpu);
3634         }
3635 out:
3636         put_cpu();
3637 }
3638 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3639 #endif /* !CONFIG_S390 */
3640
3641 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3642 {
3643         struct pid *pid;
3644         struct task_struct *task = NULL;
3645         int ret = 0;
3646
3647         rcu_read_lock();
3648         pid = rcu_dereference(target->pid);
3649         if (pid)
3650                 task = get_pid_task(pid, PIDTYPE_PID);
3651         rcu_read_unlock();
3652         if (!task)
3653                 return ret;
3654         ret = yield_to(task, 1);
3655         put_task_struct(task);
3656
3657         return ret;
3658 }
3659 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3660
3661 /*
3662  * Helper that checks whether a VCPU is eligible for directed yield.
3663  * Most eligible candidate to yield is decided by following heuristics:
3664  *
3665  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3666  *  (preempted lock holder), indicated by @in_spin_loop.
3667  *  Set at the beginning and cleared at the end of interception/PLE handler.
3668  *
3669  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3670  *  chance last time (mostly it has become eligible now since we have probably
3671  *  yielded to lockholder in last iteration. This is done by toggling
3672  *  @dy_eligible each time a VCPU checked for eligibility.)
3673  *
3674  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3675  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3676  *  burning. Giving priority for a potential lock-holder increases lock
3677  *  progress.
3678  *
3679  *  Since algorithm is based on heuristics, accessing another VCPU data without
3680  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3681  *  and continue with next VCPU and so on.
3682  */
3683 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3684 {
3685 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3686         bool eligible;
3687
3688         eligible = !vcpu->spin_loop.in_spin_loop ||
3689                     vcpu->spin_loop.dy_eligible;
3690
3691         if (vcpu->spin_loop.in_spin_loop)
3692                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3693
3694         return eligible;
3695 #else
3696         return true;
3697 #endif
3698 }
3699
3700 /*
3701  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3702  * a vcpu_load/vcpu_put pair.  However, for most architectures
3703  * kvm_arch_vcpu_runnable does not require vcpu_load.
3704  */
3705 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3706 {
3707         return kvm_arch_vcpu_runnable(vcpu);
3708 }
3709
3710 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3711 {
3712         if (kvm_arch_dy_runnable(vcpu))
3713                 return true;
3714
3715 #ifdef CONFIG_KVM_ASYNC_PF
3716         if (!list_empty_careful(&vcpu->async_pf.done))
3717                 return true;
3718 #endif
3719
3720         return false;
3721 }
3722
3723 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3724 {
3725         return false;
3726 }
3727
3728 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3729 {
3730         struct kvm *kvm = me->kvm;
3731         struct kvm_vcpu *vcpu;
3732         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3733         unsigned long i;
3734         int yielded = 0;
3735         int try = 3;
3736         int pass;
3737
3738         kvm_vcpu_set_in_spin_loop(me, true);
3739         /*
3740          * We boost the priority of a VCPU that is runnable but not
3741          * currently running, because it got preempted by something
3742          * else and called schedule in __vcpu_run.  Hopefully that
3743          * VCPU is holding the lock that we need and will release it.
3744          * We approximate round-robin by starting at the last boosted VCPU.
3745          */
3746         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3747                 kvm_for_each_vcpu(i, vcpu, kvm) {
3748                         if (!pass && i <= last_boosted_vcpu) {
3749                                 i = last_boosted_vcpu;
3750                                 continue;
3751                         } else if (pass && i > last_boosted_vcpu)
3752                                 break;
3753                         if (!READ_ONCE(vcpu->ready))
3754                                 continue;
3755                         if (vcpu == me)
3756                                 continue;
3757                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3758                                 continue;
3759                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3760                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3761                             !kvm_arch_vcpu_in_kernel(vcpu))
3762                                 continue;
3763                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3764                                 continue;
3765
3766                         yielded = kvm_vcpu_yield_to(vcpu);
3767                         if (yielded > 0) {
3768                                 kvm->last_boosted_vcpu = i;
3769                                 break;
3770                         } else if (yielded < 0) {
3771                                 try--;
3772                                 if (!try)
3773                                         break;
3774                         }
3775                 }
3776         }
3777         kvm_vcpu_set_in_spin_loop(me, false);
3778
3779         /* Ensure vcpu is not eligible during next spinloop */
3780         kvm_vcpu_set_dy_eligible(me, false);
3781 }
3782 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3783
3784 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3785 {
3786 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3787         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3788             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3789              kvm->dirty_ring_size / PAGE_SIZE);
3790 #else
3791         return false;
3792 #endif
3793 }
3794
3795 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3796 {
3797         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3798         struct page *page;
3799
3800         if (vmf->pgoff == 0)
3801                 page = virt_to_page(vcpu->run);
3802 #ifdef CONFIG_X86
3803         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3804                 page = virt_to_page(vcpu->arch.pio_data);
3805 #endif
3806 #ifdef CONFIG_KVM_MMIO
3807         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3808                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3809 #endif
3810         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3811                 page = kvm_dirty_ring_get_page(
3812                     &vcpu->dirty_ring,
3813                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3814         else
3815                 return kvm_arch_vcpu_fault(vcpu, vmf);
3816         get_page(page);
3817         vmf->page = page;
3818         return 0;
3819 }
3820
3821 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3822         .fault = kvm_vcpu_fault,
3823 };
3824
3825 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3826 {
3827         struct kvm_vcpu *vcpu = file->private_data;
3828         unsigned long pages = vma_pages(vma);
3829
3830         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3831              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3832             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3833                 return -EINVAL;
3834
3835         vma->vm_ops = &kvm_vcpu_vm_ops;
3836         return 0;
3837 }
3838
3839 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3840 {
3841         struct kvm_vcpu *vcpu = filp->private_data;
3842
3843         kvm_put_kvm(vcpu->kvm);
3844         return 0;
3845 }
3846
3847 static const struct file_operations kvm_vcpu_fops = {
3848         .release        = kvm_vcpu_release,
3849         .unlocked_ioctl = kvm_vcpu_ioctl,
3850         .mmap           = kvm_vcpu_mmap,
3851         .llseek         = noop_llseek,
3852         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3853 };
3854
3855 /*
3856  * Allocates an inode for the vcpu.
3857  */
3858 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3859 {
3860         char name[8 + 1 + ITOA_MAX_LEN + 1];
3861
3862         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3863         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3864 }
3865
3866 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3867 static int vcpu_get_pid(void *data, u64 *val)
3868 {
3869         struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3870         *val = pid_nr(rcu_access_pointer(vcpu->pid));
3871         return 0;
3872 }
3873
3874 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3875
3876 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3877 {
3878         struct dentry *debugfs_dentry;
3879         char dir_name[ITOA_MAX_LEN * 2];
3880
3881         if (!debugfs_initialized())
3882                 return;
3883
3884         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3885         debugfs_dentry = debugfs_create_dir(dir_name,
3886                                             vcpu->kvm->debugfs_dentry);
3887         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3888                             &vcpu_get_pid_fops);
3889
3890         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3891 }
3892 #endif
3893
3894 /*
3895  * Creates some virtual cpus.  Good luck creating more than one.
3896  */
3897 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3898 {
3899         int r;
3900         struct kvm_vcpu *vcpu;
3901         struct page *page;
3902
3903         if (id >= KVM_MAX_VCPU_IDS)
3904                 return -EINVAL;
3905
3906         mutex_lock(&kvm->lock);
3907         if (kvm->created_vcpus >= kvm->max_vcpus) {
3908                 mutex_unlock(&kvm->lock);
3909                 return -EINVAL;
3910         }
3911
3912         r = kvm_arch_vcpu_precreate(kvm, id);
3913         if (r) {
3914                 mutex_unlock(&kvm->lock);
3915                 return r;
3916         }
3917
3918         kvm->created_vcpus++;
3919         mutex_unlock(&kvm->lock);
3920
3921         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3922         if (!vcpu) {
3923                 r = -ENOMEM;
3924                 goto vcpu_decrement;
3925         }
3926
3927         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3928         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3929         if (!page) {
3930                 r = -ENOMEM;
3931                 goto vcpu_free;
3932         }
3933         vcpu->run = page_address(page);
3934
3935         kvm_vcpu_init(vcpu, kvm, id);
3936
3937         r = kvm_arch_vcpu_create(vcpu);
3938         if (r)
3939                 goto vcpu_free_run_page;
3940
3941         if (kvm->dirty_ring_size) {
3942                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3943                                          id, kvm->dirty_ring_size);
3944                 if (r)
3945                         goto arch_vcpu_destroy;
3946         }
3947
3948         mutex_lock(&kvm->lock);
3949
3950 #ifdef CONFIG_LOCKDEP
3951         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3952         mutex_lock(&vcpu->mutex);
3953         mutex_unlock(&vcpu->mutex);
3954 #endif
3955
3956         if (kvm_get_vcpu_by_id(kvm, id)) {
3957                 r = -EEXIST;
3958                 goto unlock_vcpu_destroy;
3959         }
3960
3961         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3962         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3963         BUG_ON(r == -EBUSY);
3964         if (r)
3965                 goto unlock_vcpu_destroy;
3966
3967         /* Now it's all set up, let userspace reach it */
3968         kvm_get_kvm(kvm);
3969         r = create_vcpu_fd(vcpu);
3970         if (r < 0) {
3971                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3972                 kvm_put_kvm_no_destroy(kvm);
3973                 goto unlock_vcpu_destroy;
3974         }
3975
3976         /*
3977          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3978          * pointer before kvm->online_vcpu's incremented value.
3979          */
3980         smp_wmb();
3981         atomic_inc(&kvm->online_vcpus);
3982
3983         mutex_unlock(&kvm->lock);
3984         kvm_arch_vcpu_postcreate(vcpu);
3985         kvm_create_vcpu_debugfs(vcpu);
3986         return r;
3987
3988 unlock_vcpu_destroy:
3989         mutex_unlock(&kvm->lock);
3990         kvm_dirty_ring_free(&vcpu->dirty_ring);
3991 arch_vcpu_destroy:
3992         kvm_arch_vcpu_destroy(vcpu);
3993 vcpu_free_run_page:
3994         free_page((unsigned long)vcpu->run);
3995 vcpu_free:
3996         kmem_cache_free(kvm_vcpu_cache, vcpu);
3997 vcpu_decrement:
3998         mutex_lock(&kvm->lock);
3999         kvm->created_vcpus--;
4000         mutex_unlock(&kvm->lock);
4001         return r;
4002 }
4003
4004 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4005 {
4006         if (sigset) {
4007                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4008                 vcpu->sigset_active = 1;
4009                 vcpu->sigset = *sigset;
4010         } else
4011                 vcpu->sigset_active = 0;
4012         return 0;
4013 }
4014
4015 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4016                               size_t size, loff_t *offset)
4017 {
4018         struct kvm_vcpu *vcpu = file->private_data;
4019
4020         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4021                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4022                         sizeof(vcpu->stat), user_buffer, size, offset);
4023 }
4024
4025 static const struct file_operations kvm_vcpu_stats_fops = {
4026         .read = kvm_vcpu_stats_read,
4027         .llseek = noop_llseek,
4028 };
4029
4030 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4031 {
4032         int fd;
4033         struct file *file;
4034         char name[15 + ITOA_MAX_LEN + 1];
4035
4036         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4037
4038         fd = get_unused_fd_flags(O_CLOEXEC);
4039         if (fd < 0)
4040                 return fd;
4041
4042         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4043         if (IS_ERR(file)) {
4044                 put_unused_fd(fd);
4045                 return PTR_ERR(file);
4046         }
4047         file->f_mode |= FMODE_PREAD;
4048         fd_install(fd, file);
4049
4050         return fd;
4051 }
4052
4053 static long kvm_vcpu_ioctl(struct file *filp,
4054                            unsigned int ioctl, unsigned long arg)
4055 {
4056         struct kvm_vcpu *vcpu = filp->private_data;
4057         void __user *argp = (void __user *)arg;
4058         int r;
4059         struct kvm_fpu *fpu = NULL;
4060         struct kvm_sregs *kvm_sregs = NULL;
4061
4062         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4063                 return -EIO;
4064
4065         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4066                 return -EINVAL;
4067
4068         /*
4069          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4070          * execution; mutex_lock() would break them.
4071          */
4072         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4073         if (r != -ENOIOCTLCMD)
4074                 return r;
4075
4076         if (mutex_lock_killable(&vcpu->mutex))
4077                 return -EINTR;
4078         switch (ioctl) {
4079         case KVM_RUN: {
4080                 struct pid *oldpid;
4081                 r = -EINVAL;
4082                 if (arg)
4083                         goto out;
4084                 oldpid = rcu_access_pointer(vcpu->pid);
4085                 if (unlikely(oldpid != task_pid(current))) {
4086                         /* The thread running this VCPU changed. */
4087                         struct pid *newpid;
4088
4089                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4090                         if (r)
4091                                 break;
4092
4093                         newpid = get_task_pid(current, PIDTYPE_PID);
4094                         rcu_assign_pointer(vcpu->pid, newpid);
4095                         if (oldpid)
4096                                 synchronize_rcu();
4097                         put_pid(oldpid);
4098                 }
4099                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4100                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4101                 break;
4102         }
4103         case KVM_GET_REGS: {
4104                 struct kvm_regs *kvm_regs;
4105
4106                 r = -ENOMEM;
4107                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4108                 if (!kvm_regs)
4109                         goto out;
4110                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4111                 if (r)
4112                         goto out_free1;
4113                 r = -EFAULT;
4114                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4115                         goto out_free1;
4116                 r = 0;
4117 out_free1:
4118                 kfree(kvm_regs);
4119                 break;
4120         }
4121         case KVM_SET_REGS: {
4122                 struct kvm_regs *kvm_regs;
4123
4124                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4125                 if (IS_ERR(kvm_regs)) {
4126                         r = PTR_ERR(kvm_regs);
4127                         goto out;
4128                 }
4129                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4130                 kfree(kvm_regs);
4131                 break;
4132         }
4133         case KVM_GET_SREGS: {
4134                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4135                                     GFP_KERNEL_ACCOUNT);
4136                 r = -ENOMEM;
4137                 if (!kvm_sregs)
4138                         goto out;
4139                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4140                 if (r)
4141                         goto out;
4142                 r = -EFAULT;
4143                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4144                         goto out;
4145                 r = 0;
4146                 break;
4147         }
4148         case KVM_SET_SREGS: {
4149                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4150                 if (IS_ERR(kvm_sregs)) {
4151                         r = PTR_ERR(kvm_sregs);
4152                         kvm_sregs = NULL;
4153                         goto out;
4154                 }
4155                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4156                 break;
4157         }
4158         case KVM_GET_MP_STATE: {
4159                 struct kvm_mp_state mp_state;
4160
4161                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4162                 if (r)
4163                         goto out;
4164                 r = -EFAULT;
4165                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4166                         goto out;
4167                 r = 0;
4168                 break;
4169         }
4170         case KVM_SET_MP_STATE: {
4171                 struct kvm_mp_state mp_state;
4172
4173                 r = -EFAULT;
4174                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4175                         goto out;
4176                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4177                 break;
4178         }
4179         case KVM_TRANSLATE: {
4180                 struct kvm_translation tr;
4181
4182                 r = -EFAULT;
4183                 if (copy_from_user(&tr, argp, sizeof(tr)))
4184                         goto out;
4185                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4186                 if (r)
4187                         goto out;
4188                 r = -EFAULT;
4189                 if (copy_to_user(argp, &tr, sizeof(tr)))
4190                         goto out;
4191                 r = 0;
4192                 break;
4193         }
4194         case KVM_SET_GUEST_DEBUG: {
4195                 struct kvm_guest_debug dbg;
4196
4197                 r = -EFAULT;
4198                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4199                         goto out;
4200                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4201                 break;
4202         }
4203         case KVM_SET_SIGNAL_MASK: {
4204                 struct kvm_signal_mask __user *sigmask_arg = argp;
4205                 struct kvm_signal_mask kvm_sigmask;
4206                 sigset_t sigset, *p;
4207
4208                 p = NULL;
4209                 if (argp) {
4210                         r = -EFAULT;
4211                         if (copy_from_user(&kvm_sigmask, argp,
4212                                            sizeof(kvm_sigmask)))
4213                                 goto out;
4214                         r = -EINVAL;
4215                         if (kvm_sigmask.len != sizeof(sigset))
4216                                 goto out;
4217                         r = -EFAULT;
4218                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4219                                            sizeof(sigset)))
4220                                 goto out;
4221                         p = &sigset;
4222                 }
4223                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4224                 break;
4225         }
4226         case KVM_GET_FPU: {
4227                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4228                 r = -ENOMEM;
4229                 if (!fpu)
4230                         goto out;
4231                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4232                 if (r)
4233                         goto out;
4234                 r = -EFAULT;
4235                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4236                         goto out;
4237                 r = 0;
4238                 break;
4239         }
4240         case KVM_SET_FPU: {
4241                 fpu = memdup_user(argp, sizeof(*fpu));
4242                 if (IS_ERR(fpu)) {
4243                         r = PTR_ERR(fpu);
4244                         fpu = NULL;
4245                         goto out;
4246                 }
4247                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4248                 break;
4249         }
4250         case KVM_GET_STATS_FD: {
4251                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4252                 break;
4253         }
4254         default:
4255                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4256         }
4257 out:
4258         mutex_unlock(&vcpu->mutex);
4259         kfree(fpu);
4260         kfree(kvm_sregs);
4261         return r;
4262 }
4263
4264 #ifdef CONFIG_KVM_COMPAT
4265 static long kvm_vcpu_compat_ioctl(struct file *filp,
4266                                   unsigned int ioctl, unsigned long arg)
4267 {
4268         struct kvm_vcpu *vcpu = filp->private_data;
4269         void __user *argp = compat_ptr(arg);
4270         int r;
4271
4272         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4273                 return -EIO;
4274
4275         switch (ioctl) {
4276         case KVM_SET_SIGNAL_MASK: {
4277                 struct kvm_signal_mask __user *sigmask_arg = argp;
4278                 struct kvm_signal_mask kvm_sigmask;
4279                 sigset_t sigset;
4280
4281                 if (argp) {
4282                         r = -EFAULT;
4283                         if (copy_from_user(&kvm_sigmask, argp,
4284                                            sizeof(kvm_sigmask)))
4285                                 goto out;
4286                         r = -EINVAL;
4287                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4288                                 goto out;
4289                         r = -EFAULT;
4290                         if (get_compat_sigset(&sigset,
4291                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4292                                 goto out;
4293                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4294                 } else
4295                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4296                 break;
4297         }
4298         default:
4299                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4300         }
4301
4302 out:
4303         return r;
4304 }
4305 #endif
4306
4307 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4308 {
4309         struct kvm_device *dev = filp->private_data;
4310
4311         if (dev->ops->mmap)
4312                 return dev->ops->mmap(dev, vma);
4313
4314         return -ENODEV;
4315 }
4316
4317 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4318                                  int (*accessor)(struct kvm_device *dev,
4319                                                  struct kvm_device_attr *attr),
4320                                  unsigned long arg)
4321 {
4322         struct kvm_device_attr attr;
4323
4324         if (!accessor)
4325                 return -EPERM;
4326
4327         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4328                 return -EFAULT;
4329
4330         return accessor(dev, &attr);
4331 }
4332
4333 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4334                              unsigned long arg)
4335 {
4336         struct kvm_device *dev = filp->private_data;
4337
4338         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4339                 return -EIO;
4340
4341         switch (ioctl) {
4342         case KVM_SET_DEVICE_ATTR:
4343                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4344         case KVM_GET_DEVICE_ATTR:
4345                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4346         case KVM_HAS_DEVICE_ATTR:
4347                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4348         default:
4349                 if (dev->ops->ioctl)
4350                         return dev->ops->ioctl(dev, ioctl, arg);
4351
4352                 return -ENOTTY;
4353         }
4354 }
4355
4356 static int kvm_device_release(struct inode *inode, struct file *filp)
4357 {
4358         struct kvm_device *dev = filp->private_data;
4359         struct kvm *kvm = dev->kvm;
4360
4361         if (dev->ops->release) {
4362                 mutex_lock(&kvm->lock);
4363                 list_del(&dev->vm_node);
4364                 dev->ops->release(dev);
4365                 mutex_unlock(&kvm->lock);
4366         }
4367
4368         kvm_put_kvm(kvm);
4369         return 0;
4370 }
4371
4372 static const struct file_operations kvm_device_fops = {
4373         .unlocked_ioctl = kvm_device_ioctl,
4374         .release = kvm_device_release,
4375         KVM_COMPAT(kvm_device_ioctl),
4376         .mmap = kvm_device_mmap,
4377 };
4378
4379 struct kvm_device *kvm_device_from_filp(struct file *filp)
4380 {
4381         if (filp->f_op != &kvm_device_fops)
4382                 return NULL;
4383
4384         return filp->private_data;
4385 }
4386
4387 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4388 #ifdef CONFIG_KVM_MPIC
4389         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4390         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4391 #endif
4392 };
4393
4394 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4395 {
4396         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4397                 return -ENOSPC;
4398
4399         if (kvm_device_ops_table[type] != NULL)
4400                 return -EEXIST;
4401
4402         kvm_device_ops_table[type] = ops;
4403         return 0;
4404 }
4405
4406 void kvm_unregister_device_ops(u32 type)
4407 {
4408         if (kvm_device_ops_table[type] != NULL)
4409                 kvm_device_ops_table[type] = NULL;
4410 }
4411
4412 static int kvm_ioctl_create_device(struct kvm *kvm,
4413                                    struct kvm_create_device *cd)
4414 {
4415         const struct kvm_device_ops *ops;
4416         struct kvm_device *dev;
4417         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4418         int type;
4419         int ret;
4420
4421         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4422                 return -ENODEV;
4423
4424         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4425         ops = kvm_device_ops_table[type];
4426         if (ops == NULL)
4427                 return -ENODEV;
4428
4429         if (test)
4430                 return 0;
4431
4432         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4433         if (!dev)
4434                 return -ENOMEM;
4435
4436         dev->ops = ops;
4437         dev->kvm = kvm;
4438
4439         mutex_lock(&kvm->lock);
4440         ret = ops->create(dev, type);
4441         if (ret < 0) {
4442                 mutex_unlock(&kvm->lock);
4443                 kfree(dev);
4444                 return ret;
4445         }
4446         list_add(&dev->vm_node, &kvm->devices);
4447         mutex_unlock(&kvm->lock);
4448
4449         if (ops->init)
4450                 ops->init(dev);
4451
4452         kvm_get_kvm(kvm);
4453         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4454         if (ret < 0) {
4455                 kvm_put_kvm_no_destroy(kvm);
4456                 mutex_lock(&kvm->lock);
4457                 list_del(&dev->vm_node);
4458                 if (ops->release)
4459                         ops->release(dev);
4460                 mutex_unlock(&kvm->lock);
4461                 if (ops->destroy)
4462                         ops->destroy(dev);
4463                 return ret;
4464         }
4465
4466         cd->fd = ret;
4467         return 0;
4468 }
4469
4470 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4471 {
4472         switch (arg) {
4473         case KVM_CAP_USER_MEMORY:
4474         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4475         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4476         case KVM_CAP_INTERNAL_ERROR_DATA:
4477 #ifdef CONFIG_HAVE_KVM_MSI
4478         case KVM_CAP_SIGNAL_MSI:
4479 #endif
4480 #ifdef CONFIG_HAVE_KVM_IRQFD
4481         case KVM_CAP_IRQFD:
4482 #endif
4483         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4484         case KVM_CAP_CHECK_EXTENSION_VM:
4485         case KVM_CAP_ENABLE_CAP_VM:
4486         case KVM_CAP_HALT_POLL:
4487                 return 1;
4488 #ifdef CONFIG_KVM_MMIO
4489         case KVM_CAP_COALESCED_MMIO:
4490                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4491         case KVM_CAP_COALESCED_PIO:
4492                 return 1;
4493 #endif
4494 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4495         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4496                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4497 #endif
4498 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4499         case KVM_CAP_IRQ_ROUTING:
4500                 return KVM_MAX_IRQ_ROUTES;
4501 #endif
4502 #if KVM_ADDRESS_SPACE_NUM > 1
4503         case KVM_CAP_MULTI_ADDRESS_SPACE:
4504                 return KVM_ADDRESS_SPACE_NUM;
4505 #endif
4506         case KVM_CAP_NR_MEMSLOTS:
4507                 return KVM_USER_MEM_SLOTS;
4508         case KVM_CAP_DIRTY_LOG_RING:
4509 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4510                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4511 #else
4512                 return 0;
4513 #endif
4514         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4515 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4516                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4517 #else
4518                 return 0;
4519 #endif
4520 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4521         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4522 #endif
4523         case KVM_CAP_BINARY_STATS_FD:
4524         case KVM_CAP_SYSTEM_EVENT_DATA:
4525                 return 1;
4526         default:
4527                 break;
4528         }
4529         return kvm_vm_ioctl_check_extension(kvm, arg);
4530 }
4531
4532 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4533 {
4534         int r;
4535
4536         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4537                 return -EINVAL;
4538
4539         /* the size should be power of 2 */
4540         if (!size || (size & (size - 1)))
4541                 return -EINVAL;
4542
4543         /* Should be bigger to keep the reserved entries, or a page */
4544         if (size < kvm_dirty_ring_get_rsvd_entries() *
4545             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4546                 return -EINVAL;
4547
4548         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4549             sizeof(struct kvm_dirty_gfn))
4550                 return -E2BIG;
4551
4552         /* We only allow it to set once */
4553         if (kvm->dirty_ring_size)
4554                 return -EINVAL;
4555
4556         mutex_lock(&kvm->lock);
4557
4558         if (kvm->created_vcpus) {
4559                 /* We don't allow to change this value after vcpu created */
4560                 r = -EINVAL;
4561         } else {
4562                 kvm->dirty_ring_size = size;
4563                 r = 0;
4564         }
4565
4566         mutex_unlock(&kvm->lock);
4567         return r;
4568 }
4569
4570 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4571 {
4572         unsigned long i;
4573         struct kvm_vcpu *vcpu;
4574         int cleared = 0;
4575
4576         if (!kvm->dirty_ring_size)
4577                 return -EINVAL;
4578
4579         mutex_lock(&kvm->slots_lock);
4580
4581         kvm_for_each_vcpu(i, vcpu, kvm)
4582                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4583
4584         mutex_unlock(&kvm->slots_lock);
4585
4586         if (cleared)
4587                 kvm_flush_remote_tlbs(kvm);
4588
4589         return cleared;
4590 }
4591
4592 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4593                                                   struct kvm_enable_cap *cap)
4594 {
4595         return -EINVAL;
4596 }
4597
4598 static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4599 {
4600         int i;
4601
4602         lockdep_assert_held(&kvm->slots_lock);
4603
4604         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4605                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4606                         return false;
4607         }
4608
4609         return true;
4610 }
4611
4612 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4613                                            struct kvm_enable_cap *cap)
4614 {
4615         switch (cap->cap) {
4616 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4617         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4618                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4619
4620                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4621                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4622
4623                 if (cap->flags || (cap->args[0] & ~allowed_options))
4624                         return -EINVAL;
4625                 kvm->manual_dirty_log_protect = cap->args[0];
4626                 return 0;
4627         }
4628 #endif
4629         case KVM_CAP_HALT_POLL: {
4630                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4631                         return -EINVAL;
4632
4633                 kvm->max_halt_poll_ns = cap->args[0];
4634
4635                 /*
4636                  * Ensure kvm->override_halt_poll_ns does not become visible
4637                  * before kvm->max_halt_poll_ns.
4638                  *
4639                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4640                  */
4641                 smp_wmb();
4642                 kvm->override_halt_poll_ns = true;
4643
4644                 return 0;
4645         }
4646         case KVM_CAP_DIRTY_LOG_RING:
4647         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4648                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4649                         return -EINVAL;
4650
4651                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4652         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4653                 int r = -EINVAL;
4654
4655                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4656                     !kvm->dirty_ring_size || cap->flags)
4657                         return r;
4658
4659                 mutex_lock(&kvm->slots_lock);
4660
4661                 /*
4662                  * For simplicity, allow enabling ring+bitmap if and only if
4663                  * there are no memslots, e.g. to ensure all memslots allocate
4664                  * a bitmap after the capability is enabled.
4665                  */
4666                 if (kvm_are_all_memslots_empty(kvm)) {
4667                         kvm->dirty_ring_with_bitmap = true;
4668                         r = 0;
4669                 }
4670
4671                 mutex_unlock(&kvm->slots_lock);
4672
4673                 return r;
4674         }
4675         default:
4676                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4677         }
4678 }
4679
4680 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4681                               size_t size, loff_t *offset)
4682 {
4683         struct kvm *kvm = file->private_data;
4684
4685         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4686                                 &kvm_vm_stats_desc[0], &kvm->stat,
4687                                 sizeof(kvm->stat), user_buffer, size, offset);
4688 }
4689
4690 static const struct file_operations kvm_vm_stats_fops = {
4691         .read = kvm_vm_stats_read,
4692         .llseek = noop_llseek,
4693 };
4694
4695 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4696 {
4697         int fd;
4698         struct file *file;
4699
4700         fd = get_unused_fd_flags(O_CLOEXEC);
4701         if (fd < 0)
4702                 return fd;
4703
4704         file = anon_inode_getfile("kvm-vm-stats",
4705                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4706         if (IS_ERR(file)) {
4707                 put_unused_fd(fd);
4708                 return PTR_ERR(file);
4709         }
4710         file->f_mode |= FMODE_PREAD;
4711         fd_install(fd, file);
4712
4713         return fd;
4714 }
4715
4716 static long kvm_vm_ioctl(struct file *filp,
4717                            unsigned int ioctl, unsigned long arg)
4718 {
4719         struct kvm *kvm = filp->private_data;
4720         void __user *argp = (void __user *)arg;
4721         int r;
4722
4723         if (kvm->mm != current->mm || kvm->vm_dead)
4724                 return -EIO;
4725         switch (ioctl) {
4726         case KVM_CREATE_VCPU:
4727                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4728                 break;
4729         case KVM_ENABLE_CAP: {
4730                 struct kvm_enable_cap cap;
4731
4732                 r = -EFAULT;
4733                 if (copy_from_user(&cap, argp, sizeof(cap)))
4734                         goto out;
4735                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4736                 break;
4737         }
4738         case KVM_SET_USER_MEMORY_REGION: {
4739                 struct kvm_userspace_memory_region kvm_userspace_mem;
4740
4741                 r = -EFAULT;
4742                 if (copy_from_user(&kvm_userspace_mem, argp,
4743                                                 sizeof(kvm_userspace_mem)))
4744                         goto out;
4745
4746                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4747                 break;
4748         }
4749         case KVM_GET_DIRTY_LOG: {
4750                 struct kvm_dirty_log log;
4751
4752                 r = -EFAULT;
4753                 if (copy_from_user(&log, argp, sizeof(log)))
4754                         goto out;
4755                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4756                 break;
4757         }
4758 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4759         case KVM_CLEAR_DIRTY_LOG: {
4760                 struct kvm_clear_dirty_log log;
4761
4762                 r = -EFAULT;
4763                 if (copy_from_user(&log, argp, sizeof(log)))
4764                         goto out;
4765                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4766                 break;
4767         }
4768 #endif
4769 #ifdef CONFIG_KVM_MMIO
4770         case KVM_REGISTER_COALESCED_MMIO: {
4771                 struct kvm_coalesced_mmio_zone zone;
4772
4773                 r = -EFAULT;
4774                 if (copy_from_user(&zone, argp, sizeof(zone)))
4775                         goto out;
4776                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4777                 break;
4778         }
4779         case KVM_UNREGISTER_COALESCED_MMIO: {
4780                 struct kvm_coalesced_mmio_zone zone;
4781
4782                 r = -EFAULT;
4783                 if (copy_from_user(&zone, argp, sizeof(zone)))
4784                         goto out;
4785                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4786                 break;
4787         }
4788 #endif
4789         case KVM_IRQFD: {
4790                 struct kvm_irqfd data;
4791
4792                 r = -EFAULT;
4793                 if (copy_from_user(&data, argp, sizeof(data)))
4794                         goto out;
4795                 r = kvm_irqfd(kvm, &data);
4796                 break;
4797         }
4798         case KVM_IOEVENTFD: {
4799                 struct kvm_ioeventfd data;
4800
4801                 r = -EFAULT;
4802                 if (copy_from_user(&data, argp, sizeof(data)))
4803                         goto out;
4804                 r = kvm_ioeventfd(kvm, &data);
4805                 break;
4806         }
4807 #ifdef CONFIG_HAVE_KVM_MSI
4808         case KVM_SIGNAL_MSI: {
4809                 struct kvm_msi msi;
4810
4811                 r = -EFAULT;
4812                 if (copy_from_user(&msi, argp, sizeof(msi)))
4813                         goto out;
4814                 r = kvm_send_userspace_msi(kvm, &msi);
4815                 break;
4816         }
4817 #endif
4818 #ifdef __KVM_HAVE_IRQ_LINE
4819         case KVM_IRQ_LINE_STATUS:
4820         case KVM_IRQ_LINE: {
4821                 struct kvm_irq_level irq_event;
4822
4823                 r = -EFAULT;
4824                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4825                         goto out;
4826
4827                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4828                                         ioctl == KVM_IRQ_LINE_STATUS);
4829                 if (r)
4830                         goto out;
4831
4832                 r = -EFAULT;
4833                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4834                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4835                                 goto out;
4836                 }
4837
4838                 r = 0;
4839                 break;
4840         }
4841 #endif
4842 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4843         case KVM_SET_GSI_ROUTING: {
4844                 struct kvm_irq_routing routing;
4845                 struct kvm_irq_routing __user *urouting;
4846                 struct kvm_irq_routing_entry *entries = NULL;
4847
4848                 r = -EFAULT;
4849                 if (copy_from_user(&routing, argp, sizeof(routing)))
4850                         goto out;
4851                 r = -EINVAL;
4852                 if (!kvm_arch_can_set_irq_routing(kvm))
4853                         goto out;
4854                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4855                         goto out;
4856                 if (routing.flags)
4857                         goto out;
4858                 if (routing.nr) {
4859                         urouting = argp;
4860                         entries = vmemdup_user(urouting->entries,
4861                                                array_size(sizeof(*entries),
4862                                                           routing.nr));
4863                         if (IS_ERR(entries)) {
4864                                 r = PTR_ERR(entries);
4865                                 goto out;
4866                         }
4867                 }
4868                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4869                                         routing.flags);
4870                 kvfree(entries);
4871                 break;
4872         }
4873 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4874         case KVM_CREATE_DEVICE: {
4875                 struct kvm_create_device cd;
4876
4877                 r = -EFAULT;
4878                 if (copy_from_user(&cd, argp, sizeof(cd)))
4879                         goto out;
4880
4881                 r = kvm_ioctl_create_device(kvm, &cd);
4882                 if (r)
4883                         goto out;
4884
4885                 r = -EFAULT;
4886                 if (copy_to_user(argp, &cd, sizeof(cd)))
4887                         goto out;
4888
4889                 r = 0;
4890                 break;
4891         }
4892         case KVM_CHECK_EXTENSION:
4893                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4894                 break;
4895         case KVM_RESET_DIRTY_RINGS:
4896                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4897                 break;
4898         case KVM_GET_STATS_FD:
4899                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4900                 break;
4901         default:
4902                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4903         }
4904 out:
4905         return r;
4906 }
4907
4908 #ifdef CONFIG_KVM_COMPAT
4909 struct compat_kvm_dirty_log {
4910         __u32 slot;
4911         __u32 padding1;
4912         union {
4913                 compat_uptr_t dirty_bitmap; /* one bit per page */
4914                 __u64 padding2;
4915         };
4916 };
4917
4918 struct compat_kvm_clear_dirty_log {
4919         __u32 slot;
4920         __u32 num_pages;
4921         __u64 first_page;
4922         union {
4923                 compat_uptr_t dirty_bitmap; /* one bit per page */
4924                 __u64 padding2;
4925         };
4926 };
4927
4928 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4929                                      unsigned long arg)
4930 {
4931         return -ENOTTY;
4932 }
4933
4934 static long kvm_vm_compat_ioctl(struct file *filp,
4935                            unsigned int ioctl, unsigned long arg)
4936 {
4937         struct kvm *kvm = filp->private_data;
4938         int r;
4939
4940         if (kvm->mm != current->mm || kvm->vm_dead)
4941                 return -EIO;
4942
4943         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4944         if (r != -ENOTTY)
4945                 return r;
4946
4947         switch (ioctl) {
4948 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4949         case KVM_CLEAR_DIRTY_LOG: {
4950                 struct compat_kvm_clear_dirty_log compat_log;
4951                 struct kvm_clear_dirty_log log;
4952
4953                 if (copy_from_user(&compat_log, (void __user *)arg,
4954                                    sizeof(compat_log)))
4955                         return -EFAULT;
4956                 log.slot         = compat_log.slot;
4957                 log.num_pages    = compat_log.num_pages;
4958                 log.first_page   = compat_log.first_page;
4959                 log.padding2     = compat_log.padding2;
4960                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4961
4962                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4963                 break;
4964         }
4965 #endif
4966         case KVM_GET_DIRTY_LOG: {
4967                 struct compat_kvm_dirty_log compat_log;
4968                 struct kvm_dirty_log log;
4969
4970                 if (copy_from_user(&compat_log, (void __user *)arg,
4971                                    sizeof(compat_log)))
4972                         return -EFAULT;
4973                 log.slot         = compat_log.slot;
4974                 log.padding1     = compat_log.padding1;
4975                 log.padding2     = compat_log.padding2;
4976                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4977
4978                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4979                 break;
4980         }
4981         default:
4982                 r = kvm_vm_ioctl(filp, ioctl, arg);
4983         }
4984         return r;
4985 }
4986 #endif
4987
4988 static const struct file_operations kvm_vm_fops = {
4989         .release        = kvm_vm_release,
4990         .unlocked_ioctl = kvm_vm_ioctl,
4991         .llseek         = noop_llseek,
4992         KVM_COMPAT(kvm_vm_compat_ioctl),
4993 };
4994
4995 bool file_is_kvm(struct file *file)
4996 {
4997         return file && file->f_op == &kvm_vm_fops;
4998 }
4999 EXPORT_SYMBOL_GPL(file_is_kvm);
5000
5001 static int kvm_dev_ioctl_create_vm(unsigned long type)
5002 {
5003         char fdname[ITOA_MAX_LEN + 1];
5004         int r, fd;
5005         struct kvm *kvm;
5006         struct file *file;
5007
5008         fd = get_unused_fd_flags(O_CLOEXEC);
5009         if (fd < 0)
5010                 return fd;
5011
5012         snprintf(fdname, sizeof(fdname), "%d", fd);
5013
5014         kvm = kvm_create_vm(type, fdname);
5015         if (IS_ERR(kvm)) {
5016                 r = PTR_ERR(kvm);
5017                 goto put_fd;
5018         }
5019
5020         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5021         if (IS_ERR(file)) {
5022                 r = PTR_ERR(file);
5023                 goto put_kvm;
5024         }
5025
5026         /*
5027          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5028          * already set, with ->release() being kvm_vm_release().  In error
5029          * cases it will be called by the final fput(file) and will take
5030          * care of doing kvm_put_kvm(kvm).
5031          */
5032         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5033
5034         fd_install(fd, file);
5035         return fd;
5036
5037 put_kvm:
5038         kvm_put_kvm(kvm);
5039 put_fd:
5040         put_unused_fd(fd);
5041         return r;
5042 }
5043
5044 static long kvm_dev_ioctl(struct file *filp,
5045                           unsigned int ioctl, unsigned long arg)
5046 {
5047         long r = -EINVAL;
5048
5049         switch (ioctl) {
5050         case KVM_GET_API_VERSION:
5051                 if (arg)
5052                         goto out;
5053                 r = KVM_API_VERSION;
5054                 break;
5055         case KVM_CREATE_VM:
5056                 r = kvm_dev_ioctl_create_vm(arg);
5057                 break;
5058         case KVM_CHECK_EXTENSION:
5059                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5060                 break;
5061         case KVM_GET_VCPU_MMAP_SIZE:
5062                 if (arg)
5063                         goto out;
5064                 r = PAGE_SIZE;     /* struct kvm_run */
5065 #ifdef CONFIG_X86
5066                 r += PAGE_SIZE;    /* pio data page */
5067 #endif
5068 #ifdef CONFIG_KVM_MMIO
5069                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5070 #endif
5071                 break;
5072         case KVM_TRACE_ENABLE:
5073         case KVM_TRACE_PAUSE:
5074         case KVM_TRACE_DISABLE:
5075                 r = -EOPNOTSUPP;
5076                 break;
5077         default:
5078                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5079         }
5080 out:
5081         return r;
5082 }
5083
5084 static struct file_operations kvm_chardev_ops = {
5085         .unlocked_ioctl = kvm_dev_ioctl,
5086         .llseek         = noop_llseek,
5087         KVM_COMPAT(kvm_dev_ioctl),
5088 };
5089
5090 static struct miscdevice kvm_dev = {
5091         KVM_MINOR,
5092         "kvm",
5093         &kvm_chardev_ops,
5094 };
5095
5096 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5097 __visible bool kvm_rebooting;
5098 EXPORT_SYMBOL_GPL(kvm_rebooting);
5099
5100 static DEFINE_PER_CPU(bool, hardware_enabled);
5101 static int kvm_usage_count;
5102
5103 static int __hardware_enable_nolock(void)
5104 {
5105         if (__this_cpu_read(hardware_enabled))
5106                 return 0;
5107
5108         if (kvm_arch_hardware_enable()) {
5109                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5110                         raw_smp_processor_id());
5111                 return -EIO;
5112         }
5113
5114         __this_cpu_write(hardware_enabled, true);
5115         return 0;
5116 }
5117
5118 static void hardware_enable_nolock(void *failed)
5119 {
5120         if (__hardware_enable_nolock())
5121                 atomic_inc(failed);
5122 }
5123
5124 static int kvm_online_cpu(unsigned int cpu)
5125 {
5126         int ret = 0;
5127
5128         /*
5129          * Abort the CPU online process if hardware virtualization cannot
5130          * be enabled. Otherwise running VMs would encounter unrecoverable
5131          * errors when scheduled to this CPU.
5132          */
5133         mutex_lock(&kvm_lock);
5134         if (kvm_usage_count)
5135                 ret = __hardware_enable_nolock();
5136         mutex_unlock(&kvm_lock);
5137         return ret;
5138 }
5139
5140 static void hardware_disable_nolock(void *junk)
5141 {
5142         /*
5143          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5144          * hardware, not just CPUs that successfully enabled hardware!
5145          */
5146         if (!__this_cpu_read(hardware_enabled))
5147                 return;
5148
5149         kvm_arch_hardware_disable();
5150
5151         __this_cpu_write(hardware_enabled, false);
5152 }
5153
5154 static int kvm_offline_cpu(unsigned int cpu)
5155 {
5156         mutex_lock(&kvm_lock);
5157         if (kvm_usage_count)
5158                 hardware_disable_nolock(NULL);
5159         mutex_unlock(&kvm_lock);
5160         return 0;
5161 }
5162
5163 static void hardware_disable_all_nolock(void)
5164 {
5165         BUG_ON(!kvm_usage_count);
5166
5167         kvm_usage_count--;
5168         if (!kvm_usage_count)
5169                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5170 }
5171
5172 static void hardware_disable_all(void)
5173 {
5174         cpus_read_lock();
5175         mutex_lock(&kvm_lock);
5176         hardware_disable_all_nolock();
5177         mutex_unlock(&kvm_lock);
5178         cpus_read_unlock();
5179 }
5180
5181 static int hardware_enable_all(void)
5182 {
5183         atomic_t failed = ATOMIC_INIT(0);
5184         int r = 0;
5185
5186         /*
5187          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5188          * is called, and so on_each_cpu() between them includes the CPU that
5189          * is being onlined.  As a result, hardware_enable_nolock() may get
5190          * invoked before kvm_online_cpu(), which also enables hardware if the
5191          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5192          * enable hardware multiple times.
5193          */
5194         cpus_read_lock();
5195         mutex_lock(&kvm_lock);
5196
5197         kvm_usage_count++;
5198         if (kvm_usage_count == 1) {
5199                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5200
5201                 if (atomic_read(&failed)) {
5202                         hardware_disable_all_nolock();
5203                         r = -EBUSY;
5204                 }
5205         }
5206
5207         mutex_unlock(&kvm_lock);
5208         cpus_read_unlock();
5209
5210         return r;
5211 }
5212
5213 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5214                       void *v)
5215 {
5216         /*
5217          * Some (well, at least mine) BIOSes hang on reboot if
5218          * in vmx root mode.
5219          *
5220          * And Intel TXT required VMX off for all cpu when system shutdown.
5221          */
5222         pr_info("kvm: exiting hardware virtualization\n");
5223         kvm_rebooting = true;
5224         on_each_cpu(hardware_disable_nolock, NULL, 1);
5225         return NOTIFY_OK;
5226 }
5227
5228 static struct notifier_block kvm_reboot_notifier = {
5229         .notifier_call = kvm_reboot,
5230         .priority = 0,
5231 };
5232
5233 static int kvm_suspend(void)
5234 {
5235         /*
5236          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5237          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5238          * is stable.  Assert that kvm_lock is not held to ensure the system
5239          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5240          * can be preempted, but the task cannot be frozen until it has dropped
5241          * all locks (userspace tasks are frozen via a fake signal).
5242          */
5243         lockdep_assert_not_held(&kvm_lock);
5244         lockdep_assert_irqs_disabled();
5245
5246         if (kvm_usage_count)
5247                 hardware_disable_nolock(NULL);
5248         return 0;
5249 }
5250
5251 static void kvm_resume(void)
5252 {
5253         lockdep_assert_not_held(&kvm_lock);
5254         lockdep_assert_irqs_disabled();
5255
5256         if (kvm_usage_count)
5257                 WARN_ON_ONCE(__hardware_enable_nolock());
5258 }
5259
5260 static struct syscore_ops kvm_syscore_ops = {
5261         .suspend = kvm_suspend,
5262         .resume = kvm_resume,
5263 };
5264 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5265 static int hardware_enable_all(void)
5266 {
5267         return 0;
5268 }
5269
5270 static void hardware_disable_all(void)
5271 {
5272
5273 }
5274 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5275
5276 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5277 {
5278         int i;
5279
5280         for (i = 0; i < bus->dev_count; i++) {
5281                 struct kvm_io_device *pos = bus->range[i].dev;
5282
5283                 kvm_iodevice_destructor(pos);
5284         }
5285         kfree(bus);
5286 }
5287
5288 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5289                                  const struct kvm_io_range *r2)
5290 {
5291         gpa_t addr1 = r1->addr;
5292         gpa_t addr2 = r2->addr;
5293
5294         if (addr1 < addr2)
5295                 return -1;
5296
5297         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5298          * accept any overlapping write.  Any order is acceptable for
5299          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5300          * we process all of them.
5301          */
5302         if (r2->len) {
5303                 addr1 += r1->len;
5304                 addr2 += r2->len;
5305         }
5306
5307         if (addr1 > addr2)
5308                 return 1;
5309
5310         return 0;
5311 }
5312
5313 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5314 {
5315         return kvm_io_bus_cmp(p1, p2);
5316 }
5317
5318 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5319                              gpa_t addr, int len)
5320 {
5321         struct kvm_io_range *range, key;
5322         int off;
5323
5324         key = (struct kvm_io_range) {
5325                 .addr = addr,
5326                 .len = len,
5327         };
5328
5329         range = bsearch(&key, bus->range, bus->dev_count,
5330                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5331         if (range == NULL)
5332                 return -ENOENT;
5333
5334         off = range - bus->range;
5335
5336         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5337                 off--;
5338
5339         return off;
5340 }
5341
5342 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5343                               struct kvm_io_range *range, const void *val)
5344 {
5345         int idx;
5346
5347         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5348         if (idx < 0)
5349                 return -EOPNOTSUPP;
5350
5351         while (idx < bus->dev_count &&
5352                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5353                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5354                                         range->len, val))
5355                         return idx;
5356                 idx++;
5357         }
5358
5359         return -EOPNOTSUPP;
5360 }
5361
5362 /* kvm_io_bus_write - called under kvm->slots_lock */
5363 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5364                      int len, const void *val)
5365 {
5366         struct kvm_io_bus *bus;
5367         struct kvm_io_range range;
5368         int r;
5369
5370         range = (struct kvm_io_range) {
5371                 .addr = addr,
5372                 .len = len,
5373         };
5374
5375         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5376         if (!bus)
5377                 return -ENOMEM;
5378         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5379         return r < 0 ? r : 0;
5380 }
5381 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5382
5383 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5384 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5385                             gpa_t addr, int len, const void *val, long cookie)
5386 {
5387         struct kvm_io_bus *bus;
5388         struct kvm_io_range range;
5389
5390         range = (struct kvm_io_range) {
5391                 .addr = addr,
5392                 .len = len,
5393         };
5394
5395         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5396         if (!bus)
5397                 return -ENOMEM;
5398
5399         /* First try the device referenced by cookie. */
5400         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5401             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5402                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5403                                         val))
5404                         return cookie;
5405
5406         /*
5407          * cookie contained garbage; fall back to search and return the
5408          * correct cookie value.
5409          */
5410         return __kvm_io_bus_write(vcpu, bus, &range, val);
5411 }
5412
5413 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5414                              struct kvm_io_range *range, void *val)
5415 {
5416         int idx;
5417
5418         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5419         if (idx < 0)
5420                 return -EOPNOTSUPP;
5421
5422         while (idx < bus->dev_count &&
5423                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5424                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5425                                        range->len, val))
5426                         return idx;
5427                 idx++;
5428         }
5429
5430         return -EOPNOTSUPP;
5431 }
5432
5433 /* kvm_io_bus_read - called under kvm->slots_lock */
5434 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5435                     int len, void *val)
5436 {
5437         struct kvm_io_bus *bus;
5438         struct kvm_io_range range;
5439         int r;
5440
5441         range = (struct kvm_io_range) {
5442                 .addr = addr,
5443                 .len = len,
5444         };
5445
5446         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5447         if (!bus)
5448                 return -ENOMEM;
5449         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5450         return r < 0 ? r : 0;
5451 }
5452
5453 /* Caller must hold slots_lock. */
5454 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5455                             int len, struct kvm_io_device *dev)
5456 {
5457         int i;
5458         struct kvm_io_bus *new_bus, *bus;
5459         struct kvm_io_range range;
5460
5461         bus = kvm_get_bus(kvm, bus_idx);
5462         if (!bus)
5463                 return -ENOMEM;
5464
5465         /* exclude ioeventfd which is limited by maximum fd */
5466         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5467                 return -ENOSPC;
5468
5469         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5470                           GFP_KERNEL_ACCOUNT);
5471         if (!new_bus)
5472                 return -ENOMEM;
5473
5474         range = (struct kvm_io_range) {
5475                 .addr = addr,
5476                 .len = len,
5477                 .dev = dev,
5478         };
5479
5480         for (i = 0; i < bus->dev_count; i++)
5481                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5482                         break;
5483
5484         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5485         new_bus->dev_count++;
5486         new_bus->range[i] = range;
5487         memcpy(new_bus->range + i + 1, bus->range + i,
5488                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5489         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5490         synchronize_srcu_expedited(&kvm->srcu);
5491         kfree(bus);
5492
5493         return 0;
5494 }
5495
5496 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5497                               struct kvm_io_device *dev)
5498 {
5499         int i, j;
5500         struct kvm_io_bus *new_bus, *bus;
5501
5502         lockdep_assert_held(&kvm->slots_lock);
5503
5504         bus = kvm_get_bus(kvm, bus_idx);
5505         if (!bus)
5506                 return 0;
5507
5508         for (i = 0; i < bus->dev_count; i++) {
5509                 if (bus->range[i].dev == dev) {
5510                         break;
5511                 }
5512         }
5513
5514         if (i == bus->dev_count)
5515                 return 0;
5516
5517         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5518                           GFP_KERNEL_ACCOUNT);
5519         if (new_bus) {
5520                 memcpy(new_bus, bus, struct_size(bus, range, i));
5521                 new_bus->dev_count--;
5522                 memcpy(new_bus->range + i, bus->range + i + 1,
5523                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5524         }
5525
5526         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5527         synchronize_srcu_expedited(&kvm->srcu);
5528
5529         /* Destroy the old bus _after_ installing the (null) bus. */
5530         if (!new_bus) {
5531                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5532                 for (j = 0; j < bus->dev_count; j++) {
5533                         if (j == i)
5534                                 continue;
5535                         kvm_iodevice_destructor(bus->range[j].dev);
5536                 }
5537         }
5538
5539         kfree(bus);
5540         return new_bus ? 0 : -ENOMEM;
5541 }
5542
5543 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5544                                          gpa_t addr)
5545 {
5546         struct kvm_io_bus *bus;
5547         int dev_idx, srcu_idx;
5548         struct kvm_io_device *iodev = NULL;
5549
5550         srcu_idx = srcu_read_lock(&kvm->srcu);
5551
5552         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5553         if (!bus)
5554                 goto out_unlock;
5555
5556         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5557         if (dev_idx < 0)
5558                 goto out_unlock;
5559
5560         iodev = bus->range[dev_idx].dev;
5561
5562 out_unlock:
5563         srcu_read_unlock(&kvm->srcu, srcu_idx);
5564
5565         return iodev;
5566 }
5567 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5568
5569 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5570                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5571                            const char *fmt)
5572 {
5573         int ret;
5574         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5575                                           inode->i_private;
5576
5577         /*
5578          * The debugfs files are a reference to the kvm struct which
5579         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5580         * avoids the race between open and the removal of the debugfs directory.
5581          */
5582         if (!kvm_get_kvm_safe(stat_data->kvm))
5583                 return -ENOENT;
5584
5585         ret = simple_attr_open(inode, file, get,
5586                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
5587                                ? set : NULL, fmt);
5588         if (ret)
5589                 kvm_put_kvm(stat_data->kvm);
5590
5591         return ret;
5592 }
5593
5594 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5595 {
5596         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5597                                           inode->i_private;
5598
5599         simple_attr_release(inode, file);
5600         kvm_put_kvm(stat_data->kvm);
5601
5602         return 0;
5603 }
5604
5605 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5606 {
5607         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5608
5609         return 0;
5610 }
5611
5612 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5613 {
5614         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5615
5616         return 0;
5617 }
5618
5619 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5620 {
5621         unsigned long i;
5622         struct kvm_vcpu *vcpu;
5623
5624         *val = 0;
5625
5626         kvm_for_each_vcpu(i, vcpu, kvm)
5627                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5628
5629         return 0;
5630 }
5631
5632 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5633 {
5634         unsigned long i;
5635         struct kvm_vcpu *vcpu;
5636
5637         kvm_for_each_vcpu(i, vcpu, kvm)
5638                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5639
5640         return 0;
5641 }
5642
5643 static int kvm_stat_data_get(void *data, u64 *val)
5644 {
5645         int r = -EFAULT;
5646         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5647
5648         switch (stat_data->kind) {
5649         case KVM_STAT_VM:
5650                 r = kvm_get_stat_per_vm(stat_data->kvm,
5651                                         stat_data->desc->desc.offset, val);
5652                 break;
5653         case KVM_STAT_VCPU:
5654                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5655                                           stat_data->desc->desc.offset, val);
5656                 break;
5657         }
5658
5659         return r;
5660 }
5661
5662 static int kvm_stat_data_clear(void *data, u64 val)
5663 {
5664         int r = -EFAULT;
5665         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5666
5667         if (val)
5668                 return -EINVAL;
5669
5670         switch (stat_data->kind) {
5671         case KVM_STAT_VM:
5672                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5673                                           stat_data->desc->desc.offset);
5674                 break;
5675         case KVM_STAT_VCPU:
5676                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5677                                             stat_data->desc->desc.offset);
5678                 break;
5679         }
5680
5681         return r;
5682 }
5683
5684 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5685 {
5686         __simple_attr_check_format("%llu\n", 0ull);
5687         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5688                                 kvm_stat_data_clear, "%llu\n");
5689 }
5690
5691 static const struct file_operations stat_fops_per_vm = {
5692         .owner = THIS_MODULE,
5693         .open = kvm_stat_data_open,
5694         .release = kvm_debugfs_release,
5695         .read = simple_attr_read,
5696         .write = simple_attr_write,
5697         .llseek = no_llseek,
5698 };
5699
5700 static int vm_stat_get(void *_offset, u64 *val)
5701 {
5702         unsigned offset = (long)_offset;
5703         struct kvm *kvm;
5704         u64 tmp_val;
5705
5706         *val = 0;
5707         mutex_lock(&kvm_lock);
5708         list_for_each_entry(kvm, &vm_list, vm_list) {
5709                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5710                 *val += tmp_val;
5711         }
5712         mutex_unlock(&kvm_lock);
5713         return 0;
5714 }
5715
5716 static int vm_stat_clear(void *_offset, u64 val)
5717 {
5718         unsigned offset = (long)_offset;
5719         struct kvm *kvm;
5720
5721         if (val)
5722                 return -EINVAL;
5723
5724         mutex_lock(&kvm_lock);
5725         list_for_each_entry(kvm, &vm_list, vm_list) {
5726                 kvm_clear_stat_per_vm(kvm, offset);
5727         }
5728         mutex_unlock(&kvm_lock);
5729
5730         return 0;
5731 }
5732
5733 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5734 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5735
5736 static int vcpu_stat_get(void *_offset, u64 *val)
5737 {
5738         unsigned offset = (long)_offset;
5739         struct kvm *kvm;
5740         u64 tmp_val;
5741
5742         *val = 0;
5743         mutex_lock(&kvm_lock);
5744         list_for_each_entry(kvm, &vm_list, vm_list) {
5745                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5746                 *val += tmp_val;
5747         }
5748         mutex_unlock(&kvm_lock);
5749         return 0;
5750 }
5751
5752 static int vcpu_stat_clear(void *_offset, u64 val)
5753 {
5754         unsigned offset = (long)_offset;
5755         struct kvm *kvm;
5756
5757         if (val)
5758                 return -EINVAL;
5759
5760         mutex_lock(&kvm_lock);
5761         list_for_each_entry(kvm, &vm_list, vm_list) {
5762                 kvm_clear_stat_per_vcpu(kvm, offset);
5763         }
5764         mutex_unlock(&kvm_lock);
5765
5766         return 0;
5767 }
5768
5769 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5770                         "%llu\n");
5771 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5772
5773 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5774 {
5775         struct kobj_uevent_env *env;
5776         unsigned long long created, active;
5777
5778         if (!kvm_dev.this_device || !kvm)
5779                 return;
5780
5781         mutex_lock(&kvm_lock);
5782         if (type == KVM_EVENT_CREATE_VM) {
5783                 kvm_createvm_count++;
5784                 kvm_active_vms++;
5785         } else if (type == KVM_EVENT_DESTROY_VM) {
5786                 kvm_active_vms--;
5787         }
5788         created = kvm_createvm_count;
5789         active = kvm_active_vms;
5790         mutex_unlock(&kvm_lock);
5791
5792         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5793         if (!env)
5794                 return;
5795
5796         add_uevent_var(env, "CREATED=%llu", created);
5797         add_uevent_var(env, "COUNT=%llu", active);
5798
5799         if (type == KVM_EVENT_CREATE_VM) {
5800                 add_uevent_var(env, "EVENT=create");
5801                 kvm->userspace_pid = task_pid_nr(current);
5802         } else if (type == KVM_EVENT_DESTROY_VM) {
5803                 add_uevent_var(env, "EVENT=destroy");
5804         }
5805         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5806
5807         if (!IS_ERR(kvm->debugfs_dentry)) {
5808                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5809
5810                 if (p) {
5811                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5812                         if (!IS_ERR(tmp))
5813                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5814                         kfree(p);
5815                 }
5816         }
5817         /* no need for checks, since we are adding at most only 5 keys */
5818         env->envp[env->envp_idx++] = NULL;
5819         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5820         kfree(env);
5821 }
5822
5823 static void kvm_init_debug(void)
5824 {
5825         const struct file_operations *fops;
5826         const struct _kvm_stats_desc *pdesc;
5827         int i;
5828
5829         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5830
5831         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5832                 pdesc = &kvm_vm_stats_desc[i];
5833                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5834                         fops = &vm_stat_fops;
5835                 else
5836                         fops = &vm_stat_readonly_fops;
5837                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5838                                 kvm_debugfs_dir,
5839                                 (void *)(long)pdesc->desc.offset, fops);
5840         }
5841
5842         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5843                 pdesc = &kvm_vcpu_stats_desc[i];
5844                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5845                         fops = &vcpu_stat_fops;
5846                 else
5847                         fops = &vcpu_stat_readonly_fops;
5848                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5849                                 kvm_debugfs_dir,
5850                                 (void *)(long)pdesc->desc.offset, fops);
5851         }
5852 }
5853
5854 static inline
5855 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5856 {
5857         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5858 }
5859
5860 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5861 {
5862         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5863
5864         WRITE_ONCE(vcpu->preempted, false);
5865         WRITE_ONCE(vcpu->ready, false);
5866
5867         __this_cpu_write(kvm_running_vcpu, vcpu);
5868         kvm_arch_sched_in(vcpu, cpu);
5869         kvm_arch_vcpu_load(vcpu, cpu);
5870 }
5871
5872 static void kvm_sched_out(struct preempt_notifier *pn,
5873                           struct task_struct *next)
5874 {
5875         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5876
5877         if (current->on_rq) {
5878                 WRITE_ONCE(vcpu->preempted, true);
5879                 WRITE_ONCE(vcpu->ready, true);
5880         }
5881         kvm_arch_vcpu_put(vcpu);
5882         __this_cpu_write(kvm_running_vcpu, NULL);
5883 }
5884
5885 /**
5886  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5887  *
5888  * We can disable preemption locally around accessing the per-CPU variable,
5889  * and use the resolved vcpu pointer after enabling preemption again,
5890  * because even if the current thread is migrated to another CPU, reading
5891  * the per-CPU value later will give us the same value as we update the
5892  * per-CPU variable in the preempt notifier handlers.
5893  */
5894 struct kvm_vcpu *kvm_get_running_vcpu(void)
5895 {
5896         struct kvm_vcpu *vcpu;
5897
5898         preempt_disable();
5899         vcpu = __this_cpu_read(kvm_running_vcpu);
5900         preempt_enable();
5901
5902         return vcpu;
5903 }
5904 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5905
5906 /**
5907  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5908  */
5909 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5910 {
5911         return &kvm_running_vcpu;
5912 }
5913
5914 #ifdef CONFIG_GUEST_PERF_EVENTS
5915 static unsigned int kvm_guest_state(void)
5916 {
5917         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5918         unsigned int state;
5919
5920         if (!kvm_arch_pmi_in_guest(vcpu))
5921                 return 0;
5922
5923         state = PERF_GUEST_ACTIVE;
5924         if (!kvm_arch_vcpu_in_kernel(vcpu))
5925                 state |= PERF_GUEST_USER;
5926
5927         return state;
5928 }
5929
5930 static unsigned long kvm_guest_get_ip(void)
5931 {
5932         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5933
5934         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5935         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5936                 return 0;
5937
5938         return kvm_arch_vcpu_get_ip(vcpu);
5939 }
5940
5941 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5942         .state                  = kvm_guest_state,
5943         .get_ip                 = kvm_guest_get_ip,
5944         .handle_intel_pt_intr   = NULL,
5945 };
5946
5947 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5948 {
5949         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5950         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5951 }
5952 void kvm_unregister_perf_callbacks(void)
5953 {
5954         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5955 }
5956 #endif
5957
5958 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
5959 {
5960         int r;
5961         int cpu;
5962
5963 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5964         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5965                                       kvm_online_cpu, kvm_offline_cpu);
5966         if (r)
5967                 return r;
5968
5969         register_reboot_notifier(&kvm_reboot_notifier);
5970         register_syscore_ops(&kvm_syscore_ops);
5971 #endif
5972
5973         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5974         if (!vcpu_align)
5975                 vcpu_align = __alignof__(struct kvm_vcpu);
5976         kvm_vcpu_cache =
5977                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5978                                            SLAB_ACCOUNT,
5979                                            offsetof(struct kvm_vcpu, arch),
5980                                            offsetofend(struct kvm_vcpu, stats_id)
5981                                            - offsetof(struct kvm_vcpu, arch),
5982                                            NULL);
5983         if (!kvm_vcpu_cache) {
5984                 r = -ENOMEM;
5985                 goto err_vcpu_cache;
5986         }
5987
5988         for_each_possible_cpu(cpu) {
5989                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5990                                             GFP_KERNEL, cpu_to_node(cpu))) {
5991                         r = -ENOMEM;
5992                         goto err_cpu_kick_mask;
5993                 }
5994         }
5995
5996         r = kvm_irqfd_init();
5997         if (r)
5998                 goto err_irqfd;
5999
6000         r = kvm_async_pf_init();
6001         if (r)
6002                 goto err_async_pf;
6003
6004         kvm_chardev_ops.owner = module;
6005
6006         kvm_preempt_ops.sched_in = kvm_sched_in;
6007         kvm_preempt_ops.sched_out = kvm_sched_out;
6008
6009         kvm_init_debug();
6010
6011         r = kvm_vfio_ops_init();
6012         if (WARN_ON_ONCE(r))
6013                 goto err_vfio;
6014
6015         /*
6016          * Registration _must_ be the very last thing done, as this exposes
6017          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6018          */
6019         r = misc_register(&kvm_dev);
6020         if (r) {
6021                 pr_err("kvm: misc device register failed\n");
6022                 goto err_register;
6023         }
6024
6025         return 0;
6026
6027 err_register:
6028         kvm_vfio_ops_exit();
6029 err_vfio:
6030         kvm_async_pf_deinit();
6031 err_async_pf:
6032         kvm_irqfd_exit();
6033 err_irqfd:
6034 err_cpu_kick_mask:
6035         for_each_possible_cpu(cpu)
6036                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6037         kmem_cache_destroy(kvm_vcpu_cache);
6038 err_vcpu_cache:
6039 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6040         unregister_syscore_ops(&kvm_syscore_ops);
6041         unregister_reboot_notifier(&kvm_reboot_notifier);
6042         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6043 #endif
6044         return r;
6045 }
6046 EXPORT_SYMBOL_GPL(kvm_init);
6047
6048 void kvm_exit(void)
6049 {
6050         int cpu;
6051
6052         /*
6053          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6054          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6055          * to KVM while the module is being stopped.
6056          */
6057         misc_deregister(&kvm_dev);
6058
6059         debugfs_remove_recursive(kvm_debugfs_dir);
6060         for_each_possible_cpu(cpu)
6061                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6062         kmem_cache_destroy(kvm_vcpu_cache);
6063         kvm_vfio_ops_exit();
6064         kvm_async_pf_deinit();
6065 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6066         unregister_syscore_ops(&kvm_syscore_ops);
6067         unregister_reboot_notifier(&kvm_reboot_notifier);
6068         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6069 #endif
6070         kvm_irqfd_exit();
6071 }
6072 EXPORT_SYMBOL_GPL(kvm_exit);
6073
6074 struct kvm_vm_worker_thread_context {
6075         struct kvm *kvm;
6076         struct task_struct *parent;
6077         struct completion init_done;
6078         kvm_vm_thread_fn_t thread_fn;
6079         uintptr_t data;
6080         int err;
6081 };
6082
6083 static int kvm_vm_worker_thread(void *context)
6084 {
6085         /*
6086          * The init_context is allocated on the stack of the parent thread, so
6087          * we have to locally copy anything that is needed beyond initialization
6088          */
6089         struct kvm_vm_worker_thread_context *init_context = context;
6090         struct task_struct *parent;
6091         struct kvm *kvm = init_context->kvm;
6092         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6093         uintptr_t data = init_context->data;
6094         int err;
6095
6096         err = kthread_park(current);
6097         /* kthread_park(current) is never supposed to return an error */
6098         WARN_ON(err != 0);
6099         if (err)
6100                 goto init_complete;
6101
6102         err = cgroup_attach_task_all(init_context->parent, current);
6103         if (err) {
6104                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6105                         __func__, err);
6106                 goto init_complete;
6107         }
6108
6109         set_user_nice(current, task_nice(init_context->parent));
6110
6111 init_complete:
6112         init_context->err = err;
6113         complete(&init_context->init_done);
6114         init_context = NULL;
6115
6116         if (err)
6117                 goto out;
6118
6119         /* Wait to be woken up by the spawner before proceeding. */
6120         kthread_parkme();
6121
6122         if (!kthread_should_stop())
6123                 err = thread_fn(kvm, data);
6124
6125 out:
6126         /*
6127          * Move kthread back to its original cgroup to prevent it lingering in
6128          * the cgroup of the VM process, after the latter finishes its
6129          * execution.
6130          *
6131          * kthread_stop() waits on the 'exited' completion condition which is
6132          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6133          * kthread is removed from the cgroup in the cgroup_exit() which is
6134          * called after the exit_mm(). This causes the kthread_stop() to return
6135          * before the kthread actually quits the cgroup.
6136          */
6137         rcu_read_lock();
6138         parent = rcu_dereference(current->real_parent);
6139         get_task_struct(parent);
6140         rcu_read_unlock();
6141         cgroup_attach_task_all(parent, current);
6142         put_task_struct(parent);
6143
6144         return err;
6145 }
6146
6147 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6148                                 uintptr_t data, const char *name,
6149                                 struct task_struct **thread_ptr)
6150 {
6151         struct kvm_vm_worker_thread_context init_context = {};
6152         struct task_struct *thread;
6153
6154         *thread_ptr = NULL;
6155         init_context.kvm = kvm;
6156         init_context.parent = current;
6157         init_context.thread_fn = thread_fn;
6158         init_context.data = data;
6159         init_completion(&init_context.init_done);
6160
6161         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6162                              "%s-%d", name, task_pid_nr(current));
6163         if (IS_ERR(thread))
6164                 return PTR_ERR(thread);
6165
6166         /* kthread_run is never supposed to return NULL */
6167         WARN_ON(thread == NULL);
6168
6169         wait_for_completion(&init_context.init_done);
6170
6171         if (!init_context.err)
6172                 *thread_ptr = thread;
6173
6174         return init_context.err;
6175 }