kvm: fix kvm_ioctl_create_device() reference counting (CVE-2019-6974)
[platform/kernel/linux-exynos.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
140                 unsigned long start, unsigned long end)
141 {
142 }
143
144 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
145 {
146         if (pfn_valid(pfn))
147                 return PageReserved(pfn_to_page(pfn));
148
149         return true;
150 }
151
152 /*
153  * Switches to specified vcpu, until a matching vcpu_put()
154  */
155 int vcpu_load(struct kvm_vcpu *vcpu)
156 {
157         int cpu;
158
159         if (mutex_lock_killable(&vcpu->mutex))
160                 return -EINTR;
161         cpu = get_cpu();
162         preempt_notifier_register(&vcpu->preempt_notifier);
163         kvm_arch_vcpu_load(vcpu, cpu);
164         put_cpu();
165         return 0;
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171         preempt_disable();
172         kvm_arch_vcpu_put(vcpu);
173         preempt_notifier_unregister(&vcpu->preempt_notifier);
174         preempt_enable();
175         mutex_unlock(&vcpu->mutex);
176 }
177 EXPORT_SYMBOL_GPL(vcpu_put);
178
179 /* TODO: merge with kvm_arch_vcpu_should_kick */
180 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
181 {
182         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
183
184         /*
185          * We need to wait for the VCPU to reenable interrupts and get out of
186          * READING_SHADOW_PAGE_TABLES mode.
187          */
188         if (req & KVM_REQUEST_WAIT)
189                 return mode != OUTSIDE_GUEST_MODE;
190
191         /*
192          * Need to kick a running VCPU, but otherwise there is nothing to do.
193          */
194         return mode == IN_GUEST_MODE;
195 }
196
197 static void ack_flush(void *_completed)
198 {
199 }
200
201 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
202 {
203         if (unlikely(!cpus))
204                 cpus = cpu_online_mask;
205
206         if (cpumask_empty(cpus))
207                 return false;
208
209         smp_call_function_many(cpus, ack_flush, NULL, wait);
210         return true;
211 }
212
213 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
214 {
215         int i, cpu, me;
216         cpumask_var_t cpus;
217         bool called;
218         struct kvm_vcpu *vcpu;
219
220         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
221
222         me = get_cpu();
223         kvm_for_each_vcpu(i, vcpu, kvm) {
224                 kvm_make_request(req, vcpu);
225                 cpu = vcpu->cpu;
226
227                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
228                         continue;
229
230                 if (cpus != NULL && cpu != -1 && cpu != me &&
231                     kvm_request_needs_ipi(vcpu, req))
232                         __cpumask_set_cpu(cpu, cpus);
233         }
234         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
235         put_cpu();
236         free_cpumask_var(cpus);
237         return called;
238 }
239
240 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
241 void kvm_flush_remote_tlbs(struct kvm *kvm)
242 {
243         /*
244          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
245          * kvm_make_all_cpus_request.
246          */
247         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
248
249         /*
250          * We want to publish modifications to the page tables before reading
251          * mode. Pairs with a memory barrier in arch-specific code.
252          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
253          * and smp_mb in walk_shadow_page_lockless_begin/end.
254          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
255          *
256          * There is already an smp_mb__after_atomic() before
257          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
258          * barrier here.
259          */
260         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
261                 ++kvm->stat.remote_tlb_flush;
262         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
263 }
264 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
265 #endif
266
267 void kvm_reload_remote_mmus(struct kvm *kvm)
268 {
269         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
270 }
271
272 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
273 {
274         struct page *page;
275         int r;
276
277         mutex_init(&vcpu->mutex);
278         vcpu->cpu = -1;
279         vcpu->kvm = kvm;
280         vcpu->vcpu_id = id;
281         vcpu->pid = NULL;
282         init_swait_queue_head(&vcpu->wq);
283         kvm_async_pf_vcpu_init(vcpu);
284
285         vcpu->pre_pcpu = -1;
286         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
287
288         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
289         if (!page) {
290                 r = -ENOMEM;
291                 goto fail;
292         }
293         vcpu->run = page_address(page);
294
295         kvm_vcpu_set_in_spin_loop(vcpu, false);
296         kvm_vcpu_set_dy_eligible(vcpu, false);
297         vcpu->preempted = false;
298
299         r = kvm_arch_vcpu_init(vcpu);
300         if (r < 0)
301                 goto fail_free_run;
302         return 0;
303
304 fail_free_run:
305         free_page((unsigned long)vcpu->run);
306 fail:
307         return r;
308 }
309 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
310
311 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
312 {
313         /*
314          * no need for rcu_read_lock as VCPU_RUN is the only place that
315          * will change the vcpu->pid pointer and on uninit all file
316          * descriptors are already gone.
317          */
318         put_pid(rcu_dereference_protected(vcpu->pid, 1));
319         kvm_arch_vcpu_uninit(vcpu);
320         free_page((unsigned long)vcpu->run);
321 }
322 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
323
324 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
325 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
326 {
327         return container_of(mn, struct kvm, mmu_notifier);
328 }
329
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331                                         struct mm_struct *mm,
332                                         unsigned long address,
333                                         pte_t pte)
334 {
335         struct kvm *kvm = mmu_notifier_to_kvm(mn);
336         int idx;
337
338         idx = srcu_read_lock(&kvm->srcu);
339         spin_lock(&kvm->mmu_lock);
340         kvm->mmu_notifier_seq++;
341         kvm_set_spte_hva(kvm, address, pte);
342         spin_unlock(&kvm->mmu_lock);
343         srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347                                                     struct mm_struct *mm,
348                                                     unsigned long start,
349                                                     unsigned long end)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int need_tlb_flush = 0, idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         /*
357          * The count increase must become visible at unlock time as no
358          * spte can be established without taking the mmu_lock and
359          * count is also read inside the mmu_lock critical section.
360          */
361         kvm->mmu_notifier_count++;
362         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363         need_tlb_flush |= kvm->tlbs_dirty;
364         /* we've to flush the tlb before the pages can be freed */
365         if (need_tlb_flush)
366                 kvm_flush_remote_tlbs(kvm);
367
368         spin_unlock(&kvm->mmu_lock);
369
370         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
371
372         srcu_read_unlock(&kvm->srcu, idx);
373 }
374
375 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
376                                                   struct mm_struct *mm,
377                                                   unsigned long start,
378                                                   unsigned long end)
379 {
380         struct kvm *kvm = mmu_notifier_to_kvm(mn);
381
382         spin_lock(&kvm->mmu_lock);
383         /*
384          * This sequence increase will notify the kvm page fault that
385          * the page that is going to be mapped in the spte could have
386          * been freed.
387          */
388         kvm->mmu_notifier_seq++;
389         smp_wmb();
390         /*
391          * The above sequence increase must be visible before the
392          * below count decrease, which is ensured by the smp_wmb above
393          * in conjunction with the smp_rmb in mmu_notifier_retry().
394          */
395         kvm->mmu_notifier_count--;
396         spin_unlock(&kvm->mmu_lock);
397
398         BUG_ON(kvm->mmu_notifier_count < 0);
399 }
400
401 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
402                                               struct mm_struct *mm,
403                                               unsigned long start,
404                                               unsigned long end)
405 {
406         struct kvm *kvm = mmu_notifier_to_kvm(mn);
407         int young, idx;
408
409         idx = srcu_read_lock(&kvm->srcu);
410         spin_lock(&kvm->mmu_lock);
411
412         young = kvm_age_hva(kvm, start, end);
413         if (young)
414                 kvm_flush_remote_tlbs(kvm);
415
416         spin_unlock(&kvm->mmu_lock);
417         srcu_read_unlock(&kvm->srcu, idx);
418
419         return young;
420 }
421
422 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
423                                         struct mm_struct *mm,
424                                         unsigned long start,
425                                         unsigned long end)
426 {
427         struct kvm *kvm = mmu_notifier_to_kvm(mn);
428         int young, idx;
429
430         idx = srcu_read_lock(&kvm->srcu);
431         spin_lock(&kvm->mmu_lock);
432         /*
433          * Even though we do not flush TLB, this will still adversely
434          * affect performance on pre-Haswell Intel EPT, where there is
435          * no EPT Access Bit to clear so that we have to tear down EPT
436          * tables instead. If we find this unacceptable, we can always
437          * add a parameter to kvm_age_hva so that it effectively doesn't
438          * do anything on clear_young.
439          *
440          * Also note that currently we never issue secondary TLB flushes
441          * from clear_young, leaving this job up to the regular system
442          * cadence. If we find this inaccurate, we might come up with a
443          * more sophisticated heuristic later.
444          */
445         young = kvm_age_hva(kvm, start, end);
446         spin_unlock(&kvm->mmu_lock);
447         srcu_read_unlock(&kvm->srcu, idx);
448
449         return young;
450 }
451
452 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
453                                        struct mm_struct *mm,
454                                        unsigned long address)
455 {
456         struct kvm *kvm = mmu_notifier_to_kvm(mn);
457         int young, idx;
458
459         idx = srcu_read_lock(&kvm->srcu);
460         spin_lock(&kvm->mmu_lock);
461         young = kvm_test_age_hva(kvm, address);
462         spin_unlock(&kvm->mmu_lock);
463         srcu_read_unlock(&kvm->srcu, idx);
464
465         return young;
466 }
467
468 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
469                                      struct mm_struct *mm)
470 {
471         struct kvm *kvm = mmu_notifier_to_kvm(mn);
472         int idx;
473
474         idx = srcu_read_lock(&kvm->srcu);
475         kvm_arch_flush_shadow_all(kvm);
476         srcu_read_unlock(&kvm->srcu, idx);
477 }
478
479 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
480         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
481         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
482         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
483         .clear_young            = kvm_mmu_notifier_clear_young,
484         .test_young             = kvm_mmu_notifier_test_young,
485         .change_pte             = kvm_mmu_notifier_change_pte,
486         .release                = kvm_mmu_notifier_release,
487 };
488
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
492         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
493 }
494
495 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
496
497 static int kvm_init_mmu_notifier(struct kvm *kvm)
498 {
499         return 0;
500 }
501
502 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
503
504 static struct kvm_memslots *kvm_alloc_memslots(void)
505 {
506         int i;
507         struct kvm_memslots *slots;
508
509         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
510         if (!slots)
511                 return NULL;
512
513         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
514                 slots->id_to_index[i] = slots->memslots[i].id = i;
515
516         return slots;
517 }
518
519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
520 {
521         if (!memslot->dirty_bitmap)
522                 return;
523
524         kvfree(memslot->dirty_bitmap);
525         memslot->dirty_bitmap = NULL;
526 }
527
528 /*
529  * Free any memory in @free but not in @dont.
530  */
531 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
532                               struct kvm_memory_slot *dont)
533 {
534         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
535                 kvm_destroy_dirty_bitmap(free);
536
537         kvm_arch_free_memslot(kvm, free, dont);
538
539         free->npages = 0;
540 }
541
542 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
543 {
544         struct kvm_memory_slot *memslot;
545
546         if (!slots)
547                 return;
548
549         kvm_for_each_memslot(memslot, slots)
550                 kvm_free_memslot(kvm, memslot, NULL);
551
552         kvfree(slots);
553 }
554
555 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
556 {
557         int i;
558
559         if (!kvm->debugfs_dentry)
560                 return;
561
562         debugfs_remove_recursive(kvm->debugfs_dentry);
563
564         if (kvm->debugfs_stat_data) {
565                 for (i = 0; i < kvm_debugfs_num_entries; i++)
566                         kfree(kvm->debugfs_stat_data[i]);
567                 kfree(kvm->debugfs_stat_data);
568         }
569 }
570
571 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
572 {
573         char dir_name[ITOA_MAX_LEN * 2];
574         struct kvm_stat_data *stat_data;
575         struct kvm_stats_debugfs_item *p;
576
577         if (!debugfs_initialized())
578                 return 0;
579
580         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
581         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
582                                                  kvm_debugfs_dir);
583         if (!kvm->debugfs_dentry)
584                 return -ENOMEM;
585
586         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
587                                          sizeof(*kvm->debugfs_stat_data),
588                                          GFP_KERNEL);
589         if (!kvm->debugfs_stat_data)
590                 return -ENOMEM;
591
592         for (p = debugfs_entries; p->name; p++) {
593                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
594                 if (!stat_data)
595                         return -ENOMEM;
596
597                 stat_data->kvm = kvm;
598                 stat_data->offset = p->offset;
599                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
600                 if (!debugfs_create_file(p->name, 0644,
601                                          kvm->debugfs_dentry,
602                                          stat_data,
603                                          stat_fops_per_vm[p->kind]))
604                         return -ENOMEM;
605         }
606         return 0;
607 }
608
609 static struct kvm *kvm_create_vm(unsigned long type)
610 {
611         int r, i;
612         struct kvm *kvm = kvm_arch_alloc_vm();
613
614         if (!kvm)
615                 return ERR_PTR(-ENOMEM);
616
617         spin_lock_init(&kvm->mmu_lock);
618         mmgrab(current->mm);
619         kvm->mm = current->mm;
620         kvm_eventfd_init(kvm);
621         mutex_init(&kvm->lock);
622         mutex_init(&kvm->irq_lock);
623         mutex_init(&kvm->slots_lock);
624         refcount_set(&kvm->users_count, 1);
625         INIT_LIST_HEAD(&kvm->devices);
626
627         r = kvm_arch_init_vm(kvm, type);
628         if (r)
629                 goto out_err_no_disable;
630
631         r = hardware_enable_all();
632         if (r)
633                 goto out_err_no_disable;
634
635 #ifdef CONFIG_HAVE_KVM_IRQFD
636         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
637 #endif
638
639         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
640
641         r = -ENOMEM;
642         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
643                 struct kvm_memslots *slots = kvm_alloc_memslots();
644                 if (!slots)
645                         goto out_err_no_srcu;
646                 /*
647                  * Generations must be different for each address space.
648                  * Init kvm generation close to the maximum to easily test the
649                  * code of handling generation number wrap-around.
650                  */
651                 slots->generation = i * 2 - 150;
652                 rcu_assign_pointer(kvm->memslots[i], slots);
653         }
654
655         if (init_srcu_struct(&kvm->srcu))
656                 goto out_err_no_srcu;
657         if (init_srcu_struct(&kvm->irq_srcu))
658                 goto out_err_no_irq_srcu;
659         for (i = 0; i < KVM_NR_BUSES; i++) {
660                 rcu_assign_pointer(kvm->buses[i],
661                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
662                 if (!kvm->buses[i])
663                         goto out_err;
664         }
665
666         r = kvm_init_mmu_notifier(kvm);
667         if (r)
668                 goto out_err;
669
670         spin_lock(&kvm_lock);
671         list_add(&kvm->vm_list, &vm_list);
672         spin_unlock(&kvm_lock);
673
674         preempt_notifier_inc();
675
676         return kvm;
677
678 out_err:
679         cleanup_srcu_struct(&kvm->irq_srcu);
680 out_err_no_irq_srcu:
681         cleanup_srcu_struct(&kvm->srcu);
682 out_err_no_srcu:
683         hardware_disable_all();
684 out_err_no_disable:
685         refcount_set(&kvm->users_count, 0);
686         for (i = 0; i < KVM_NR_BUSES; i++)
687                 kfree(kvm_get_bus(kvm, i));
688         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
689                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
690         kvm_arch_free_vm(kvm);
691         mmdrop(current->mm);
692         return ERR_PTR(r);
693 }
694
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697         struct kvm_device *dev, *tmp;
698
699         /*
700          * We do not need to take the kvm->lock here, because nobody else
701          * has a reference to the struct kvm at this point and therefore
702          * cannot access the devices list anyhow.
703          */
704         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
705                 list_del(&dev->vm_node);
706                 dev->ops->destroy(dev);
707         }
708 }
709
710 static void kvm_destroy_vm(struct kvm *kvm)
711 {
712         int i;
713         struct mm_struct *mm = kvm->mm;
714
715         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
716         kvm_destroy_vm_debugfs(kvm);
717         kvm_arch_sync_events(kvm);
718         spin_lock(&kvm_lock);
719         list_del(&kvm->vm_list);
720         spin_unlock(&kvm_lock);
721         kvm_free_irq_routing(kvm);
722         for (i = 0; i < KVM_NR_BUSES; i++) {
723                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
724
725                 if (bus)
726                         kvm_io_bus_destroy(bus);
727                 kvm->buses[i] = NULL;
728         }
729         kvm_coalesced_mmio_free(kvm);
730 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
731         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
732 #else
733         kvm_arch_flush_shadow_all(kvm);
734 #endif
735         kvm_arch_destroy_vm(kvm);
736         kvm_destroy_devices(kvm);
737         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
738                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
739         cleanup_srcu_struct(&kvm->irq_srcu);
740         cleanup_srcu_struct(&kvm->srcu);
741         kvm_arch_free_vm(kvm);
742         preempt_notifier_dec();
743         hardware_disable_all();
744         mmdrop(mm);
745 }
746
747 void kvm_get_kvm(struct kvm *kvm)
748 {
749         refcount_inc(&kvm->users_count);
750 }
751 EXPORT_SYMBOL_GPL(kvm_get_kvm);
752
753 void kvm_put_kvm(struct kvm *kvm)
754 {
755         if (refcount_dec_and_test(&kvm->users_count))
756                 kvm_destroy_vm(kvm);
757 }
758 EXPORT_SYMBOL_GPL(kvm_put_kvm);
759
760
761 static int kvm_vm_release(struct inode *inode, struct file *filp)
762 {
763         struct kvm *kvm = filp->private_data;
764
765         kvm_irqfd_release(kvm);
766
767         kvm_put_kvm(kvm);
768         return 0;
769 }
770
771 /*
772  * Allocation size is twice as large as the actual dirty bitmap size.
773  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
774  */
775 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
776 {
777         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
778
779         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
780         if (!memslot->dirty_bitmap)
781                 return -ENOMEM;
782
783         return 0;
784 }
785
786 /*
787  * Insert memslot and re-sort memslots based on their GFN,
788  * so binary search could be used to lookup GFN.
789  * Sorting algorithm takes advantage of having initially
790  * sorted array and known changed memslot position.
791  */
792 static void update_memslots(struct kvm_memslots *slots,
793                             struct kvm_memory_slot *new)
794 {
795         int id = new->id;
796         int i = slots->id_to_index[id];
797         struct kvm_memory_slot *mslots = slots->memslots;
798
799         WARN_ON(mslots[i].id != id);
800         if (!new->npages) {
801                 WARN_ON(!mslots[i].npages);
802                 if (mslots[i].npages)
803                         slots->used_slots--;
804         } else {
805                 if (!mslots[i].npages)
806                         slots->used_slots++;
807         }
808
809         while (i < KVM_MEM_SLOTS_NUM - 1 &&
810                new->base_gfn <= mslots[i + 1].base_gfn) {
811                 if (!mslots[i + 1].npages)
812                         break;
813                 mslots[i] = mslots[i + 1];
814                 slots->id_to_index[mslots[i].id] = i;
815                 i++;
816         }
817
818         /*
819          * The ">=" is needed when creating a slot with base_gfn == 0,
820          * so that it moves before all those with base_gfn == npages == 0.
821          *
822          * On the other hand, if new->npages is zero, the above loop has
823          * already left i pointing to the beginning of the empty part of
824          * mslots, and the ">=" would move the hole backwards in this
825          * case---which is wrong.  So skip the loop when deleting a slot.
826          */
827         if (new->npages) {
828                 while (i > 0 &&
829                        new->base_gfn >= mslots[i - 1].base_gfn) {
830                         mslots[i] = mslots[i - 1];
831                         slots->id_to_index[mslots[i].id] = i;
832                         i--;
833                 }
834         } else
835                 WARN_ON_ONCE(i != slots->used_slots);
836
837         mslots[i] = *new;
838         slots->id_to_index[mslots[i].id] = i;
839 }
840
841 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
842 {
843         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
844
845 #ifdef __KVM_HAVE_READONLY_MEM
846         valid_flags |= KVM_MEM_READONLY;
847 #endif
848
849         if (mem->flags & ~valid_flags)
850                 return -EINVAL;
851
852         return 0;
853 }
854
855 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
856                 int as_id, struct kvm_memslots *slots)
857 {
858         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
859
860         /*
861          * Set the low bit in the generation, which disables SPTE caching
862          * until the end of synchronize_srcu_expedited.
863          */
864         WARN_ON(old_memslots->generation & 1);
865         slots->generation = old_memslots->generation + 1;
866
867         rcu_assign_pointer(kvm->memslots[as_id], slots);
868         synchronize_srcu_expedited(&kvm->srcu);
869
870         /*
871          * Increment the new memslot generation a second time. This prevents
872          * vm exits that race with memslot updates from caching a memslot
873          * generation that will (potentially) be valid forever.
874          *
875          * Generations must be unique even across address spaces.  We do not need
876          * a global counter for that, instead the generation space is evenly split
877          * across address spaces.  For example, with two address spaces, address
878          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
879          * use generations 2, 6, 10, 14, ...
880          */
881         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
882
883         kvm_arch_memslots_updated(kvm, slots);
884
885         return old_memslots;
886 }
887
888 /*
889  * Allocate some memory and give it an address in the guest physical address
890  * space.
891  *
892  * Discontiguous memory is allowed, mostly for framebuffers.
893  *
894  * Must be called holding kvm->slots_lock for write.
895  */
896 int __kvm_set_memory_region(struct kvm *kvm,
897                             const struct kvm_userspace_memory_region *mem)
898 {
899         int r;
900         gfn_t base_gfn;
901         unsigned long npages;
902         struct kvm_memory_slot *slot;
903         struct kvm_memory_slot old, new;
904         struct kvm_memslots *slots = NULL, *old_memslots;
905         int as_id, id;
906         enum kvm_mr_change change;
907
908         r = check_memory_region_flags(mem);
909         if (r)
910                 goto out;
911
912         r = -EINVAL;
913         as_id = mem->slot >> 16;
914         id = (u16)mem->slot;
915
916         /* General sanity checks */
917         if (mem->memory_size & (PAGE_SIZE - 1))
918                 goto out;
919         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
920                 goto out;
921         /* We can read the guest memory with __xxx_user() later on. */
922         if ((id < KVM_USER_MEM_SLOTS) &&
923             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
924              !access_ok(VERIFY_WRITE,
925                         (void __user *)(unsigned long)mem->userspace_addr,
926                         mem->memory_size)))
927                 goto out;
928         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
929                 goto out;
930         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
931                 goto out;
932
933         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
934         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
935         npages = mem->memory_size >> PAGE_SHIFT;
936
937         if (npages > KVM_MEM_MAX_NR_PAGES)
938                 goto out;
939
940         new = old = *slot;
941
942         new.id = id;
943         new.base_gfn = base_gfn;
944         new.npages = npages;
945         new.flags = mem->flags;
946
947         if (npages) {
948                 if (!old.npages)
949                         change = KVM_MR_CREATE;
950                 else { /* Modify an existing slot. */
951                         if ((mem->userspace_addr != old.userspace_addr) ||
952                             (npages != old.npages) ||
953                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
954                                 goto out;
955
956                         if (base_gfn != old.base_gfn)
957                                 change = KVM_MR_MOVE;
958                         else if (new.flags != old.flags)
959                                 change = KVM_MR_FLAGS_ONLY;
960                         else { /* Nothing to change. */
961                                 r = 0;
962                                 goto out;
963                         }
964                 }
965         } else {
966                 if (!old.npages)
967                         goto out;
968
969                 change = KVM_MR_DELETE;
970                 new.base_gfn = 0;
971                 new.flags = 0;
972         }
973
974         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
975                 /* Check for overlaps */
976                 r = -EEXIST;
977                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
978                         if (slot->id == id)
979                                 continue;
980                         if (!((base_gfn + npages <= slot->base_gfn) ||
981                               (base_gfn >= slot->base_gfn + slot->npages)))
982                                 goto out;
983                 }
984         }
985
986         /* Free page dirty bitmap if unneeded */
987         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
988                 new.dirty_bitmap = NULL;
989
990         r = -ENOMEM;
991         if (change == KVM_MR_CREATE) {
992                 new.userspace_addr = mem->userspace_addr;
993
994                 if (kvm_arch_create_memslot(kvm, &new, npages))
995                         goto out_free;
996         }
997
998         /* Allocate page dirty bitmap if needed */
999         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1000                 if (kvm_create_dirty_bitmap(&new) < 0)
1001                         goto out_free;
1002         }
1003
1004         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1005         if (!slots)
1006                 goto out_free;
1007         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1008
1009         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1010                 slot = id_to_memslot(slots, id);
1011                 slot->flags |= KVM_MEMSLOT_INVALID;
1012
1013                 old_memslots = install_new_memslots(kvm, as_id, slots);
1014
1015                 /* From this point no new shadow pages pointing to a deleted,
1016                  * or moved, memslot will be created.
1017                  *
1018                  * validation of sp->gfn happens in:
1019                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1020                  *      - kvm_is_visible_gfn (mmu_check_roots)
1021                  */
1022                 kvm_arch_flush_shadow_memslot(kvm, slot);
1023
1024                 /*
1025                  * We can re-use the old_memslots from above, the only difference
1026                  * from the currently installed memslots is the invalid flag.  This
1027                  * will get overwritten by update_memslots anyway.
1028                  */
1029                 slots = old_memslots;
1030         }
1031
1032         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1033         if (r)
1034                 goto out_slots;
1035
1036         /* actual memory is freed via old in kvm_free_memslot below */
1037         if (change == KVM_MR_DELETE) {
1038                 new.dirty_bitmap = NULL;
1039                 memset(&new.arch, 0, sizeof(new.arch));
1040         }
1041
1042         update_memslots(slots, &new);
1043         old_memslots = install_new_memslots(kvm, as_id, slots);
1044
1045         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1046
1047         kvm_free_memslot(kvm, &old, &new);
1048         kvfree(old_memslots);
1049         return 0;
1050
1051 out_slots:
1052         kvfree(slots);
1053 out_free:
1054         kvm_free_memslot(kvm, &new, &old);
1055 out:
1056         return r;
1057 }
1058 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1059
1060 int kvm_set_memory_region(struct kvm *kvm,
1061                           const struct kvm_userspace_memory_region *mem)
1062 {
1063         int r;
1064
1065         mutex_lock(&kvm->slots_lock);
1066         r = __kvm_set_memory_region(kvm, mem);
1067         mutex_unlock(&kvm->slots_lock);
1068         return r;
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1071
1072 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1073                                           struct kvm_userspace_memory_region *mem)
1074 {
1075         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1076                 return -EINVAL;
1077
1078         return kvm_set_memory_region(kvm, mem);
1079 }
1080
1081 int kvm_get_dirty_log(struct kvm *kvm,
1082                         struct kvm_dirty_log *log, int *is_dirty)
1083 {
1084         struct kvm_memslots *slots;
1085         struct kvm_memory_slot *memslot;
1086         int i, as_id, id;
1087         unsigned long n;
1088         unsigned long any = 0;
1089
1090         as_id = log->slot >> 16;
1091         id = (u16)log->slot;
1092         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1093                 return -EINVAL;
1094
1095         slots = __kvm_memslots(kvm, as_id);
1096         memslot = id_to_memslot(slots, id);
1097         if (!memslot->dirty_bitmap)
1098                 return -ENOENT;
1099
1100         n = kvm_dirty_bitmap_bytes(memslot);
1101
1102         for (i = 0; !any && i < n/sizeof(long); ++i)
1103                 any = memslot->dirty_bitmap[i];
1104
1105         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1106                 return -EFAULT;
1107
1108         if (any)
1109                 *is_dirty = 1;
1110         return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1113
1114 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1115 /**
1116  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1117  *      are dirty write protect them for next write.
1118  * @kvm:        pointer to kvm instance
1119  * @log:        slot id and address to which we copy the log
1120  * @is_dirty:   flag set if any page is dirty
1121  *
1122  * We need to keep it in mind that VCPU threads can write to the bitmap
1123  * concurrently. So, to avoid losing track of dirty pages we keep the
1124  * following order:
1125  *
1126  *    1. Take a snapshot of the bit and clear it if needed.
1127  *    2. Write protect the corresponding page.
1128  *    3. Copy the snapshot to the userspace.
1129  *    4. Upon return caller flushes TLB's if needed.
1130  *
1131  * Between 2 and 4, the guest may write to the page using the remaining TLB
1132  * entry.  This is not a problem because the page is reported dirty using
1133  * the snapshot taken before and step 4 ensures that writes done after
1134  * exiting to userspace will be logged for the next call.
1135  *
1136  */
1137 int kvm_get_dirty_log_protect(struct kvm *kvm,
1138                         struct kvm_dirty_log *log, bool *is_dirty)
1139 {
1140         struct kvm_memslots *slots;
1141         struct kvm_memory_slot *memslot;
1142         int i, as_id, id;
1143         unsigned long n;
1144         unsigned long *dirty_bitmap;
1145         unsigned long *dirty_bitmap_buffer;
1146
1147         as_id = log->slot >> 16;
1148         id = (u16)log->slot;
1149         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1150                 return -EINVAL;
1151
1152         slots = __kvm_memslots(kvm, as_id);
1153         memslot = id_to_memslot(slots, id);
1154
1155         dirty_bitmap = memslot->dirty_bitmap;
1156         if (!dirty_bitmap)
1157                 return -ENOENT;
1158
1159         n = kvm_dirty_bitmap_bytes(memslot);
1160
1161         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1162         memset(dirty_bitmap_buffer, 0, n);
1163
1164         spin_lock(&kvm->mmu_lock);
1165         *is_dirty = false;
1166         for (i = 0; i < n / sizeof(long); i++) {
1167                 unsigned long mask;
1168                 gfn_t offset;
1169
1170                 if (!dirty_bitmap[i])
1171                         continue;
1172
1173                 *is_dirty = true;
1174
1175                 mask = xchg(&dirty_bitmap[i], 0);
1176                 dirty_bitmap_buffer[i] = mask;
1177
1178                 if (mask) {
1179                         offset = i * BITS_PER_LONG;
1180                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1181                                                                 offset, mask);
1182                 }
1183         }
1184
1185         spin_unlock(&kvm->mmu_lock);
1186         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1187                 return -EFAULT;
1188         return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1191 #endif
1192
1193 bool kvm_largepages_enabled(void)
1194 {
1195         return largepages_enabled;
1196 }
1197
1198 void kvm_disable_largepages(void)
1199 {
1200         largepages_enabled = false;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1203
1204 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1205 {
1206         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1207 }
1208 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1209
1210 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1211 {
1212         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1213 }
1214
1215 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1216 {
1217         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1218
1219         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1220               memslot->flags & KVM_MEMSLOT_INVALID)
1221                 return false;
1222
1223         return true;
1224 }
1225 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1226
1227 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1228 {
1229         struct vm_area_struct *vma;
1230         unsigned long addr, size;
1231
1232         size = PAGE_SIZE;
1233
1234         addr = gfn_to_hva(kvm, gfn);
1235         if (kvm_is_error_hva(addr))
1236                 return PAGE_SIZE;
1237
1238         down_read(&current->mm->mmap_sem);
1239         vma = find_vma(current->mm, addr);
1240         if (!vma)
1241                 goto out;
1242
1243         size = vma_kernel_pagesize(vma);
1244
1245 out:
1246         up_read(&current->mm->mmap_sem);
1247
1248         return size;
1249 }
1250
1251 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1252 {
1253         return slot->flags & KVM_MEM_READONLY;
1254 }
1255
1256 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1257                                        gfn_t *nr_pages, bool write)
1258 {
1259         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1260                 return KVM_HVA_ERR_BAD;
1261
1262         if (memslot_is_readonly(slot) && write)
1263                 return KVM_HVA_ERR_RO_BAD;
1264
1265         if (nr_pages)
1266                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1267
1268         return __gfn_to_hva_memslot(slot, gfn);
1269 }
1270
1271 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1272                                      gfn_t *nr_pages)
1273 {
1274         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1275 }
1276
1277 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1278                                         gfn_t gfn)
1279 {
1280         return gfn_to_hva_many(slot, gfn, NULL);
1281 }
1282 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1283
1284 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1285 {
1286         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1287 }
1288 EXPORT_SYMBOL_GPL(gfn_to_hva);
1289
1290 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1291 {
1292         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1295
1296 /*
1297  * If writable is set to false, the hva returned by this function is only
1298  * allowed to be read.
1299  */
1300 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1301                                       gfn_t gfn, bool *writable)
1302 {
1303         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1304
1305         if (!kvm_is_error_hva(hva) && writable)
1306                 *writable = !memslot_is_readonly(slot);
1307
1308         return hva;
1309 }
1310
1311 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1312 {
1313         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1314
1315         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1316 }
1317
1318 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1319 {
1320         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1321
1322         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1323 }
1324
1325 static int get_user_page_nowait(unsigned long start, int write,
1326                 struct page **page)
1327 {
1328         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1329
1330         if (write)
1331                 flags |= FOLL_WRITE;
1332
1333         return get_user_pages(start, 1, flags, page, NULL);
1334 }
1335
1336 static inline int check_user_page_hwpoison(unsigned long addr)
1337 {
1338         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1339
1340         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1341         return rc == -EHWPOISON;
1342 }
1343
1344 /*
1345  * The atomic path to get the writable pfn which will be stored in @pfn,
1346  * true indicates success, otherwise false is returned.
1347  */
1348 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1349                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1350 {
1351         struct page *page[1];
1352         int npages;
1353
1354         if (!(async || atomic))
1355                 return false;
1356
1357         /*
1358          * Fast pin a writable pfn only if it is a write fault request
1359          * or the caller allows to map a writable pfn for a read fault
1360          * request.
1361          */
1362         if (!(write_fault || writable))
1363                 return false;
1364
1365         npages = __get_user_pages_fast(addr, 1, 1, page);
1366         if (npages == 1) {
1367                 *pfn = page_to_pfn(page[0]);
1368
1369                 if (writable)
1370                         *writable = true;
1371                 return true;
1372         }
1373
1374         return false;
1375 }
1376
1377 /*
1378  * The slow path to get the pfn of the specified host virtual address,
1379  * 1 indicates success, -errno is returned if error is detected.
1380  */
1381 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1382                            bool *writable, kvm_pfn_t *pfn)
1383 {
1384         struct page *page[1];
1385         int npages = 0;
1386
1387         might_sleep();
1388
1389         if (writable)
1390                 *writable = write_fault;
1391
1392         if (async) {
1393                 down_read(&current->mm->mmap_sem);
1394                 npages = get_user_page_nowait(addr, write_fault, page);
1395                 up_read(&current->mm->mmap_sem);
1396         } else {
1397                 unsigned int flags = FOLL_HWPOISON;
1398
1399                 if (write_fault)
1400                         flags |= FOLL_WRITE;
1401
1402                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1403         }
1404         if (npages != 1)
1405                 return npages;
1406
1407         /* map read fault as writable if possible */
1408         if (unlikely(!write_fault) && writable) {
1409                 struct page *wpage[1];
1410
1411                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1412                 if (npages == 1) {
1413                         *writable = true;
1414                         put_page(page[0]);
1415                         page[0] = wpage[0];
1416                 }
1417
1418                 npages = 1;
1419         }
1420         *pfn = page_to_pfn(page[0]);
1421         return npages;
1422 }
1423
1424 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1425 {
1426         if (unlikely(!(vma->vm_flags & VM_READ)))
1427                 return false;
1428
1429         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1430                 return false;
1431
1432         return true;
1433 }
1434
1435 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1436                                unsigned long addr, bool *async,
1437                                bool write_fault, bool *writable,
1438                                kvm_pfn_t *p_pfn)
1439 {
1440         unsigned long pfn;
1441         int r;
1442
1443         r = follow_pfn(vma, addr, &pfn);
1444         if (r) {
1445                 /*
1446                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1447                  * not call the fault handler, so do it here.
1448                  */
1449                 bool unlocked = false;
1450                 r = fixup_user_fault(current, current->mm, addr,
1451                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1452                                      &unlocked);
1453                 if (unlocked)
1454                         return -EAGAIN;
1455                 if (r)
1456                         return r;
1457
1458                 r = follow_pfn(vma, addr, &pfn);
1459                 if (r)
1460                         return r;
1461
1462         }
1463
1464         if (writable)
1465                 *writable = true;
1466
1467         /*
1468          * Get a reference here because callers of *hva_to_pfn* and
1469          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1470          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1471          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1472          * simply do nothing for reserved pfns.
1473          *
1474          * Whoever called remap_pfn_range is also going to call e.g.
1475          * unmap_mapping_range before the underlying pages are freed,
1476          * causing a call to our MMU notifier.
1477          */ 
1478         kvm_get_pfn(pfn);
1479
1480         *p_pfn = pfn;
1481         return 0;
1482 }
1483
1484 /*
1485  * Pin guest page in memory and return its pfn.
1486  * @addr: host virtual address which maps memory to the guest
1487  * @atomic: whether this function can sleep
1488  * @async: whether this function need to wait IO complete if the
1489  *         host page is not in the memory
1490  * @write_fault: whether we should get a writable host page
1491  * @writable: whether it allows to map a writable host page for !@write_fault
1492  *
1493  * The function will map a writable host page for these two cases:
1494  * 1): @write_fault = true
1495  * 2): @write_fault = false && @writable, @writable will tell the caller
1496  *     whether the mapping is writable.
1497  */
1498 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1499                         bool write_fault, bool *writable)
1500 {
1501         struct vm_area_struct *vma;
1502         kvm_pfn_t pfn = 0;
1503         int npages, r;
1504
1505         /* we can do it either atomically or asynchronously, not both */
1506         BUG_ON(atomic && async);
1507
1508         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1509                 return pfn;
1510
1511         if (atomic)
1512                 return KVM_PFN_ERR_FAULT;
1513
1514         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1515         if (npages == 1)
1516                 return pfn;
1517
1518         down_read(&current->mm->mmap_sem);
1519         if (npages == -EHWPOISON ||
1520               (!async && check_user_page_hwpoison(addr))) {
1521                 pfn = KVM_PFN_ERR_HWPOISON;
1522                 goto exit;
1523         }
1524
1525 retry:
1526         vma = find_vma_intersection(current->mm, addr, addr + 1);
1527
1528         if (vma == NULL)
1529                 pfn = KVM_PFN_ERR_FAULT;
1530         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1531                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1532                 if (r == -EAGAIN)
1533                         goto retry;
1534                 if (r < 0)
1535                         pfn = KVM_PFN_ERR_FAULT;
1536         } else {
1537                 if (async && vma_is_valid(vma, write_fault))
1538                         *async = true;
1539                 pfn = KVM_PFN_ERR_FAULT;
1540         }
1541 exit:
1542         up_read(&current->mm->mmap_sem);
1543         return pfn;
1544 }
1545
1546 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1547                                bool atomic, bool *async, bool write_fault,
1548                                bool *writable)
1549 {
1550         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1551
1552         if (addr == KVM_HVA_ERR_RO_BAD) {
1553                 if (writable)
1554                         *writable = false;
1555                 return KVM_PFN_ERR_RO_FAULT;
1556         }
1557
1558         if (kvm_is_error_hva(addr)) {
1559                 if (writable)
1560                         *writable = false;
1561                 return KVM_PFN_NOSLOT;
1562         }
1563
1564         /* Do not map writable pfn in the readonly memslot. */
1565         if (writable && memslot_is_readonly(slot)) {
1566                 *writable = false;
1567                 writable = NULL;
1568         }
1569
1570         return hva_to_pfn(addr, atomic, async, write_fault,
1571                           writable);
1572 }
1573 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1574
1575 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1576                       bool *writable)
1577 {
1578         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1579                                     write_fault, writable);
1580 }
1581 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1582
1583 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1584 {
1585         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1586 }
1587 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1588
1589 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1590 {
1591         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1592 }
1593 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1594
1595 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1596 {
1597         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1598 }
1599 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1600
1601 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1602 {
1603         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1604 }
1605 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1606
1607 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1608 {
1609         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1610 }
1611 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1612
1613 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1614 {
1615         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1618
1619 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1620                             struct page **pages, int nr_pages)
1621 {
1622         unsigned long addr;
1623         gfn_t entry = 0;
1624
1625         addr = gfn_to_hva_many(slot, gfn, &entry);
1626         if (kvm_is_error_hva(addr))
1627                 return -1;
1628
1629         if (entry < nr_pages)
1630                 return 0;
1631
1632         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1633 }
1634 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1635
1636 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1637 {
1638         if (is_error_noslot_pfn(pfn))
1639                 return KVM_ERR_PTR_BAD_PAGE;
1640
1641         if (kvm_is_reserved_pfn(pfn)) {
1642                 WARN_ON(1);
1643                 return KVM_ERR_PTR_BAD_PAGE;
1644         }
1645
1646         return pfn_to_page(pfn);
1647 }
1648
1649 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1650 {
1651         kvm_pfn_t pfn;
1652
1653         pfn = gfn_to_pfn(kvm, gfn);
1654
1655         return kvm_pfn_to_page(pfn);
1656 }
1657 EXPORT_SYMBOL_GPL(gfn_to_page);
1658
1659 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1660 {
1661         kvm_pfn_t pfn;
1662
1663         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1664
1665         return kvm_pfn_to_page(pfn);
1666 }
1667 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1668
1669 void kvm_release_page_clean(struct page *page)
1670 {
1671         WARN_ON(is_error_page(page));
1672
1673         kvm_release_pfn_clean(page_to_pfn(page));
1674 }
1675 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1676
1677 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1678 {
1679         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1680                 put_page(pfn_to_page(pfn));
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1683
1684 void kvm_release_page_dirty(struct page *page)
1685 {
1686         WARN_ON(is_error_page(page));
1687
1688         kvm_release_pfn_dirty(page_to_pfn(page));
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1691
1692 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1693 {
1694         kvm_set_pfn_dirty(pfn);
1695         kvm_release_pfn_clean(pfn);
1696 }
1697
1698 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1699 {
1700         if (!kvm_is_reserved_pfn(pfn)) {
1701                 struct page *page = pfn_to_page(pfn);
1702
1703                 if (!PageReserved(page))
1704                         SetPageDirty(page);
1705         }
1706 }
1707 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1708
1709 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1710 {
1711         if (!kvm_is_reserved_pfn(pfn))
1712                 mark_page_accessed(pfn_to_page(pfn));
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1715
1716 void kvm_get_pfn(kvm_pfn_t pfn)
1717 {
1718         if (!kvm_is_reserved_pfn(pfn))
1719                 get_page(pfn_to_page(pfn));
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1722
1723 static int next_segment(unsigned long len, int offset)
1724 {
1725         if (len > PAGE_SIZE - offset)
1726                 return PAGE_SIZE - offset;
1727         else
1728                 return len;
1729 }
1730
1731 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1732                                  void *data, int offset, int len)
1733 {
1734         int r;
1735         unsigned long addr;
1736
1737         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1738         if (kvm_is_error_hva(addr))
1739                 return -EFAULT;
1740         r = __copy_from_user(data, (void __user *)addr + offset, len);
1741         if (r)
1742                 return -EFAULT;
1743         return 0;
1744 }
1745
1746 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1747                         int len)
1748 {
1749         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1750
1751         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1754
1755 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1756                              int offset, int len)
1757 {
1758         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1759
1760         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1763
1764 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1765 {
1766         gfn_t gfn = gpa >> PAGE_SHIFT;
1767         int seg;
1768         int offset = offset_in_page(gpa);
1769         int ret;
1770
1771         while ((seg = next_segment(len, offset)) != 0) {
1772                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1773                 if (ret < 0)
1774                         return ret;
1775                 offset = 0;
1776                 len -= seg;
1777                 data += seg;
1778                 ++gfn;
1779         }
1780         return 0;
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_read_guest);
1783
1784 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1785 {
1786         gfn_t gfn = gpa >> PAGE_SHIFT;
1787         int seg;
1788         int offset = offset_in_page(gpa);
1789         int ret;
1790
1791         while ((seg = next_segment(len, offset)) != 0) {
1792                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1793                 if (ret < 0)
1794                         return ret;
1795                 offset = 0;
1796                 len -= seg;
1797                 data += seg;
1798                 ++gfn;
1799         }
1800         return 0;
1801 }
1802 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1803
1804 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1805                                    void *data, int offset, unsigned long len)
1806 {
1807         int r;
1808         unsigned long addr;
1809
1810         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1811         if (kvm_is_error_hva(addr))
1812                 return -EFAULT;
1813         pagefault_disable();
1814         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1815         pagefault_enable();
1816         if (r)
1817                 return -EFAULT;
1818         return 0;
1819 }
1820
1821 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1822                           unsigned long len)
1823 {
1824         gfn_t gfn = gpa >> PAGE_SHIFT;
1825         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1826         int offset = offset_in_page(gpa);
1827
1828         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1831
1832 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1833                                void *data, unsigned long len)
1834 {
1835         gfn_t gfn = gpa >> PAGE_SHIFT;
1836         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1837         int offset = offset_in_page(gpa);
1838
1839         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1842
1843 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1844                                   const void *data, int offset, int len)
1845 {
1846         int r;
1847         unsigned long addr;
1848
1849         addr = gfn_to_hva_memslot(memslot, gfn);
1850         if (kvm_is_error_hva(addr))
1851                 return -EFAULT;
1852         r = __copy_to_user((void __user *)addr + offset, data, len);
1853         if (r)
1854                 return -EFAULT;
1855         mark_page_dirty_in_slot(memslot, gfn);
1856         return 0;
1857 }
1858
1859 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1860                          const void *data, int offset, int len)
1861 {
1862         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1863
1864         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1867
1868 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1869                               const void *data, int offset, int len)
1870 {
1871         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1872
1873         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1876
1877 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1878                     unsigned long len)
1879 {
1880         gfn_t gfn = gpa >> PAGE_SHIFT;
1881         int seg;
1882         int offset = offset_in_page(gpa);
1883         int ret;
1884
1885         while ((seg = next_segment(len, offset)) != 0) {
1886                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1887                 if (ret < 0)
1888                         return ret;
1889                 offset = 0;
1890                 len -= seg;
1891                 data += seg;
1892                 ++gfn;
1893         }
1894         return 0;
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_write_guest);
1897
1898 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1899                          unsigned long len)
1900 {
1901         gfn_t gfn = gpa >> PAGE_SHIFT;
1902         int seg;
1903         int offset = offset_in_page(gpa);
1904         int ret;
1905
1906         while ((seg = next_segment(len, offset)) != 0) {
1907                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1908                 if (ret < 0)
1909                         return ret;
1910                 offset = 0;
1911                 len -= seg;
1912                 data += seg;
1913                 ++gfn;
1914         }
1915         return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1918
1919 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1920                                        struct gfn_to_hva_cache *ghc,
1921                                        gpa_t gpa, unsigned long len)
1922 {
1923         int offset = offset_in_page(gpa);
1924         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1925         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1926         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1927         gfn_t nr_pages_avail;
1928
1929         ghc->gpa = gpa;
1930         ghc->generation = slots->generation;
1931         ghc->len = len;
1932         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1933         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1934         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1935                 ghc->hva += offset;
1936         } else {
1937                 /*
1938                  * If the requested region crosses two memslots, we still
1939                  * verify that the entire region is valid here.
1940                  */
1941                 while (start_gfn <= end_gfn) {
1942                         nr_pages_avail = 0;
1943                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1944                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1945                                                    &nr_pages_avail);
1946                         if (kvm_is_error_hva(ghc->hva))
1947                                 return -EFAULT;
1948                         start_gfn += nr_pages_avail;
1949                 }
1950                 /* Use the slow path for cross page reads and writes. */
1951                 ghc->memslot = NULL;
1952         }
1953         return 0;
1954 }
1955
1956 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1957                               gpa_t gpa, unsigned long len)
1958 {
1959         struct kvm_memslots *slots = kvm_memslots(kvm);
1960         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1961 }
1962 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1963
1964 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1965                                   void *data, unsigned int offset,
1966                                   unsigned long len)
1967 {
1968         struct kvm_memslots *slots = kvm_memslots(kvm);
1969         int r;
1970         gpa_t gpa = ghc->gpa + offset;
1971
1972         BUG_ON(len + offset > ghc->len);
1973
1974         if (slots->generation != ghc->generation)
1975                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1976
1977         if (unlikely(!ghc->memslot))
1978                 return kvm_write_guest(kvm, gpa, data, len);
1979
1980         if (kvm_is_error_hva(ghc->hva))
1981                 return -EFAULT;
1982
1983         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1984         if (r)
1985                 return -EFAULT;
1986         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1987
1988         return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1991
1992 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1993                            void *data, unsigned long len)
1994 {
1995         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1996 }
1997 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1998
1999 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2000                            void *data, unsigned long len)
2001 {
2002         struct kvm_memslots *slots = kvm_memslots(kvm);
2003         int r;
2004
2005         BUG_ON(len > ghc->len);
2006
2007         if (slots->generation != ghc->generation)
2008                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2009
2010         if (unlikely(!ghc->memslot))
2011                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2012
2013         if (kvm_is_error_hva(ghc->hva))
2014                 return -EFAULT;
2015
2016         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2017         if (r)
2018                 return -EFAULT;
2019
2020         return 0;
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2023
2024 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2025 {
2026         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2027
2028         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2029 }
2030 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2031
2032 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2033 {
2034         gfn_t gfn = gpa >> PAGE_SHIFT;
2035         int seg;
2036         int offset = offset_in_page(gpa);
2037         int ret;
2038
2039         while ((seg = next_segment(len, offset)) != 0) {
2040                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2041                 if (ret < 0)
2042                         return ret;
2043                 offset = 0;
2044                 len -= seg;
2045                 ++gfn;
2046         }
2047         return 0;
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2050
2051 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2052                                     gfn_t gfn)
2053 {
2054         if (memslot && memslot->dirty_bitmap) {
2055                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2056
2057                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2058         }
2059 }
2060
2061 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2062 {
2063         struct kvm_memory_slot *memslot;
2064
2065         memslot = gfn_to_memslot(kvm, gfn);
2066         mark_page_dirty_in_slot(memslot, gfn);
2067 }
2068 EXPORT_SYMBOL_GPL(mark_page_dirty);
2069
2070 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2071 {
2072         struct kvm_memory_slot *memslot;
2073
2074         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2075         mark_page_dirty_in_slot(memslot, gfn);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2078
2079 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2080 {
2081         if (!vcpu->sigset_active)
2082                 return;
2083
2084         /*
2085          * This does a lockless modification of ->real_blocked, which is fine
2086          * because, only current can change ->real_blocked and all readers of
2087          * ->real_blocked don't care as long ->real_blocked is always a subset
2088          * of ->blocked.
2089          */
2090         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2091 }
2092
2093 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2094 {
2095         if (!vcpu->sigset_active)
2096                 return;
2097
2098         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2099         sigemptyset(&current->real_blocked);
2100 }
2101
2102 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2103 {
2104         unsigned int old, val, grow;
2105
2106         old = val = vcpu->halt_poll_ns;
2107         grow = READ_ONCE(halt_poll_ns_grow);
2108         /* 10us base */
2109         if (val == 0 && grow)
2110                 val = 10000;
2111         else
2112                 val *= grow;
2113
2114         if (val > halt_poll_ns)
2115                 val = halt_poll_ns;
2116
2117         vcpu->halt_poll_ns = val;
2118         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2119 }
2120
2121 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2122 {
2123         unsigned int old, val, shrink;
2124
2125         old = val = vcpu->halt_poll_ns;
2126         shrink = READ_ONCE(halt_poll_ns_shrink);
2127         if (shrink == 0)
2128                 val = 0;
2129         else
2130                 val /= shrink;
2131
2132         vcpu->halt_poll_ns = val;
2133         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2134 }
2135
2136 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2137 {
2138         if (kvm_arch_vcpu_runnable(vcpu)) {
2139                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2140                 return -EINTR;
2141         }
2142         if (kvm_cpu_has_pending_timer(vcpu))
2143                 return -EINTR;
2144         if (signal_pending(current))
2145                 return -EINTR;
2146
2147         return 0;
2148 }
2149
2150 /*
2151  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2152  */
2153 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2154 {
2155         ktime_t start, cur;
2156         DECLARE_SWAITQUEUE(wait);
2157         bool waited = false;
2158         u64 block_ns;
2159
2160         start = cur = ktime_get();
2161         if (vcpu->halt_poll_ns) {
2162                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2163
2164                 ++vcpu->stat.halt_attempted_poll;
2165                 do {
2166                         /*
2167                          * This sets KVM_REQ_UNHALT if an interrupt
2168                          * arrives.
2169                          */
2170                         if (kvm_vcpu_check_block(vcpu) < 0) {
2171                                 ++vcpu->stat.halt_successful_poll;
2172                                 if (!vcpu_valid_wakeup(vcpu))
2173                                         ++vcpu->stat.halt_poll_invalid;
2174                                 goto out;
2175                         }
2176                         cur = ktime_get();
2177                 } while (single_task_running() && ktime_before(cur, stop));
2178         }
2179
2180         kvm_arch_vcpu_blocking(vcpu);
2181
2182         for (;;) {
2183                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2184
2185                 if (kvm_vcpu_check_block(vcpu) < 0)
2186                         break;
2187
2188                 waited = true;
2189                 schedule();
2190         }
2191
2192         finish_swait(&vcpu->wq, &wait);
2193         cur = ktime_get();
2194
2195         kvm_arch_vcpu_unblocking(vcpu);
2196 out:
2197         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2198
2199         if (!vcpu_valid_wakeup(vcpu))
2200                 shrink_halt_poll_ns(vcpu);
2201         else if (halt_poll_ns) {
2202                 if (block_ns <= vcpu->halt_poll_ns)
2203                         ;
2204                 /* we had a long block, shrink polling */
2205                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2206                         shrink_halt_poll_ns(vcpu);
2207                 /* we had a short halt and our poll time is too small */
2208                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2209                         block_ns < halt_poll_ns)
2210                         grow_halt_poll_ns(vcpu);
2211         } else
2212                 vcpu->halt_poll_ns = 0;
2213
2214         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2215         kvm_arch_vcpu_block_finish(vcpu);
2216 }
2217 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2218
2219 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2220 {
2221         struct swait_queue_head *wqp;
2222
2223         wqp = kvm_arch_vcpu_wq(vcpu);
2224         if (swq_has_sleeper(wqp)) {
2225                 swake_up(wqp);
2226                 ++vcpu->stat.halt_wakeup;
2227                 return true;
2228         }
2229
2230         return false;
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2233
2234 #ifndef CONFIG_S390
2235 /*
2236  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2237  */
2238 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2239 {
2240         int me;
2241         int cpu = vcpu->cpu;
2242
2243         if (kvm_vcpu_wake_up(vcpu))
2244                 return;
2245
2246         me = get_cpu();
2247         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2248                 if (kvm_arch_vcpu_should_kick(vcpu))
2249                         smp_send_reschedule(cpu);
2250         put_cpu();
2251 }
2252 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2253 #endif /* !CONFIG_S390 */
2254
2255 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2256 {
2257         struct pid *pid;
2258         struct task_struct *task = NULL;
2259         int ret = 0;
2260
2261         rcu_read_lock();
2262         pid = rcu_dereference(target->pid);
2263         if (pid)
2264                 task = get_pid_task(pid, PIDTYPE_PID);
2265         rcu_read_unlock();
2266         if (!task)
2267                 return ret;
2268         ret = yield_to(task, 1);
2269         put_task_struct(task);
2270
2271         return ret;
2272 }
2273 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2274
2275 /*
2276  * Helper that checks whether a VCPU is eligible for directed yield.
2277  * Most eligible candidate to yield is decided by following heuristics:
2278  *
2279  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2280  *  (preempted lock holder), indicated by @in_spin_loop.
2281  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2282  *
2283  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2284  *  chance last time (mostly it has become eligible now since we have probably
2285  *  yielded to lockholder in last iteration. This is done by toggling
2286  *  @dy_eligible each time a VCPU checked for eligibility.)
2287  *
2288  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2289  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2290  *  burning. Giving priority for a potential lock-holder increases lock
2291  *  progress.
2292  *
2293  *  Since algorithm is based on heuristics, accessing another VCPU data without
2294  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2295  *  and continue with next VCPU and so on.
2296  */
2297 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2298 {
2299 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2300         bool eligible;
2301
2302         eligible = !vcpu->spin_loop.in_spin_loop ||
2303                     vcpu->spin_loop.dy_eligible;
2304
2305         if (vcpu->spin_loop.in_spin_loop)
2306                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2307
2308         return eligible;
2309 #else
2310         return true;
2311 #endif
2312 }
2313
2314 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2315 {
2316         struct kvm *kvm = me->kvm;
2317         struct kvm_vcpu *vcpu;
2318         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2319         int yielded = 0;
2320         int try = 3;
2321         int pass;
2322         int i;
2323
2324         kvm_vcpu_set_in_spin_loop(me, true);
2325         /*
2326          * We boost the priority of a VCPU that is runnable but not
2327          * currently running, because it got preempted by something
2328          * else and called schedule in __vcpu_run.  Hopefully that
2329          * VCPU is holding the lock that we need and will release it.
2330          * We approximate round-robin by starting at the last boosted VCPU.
2331          */
2332         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2333                 kvm_for_each_vcpu(i, vcpu, kvm) {
2334                         if (!pass && i <= last_boosted_vcpu) {
2335                                 i = last_boosted_vcpu;
2336                                 continue;
2337                         } else if (pass && i > last_boosted_vcpu)
2338                                 break;
2339                         if (!ACCESS_ONCE(vcpu->preempted))
2340                                 continue;
2341                         if (vcpu == me)
2342                                 continue;
2343                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2344                                 continue;
2345                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2346                                 continue;
2347                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2348                                 continue;
2349
2350                         yielded = kvm_vcpu_yield_to(vcpu);
2351                         if (yielded > 0) {
2352                                 kvm->last_boosted_vcpu = i;
2353                                 break;
2354                         } else if (yielded < 0) {
2355                                 try--;
2356                                 if (!try)
2357                                         break;
2358                         }
2359                 }
2360         }
2361         kvm_vcpu_set_in_spin_loop(me, false);
2362
2363         /* Ensure vcpu is not eligible during next spinloop */
2364         kvm_vcpu_set_dy_eligible(me, false);
2365 }
2366 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2367
2368 static int kvm_vcpu_fault(struct vm_fault *vmf)
2369 {
2370         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2371         struct page *page;
2372
2373         if (vmf->pgoff == 0)
2374                 page = virt_to_page(vcpu->run);
2375 #ifdef CONFIG_X86
2376         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2377                 page = virt_to_page(vcpu->arch.pio_data);
2378 #endif
2379 #ifdef CONFIG_KVM_MMIO
2380         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2381                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2382 #endif
2383         else
2384                 return kvm_arch_vcpu_fault(vcpu, vmf);
2385         get_page(page);
2386         vmf->page = page;
2387         return 0;
2388 }
2389
2390 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2391         .fault = kvm_vcpu_fault,
2392 };
2393
2394 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2395 {
2396         vma->vm_ops = &kvm_vcpu_vm_ops;
2397         return 0;
2398 }
2399
2400 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2401 {
2402         struct kvm_vcpu *vcpu = filp->private_data;
2403
2404         debugfs_remove_recursive(vcpu->debugfs_dentry);
2405         kvm_put_kvm(vcpu->kvm);
2406         return 0;
2407 }
2408
2409 static struct file_operations kvm_vcpu_fops = {
2410         .release        = kvm_vcpu_release,
2411         .unlocked_ioctl = kvm_vcpu_ioctl,
2412 #ifdef CONFIG_KVM_COMPAT
2413         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2414 #endif
2415         .mmap           = kvm_vcpu_mmap,
2416         .llseek         = noop_llseek,
2417 };
2418
2419 /*
2420  * Allocates an inode for the vcpu.
2421  */
2422 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2423 {
2424         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2425 }
2426
2427 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2428 {
2429         char dir_name[ITOA_MAX_LEN * 2];
2430         int ret;
2431
2432         if (!kvm_arch_has_vcpu_debugfs())
2433                 return 0;
2434
2435         if (!debugfs_initialized())
2436                 return 0;
2437
2438         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2439         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2440                                                                 vcpu->kvm->debugfs_dentry);
2441         if (!vcpu->debugfs_dentry)
2442                 return -ENOMEM;
2443
2444         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2445         if (ret < 0) {
2446                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2447                 return ret;
2448         }
2449
2450         return 0;
2451 }
2452
2453 /*
2454  * Creates some virtual cpus.  Good luck creating more than one.
2455  */
2456 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2457 {
2458         int r;
2459         struct kvm_vcpu *vcpu;
2460
2461         if (id >= KVM_MAX_VCPU_ID)
2462                 return -EINVAL;
2463
2464         mutex_lock(&kvm->lock);
2465         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2466                 mutex_unlock(&kvm->lock);
2467                 return -EINVAL;
2468         }
2469
2470         kvm->created_vcpus++;
2471         mutex_unlock(&kvm->lock);
2472
2473         vcpu = kvm_arch_vcpu_create(kvm, id);
2474         if (IS_ERR(vcpu)) {
2475                 r = PTR_ERR(vcpu);
2476                 goto vcpu_decrement;
2477         }
2478
2479         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2480
2481         r = kvm_arch_vcpu_setup(vcpu);
2482         if (r)
2483                 goto vcpu_destroy;
2484
2485         r = kvm_create_vcpu_debugfs(vcpu);
2486         if (r)
2487                 goto vcpu_destroy;
2488
2489         mutex_lock(&kvm->lock);
2490         if (kvm_get_vcpu_by_id(kvm, id)) {
2491                 r = -EEXIST;
2492                 goto unlock_vcpu_destroy;
2493         }
2494
2495         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2496
2497         /* Now it's all set up, let userspace reach it */
2498         kvm_get_kvm(kvm);
2499         r = create_vcpu_fd(vcpu);
2500         if (r < 0) {
2501                 kvm_put_kvm(kvm);
2502                 goto unlock_vcpu_destroy;
2503         }
2504
2505         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2506
2507         /*
2508          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2509          * before kvm->online_vcpu's incremented value.
2510          */
2511         smp_wmb();
2512         atomic_inc(&kvm->online_vcpus);
2513
2514         mutex_unlock(&kvm->lock);
2515         kvm_arch_vcpu_postcreate(vcpu);
2516         return r;
2517
2518 unlock_vcpu_destroy:
2519         mutex_unlock(&kvm->lock);
2520         debugfs_remove_recursive(vcpu->debugfs_dentry);
2521 vcpu_destroy:
2522         kvm_arch_vcpu_destroy(vcpu);
2523 vcpu_decrement:
2524         mutex_lock(&kvm->lock);
2525         kvm->created_vcpus--;
2526         mutex_unlock(&kvm->lock);
2527         return r;
2528 }
2529
2530 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2531 {
2532         if (sigset) {
2533                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2534                 vcpu->sigset_active = 1;
2535                 vcpu->sigset = *sigset;
2536         } else
2537                 vcpu->sigset_active = 0;
2538         return 0;
2539 }
2540
2541 static long kvm_vcpu_ioctl(struct file *filp,
2542                            unsigned int ioctl, unsigned long arg)
2543 {
2544         struct kvm_vcpu *vcpu = filp->private_data;
2545         void __user *argp = (void __user *)arg;
2546         int r;
2547         struct kvm_fpu *fpu = NULL;
2548         struct kvm_sregs *kvm_sregs = NULL;
2549
2550         if (vcpu->kvm->mm != current->mm)
2551                 return -EIO;
2552
2553         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2554                 return -EINVAL;
2555
2556 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2557         /*
2558          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2559          * so vcpu_load() would break it.
2560          */
2561         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2562                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2563 #endif
2564
2565
2566         r = vcpu_load(vcpu);
2567         if (r)
2568                 return r;
2569         switch (ioctl) {
2570         case KVM_RUN: {
2571                 struct pid *oldpid;
2572                 r = -EINVAL;
2573                 if (arg)
2574                         goto out;
2575                 oldpid = rcu_access_pointer(vcpu->pid);
2576                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2577                         /* The thread running this VCPU changed. */
2578                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2579
2580                         rcu_assign_pointer(vcpu->pid, newpid);
2581                         if (oldpid)
2582                                 synchronize_rcu();
2583                         put_pid(oldpid);
2584                 }
2585                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2586                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2587                 break;
2588         }
2589         case KVM_GET_REGS: {
2590                 struct kvm_regs *kvm_regs;
2591
2592                 r = -ENOMEM;
2593                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2594                 if (!kvm_regs)
2595                         goto out;
2596                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2597                 if (r)
2598                         goto out_free1;
2599                 r = -EFAULT;
2600                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2601                         goto out_free1;
2602                 r = 0;
2603 out_free1:
2604                 kfree(kvm_regs);
2605                 break;
2606         }
2607         case KVM_SET_REGS: {
2608                 struct kvm_regs *kvm_regs;
2609
2610                 r = -ENOMEM;
2611                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2612                 if (IS_ERR(kvm_regs)) {
2613                         r = PTR_ERR(kvm_regs);
2614                         goto out;
2615                 }
2616                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2617                 kfree(kvm_regs);
2618                 break;
2619         }
2620         case KVM_GET_SREGS: {
2621                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2622                 r = -ENOMEM;
2623                 if (!kvm_sregs)
2624                         goto out;
2625                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2626                 if (r)
2627                         goto out;
2628                 r = -EFAULT;
2629                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2630                         goto out;
2631                 r = 0;
2632                 break;
2633         }
2634         case KVM_SET_SREGS: {
2635                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2636                 if (IS_ERR(kvm_sregs)) {
2637                         r = PTR_ERR(kvm_sregs);
2638                         kvm_sregs = NULL;
2639                         goto out;
2640                 }
2641                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2642                 break;
2643         }
2644         case KVM_GET_MP_STATE: {
2645                 struct kvm_mp_state mp_state;
2646
2647                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2648                 if (r)
2649                         goto out;
2650                 r = -EFAULT;
2651                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2652                         goto out;
2653                 r = 0;
2654                 break;
2655         }
2656         case KVM_SET_MP_STATE: {
2657                 struct kvm_mp_state mp_state;
2658
2659                 r = -EFAULT;
2660                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2661                         goto out;
2662                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2663                 break;
2664         }
2665         case KVM_TRANSLATE: {
2666                 struct kvm_translation tr;
2667
2668                 r = -EFAULT;
2669                 if (copy_from_user(&tr, argp, sizeof(tr)))
2670                         goto out;
2671                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2672                 if (r)
2673                         goto out;
2674                 r = -EFAULT;
2675                 if (copy_to_user(argp, &tr, sizeof(tr)))
2676                         goto out;
2677                 r = 0;
2678                 break;
2679         }
2680         case KVM_SET_GUEST_DEBUG: {
2681                 struct kvm_guest_debug dbg;
2682
2683                 r = -EFAULT;
2684                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2685                         goto out;
2686                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2687                 break;
2688         }
2689         case KVM_SET_SIGNAL_MASK: {
2690                 struct kvm_signal_mask __user *sigmask_arg = argp;
2691                 struct kvm_signal_mask kvm_sigmask;
2692                 sigset_t sigset, *p;
2693
2694                 p = NULL;
2695                 if (argp) {
2696                         r = -EFAULT;
2697                         if (copy_from_user(&kvm_sigmask, argp,
2698                                            sizeof(kvm_sigmask)))
2699                                 goto out;
2700                         r = -EINVAL;
2701                         if (kvm_sigmask.len != sizeof(sigset))
2702                                 goto out;
2703                         r = -EFAULT;
2704                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2705                                            sizeof(sigset)))
2706                                 goto out;
2707                         p = &sigset;
2708                 }
2709                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2710                 break;
2711         }
2712         case KVM_GET_FPU: {
2713                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2714                 r = -ENOMEM;
2715                 if (!fpu)
2716                         goto out;
2717                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2718                 if (r)
2719                         goto out;
2720                 r = -EFAULT;
2721                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2722                         goto out;
2723                 r = 0;
2724                 break;
2725         }
2726         case KVM_SET_FPU: {
2727                 fpu = memdup_user(argp, sizeof(*fpu));
2728                 if (IS_ERR(fpu)) {
2729                         r = PTR_ERR(fpu);
2730                         fpu = NULL;
2731                         goto out;
2732                 }
2733                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2734                 break;
2735         }
2736         default:
2737                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2738         }
2739 out:
2740         vcpu_put(vcpu);
2741         kfree(fpu);
2742         kfree(kvm_sregs);
2743         return r;
2744 }
2745
2746 #ifdef CONFIG_KVM_COMPAT
2747 static long kvm_vcpu_compat_ioctl(struct file *filp,
2748                                   unsigned int ioctl, unsigned long arg)
2749 {
2750         struct kvm_vcpu *vcpu = filp->private_data;
2751         void __user *argp = compat_ptr(arg);
2752         int r;
2753
2754         if (vcpu->kvm->mm != current->mm)
2755                 return -EIO;
2756
2757         switch (ioctl) {
2758         case KVM_SET_SIGNAL_MASK: {
2759                 struct kvm_signal_mask __user *sigmask_arg = argp;
2760                 struct kvm_signal_mask kvm_sigmask;
2761                 compat_sigset_t csigset;
2762                 sigset_t sigset;
2763
2764                 if (argp) {
2765                         r = -EFAULT;
2766                         if (copy_from_user(&kvm_sigmask, argp,
2767                                            sizeof(kvm_sigmask)))
2768                                 goto out;
2769                         r = -EINVAL;
2770                         if (kvm_sigmask.len != sizeof(csigset))
2771                                 goto out;
2772                         r = -EFAULT;
2773                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2774                                            sizeof(csigset)))
2775                                 goto out;
2776                         sigset_from_compat(&sigset, &csigset);
2777                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2778                 } else
2779                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2780                 break;
2781         }
2782         default:
2783                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2784         }
2785
2786 out:
2787         return r;
2788 }
2789 #endif
2790
2791 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2792                                  int (*accessor)(struct kvm_device *dev,
2793                                                  struct kvm_device_attr *attr),
2794                                  unsigned long arg)
2795 {
2796         struct kvm_device_attr attr;
2797
2798         if (!accessor)
2799                 return -EPERM;
2800
2801         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2802                 return -EFAULT;
2803
2804         return accessor(dev, &attr);
2805 }
2806
2807 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2808                              unsigned long arg)
2809 {
2810         struct kvm_device *dev = filp->private_data;
2811
2812         switch (ioctl) {
2813         case KVM_SET_DEVICE_ATTR:
2814                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2815         case KVM_GET_DEVICE_ATTR:
2816                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2817         case KVM_HAS_DEVICE_ATTR:
2818                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2819         default:
2820                 if (dev->ops->ioctl)
2821                         return dev->ops->ioctl(dev, ioctl, arg);
2822
2823                 return -ENOTTY;
2824         }
2825 }
2826
2827 static int kvm_device_release(struct inode *inode, struct file *filp)
2828 {
2829         struct kvm_device *dev = filp->private_data;
2830         struct kvm *kvm = dev->kvm;
2831
2832         kvm_put_kvm(kvm);
2833         return 0;
2834 }
2835
2836 static const struct file_operations kvm_device_fops = {
2837         .unlocked_ioctl = kvm_device_ioctl,
2838 #ifdef CONFIG_KVM_COMPAT
2839         .compat_ioctl = kvm_device_ioctl,
2840 #endif
2841         .release = kvm_device_release,
2842 };
2843
2844 struct kvm_device *kvm_device_from_filp(struct file *filp)
2845 {
2846         if (filp->f_op != &kvm_device_fops)
2847                 return NULL;
2848
2849         return filp->private_data;
2850 }
2851
2852 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2853 #ifdef CONFIG_KVM_MPIC
2854         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2855         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2856 #endif
2857 };
2858
2859 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2860 {
2861         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2862                 return -ENOSPC;
2863
2864         if (kvm_device_ops_table[type] != NULL)
2865                 return -EEXIST;
2866
2867         kvm_device_ops_table[type] = ops;
2868         return 0;
2869 }
2870
2871 void kvm_unregister_device_ops(u32 type)
2872 {
2873         if (kvm_device_ops_table[type] != NULL)
2874                 kvm_device_ops_table[type] = NULL;
2875 }
2876
2877 static int kvm_ioctl_create_device(struct kvm *kvm,
2878                                    struct kvm_create_device *cd)
2879 {
2880         struct kvm_device_ops *ops = NULL;
2881         struct kvm_device *dev;
2882         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2883         int ret;
2884
2885         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2886                 return -ENODEV;
2887
2888         ops = kvm_device_ops_table[cd->type];
2889         if (ops == NULL)
2890                 return -ENODEV;
2891
2892         if (test)
2893                 return 0;
2894
2895         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2896         if (!dev)
2897                 return -ENOMEM;
2898
2899         dev->ops = ops;
2900         dev->kvm = kvm;
2901
2902         mutex_lock(&kvm->lock);
2903         ret = ops->create(dev, cd->type);
2904         if (ret < 0) {
2905                 mutex_unlock(&kvm->lock);
2906                 kfree(dev);
2907                 return ret;
2908         }
2909         list_add(&dev->vm_node, &kvm->devices);
2910         mutex_unlock(&kvm->lock);
2911
2912         if (ops->init)
2913                 ops->init(dev);
2914
2915         kvm_get_kvm(kvm);
2916         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2917         if (ret < 0) {
2918                 kvm_put_kvm(kvm);
2919                 mutex_lock(&kvm->lock);
2920                 list_del(&dev->vm_node);
2921                 mutex_unlock(&kvm->lock);
2922                 ops->destroy(dev);
2923                 return ret;
2924         }
2925
2926         cd->fd = ret;
2927         return 0;
2928 }
2929
2930 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2931 {
2932         switch (arg) {
2933         case KVM_CAP_USER_MEMORY:
2934         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2935         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2936         case KVM_CAP_INTERNAL_ERROR_DATA:
2937 #ifdef CONFIG_HAVE_KVM_MSI
2938         case KVM_CAP_SIGNAL_MSI:
2939 #endif
2940 #ifdef CONFIG_HAVE_KVM_IRQFD
2941         case KVM_CAP_IRQFD:
2942         case KVM_CAP_IRQFD_RESAMPLE:
2943 #endif
2944         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2945         case KVM_CAP_CHECK_EXTENSION_VM:
2946                 return 1;
2947 #ifdef CONFIG_KVM_MMIO
2948         case KVM_CAP_COALESCED_MMIO:
2949                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2950 #endif
2951 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2952         case KVM_CAP_IRQ_ROUTING:
2953                 return KVM_MAX_IRQ_ROUTES;
2954 #endif
2955 #if KVM_ADDRESS_SPACE_NUM > 1
2956         case KVM_CAP_MULTI_ADDRESS_SPACE:
2957                 return KVM_ADDRESS_SPACE_NUM;
2958 #endif
2959         case KVM_CAP_MAX_VCPU_ID:
2960                 return KVM_MAX_VCPU_ID;
2961         default:
2962                 break;
2963         }
2964         return kvm_vm_ioctl_check_extension(kvm, arg);
2965 }
2966
2967 static long kvm_vm_ioctl(struct file *filp,
2968                            unsigned int ioctl, unsigned long arg)
2969 {
2970         struct kvm *kvm = filp->private_data;
2971         void __user *argp = (void __user *)arg;
2972         int r;
2973
2974         if (kvm->mm != current->mm)
2975                 return -EIO;
2976         switch (ioctl) {
2977         case KVM_CREATE_VCPU:
2978                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2979                 break;
2980         case KVM_SET_USER_MEMORY_REGION: {
2981                 struct kvm_userspace_memory_region kvm_userspace_mem;
2982
2983                 r = -EFAULT;
2984                 if (copy_from_user(&kvm_userspace_mem, argp,
2985                                                 sizeof(kvm_userspace_mem)))
2986                         goto out;
2987
2988                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2989                 break;
2990         }
2991         case KVM_GET_DIRTY_LOG: {
2992                 struct kvm_dirty_log log;
2993
2994                 r = -EFAULT;
2995                 if (copy_from_user(&log, argp, sizeof(log)))
2996                         goto out;
2997                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2998                 break;
2999         }
3000 #ifdef CONFIG_KVM_MMIO
3001         case KVM_REGISTER_COALESCED_MMIO: {
3002                 struct kvm_coalesced_mmio_zone zone;
3003
3004                 r = -EFAULT;
3005                 if (copy_from_user(&zone, argp, sizeof(zone)))
3006                         goto out;
3007                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3008                 break;
3009         }
3010         case KVM_UNREGISTER_COALESCED_MMIO: {
3011                 struct kvm_coalesced_mmio_zone zone;
3012
3013                 r = -EFAULT;
3014                 if (copy_from_user(&zone, argp, sizeof(zone)))
3015                         goto out;
3016                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3017                 break;
3018         }
3019 #endif
3020         case KVM_IRQFD: {
3021                 struct kvm_irqfd data;
3022
3023                 r = -EFAULT;
3024                 if (copy_from_user(&data, argp, sizeof(data)))
3025                         goto out;
3026                 r = kvm_irqfd(kvm, &data);
3027                 break;
3028         }
3029         case KVM_IOEVENTFD: {
3030                 struct kvm_ioeventfd data;
3031
3032                 r = -EFAULT;
3033                 if (copy_from_user(&data, argp, sizeof(data)))
3034                         goto out;
3035                 r = kvm_ioeventfd(kvm, &data);
3036                 break;
3037         }
3038 #ifdef CONFIG_HAVE_KVM_MSI
3039         case KVM_SIGNAL_MSI: {
3040                 struct kvm_msi msi;
3041
3042                 r = -EFAULT;
3043                 if (copy_from_user(&msi, argp, sizeof(msi)))
3044                         goto out;
3045                 r = kvm_send_userspace_msi(kvm, &msi);
3046                 break;
3047         }
3048 #endif
3049 #ifdef __KVM_HAVE_IRQ_LINE
3050         case KVM_IRQ_LINE_STATUS:
3051         case KVM_IRQ_LINE: {
3052                 struct kvm_irq_level irq_event;
3053
3054                 r = -EFAULT;
3055                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3056                         goto out;
3057
3058                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3059                                         ioctl == KVM_IRQ_LINE_STATUS);
3060                 if (r)
3061                         goto out;
3062
3063                 r = -EFAULT;
3064                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3065                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3066                                 goto out;
3067                 }
3068
3069                 r = 0;
3070                 break;
3071         }
3072 #endif
3073 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3074         case KVM_SET_GSI_ROUTING: {
3075                 struct kvm_irq_routing routing;
3076                 struct kvm_irq_routing __user *urouting;
3077                 struct kvm_irq_routing_entry *entries = NULL;
3078
3079                 r = -EFAULT;
3080                 if (copy_from_user(&routing, argp, sizeof(routing)))
3081                         goto out;
3082                 r = -EINVAL;
3083                 if (!kvm_arch_can_set_irq_routing(kvm))
3084                         goto out;
3085                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3086                         goto out;
3087                 if (routing.flags)
3088                         goto out;
3089                 if (routing.nr) {
3090                         r = -ENOMEM;
3091                         entries = vmalloc(routing.nr * sizeof(*entries));
3092                         if (!entries)
3093                                 goto out;
3094                         r = -EFAULT;
3095                         urouting = argp;
3096                         if (copy_from_user(entries, urouting->entries,
3097                                            routing.nr * sizeof(*entries)))
3098                                 goto out_free_irq_routing;
3099                 }
3100                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3101                                         routing.flags);
3102 out_free_irq_routing:
3103                 vfree(entries);
3104                 break;
3105         }
3106 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3107         case KVM_CREATE_DEVICE: {
3108                 struct kvm_create_device cd;
3109
3110                 r = -EFAULT;
3111                 if (copy_from_user(&cd, argp, sizeof(cd)))
3112                         goto out;
3113
3114                 r = kvm_ioctl_create_device(kvm, &cd);
3115                 if (r)
3116                         goto out;
3117
3118                 r = -EFAULT;
3119                 if (copy_to_user(argp, &cd, sizeof(cd)))
3120                         goto out;
3121
3122                 r = 0;
3123                 break;
3124         }
3125         case KVM_CHECK_EXTENSION:
3126                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3127                 break;
3128         default:
3129                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3130         }
3131 out:
3132         return r;
3133 }
3134
3135 #ifdef CONFIG_KVM_COMPAT
3136 struct compat_kvm_dirty_log {
3137         __u32 slot;
3138         __u32 padding1;
3139         union {
3140                 compat_uptr_t dirty_bitmap; /* one bit per page */
3141                 __u64 padding2;
3142         };
3143 };
3144
3145 static long kvm_vm_compat_ioctl(struct file *filp,
3146                            unsigned int ioctl, unsigned long arg)
3147 {
3148         struct kvm *kvm = filp->private_data;
3149         int r;
3150
3151         if (kvm->mm != current->mm)
3152                 return -EIO;
3153         switch (ioctl) {
3154         case KVM_GET_DIRTY_LOG: {
3155                 struct compat_kvm_dirty_log compat_log;
3156                 struct kvm_dirty_log log;
3157
3158                 if (copy_from_user(&compat_log, (void __user *)arg,
3159                                    sizeof(compat_log)))
3160                         return -EFAULT;
3161                 log.slot         = compat_log.slot;
3162                 log.padding1     = compat_log.padding1;
3163                 log.padding2     = compat_log.padding2;
3164                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3165
3166                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3167                 break;
3168         }
3169         default:
3170                 r = kvm_vm_ioctl(filp, ioctl, arg);
3171         }
3172         return r;
3173 }
3174 #endif
3175
3176 static struct file_operations kvm_vm_fops = {
3177         .release        = kvm_vm_release,
3178         .unlocked_ioctl = kvm_vm_ioctl,
3179 #ifdef CONFIG_KVM_COMPAT
3180         .compat_ioctl   = kvm_vm_compat_ioctl,
3181 #endif
3182         .llseek         = noop_llseek,
3183 };
3184
3185 static int kvm_dev_ioctl_create_vm(unsigned long type)
3186 {
3187         int r;
3188         struct kvm *kvm;
3189         struct file *file;
3190
3191         kvm = kvm_create_vm(type);
3192         if (IS_ERR(kvm))
3193                 return PTR_ERR(kvm);
3194 #ifdef CONFIG_KVM_MMIO
3195         r = kvm_coalesced_mmio_init(kvm);
3196         if (r < 0) {
3197                 kvm_put_kvm(kvm);
3198                 return r;
3199         }
3200 #endif
3201         r = get_unused_fd_flags(O_CLOEXEC);
3202         if (r < 0) {
3203                 kvm_put_kvm(kvm);
3204                 return r;
3205         }
3206         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3207         if (IS_ERR(file)) {
3208                 put_unused_fd(r);
3209                 kvm_put_kvm(kvm);
3210                 return PTR_ERR(file);
3211         }
3212
3213         /*
3214          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3215          * already set, with ->release() being kvm_vm_release().  In error
3216          * cases it will be called by the final fput(file) and will take
3217          * care of doing kvm_put_kvm(kvm).
3218          */
3219         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3220                 put_unused_fd(r);
3221                 fput(file);
3222                 return -ENOMEM;
3223         }
3224         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3225
3226         fd_install(r, file);
3227         return r;
3228 }
3229
3230 static long kvm_dev_ioctl(struct file *filp,
3231                           unsigned int ioctl, unsigned long arg)
3232 {
3233         long r = -EINVAL;
3234
3235         switch (ioctl) {
3236         case KVM_GET_API_VERSION:
3237                 if (arg)
3238                         goto out;
3239                 r = KVM_API_VERSION;
3240                 break;
3241         case KVM_CREATE_VM:
3242                 r = kvm_dev_ioctl_create_vm(arg);
3243                 break;
3244         case KVM_CHECK_EXTENSION:
3245                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3246                 break;
3247         case KVM_GET_VCPU_MMAP_SIZE:
3248                 if (arg)
3249                         goto out;
3250                 r = PAGE_SIZE;     /* struct kvm_run */
3251 #ifdef CONFIG_X86
3252                 r += PAGE_SIZE;    /* pio data page */
3253 #endif
3254 #ifdef CONFIG_KVM_MMIO
3255                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3256 #endif
3257                 break;
3258         case KVM_TRACE_ENABLE:
3259         case KVM_TRACE_PAUSE:
3260         case KVM_TRACE_DISABLE:
3261                 r = -EOPNOTSUPP;
3262                 break;
3263         default:
3264                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3265         }
3266 out:
3267         return r;
3268 }
3269
3270 static struct file_operations kvm_chardev_ops = {
3271         .unlocked_ioctl = kvm_dev_ioctl,
3272         .compat_ioctl   = kvm_dev_ioctl,
3273         .llseek         = noop_llseek,
3274 };
3275
3276 static struct miscdevice kvm_dev = {
3277         KVM_MINOR,
3278         "kvm",
3279         &kvm_chardev_ops,
3280 };
3281
3282 static void hardware_enable_nolock(void *junk)
3283 {
3284         int cpu = raw_smp_processor_id();
3285         int r;
3286
3287         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3288                 return;
3289
3290         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3291
3292         r = kvm_arch_hardware_enable();
3293
3294         if (r) {
3295                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3296                 atomic_inc(&hardware_enable_failed);
3297                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3298         }
3299 }
3300
3301 static int kvm_starting_cpu(unsigned int cpu)
3302 {
3303         raw_spin_lock(&kvm_count_lock);
3304         if (kvm_usage_count)
3305                 hardware_enable_nolock(NULL);
3306         raw_spin_unlock(&kvm_count_lock);
3307         return 0;
3308 }
3309
3310 static void hardware_disable_nolock(void *junk)
3311 {
3312         int cpu = raw_smp_processor_id();
3313
3314         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3315                 return;
3316         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3317         kvm_arch_hardware_disable();
3318 }
3319
3320 static int kvm_dying_cpu(unsigned int cpu)
3321 {
3322         raw_spin_lock(&kvm_count_lock);
3323         if (kvm_usage_count)
3324                 hardware_disable_nolock(NULL);
3325         raw_spin_unlock(&kvm_count_lock);
3326         return 0;
3327 }
3328
3329 static void hardware_disable_all_nolock(void)
3330 {
3331         BUG_ON(!kvm_usage_count);
3332
3333         kvm_usage_count--;
3334         if (!kvm_usage_count)
3335                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3336 }
3337
3338 static void hardware_disable_all(void)
3339 {
3340         raw_spin_lock(&kvm_count_lock);
3341         hardware_disable_all_nolock();
3342         raw_spin_unlock(&kvm_count_lock);
3343 }
3344
3345 static int hardware_enable_all(void)
3346 {
3347         int r = 0;
3348
3349         raw_spin_lock(&kvm_count_lock);
3350
3351         kvm_usage_count++;
3352         if (kvm_usage_count == 1) {
3353                 atomic_set(&hardware_enable_failed, 0);
3354                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3355
3356                 if (atomic_read(&hardware_enable_failed)) {
3357                         hardware_disable_all_nolock();
3358                         r = -EBUSY;
3359                 }
3360         }
3361
3362         raw_spin_unlock(&kvm_count_lock);
3363
3364         return r;
3365 }
3366
3367 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3368                       void *v)
3369 {
3370         /*
3371          * Some (well, at least mine) BIOSes hang on reboot if
3372          * in vmx root mode.
3373          *
3374          * And Intel TXT required VMX off for all cpu when system shutdown.
3375          */
3376         pr_info("kvm: exiting hardware virtualization\n");
3377         kvm_rebooting = true;
3378         on_each_cpu(hardware_disable_nolock, NULL, 1);
3379         return NOTIFY_OK;
3380 }
3381
3382 static struct notifier_block kvm_reboot_notifier = {
3383         .notifier_call = kvm_reboot,
3384         .priority = 0,
3385 };
3386
3387 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3388 {
3389         int i;
3390
3391         for (i = 0; i < bus->dev_count; i++) {
3392                 struct kvm_io_device *pos = bus->range[i].dev;
3393
3394                 kvm_iodevice_destructor(pos);
3395         }
3396         kfree(bus);
3397 }
3398
3399 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3400                                  const struct kvm_io_range *r2)
3401 {
3402         gpa_t addr1 = r1->addr;
3403         gpa_t addr2 = r2->addr;
3404
3405         if (addr1 < addr2)
3406                 return -1;
3407
3408         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3409          * accept any overlapping write.  Any order is acceptable for
3410          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3411          * we process all of them.
3412          */
3413         if (r2->len) {
3414                 addr1 += r1->len;
3415                 addr2 += r2->len;
3416         }
3417
3418         if (addr1 > addr2)
3419                 return 1;
3420
3421         return 0;
3422 }
3423
3424 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3425 {
3426         return kvm_io_bus_cmp(p1, p2);
3427 }
3428
3429 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3430                           gpa_t addr, int len)
3431 {
3432         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3433                 .addr = addr,
3434                 .len = len,
3435                 .dev = dev,
3436         };
3437
3438         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3439                 kvm_io_bus_sort_cmp, NULL);
3440
3441         return 0;
3442 }
3443
3444 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3445                              gpa_t addr, int len)
3446 {
3447         struct kvm_io_range *range, key;
3448         int off;
3449
3450         key = (struct kvm_io_range) {
3451                 .addr = addr,
3452                 .len = len,
3453         };
3454
3455         range = bsearch(&key, bus->range, bus->dev_count,
3456                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3457         if (range == NULL)
3458                 return -ENOENT;
3459
3460         off = range - bus->range;
3461
3462         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3463                 off--;
3464
3465         return off;
3466 }
3467
3468 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3469                               struct kvm_io_range *range, const void *val)
3470 {
3471         int idx;
3472
3473         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3474         if (idx < 0)
3475                 return -EOPNOTSUPP;
3476
3477         while (idx < bus->dev_count &&
3478                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3479                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3480                                         range->len, val))
3481                         return idx;
3482                 idx++;
3483         }
3484
3485         return -EOPNOTSUPP;
3486 }
3487
3488 /* kvm_io_bus_write - called under kvm->slots_lock */
3489 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3490                      int len, const void *val)
3491 {
3492         struct kvm_io_bus *bus;
3493         struct kvm_io_range range;
3494         int r;
3495
3496         range = (struct kvm_io_range) {
3497                 .addr = addr,
3498                 .len = len,
3499         };
3500
3501         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3502         if (!bus)
3503                 return -ENOMEM;
3504         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3505         return r < 0 ? r : 0;
3506 }
3507
3508 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3509 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3510                             gpa_t addr, int len, const void *val, long cookie)
3511 {
3512         struct kvm_io_bus *bus;
3513         struct kvm_io_range range;
3514
3515         range = (struct kvm_io_range) {
3516                 .addr = addr,
3517                 .len = len,
3518         };
3519
3520         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3521         if (!bus)
3522                 return -ENOMEM;
3523
3524         /* First try the device referenced by cookie. */
3525         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3526             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3527                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3528                                         val))
3529                         return cookie;
3530
3531         /*
3532          * cookie contained garbage; fall back to search and return the
3533          * correct cookie value.
3534          */
3535         return __kvm_io_bus_write(vcpu, bus, &range, val);
3536 }
3537
3538 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3539                              struct kvm_io_range *range, void *val)
3540 {
3541         int idx;
3542
3543         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3544         if (idx < 0)
3545                 return -EOPNOTSUPP;
3546
3547         while (idx < bus->dev_count &&
3548                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3549                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3550                                        range->len, val))
3551                         return idx;
3552                 idx++;
3553         }
3554
3555         return -EOPNOTSUPP;
3556 }
3557 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3558
3559 /* kvm_io_bus_read - called under kvm->slots_lock */
3560 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3561                     int len, void *val)
3562 {
3563         struct kvm_io_bus *bus;
3564         struct kvm_io_range range;
3565         int r;
3566
3567         range = (struct kvm_io_range) {
3568                 .addr = addr,
3569                 .len = len,
3570         };
3571
3572         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3573         if (!bus)
3574                 return -ENOMEM;
3575         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3576         return r < 0 ? r : 0;
3577 }
3578
3579
3580 /* Caller must hold slots_lock. */
3581 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3582                             int len, struct kvm_io_device *dev)
3583 {
3584         struct kvm_io_bus *new_bus, *bus;
3585
3586         bus = kvm_get_bus(kvm, bus_idx);
3587         if (!bus)
3588                 return -ENOMEM;
3589
3590         /* exclude ioeventfd which is limited by maximum fd */
3591         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3592                 return -ENOSPC;
3593
3594         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3595                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3596         if (!new_bus)
3597                 return -ENOMEM;
3598         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3599                sizeof(struct kvm_io_range)));
3600         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3601         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3602         synchronize_srcu_expedited(&kvm->srcu);
3603         kfree(bus);
3604
3605         return 0;
3606 }
3607
3608 /* Caller must hold slots_lock. */
3609 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3610                                struct kvm_io_device *dev)
3611 {
3612         int i;
3613         struct kvm_io_bus *new_bus, *bus;
3614
3615         bus = kvm_get_bus(kvm, bus_idx);
3616         if (!bus)
3617                 return;
3618
3619         for (i = 0; i < bus->dev_count; i++)
3620                 if (bus->range[i].dev == dev) {
3621                         break;
3622                 }
3623
3624         if (i == bus->dev_count)
3625                 return;
3626
3627         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3628                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3629         if (!new_bus)  {
3630                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3631                 goto broken;
3632         }
3633
3634         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3635         new_bus->dev_count--;
3636         memcpy(new_bus->range + i, bus->range + i + 1,
3637                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3638
3639 broken:
3640         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3641         synchronize_srcu_expedited(&kvm->srcu);
3642         kfree(bus);
3643         return;
3644 }
3645
3646 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3647                                          gpa_t addr)
3648 {
3649         struct kvm_io_bus *bus;
3650         int dev_idx, srcu_idx;
3651         struct kvm_io_device *iodev = NULL;
3652
3653         srcu_idx = srcu_read_lock(&kvm->srcu);
3654
3655         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3656         if (!bus)
3657                 goto out_unlock;
3658
3659         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3660         if (dev_idx < 0)
3661                 goto out_unlock;
3662
3663         iodev = bus->range[dev_idx].dev;
3664
3665 out_unlock:
3666         srcu_read_unlock(&kvm->srcu, srcu_idx);
3667
3668         return iodev;
3669 }
3670 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3671
3672 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3673                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3674                            const char *fmt)
3675 {
3676         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3677                                           inode->i_private;
3678
3679         /* The debugfs files are a reference to the kvm struct which
3680          * is still valid when kvm_destroy_vm is called.
3681          * To avoid the race between open and the removal of the debugfs
3682          * directory we test against the users count.
3683          */
3684         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3685                 return -ENOENT;
3686
3687         if (simple_attr_open(inode, file, get, set, fmt)) {
3688                 kvm_put_kvm(stat_data->kvm);
3689                 return -ENOMEM;
3690         }
3691
3692         return 0;
3693 }
3694
3695 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3696 {
3697         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3698                                           inode->i_private;
3699
3700         simple_attr_release(inode, file);
3701         kvm_put_kvm(stat_data->kvm);
3702
3703         return 0;
3704 }
3705
3706 static int vm_stat_get_per_vm(void *data, u64 *val)
3707 {
3708         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3709
3710         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3711
3712         return 0;
3713 }
3714
3715 static int vm_stat_clear_per_vm(void *data, u64 val)
3716 {
3717         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3718
3719         if (val)
3720                 return -EINVAL;
3721
3722         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3723
3724         return 0;
3725 }
3726
3727 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3728 {
3729         __simple_attr_check_format("%llu\n", 0ull);
3730         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3731                                 vm_stat_clear_per_vm, "%llu\n");
3732 }
3733
3734 static const struct file_operations vm_stat_get_per_vm_fops = {
3735         .owner   = THIS_MODULE,
3736         .open    = vm_stat_get_per_vm_open,
3737         .release = kvm_debugfs_release,
3738         .read    = simple_attr_read,
3739         .write   = simple_attr_write,
3740         .llseek  = no_llseek,
3741 };
3742
3743 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3744 {
3745         int i;
3746         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3747         struct kvm_vcpu *vcpu;
3748
3749         *val = 0;
3750
3751         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3752                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3753
3754         return 0;
3755 }
3756
3757 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3758 {
3759         int i;
3760         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3761         struct kvm_vcpu *vcpu;
3762
3763         if (val)
3764                 return -EINVAL;
3765
3766         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3767                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3768
3769         return 0;
3770 }
3771
3772 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3773 {
3774         __simple_attr_check_format("%llu\n", 0ull);
3775         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3776                                  vcpu_stat_clear_per_vm, "%llu\n");
3777 }
3778
3779 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3780         .owner   = THIS_MODULE,
3781         .open    = vcpu_stat_get_per_vm_open,
3782         .release = kvm_debugfs_release,
3783         .read    = simple_attr_read,
3784         .write   = simple_attr_write,
3785         .llseek  = no_llseek,
3786 };
3787
3788 static const struct file_operations *stat_fops_per_vm[] = {
3789         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3790         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3791 };
3792
3793 static int vm_stat_get(void *_offset, u64 *val)
3794 {
3795         unsigned offset = (long)_offset;
3796         struct kvm *kvm;
3797         struct kvm_stat_data stat_tmp = {.offset = offset};
3798         u64 tmp_val;
3799
3800         *val = 0;
3801         spin_lock(&kvm_lock);
3802         list_for_each_entry(kvm, &vm_list, vm_list) {
3803                 stat_tmp.kvm = kvm;
3804                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3805                 *val += tmp_val;
3806         }
3807         spin_unlock(&kvm_lock);
3808         return 0;
3809 }
3810
3811 static int vm_stat_clear(void *_offset, u64 val)
3812 {
3813         unsigned offset = (long)_offset;
3814         struct kvm *kvm;
3815         struct kvm_stat_data stat_tmp = {.offset = offset};
3816
3817         if (val)
3818                 return -EINVAL;
3819
3820         spin_lock(&kvm_lock);
3821         list_for_each_entry(kvm, &vm_list, vm_list) {
3822                 stat_tmp.kvm = kvm;
3823                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3824         }
3825         spin_unlock(&kvm_lock);
3826
3827         return 0;
3828 }
3829
3830 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3831
3832 static int vcpu_stat_get(void *_offset, u64 *val)
3833 {
3834         unsigned offset = (long)_offset;
3835         struct kvm *kvm;
3836         struct kvm_stat_data stat_tmp = {.offset = offset};
3837         u64 tmp_val;
3838
3839         *val = 0;
3840         spin_lock(&kvm_lock);
3841         list_for_each_entry(kvm, &vm_list, vm_list) {
3842                 stat_tmp.kvm = kvm;
3843                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3844                 *val += tmp_val;
3845         }
3846         spin_unlock(&kvm_lock);
3847         return 0;
3848 }
3849
3850 static int vcpu_stat_clear(void *_offset, u64 val)
3851 {
3852         unsigned offset = (long)_offset;
3853         struct kvm *kvm;
3854         struct kvm_stat_data stat_tmp = {.offset = offset};
3855
3856         if (val)
3857                 return -EINVAL;
3858
3859         spin_lock(&kvm_lock);
3860         list_for_each_entry(kvm, &vm_list, vm_list) {
3861                 stat_tmp.kvm = kvm;
3862                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3863         }
3864         spin_unlock(&kvm_lock);
3865
3866         return 0;
3867 }
3868
3869 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3870                         "%llu\n");
3871
3872 static const struct file_operations *stat_fops[] = {
3873         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3874         [KVM_STAT_VM]   = &vm_stat_fops,
3875 };
3876
3877 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3878 {
3879         struct kobj_uevent_env *env;
3880         unsigned long long created, active;
3881
3882         if (!kvm_dev.this_device || !kvm)
3883                 return;
3884
3885         spin_lock(&kvm_lock);
3886         if (type == KVM_EVENT_CREATE_VM) {
3887                 kvm_createvm_count++;
3888                 kvm_active_vms++;
3889         } else if (type == KVM_EVENT_DESTROY_VM) {
3890                 kvm_active_vms--;
3891         }
3892         created = kvm_createvm_count;
3893         active = kvm_active_vms;
3894         spin_unlock(&kvm_lock);
3895
3896         env = kzalloc(sizeof(*env), GFP_KERNEL);
3897         if (!env)
3898                 return;
3899
3900         add_uevent_var(env, "CREATED=%llu", created);
3901         add_uevent_var(env, "COUNT=%llu", active);
3902
3903         if (type == KVM_EVENT_CREATE_VM) {
3904                 add_uevent_var(env, "EVENT=create");
3905                 kvm->userspace_pid = task_pid_nr(current);
3906         } else if (type == KVM_EVENT_DESTROY_VM) {
3907                 add_uevent_var(env, "EVENT=destroy");
3908         }
3909         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3910
3911         if (kvm->debugfs_dentry) {
3912                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3913
3914                 if (p) {
3915                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3916                         if (!IS_ERR(tmp))
3917                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3918                         kfree(p);
3919                 }
3920         }
3921         /* no need for checks, since we are adding at most only 5 keys */
3922         env->envp[env->envp_idx++] = NULL;
3923         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3924         kfree(env);
3925 }
3926
3927 static int kvm_init_debug(void)
3928 {
3929         int r = -EEXIST;
3930         struct kvm_stats_debugfs_item *p;
3931
3932         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3933         if (kvm_debugfs_dir == NULL)
3934                 goto out;
3935
3936         kvm_debugfs_num_entries = 0;
3937         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3938                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3939                                          (void *)(long)p->offset,
3940                                          stat_fops[p->kind]))
3941                         goto out_dir;
3942         }
3943
3944         return 0;
3945
3946 out_dir:
3947         debugfs_remove_recursive(kvm_debugfs_dir);
3948 out:
3949         return r;
3950 }
3951
3952 static int kvm_suspend(void)
3953 {
3954         if (kvm_usage_count)
3955                 hardware_disable_nolock(NULL);
3956         return 0;
3957 }
3958
3959 static void kvm_resume(void)
3960 {
3961         if (kvm_usage_count) {
3962                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3963                 hardware_enable_nolock(NULL);
3964         }
3965 }
3966
3967 static struct syscore_ops kvm_syscore_ops = {
3968         .suspend = kvm_suspend,
3969         .resume = kvm_resume,
3970 };
3971
3972 static inline
3973 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3974 {
3975         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3976 }
3977
3978 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3979 {
3980         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3981
3982         if (vcpu->preempted)
3983                 vcpu->preempted = false;
3984
3985         kvm_arch_sched_in(vcpu, cpu);
3986
3987         kvm_arch_vcpu_load(vcpu, cpu);
3988 }
3989
3990 static void kvm_sched_out(struct preempt_notifier *pn,
3991                           struct task_struct *next)
3992 {
3993         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3994
3995         if (current->state == TASK_RUNNING)
3996                 vcpu->preempted = true;
3997         kvm_arch_vcpu_put(vcpu);
3998 }
3999
4000 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4001                   struct module *module)
4002 {
4003         int r;
4004         int cpu;
4005
4006         r = kvm_arch_init(opaque);
4007         if (r)
4008                 goto out_fail;
4009
4010         /*
4011          * kvm_arch_init makes sure there's at most one caller
4012          * for architectures that support multiple implementations,
4013          * like intel and amd on x86.
4014          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4015          * conflicts in case kvm is already setup for another implementation.
4016          */
4017         r = kvm_irqfd_init();
4018         if (r)
4019                 goto out_irqfd;
4020
4021         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4022                 r = -ENOMEM;
4023                 goto out_free_0;
4024         }
4025
4026         r = kvm_arch_hardware_setup();
4027         if (r < 0)
4028                 goto out_free_0a;
4029
4030         for_each_online_cpu(cpu) {
4031                 smp_call_function_single(cpu,
4032                                 kvm_arch_check_processor_compat,
4033                                 &r, 1);
4034                 if (r < 0)
4035                         goto out_free_1;
4036         }
4037
4038         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4039                                       kvm_starting_cpu, kvm_dying_cpu);
4040         if (r)
4041                 goto out_free_2;
4042         register_reboot_notifier(&kvm_reboot_notifier);
4043
4044         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4045         if (!vcpu_align)
4046                 vcpu_align = __alignof__(struct kvm_vcpu);
4047         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4048                                            SLAB_ACCOUNT, NULL);
4049         if (!kvm_vcpu_cache) {
4050                 r = -ENOMEM;
4051                 goto out_free_3;
4052         }
4053
4054         r = kvm_async_pf_init();
4055         if (r)
4056                 goto out_free;
4057
4058         kvm_chardev_ops.owner = module;
4059         kvm_vm_fops.owner = module;
4060         kvm_vcpu_fops.owner = module;
4061
4062         r = misc_register(&kvm_dev);
4063         if (r) {
4064                 pr_err("kvm: misc device register failed\n");
4065                 goto out_unreg;
4066         }
4067
4068         register_syscore_ops(&kvm_syscore_ops);
4069
4070         kvm_preempt_ops.sched_in = kvm_sched_in;
4071         kvm_preempt_ops.sched_out = kvm_sched_out;
4072
4073         r = kvm_init_debug();
4074         if (r) {
4075                 pr_err("kvm: create debugfs files failed\n");
4076                 goto out_undebugfs;
4077         }
4078
4079         r = kvm_vfio_ops_init();
4080         WARN_ON(r);
4081
4082         return 0;
4083
4084 out_undebugfs:
4085         unregister_syscore_ops(&kvm_syscore_ops);
4086         misc_deregister(&kvm_dev);
4087 out_unreg:
4088         kvm_async_pf_deinit();
4089 out_free:
4090         kmem_cache_destroy(kvm_vcpu_cache);
4091 out_free_3:
4092         unregister_reboot_notifier(&kvm_reboot_notifier);
4093         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4094 out_free_2:
4095 out_free_1:
4096         kvm_arch_hardware_unsetup();
4097 out_free_0a:
4098         free_cpumask_var(cpus_hardware_enabled);
4099 out_free_0:
4100         kvm_irqfd_exit();
4101 out_irqfd:
4102         kvm_arch_exit();
4103 out_fail:
4104         return r;
4105 }
4106 EXPORT_SYMBOL_GPL(kvm_init);
4107
4108 void kvm_exit(void)
4109 {
4110         debugfs_remove_recursive(kvm_debugfs_dir);
4111         misc_deregister(&kvm_dev);
4112         kmem_cache_destroy(kvm_vcpu_cache);
4113         kvm_async_pf_deinit();
4114         unregister_syscore_ops(&kvm_syscore_ops);
4115         unregister_reboot_notifier(&kvm_reboot_notifier);
4116         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4117         on_each_cpu(hardware_disable_nolock, NULL, 1);
4118         kvm_arch_hardware_unsetup();
4119         kvm_arch_exit();
4120         kvm_irqfd_exit();
4121         free_cpumask_var(cpus_hardware_enabled);
4122         kvm_vfio_ops_exit();
4123 }
4124 EXPORT_SYMBOL_GPL(kvm_exit);