1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <kvm/iodev.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
60 #include "coalesced_mmio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 #include <linux/kvm_dirty_ring.h>
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
110 static struct kmem_cache *kvm_vcpu_cache;
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
118 static const struct file_operations stat_fops_per_vm;
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
125 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
139 return is_compat_task() ? -ENODEV : 0;
141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 unsigned long start, unsigned long end)
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 * The metadata used by is_zone_device_page() to determine whether or
167 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 * the device has been pinned, e.g. by get_user_pages(). WARN if the
169 * page_count() is zero to help detect bad usage of this helper.
171 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174 return is_zone_device_page(pfn_to_page(pfn));
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 * perspective they are "normal" pages, albeit with slightly different
185 return PageReserved(pfn_to_page(pfn)) &&
187 !kvm_is_zone_device_pfn(pfn);
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 struct page *page = pfn_to_page(pfn);
196 if (!PageTransCompoundMap(page))
199 return is_transparent_hugepage(compound_head(page));
203 * Switches to specified vcpu, until a matching vcpu_put()
205 void vcpu_load(struct kvm_vcpu *vcpu)
209 __this_cpu_write(kvm_running_vcpu, vcpu);
210 preempt_notifier_register(&vcpu->preempt_notifier);
211 kvm_arch_vcpu_load(vcpu, cpu);
214 EXPORT_SYMBOL_GPL(vcpu_load);
216 void vcpu_put(struct kvm_vcpu *vcpu)
219 kvm_arch_vcpu_put(vcpu);
220 preempt_notifier_unregister(&vcpu->preempt_notifier);
221 __this_cpu_write(kvm_running_vcpu, NULL);
224 EXPORT_SYMBOL_GPL(vcpu_put);
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
232 * We need to wait for the VCPU to reenable interrupts and get out of
233 * READING_SHADOW_PAGE_TABLES mode.
235 if (req & KVM_REQUEST_WAIT)
236 return mode != OUTSIDE_GUEST_MODE;
239 * Need to kick a running VCPU, but otherwise there is nothing to do.
241 return mode == IN_GUEST_MODE;
244 static void ack_flush(void *_completed)
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
251 cpus = cpu_online_mask;
253 if (cpumask_empty(cpus))
256 smp_call_function_many(cpus, ack_flush, NULL, wait);
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261 struct kvm_vcpu *except,
262 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
265 struct kvm_vcpu *vcpu;
270 kvm_for_each_vcpu(i, vcpu, kvm) {
271 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
275 kvm_make_request(req, vcpu);
278 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281 if (tmp != NULL && cpu != -1 && cpu != me &&
282 kvm_request_needs_ipi(vcpu, req))
283 __cpumask_set_cpu(cpu, tmp);
286 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293 struct kvm_vcpu *except)
298 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
300 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
302 free_cpumask_var(cpus);
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
308 return kvm_make_all_cpus_request_except(kvm, req, NULL);
310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
316 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317 * kvm_make_all_cpus_request.
319 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
322 * We want to publish modifications to the page tables before reading
323 * mode. Pairs with a memory barrier in arch-specific code.
324 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325 * and smp_mb in walk_shadow_page_lockless_begin/end.
326 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
328 * There is already an smp_mb__after_atomic() before
329 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
332 if (!kvm_arch_flush_remote_tlb(kvm)
333 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334 ++kvm->stat.generic.remote_tlb_flush;
335 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
340 void kvm_reload_remote_mmus(struct kvm *kvm)
342 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
349 gfp_flags |= mc->gfp_zero;
352 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
354 return (void *)__get_free_page(gfp_flags);
357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
361 if (mc->nobjs >= min)
363 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
364 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
366 return mc->nobjs >= min ? 0 : -ENOMEM;
367 mc->objects[mc->nobjs++] = obj;
372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
381 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
383 free_page((unsigned long)mc->objects[--mc->nobjs]);
387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
391 if (WARN_ON(!mc->nobjs))
392 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
394 p = mc->objects[--mc->nobjs];
400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
402 mutex_init(&vcpu->mutex);
407 rcuwait_init(&vcpu->wait);
408 kvm_async_pf_vcpu_init(vcpu);
411 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
413 kvm_vcpu_set_in_spin_loop(vcpu, false);
414 kvm_vcpu_set_dy_eligible(vcpu, false);
415 vcpu->preempted = false;
417 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
422 kvm_dirty_ring_free(&vcpu->dirty_ring);
423 kvm_arch_vcpu_destroy(vcpu);
426 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
427 * the vcpu->pid pointer, and at destruction time all file descriptors
430 put_pid(rcu_dereference_protected(vcpu->pid, 1));
432 free_page((unsigned long)vcpu->run);
433 kmem_cache_free(kvm_vcpu_cache, vcpu);
435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
440 return container_of(mn, struct kvm, mmu_notifier);
443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
444 struct mm_struct *mm,
445 unsigned long start, unsigned long end)
447 struct kvm *kvm = mmu_notifier_to_kvm(mn);
450 idx = srcu_read_lock(&kvm->srcu);
451 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
452 srcu_read_unlock(&kvm->srcu, idx);
455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
460 struct kvm_hva_range {
464 hva_handler_t handler;
465 on_lock_fn_t on_lock;
471 * Use a dedicated stub instead of NULL to indicate that there is no callback
472 * function/handler. The compiler technically can't guarantee that a real
473 * function will have a non-zero address, and so it will generate code to
474 * check for !NULL, whereas comparing against a stub will be elided at compile
475 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
477 static void kvm_null_fn(void)
481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
484 const struct kvm_hva_range *range)
486 bool ret = false, locked = false;
487 struct kvm_gfn_range gfn_range;
488 struct kvm_memory_slot *slot;
489 struct kvm_memslots *slots;
492 /* A null handler is allowed if and only if on_lock() is provided. */
493 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
494 IS_KVM_NULL_FN(range->handler)))
497 idx = srcu_read_lock(&kvm->srcu);
499 /* The on_lock() path does not yet support lock elision. */
500 if (!IS_KVM_NULL_FN(range->on_lock)) {
504 range->on_lock(kvm, range->start, range->end);
506 if (IS_KVM_NULL_FN(range->handler))
510 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
511 slots = __kvm_memslots(kvm, i);
512 kvm_for_each_memslot(slot, slots) {
513 unsigned long hva_start, hva_end;
515 hva_start = max(range->start, slot->userspace_addr);
516 hva_end = min(range->end, slot->userspace_addr +
517 (slot->npages << PAGE_SHIFT));
518 if (hva_start >= hva_end)
522 * To optimize for the likely case where the address
523 * range is covered by zero or one memslots, don't
524 * bother making these conditional (to avoid writes on
525 * the second or later invocation of the handler).
527 gfn_range.pte = range->pte;
528 gfn_range.may_block = range->may_block;
531 * {gfn(page) | page intersects with [hva_start, hva_end)} =
532 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
534 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
535 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
536 gfn_range.slot = slot;
542 ret |= range->handler(kvm, &gfn_range);
546 if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
547 kvm_flush_remote_tlbs(kvm);
553 srcu_read_unlock(&kvm->srcu, idx);
555 /* The notifiers are averse to booleans. :-( */
559 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
563 hva_handler_t handler)
565 struct kvm *kvm = mmu_notifier_to_kvm(mn);
566 const struct kvm_hva_range range = {
571 .on_lock = (void *)kvm_null_fn,
572 .flush_on_ret = true,
576 return __kvm_handle_hva_range(kvm, &range);
579 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
582 hva_handler_t handler)
584 struct kvm *kvm = mmu_notifier_to_kvm(mn);
585 const struct kvm_hva_range range = {
590 .on_lock = (void *)kvm_null_fn,
591 .flush_on_ret = false,
595 return __kvm_handle_hva_range(kvm, &range);
597 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
598 struct mm_struct *mm,
599 unsigned long address,
602 struct kvm *kvm = mmu_notifier_to_kvm(mn);
604 trace_kvm_set_spte_hva(address);
607 * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
608 * and so always runs with an elevated notifier count. This obviates
609 * the need to bump the sequence count.
611 WARN_ON_ONCE(!kvm->mmu_notifier_count);
613 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
616 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
620 * The count increase must become visible at unlock time as no
621 * spte can be established without taking the mmu_lock and
622 * count is also read inside the mmu_lock critical section.
624 kvm->mmu_notifier_count++;
625 if (likely(kvm->mmu_notifier_count == 1)) {
626 kvm->mmu_notifier_range_start = start;
627 kvm->mmu_notifier_range_end = end;
630 * Fully tracking multiple concurrent ranges has dimishing
631 * returns. Keep things simple and just find the minimal range
632 * which includes the current and new ranges. As there won't be
633 * enough information to subtract a range after its invalidate
634 * completes, any ranges invalidated concurrently will
635 * accumulate and persist until all outstanding invalidates
638 kvm->mmu_notifier_range_start =
639 min(kvm->mmu_notifier_range_start, start);
640 kvm->mmu_notifier_range_end =
641 max(kvm->mmu_notifier_range_end, end);
645 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
646 const struct mmu_notifier_range *range)
648 struct kvm *kvm = mmu_notifier_to_kvm(mn);
649 const struct kvm_hva_range hva_range = {
650 .start = range->start,
653 .handler = kvm_unmap_gfn_range,
654 .on_lock = kvm_inc_notifier_count,
655 .flush_on_ret = true,
656 .may_block = mmu_notifier_range_blockable(range),
659 trace_kvm_unmap_hva_range(range->start, range->end);
661 __kvm_handle_hva_range(kvm, &hva_range);
666 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
670 * This sequence increase will notify the kvm page fault that
671 * the page that is going to be mapped in the spte could have
674 kvm->mmu_notifier_seq++;
677 * The above sequence increase must be visible before the
678 * below count decrease, which is ensured by the smp_wmb above
679 * in conjunction with the smp_rmb in mmu_notifier_retry().
681 kvm->mmu_notifier_count--;
684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
685 const struct mmu_notifier_range *range)
687 struct kvm *kvm = mmu_notifier_to_kvm(mn);
688 const struct kvm_hva_range hva_range = {
689 .start = range->start,
692 .handler = (void *)kvm_null_fn,
693 .on_lock = kvm_dec_notifier_count,
694 .flush_on_ret = false,
695 .may_block = mmu_notifier_range_blockable(range),
698 __kvm_handle_hva_range(kvm, &hva_range);
700 BUG_ON(kvm->mmu_notifier_count < 0);
703 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
704 struct mm_struct *mm,
708 trace_kvm_age_hva(start, end);
710 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
713 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
714 struct mm_struct *mm,
718 trace_kvm_age_hva(start, end);
721 * Even though we do not flush TLB, this will still adversely
722 * affect performance on pre-Haswell Intel EPT, where there is
723 * no EPT Access Bit to clear so that we have to tear down EPT
724 * tables instead. If we find this unacceptable, we can always
725 * add a parameter to kvm_age_hva so that it effectively doesn't
726 * do anything on clear_young.
728 * Also note that currently we never issue secondary TLB flushes
729 * from clear_young, leaving this job up to the regular system
730 * cadence. If we find this inaccurate, we might come up with a
731 * more sophisticated heuristic later.
733 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
736 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
737 struct mm_struct *mm,
738 unsigned long address)
740 trace_kvm_test_age_hva(address);
742 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
746 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
747 struct mm_struct *mm)
749 struct kvm *kvm = mmu_notifier_to_kvm(mn);
752 idx = srcu_read_lock(&kvm->srcu);
753 kvm_arch_flush_shadow_all(kvm);
754 srcu_read_unlock(&kvm->srcu, idx);
757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
758 .invalidate_range = kvm_mmu_notifier_invalidate_range,
759 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
760 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
761 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
762 .clear_young = kvm_mmu_notifier_clear_young,
763 .test_young = kvm_mmu_notifier_test_young,
764 .change_pte = kvm_mmu_notifier_change_pte,
765 .release = kvm_mmu_notifier_release,
768 static int kvm_init_mmu_notifier(struct kvm *kvm)
770 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
771 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
774 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
776 static int kvm_init_mmu_notifier(struct kvm *kvm)
781 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
783 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
784 static int kvm_pm_notifier_call(struct notifier_block *bl,
788 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
790 return kvm_arch_pm_notifier(kvm, state);
793 static void kvm_init_pm_notifier(struct kvm *kvm)
795 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
796 /* Suspend KVM before we suspend ftrace, RCU, etc. */
797 kvm->pm_notifier.priority = INT_MAX;
798 register_pm_notifier(&kvm->pm_notifier);
801 static void kvm_destroy_pm_notifier(struct kvm *kvm)
803 unregister_pm_notifier(&kvm->pm_notifier);
805 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
806 static void kvm_init_pm_notifier(struct kvm *kvm)
810 static void kvm_destroy_pm_notifier(struct kvm *kvm)
813 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
815 static struct kvm_memslots *kvm_alloc_memslots(void)
818 struct kvm_memslots *slots;
820 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
824 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
825 slots->id_to_index[i] = -1;
830 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
832 if (!memslot->dirty_bitmap)
835 kvfree(memslot->dirty_bitmap);
836 memslot->dirty_bitmap = NULL;
839 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
841 kvm_destroy_dirty_bitmap(slot);
843 kvm_arch_free_memslot(kvm, slot);
849 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
851 struct kvm_memory_slot *memslot;
856 kvm_for_each_memslot(memslot, slots)
857 kvm_free_memslot(kvm, memslot);
862 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
864 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
865 case KVM_STATS_TYPE_INSTANT:
867 case KVM_STATS_TYPE_CUMULATIVE:
868 case KVM_STATS_TYPE_PEAK:
875 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
878 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
879 kvm_vcpu_stats_header.num_desc;
881 if (!kvm->debugfs_dentry)
884 debugfs_remove_recursive(kvm->debugfs_dentry);
886 if (kvm->debugfs_stat_data) {
887 for (i = 0; i < kvm_debugfs_num_entries; i++)
888 kfree(kvm->debugfs_stat_data[i]);
889 kfree(kvm->debugfs_stat_data);
893 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
895 char dir_name[ITOA_MAX_LEN * 2];
896 struct kvm_stat_data *stat_data;
897 const struct _kvm_stats_desc *pdesc;
899 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
900 kvm_vcpu_stats_header.num_desc;
902 if (!debugfs_initialized())
905 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
906 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
908 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
909 sizeof(*kvm->debugfs_stat_data),
911 if (!kvm->debugfs_stat_data)
914 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
915 pdesc = &kvm_vm_stats_desc[i];
916 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
920 stat_data->kvm = kvm;
921 stat_data->desc = pdesc;
922 stat_data->kind = KVM_STAT_VM;
923 kvm->debugfs_stat_data[i] = stat_data;
924 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
925 kvm->debugfs_dentry, stat_data,
929 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
930 pdesc = &kvm_vcpu_stats_desc[i];
931 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
935 stat_data->kvm = kvm;
936 stat_data->desc = pdesc;
937 stat_data->kind = KVM_STAT_VCPU;
938 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
939 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
940 kvm->debugfs_dentry, stat_data,
947 * Called after the VM is otherwise initialized, but just before adding it to
950 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
956 * Called just after removing the VM from the vm_list, but before doing any
959 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
963 static struct kvm *kvm_create_vm(unsigned long type)
965 struct kvm *kvm = kvm_arch_alloc_vm();
970 return ERR_PTR(-ENOMEM);
972 KVM_MMU_LOCK_INIT(kvm);
974 kvm->mm = current->mm;
975 kvm_eventfd_init(kvm);
976 mutex_init(&kvm->lock);
977 mutex_init(&kvm->irq_lock);
978 mutex_init(&kvm->slots_lock);
979 mutex_init(&kvm->slots_arch_lock);
980 INIT_LIST_HEAD(&kvm->devices);
982 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
984 if (init_srcu_struct(&kvm->srcu))
985 goto out_err_no_srcu;
986 if (init_srcu_struct(&kvm->irq_srcu))
987 goto out_err_no_irq_srcu;
989 refcount_set(&kvm->users_count, 1);
990 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
991 struct kvm_memslots *slots = kvm_alloc_memslots();
994 goto out_err_no_arch_destroy_vm;
995 /* Generations must be different for each address space. */
996 slots->generation = i;
997 rcu_assign_pointer(kvm->memslots[i], slots);
1000 for (i = 0; i < KVM_NR_BUSES; i++) {
1001 rcu_assign_pointer(kvm->buses[i],
1002 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1004 goto out_err_no_arch_destroy_vm;
1007 kvm->max_halt_poll_ns = halt_poll_ns;
1009 r = kvm_arch_init_vm(kvm, type);
1011 goto out_err_no_arch_destroy_vm;
1013 r = hardware_enable_all();
1015 goto out_err_no_disable;
1017 #ifdef CONFIG_HAVE_KVM_IRQFD
1018 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1021 r = kvm_init_mmu_notifier(kvm);
1023 goto out_err_no_mmu_notifier;
1025 r = kvm_arch_post_init_vm(kvm);
1029 mutex_lock(&kvm_lock);
1030 list_add(&kvm->vm_list, &vm_list);
1031 mutex_unlock(&kvm_lock);
1033 preempt_notifier_inc();
1034 kvm_init_pm_notifier(kvm);
1039 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1040 if (kvm->mmu_notifier.ops)
1041 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1043 out_err_no_mmu_notifier:
1044 hardware_disable_all();
1046 kvm_arch_destroy_vm(kvm);
1047 out_err_no_arch_destroy_vm:
1048 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1049 for (i = 0; i < KVM_NR_BUSES; i++)
1050 kfree(kvm_get_bus(kvm, i));
1051 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1052 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1053 cleanup_srcu_struct(&kvm->irq_srcu);
1054 out_err_no_irq_srcu:
1055 cleanup_srcu_struct(&kvm->srcu);
1057 kvm_arch_free_vm(kvm);
1058 mmdrop(current->mm);
1062 static void kvm_destroy_devices(struct kvm *kvm)
1064 struct kvm_device *dev, *tmp;
1067 * We do not need to take the kvm->lock here, because nobody else
1068 * has a reference to the struct kvm at this point and therefore
1069 * cannot access the devices list anyhow.
1071 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1072 list_del(&dev->vm_node);
1073 dev->ops->destroy(dev);
1077 static void kvm_destroy_vm(struct kvm *kvm)
1080 struct mm_struct *mm = kvm->mm;
1082 kvm_destroy_pm_notifier(kvm);
1083 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1084 kvm_destroy_vm_debugfs(kvm);
1085 kvm_arch_sync_events(kvm);
1086 mutex_lock(&kvm_lock);
1087 list_del(&kvm->vm_list);
1088 mutex_unlock(&kvm_lock);
1089 kvm_arch_pre_destroy_vm(kvm);
1091 kvm_free_irq_routing(kvm);
1092 for (i = 0; i < KVM_NR_BUSES; i++) {
1093 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1096 kvm_io_bus_destroy(bus);
1097 kvm->buses[i] = NULL;
1099 kvm_coalesced_mmio_free(kvm);
1100 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1101 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1103 kvm_arch_flush_shadow_all(kvm);
1105 kvm_arch_destroy_vm(kvm);
1106 kvm_destroy_devices(kvm);
1107 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1108 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1109 cleanup_srcu_struct(&kvm->irq_srcu);
1110 cleanup_srcu_struct(&kvm->srcu);
1111 kvm_arch_free_vm(kvm);
1112 preempt_notifier_dec();
1113 hardware_disable_all();
1117 void kvm_get_kvm(struct kvm *kvm)
1119 refcount_inc(&kvm->users_count);
1121 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1123 void kvm_put_kvm(struct kvm *kvm)
1125 if (refcount_dec_and_test(&kvm->users_count))
1126 kvm_destroy_vm(kvm);
1128 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1131 * Used to put a reference that was taken on behalf of an object associated
1132 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1133 * of the new file descriptor fails and the reference cannot be transferred to
1134 * its final owner. In such cases, the caller is still actively using @kvm and
1135 * will fail miserably if the refcount unexpectedly hits zero.
1137 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1139 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1141 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1143 static int kvm_vm_release(struct inode *inode, struct file *filp)
1145 struct kvm *kvm = filp->private_data;
1147 kvm_irqfd_release(kvm);
1154 * Allocation size is twice as large as the actual dirty bitmap size.
1155 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1157 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1159 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1161 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1162 if (!memslot->dirty_bitmap)
1169 * Delete a memslot by decrementing the number of used slots and shifting all
1170 * other entries in the array forward one spot.
1172 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1173 struct kvm_memory_slot *memslot)
1175 struct kvm_memory_slot *mslots = slots->memslots;
1178 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1181 slots->used_slots--;
1183 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1184 atomic_set(&slots->lru_slot, 0);
1186 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1187 mslots[i] = mslots[i + 1];
1188 slots->id_to_index[mslots[i].id] = i;
1190 mslots[i] = *memslot;
1191 slots->id_to_index[memslot->id] = -1;
1195 * "Insert" a new memslot by incrementing the number of used slots. Returns
1196 * the new slot's initial index into the memslots array.
1198 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1200 return slots->used_slots++;
1204 * Move a changed memslot backwards in the array by shifting existing slots
1205 * with a higher GFN toward the front of the array. Note, the changed memslot
1206 * itself is not preserved in the array, i.e. not swapped at this time, only
1207 * its new index into the array is tracked. Returns the changed memslot's
1208 * current index into the memslots array.
1210 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1211 struct kvm_memory_slot *memslot)
1213 struct kvm_memory_slot *mslots = slots->memslots;
1216 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1217 WARN_ON_ONCE(!slots->used_slots))
1221 * Move the target memslot backward in the array by shifting existing
1222 * memslots with a higher GFN (than the target memslot) towards the
1223 * front of the array.
1225 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1226 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1229 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1231 /* Shift the next memslot forward one and update its index. */
1232 mslots[i] = mslots[i + 1];
1233 slots->id_to_index[mslots[i].id] = i;
1239 * Move a changed memslot forwards in the array by shifting existing slots with
1240 * a lower GFN toward the back of the array. Note, the changed memslot itself
1241 * is not preserved in the array, i.e. not swapped at this time, only its new
1242 * index into the array is tracked. Returns the changed memslot's final index
1243 * into the memslots array.
1245 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1246 struct kvm_memory_slot *memslot,
1249 struct kvm_memory_slot *mslots = slots->memslots;
1252 for (i = start; i > 0; i--) {
1253 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1256 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1258 /* Shift the next memslot back one and update its index. */
1259 mslots[i] = mslots[i - 1];
1260 slots->id_to_index[mslots[i].id] = i;
1266 * Re-sort memslots based on their GFN to account for an added, deleted, or
1267 * moved memslot. Sorting memslots by GFN allows using a binary search during
1270 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1271 * at memslots[0] has the highest GFN.
1273 * The sorting algorithm takes advantage of having initially sorted memslots
1274 * and knowing the position of the changed memslot. Sorting is also optimized
1275 * by not swapping the updated memslot and instead only shifting other memslots
1276 * and tracking the new index for the update memslot. Only once its final
1277 * index is known is the updated memslot copied into its position in the array.
1279 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1280 * the end of the array.
1282 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1283 * end of the array and then it forward to its correct location.
1285 * - When moving a memslot, the algorithm first moves the updated memslot
1286 * backward to handle the scenario where the memslot's GFN was changed to a
1287 * lower value. update_memslots() then falls through and runs the same flow
1288 * as creating a memslot to move the memslot forward to handle the scenario
1289 * where its GFN was changed to a higher value.
1291 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1292 * historical reasons. Originally, invalid memslots where denoted by having
1293 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1294 * to the end of the array. The current algorithm uses dedicated logic to
1295 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1297 * The other historical motiviation for highest->lowest was to improve the
1298 * performance of memslot lookup. KVM originally used a linear search starting
1299 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1300 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1301 * single memslot above the 4gb boundary. As the largest memslot is also the
1302 * most likely to be referenced, sorting it to the front of the array was
1303 * advantageous. The current binary search starts from the middle of the array
1304 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1306 static void update_memslots(struct kvm_memslots *slots,
1307 struct kvm_memory_slot *memslot,
1308 enum kvm_mr_change change)
1312 if (change == KVM_MR_DELETE) {
1313 kvm_memslot_delete(slots, memslot);
1315 if (change == KVM_MR_CREATE)
1316 i = kvm_memslot_insert_back(slots);
1318 i = kvm_memslot_move_backward(slots, memslot);
1319 i = kvm_memslot_move_forward(slots, memslot, i);
1322 * Copy the memslot to its new position in memslots and update
1323 * its index accordingly.
1325 slots->memslots[i] = *memslot;
1326 slots->id_to_index[memslot->id] = i;
1330 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1332 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1334 #ifdef __KVM_HAVE_READONLY_MEM
1335 valid_flags |= KVM_MEM_READONLY;
1338 if (mem->flags & ~valid_flags)
1344 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1345 int as_id, struct kvm_memslots *slots)
1347 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1348 u64 gen = old_memslots->generation;
1350 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1351 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1353 rcu_assign_pointer(kvm->memslots[as_id], slots);
1356 * Acquired in kvm_set_memslot. Must be released before synchronize
1357 * SRCU below in order to avoid deadlock with another thread
1358 * acquiring the slots_arch_lock in an srcu critical section.
1360 mutex_unlock(&kvm->slots_arch_lock);
1362 synchronize_srcu_expedited(&kvm->srcu);
1365 * Increment the new memslot generation a second time, dropping the
1366 * update in-progress flag and incrementing the generation based on
1367 * the number of address spaces. This provides a unique and easily
1368 * identifiable generation number while the memslots are in flux.
1370 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1373 * Generations must be unique even across address spaces. We do not need
1374 * a global counter for that, instead the generation space is evenly split
1375 * across address spaces. For example, with two address spaces, address
1376 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1377 * use generations 1, 3, 5, ...
1379 gen += KVM_ADDRESS_SPACE_NUM;
1381 kvm_arch_memslots_updated(kvm, gen);
1383 slots->generation = gen;
1385 return old_memslots;
1388 static size_t kvm_memslots_size(int slots)
1390 return sizeof(struct kvm_memslots) +
1391 (sizeof(struct kvm_memory_slot) * slots);
1394 static void kvm_copy_memslots(struct kvm_memslots *to,
1395 struct kvm_memslots *from)
1397 memcpy(to, from, kvm_memslots_size(from->used_slots));
1401 * Note, at a minimum, the current number of used slots must be allocated, even
1402 * when deleting a memslot, as we need a complete duplicate of the memslots for
1403 * use when invalidating a memslot prior to deleting/moving the memslot.
1405 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1406 enum kvm_mr_change change)
1408 struct kvm_memslots *slots;
1411 if (change == KVM_MR_CREATE)
1412 new_size = kvm_memslots_size(old->used_slots + 1);
1414 new_size = kvm_memslots_size(old->used_slots);
1416 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1418 kvm_copy_memslots(slots, old);
1423 static int kvm_set_memslot(struct kvm *kvm,
1424 const struct kvm_userspace_memory_region *mem,
1425 struct kvm_memory_slot *old,
1426 struct kvm_memory_slot *new, int as_id,
1427 enum kvm_mr_change change)
1429 struct kvm_memory_slot *slot;
1430 struct kvm_memslots *slots;
1434 * Released in install_new_memslots.
1436 * Must be held from before the current memslots are copied until
1437 * after the new memslots are installed with rcu_assign_pointer,
1438 * then released before the synchronize srcu in install_new_memslots.
1440 * When modifying memslots outside of the slots_lock, must be held
1441 * before reading the pointer to the current memslots until after all
1442 * changes to those memslots are complete.
1444 * These rules ensure that installing new memslots does not lose
1445 * changes made to the previous memslots.
1447 mutex_lock(&kvm->slots_arch_lock);
1449 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1451 mutex_unlock(&kvm->slots_arch_lock);
1455 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1457 * Note, the INVALID flag needs to be in the appropriate entry
1458 * in the freshly allocated memslots, not in @old or @new.
1460 slot = id_to_memslot(slots, old->id);
1461 slot->flags |= KVM_MEMSLOT_INVALID;
1464 * We can re-use the memory from the old memslots.
1465 * It will be overwritten with a copy of the new memslots
1466 * after reacquiring the slots_arch_lock below.
1468 slots = install_new_memslots(kvm, as_id, slots);
1470 /* From this point no new shadow pages pointing to a deleted,
1471 * or moved, memslot will be created.
1473 * validation of sp->gfn happens in:
1474 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1475 * - kvm_is_visible_gfn (mmu_check_root)
1477 kvm_arch_flush_shadow_memslot(kvm, slot);
1479 /* Released in install_new_memslots. */
1480 mutex_lock(&kvm->slots_arch_lock);
1483 * The arch-specific fields of the memslots could have changed
1484 * between releasing the slots_arch_lock in
1485 * install_new_memslots and here, so get a fresh copy of the
1488 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1491 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1495 update_memslots(slots, new, change);
1496 slots = install_new_memslots(kvm, as_id, slots);
1498 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1504 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1505 slot = id_to_memslot(slots, old->id);
1506 slot->flags &= ~KVM_MEMSLOT_INVALID;
1507 slots = install_new_memslots(kvm, as_id, slots);
1509 mutex_unlock(&kvm->slots_arch_lock);
1515 static int kvm_delete_memslot(struct kvm *kvm,
1516 const struct kvm_userspace_memory_region *mem,
1517 struct kvm_memory_slot *old, int as_id)
1519 struct kvm_memory_slot new;
1525 memset(&new, 0, sizeof(new));
1528 * This is only for debugging purpose; it should never be referenced
1529 * for a removed memslot.
1533 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1537 kvm_free_memslot(kvm, old);
1542 * Allocate some memory and give it an address in the guest physical address
1545 * Discontiguous memory is allowed, mostly for framebuffers.
1547 * Must be called holding kvm->slots_lock for write.
1549 int __kvm_set_memory_region(struct kvm *kvm,
1550 const struct kvm_userspace_memory_region *mem)
1552 struct kvm_memory_slot old, new;
1553 struct kvm_memory_slot *tmp;
1554 enum kvm_mr_change change;
1558 r = check_memory_region_flags(mem);
1562 as_id = mem->slot >> 16;
1563 id = (u16)mem->slot;
1565 /* General sanity checks */
1566 if (mem->memory_size & (PAGE_SIZE - 1))
1568 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1570 /* We can read the guest memory with __xxx_user() later on. */
1571 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1572 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1573 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1576 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1578 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1582 * Make a full copy of the old memslot, the pointer will become stale
1583 * when the memslots are re-sorted by update_memslots(), and the old
1584 * memslot needs to be referenced after calling update_memslots(), e.g.
1585 * to free its resources and for arch specific behavior.
1587 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1592 memset(&old, 0, sizeof(old));
1596 if (!mem->memory_size)
1597 return kvm_delete_memslot(kvm, mem, &old, as_id);
1601 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1602 new.npages = mem->memory_size >> PAGE_SHIFT;
1603 new.flags = mem->flags;
1604 new.userspace_addr = mem->userspace_addr;
1606 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1610 change = KVM_MR_CREATE;
1611 new.dirty_bitmap = NULL;
1612 memset(&new.arch, 0, sizeof(new.arch));
1613 } else { /* Modify an existing slot. */
1614 if ((new.userspace_addr != old.userspace_addr) ||
1615 (new.npages != old.npages) ||
1616 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1619 if (new.base_gfn != old.base_gfn)
1620 change = KVM_MR_MOVE;
1621 else if (new.flags != old.flags)
1622 change = KVM_MR_FLAGS_ONLY;
1623 else /* Nothing to change. */
1626 /* Copy dirty_bitmap and arch from the current memslot. */
1627 new.dirty_bitmap = old.dirty_bitmap;
1628 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1631 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1632 /* Check for overlaps */
1633 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1636 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1637 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1642 /* Allocate/free page dirty bitmap as needed */
1643 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1644 new.dirty_bitmap = NULL;
1645 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1646 r = kvm_alloc_dirty_bitmap(&new);
1650 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1651 bitmap_set(new.dirty_bitmap, 0, new.npages);
1654 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1658 if (old.dirty_bitmap && !new.dirty_bitmap)
1659 kvm_destroy_dirty_bitmap(&old);
1663 if (new.dirty_bitmap && !old.dirty_bitmap)
1664 kvm_destroy_dirty_bitmap(&new);
1667 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1669 int kvm_set_memory_region(struct kvm *kvm,
1670 const struct kvm_userspace_memory_region *mem)
1674 mutex_lock(&kvm->slots_lock);
1675 r = __kvm_set_memory_region(kvm, mem);
1676 mutex_unlock(&kvm->slots_lock);
1679 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1681 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1682 struct kvm_userspace_memory_region *mem)
1684 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1687 return kvm_set_memory_region(kvm, mem);
1690 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1692 * kvm_get_dirty_log - get a snapshot of dirty pages
1693 * @kvm: pointer to kvm instance
1694 * @log: slot id and address to which we copy the log
1695 * @is_dirty: set to '1' if any dirty pages were found
1696 * @memslot: set to the associated memslot, always valid on success
1698 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1699 int *is_dirty, struct kvm_memory_slot **memslot)
1701 struct kvm_memslots *slots;
1704 unsigned long any = 0;
1706 /* Dirty ring tracking is exclusive to dirty log tracking */
1707 if (kvm->dirty_ring_size)
1713 as_id = log->slot >> 16;
1714 id = (u16)log->slot;
1715 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1718 slots = __kvm_memslots(kvm, as_id);
1719 *memslot = id_to_memslot(slots, id);
1720 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1723 kvm_arch_sync_dirty_log(kvm, *memslot);
1725 n = kvm_dirty_bitmap_bytes(*memslot);
1727 for (i = 0; !any && i < n/sizeof(long); ++i)
1728 any = (*memslot)->dirty_bitmap[i];
1730 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1737 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1739 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1741 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1742 * and reenable dirty page tracking for the corresponding pages.
1743 * @kvm: pointer to kvm instance
1744 * @log: slot id and address to which we copy the log
1746 * We need to keep it in mind that VCPU threads can write to the bitmap
1747 * concurrently. So, to avoid losing track of dirty pages we keep the
1750 * 1. Take a snapshot of the bit and clear it if needed.
1751 * 2. Write protect the corresponding page.
1752 * 3. Copy the snapshot to the userspace.
1753 * 4. Upon return caller flushes TLB's if needed.
1755 * Between 2 and 4, the guest may write to the page using the remaining TLB
1756 * entry. This is not a problem because the page is reported dirty using
1757 * the snapshot taken before and step 4 ensures that writes done after
1758 * exiting to userspace will be logged for the next call.
1761 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1763 struct kvm_memslots *slots;
1764 struct kvm_memory_slot *memslot;
1767 unsigned long *dirty_bitmap;
1768 unsigned long *dirty_bitmap_buffer;
1771 /* Dirty ring tracking is exclusive to dirty log tracking */
1772 if (kvm->dirty_ring_size)
1775 as_id = log->slot >> 16;
1776 id = (u16)log->slot;
1777 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1780 slots = __kvm_memslots(kvm, as_id);
1781 memslot = id_to_memslot(slots, id);
1782 if (!memslot || !memslot->dirty_bitmap)
1785 dirty_bitmap = memslot->dirty_bitmap;
1787 kvm_arch_sync_dirty_log(kvm, memslot);
1789 n = kvm_dirty_bitmap_bytes(memslot);
1791 if (kvm->manual_dirty_log_protect) {
1793 * Unlike kvm_get_dirty_log, we always return false in *flush,
1794 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1795 * is some code duplication between this function and
1796 * kvm_get_dirty_log, but hopefully all architecture
1797 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1798 * can be eliminated.
1800 dirty_bitmap_buffer = dirty_bitmap;
1802 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1803 memset(dirty_bitmap_buffer, 0, n);
1806 for (i = 0; i < n / sizeof(long); i++) {
1810 if (!dirty_bitmap[i])
1814 mask = xchg(&dirty_bitmap[i], 0);
1815 dirty_bitmap_buffer[i] = mask;
1817 offset = i * BITS_PER_LONG;
1818 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1821 KVM_MMU_UNLOCK(kvm);
1825 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1827 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1834 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1835 * @kvm: kvm instance
1836 * @log: slot id and address to which we copy the log
1838 * Steps 1-4 below provide general overview of dirty page logging. See
1839 * kvm_get_dirty_log_protect() function description for additional details.
1841 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1842 * always flush the TLB (step 4) even if previous step failed and the dirty
1843 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1844 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1845 * writes will be marked dirty for next log read.
1847 * 1. Take a snapshot of the bit and clear it if needed.
1848 * 2. Write protect the corresponding page.
1849 * 3. Copy the snapshot to the userspace.
1850 * 4. Flush TLB's if needed.
1852 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1853 struct kvm_dirty_log *log)
1857 mutex_lock(&kvm->slots_lock);
1859 r = kvm_get_dirty_log_protect(kvm, log);
1861 mutex_unlock(&kvm->slots_lock);
1866 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1867 * and reenable dirty page tracking for the corresponding pages.
1868 * @kvm: pointer to kvm instance
1869 * @log: slot id and address from which to fetch the bitmap of dirty pages
1871 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1872 struct kvm_clear_dirty_log *log)
1874 struct kvm_memslots *slots;
1875 struct kvm_memory_slot *memslot;
1879 unsigned long *dirty_bitmap;
1880 unsigned long *dirty_bitmap_buffer;
1883 /* Dirty ring tracking is exclusive to dirty log tracking */
1884 if (kvm->dirty_ring_size)
1887 as_id = log->slot >> 16;
1888 id = (u16)log->slot;
1889 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1892 if (log->first_page & 63)
1895 slots = __kvm_memslots(kvm, as_id);
1896 memslot = id_to_memslot(slots, id);
1897 if (!memslot || !memslot->dirty_bitmap)
1900 dirty_bitmap = memslot->dirty_bitmap;
1902 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1904 if (log->first_page > memslot->npages ||
1905 log->num_pages > memslot->npages - log->first_page ||
1906 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1909 kvm_arch_sync_dirty_log(kvm, memslot);
1912 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1913 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1917 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1918 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1919 i++, offset += BITS_PER_LONG) {
1920 unsigned long mask = *dirty_bitmap_buffer++;
1921 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1925 mask &= atomic_long_fetch_andnot(mask, p);
1928 * mask contains the bits that really have been cleared. This
1929 * never includes any bits beyond the length of the memslot (if
1930 * the length is not aligned to 64 pages), therefore it is not
1931 * a problem if userspace sets them in log->dirty_bitmap.
1935 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1939 KVM_MMU_UNLOCK(kvm);
1942 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1947 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1948 struct kvm_clear_dirty_log *log)
1952 mutex_lock(&kvm->slots_lock);
1954 r = kvm_clear_dirty_log_protect(kvm, log);
1956 mutex_unlock(&kvm->slots_lock);
1959 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1961 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1963 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1965 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1967 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1969 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1971 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1973 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1975 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1977 return kvm_is_visible_memslot(memslot);
1979 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1981 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1983 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1985 return kvm_is_visible_memslot(memslot);
1987 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1989 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1991 struct vm_area_struct *vma;
1992 unsigned long addr, size;
1996 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1997 if (kvm_is_error_hva(addr))
2000 mmap_read_lock(current->mm);
2001 vma = find_vma(current->mm, addr);
2005 size = vma_kernel_pagesize(vma);
2008 mmap_read_unlock(current->mm);
2013 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2015 return slot->flags & KVM_MEM_READONLY;
2018 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2019 gfn_t *nr_pages, bool write)
2021 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2022 return KVM_HVA_ERR_BAD;
2024 if (memslot_is_readonly(slot) && write)
2025 return KVM_HVA_ERR_RO_BAD;
2028 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2030 return __gfn_to_hva_memslot(slot, gfn);
2033 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2036 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2039 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2042 return gfn_to_hva_many(slot, gfn, NULL);
2044 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2046 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2048 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2050 EXPORT_SYMBOL_GPL(gfn_to_hva);
2052 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2054 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2056 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2059 * Return the hva of a @gfn and the R/W attribute if possible.
2061 * @slot: the kvm_memory_slot which contains @gfn
2062 * @gfn: the gfn to be translated
2063 * @writable: used to return the read/write attribute of the @slot if the hva
2064 * is valid and @writable is not NULL
2066 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2067 gfn_t gfn, bool *writable)
2069 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2071 if (!kvm_is_error_hva(hva) && writable)
2072 *writable = !memslot_is_readonly(slot);
2077 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2079 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2081 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2084 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2086 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2088 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2091 static inline int check_user_page_hwpoison(unsigned long addr)
2093 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2095 rc = get_user_pages(addr, 1, flags, NULL, NULL);
2096 return rc == -EHWPOISON;
2100 * The fast path to get the writable pfn which will be stored in @pfn,
2101 * true indicates success, otherwise false is returned. It's also the
2102 * only part that runs if we can in atomic context.
2104 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2105 bool *writable, kvm_pfn_t *pfn)
2107 struct page *page[1];
2110 * Fast pin a writable pfn only if it is a write fault request
2111 * or the caller allows to map a writable pfn for a read fault
2114 if (!(write_fault || writable))
2117 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2118 *pfn = page_to_pfn(page[0]);
2129 * The slow path to get the pfn of the specified host virtual address,
2130 * 1 indicates success, -errno is returned if error is detected.
2132 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2133 bool *writable, kvm_pfn_t *pfn)
2135 unsigned int flags = FOLL_HWPOISON;
2142 *writable = write_fault;
2145 flags |= FOLL_WRITE;
2147 flags |= FOLL_NOWAIT;
2149 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2153 /* map read fault as writable if possible */
2154 if (unlikely(!write_fault) && writable) {
2157 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2163 *pfn = page_to_pfn(page);
2167 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2169 if (unlikely(!(vma->vm_flags & VM_READ)))
2172 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2178 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2180 if (kvm_is_reserved_pfn(pfn))
2182 return get_page_unless_zero(pfn_to_page(pfn));
2185 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2186 unsigned long addr, bool *async,
2187 bool write_fault, bool *writable,
2195 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2198 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2199 * not call the fault handler, so do it here.
2201 bool unlocked = false;
2202 r = fixup_user_fault(current->mm, addr,
2203 (write_fault ? FAULT_FLAG_WRITE : 0),
2210 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2215 if (write_fault && !pte_write(*ptep)) {
2216 pfn = KVM_PFN_ERR_RO_FAULT;
2221 *writable = pte_write(*ptep);
2222 pfn = pte_pfn(*ptep);
2225 * Get a reference here because callers of *hva_to_pfn* and
2226 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2227 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2228 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2229 * simply do nothing for reserved pfns.
2231 * Whoever called remap_pfn_range is also going to call e.g.
2232 * unmap_mapping_range before the underlying pages are freed,
2233 * causing a call to our MMU notifier.
2235 * Certain IO or PFNMAP mappings can be backed with valid
2236 * struct pages, but be allocated without refcounting e.g.,
2237 * tail pages of non-compound higher order allocations, which
2238 * would then underflow the refcount when the caller does the
2239 * required put_page. Don't allow those pages here.
2241 if (!kvm_try_get_pfn(pfn))
2245 pte_unmap_unlock(ptep, ptl);
2252 * Pin guest page in memory and return its pfn.
2253 * @addr: host virtual address which maps memory to the guest
2254 * @atomic: whether this function can sleep
2255 * @async: whether this function need to wait IO complete if the
2256 * host page is not in the memory
2257 * @write_fault: whether we should get a writable host page
2258 * @writable: whether it allows to map a writable host page for !@write_fault
2260 * The function will map a writable host page for these two cases:
2261 * 1): @write_fault = true
2262 * 2): @write_fault = false && @writable, @writable will tell the caller
2263 * whether the mapping is writable.
2265 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2266 bool write_fault, bool *writable)
2268 struct vm_area_struct *vma;
2272 /* we can do it either atomically or asynchronously, not both */
2273 BUG_ON(atomic && async);
2275 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2279 return KVM_PFN_ERR_FAULT;
2281 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2285 mmap_read_lock(current->mm);
2286 if (npages == -EHWPOISON ||
2287 (!async && check_user_page_hwpoison(addr))) {
2288 pfn = KVM_PFN_ERR_HWPOISON;
2293 vma = vma_lookup(current->mm, addr);
2296 pfn = KVM_PFN_ERR_FAULT;
2297 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2298 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2302 pfn = KVM_PFN_ERR_FAULT;
2304 if (async && vma_is_valid(vma, write_fault))
2306 pfn = KVM_PFN_ERR_FAULT;
2309 mmap_read_unlock(current->mm);
2313 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2314 bool atomic, bool *async, bool write_fault,
2315 bool *writable, hva_t *hva)
2317 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2322 if (addr == KVM_HVA_ERR_RO_BAD) {
2325 return KVM_PFN_ERR_RO_FAULT;
2328 if (kvm_is_error_hva(addr)) {
2331 return KVM_PFN_NOSLOT;
2334 /* Do not map writable pfn in the readonly memslot. */
2335 if (writable && memslot_is_readonly(slot)) {
2340 return hva_to_pfn(addr, atomic, async, write_fault,
2343 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2345 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2348 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2349 write_fault, writable, NULL);
2351 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2353 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2355 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2357 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2359 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2361 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2363 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2365 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2367 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2371 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2373 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2375 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2377 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2379 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2381 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2383 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2384 struct page **pages, int nr_pages)
2389 addr = gfn_to_hva_many(slot, gfn, &entry);
2390 if (kvm_is_error_hva(addr))
2393 if (entry < nr_pages)
2396 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2398 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2400 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2402 if (is_error_noslot_pfn(pfn))
2403 return KVM_ERR_PTR_BAD_PAGE;
2405 if (kvm_is_reserved_pfn(pfn)) {
2407 return KVM_ERR_PTR_BAD_PAGE;
2410 return pfn_to_page(pfn);
2413 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2417 pfn = gfn_to_pfn(kvm, gfn);
2419 return kvm_pfn_to_page(pfn);
2421 EXPORT_SYMBOL_GPL(gfn_to_page);
2423 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2429 cache->pfn = cache->gfn = 0;
2432 kvm_release_pfn_dirty(pfn);
2434 kvm_release_pfn_clean(pfn);
2437 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2438 struct gfn_to_pfn_cache *cache, u64 gen)
2440 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2442 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2444 cache->dirty = false;
2445 cache->generation = gen;
2448 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2449 struct kvm_host_map *map,
2450 struct gfn_to_pfn_cache *cache,
2455 struct page *page = KVM_UNMAPPED_PAGE;
2456 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2457 u64 gen = slots->generation;
2463 if (!cache->pfn || cache->gfn != gfn ||
2464 cache->generation != gen) {
2467 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2473 pfn = gfn_to_pfn_memslot(slot, gfn);
2475 if (is_error_noslot_pfn(pfn))
2478 if (pfn_valid(pfn)) {
2479 page = pfn_to_page(pfn);
2481 hva = kmap_atomic(page);
2484 #ifdef CONFIG_HAS_IOMEM
2485 } else if (!atomic) {
2486 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2503 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2504 struct gfn_to_pfn_cache *cache, bool atomic)
2506 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2509 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2511 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2513 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2516 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2518 static void __kvm_unmap_gfn(struct kvm *kvm,
2519 struct kvm_memory_slot *memslot,
2520 struct kvm_host_map *map,
2521 struct gfn_to_pfn_cache *cache,
2522 bool dirty, bool atomic)
2530 if (map->page != KVM_UNMAPPED_PAGE) {
2532 kunmap_atomic(map->hva);
2536 #ifdef CONFIG_HAS_IOMEM
2540 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2544 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2547 cache->dirty |= dirty;
2549 kvm_release_pfn(map->pfn, dirty, NULL);
2555 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2556 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2558 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2559 cache, dirty, atomic);
2562 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2564 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2566 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2567 map, NULL, dirty, false);
2569 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2571 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2575 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2577 return kvm_pfn_to_page(pfn);
2579 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2581 void kvm_release_page_clean(struct page *page)
2583 WARN_ON(is_error_page(page));
2585 kvm_release_pfn_clean(page_to_pfn(page));
2587 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2589 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2591 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2592 put_page(pfn_to_page(pfn));
2594 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2596 void kvm_release_page_dirty(struct page *page)
2598 WARN_ON(is_error_page(page));
2600 kvm_release_pfn_dirty(page_to_pfn(page));
2602 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2604 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2606 kvm_set_pfn_dirty(pfn);
2607 kvm_release_pfn_clean(pfn);
2609 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2611 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2613 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2614 SetPageDirty(pfn_to_page(pfn));
2616 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2618 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2620 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2621 mark_page_accessed(pfn_to_page(pfn));
2623 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2625 void kvm_get_pfn(kvm_pfn_t pfn)
2627 if (!kvm_is_reserved_pfn(pfn))
2628 get_page(pfn_to_page(pfn));
2630 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2632 static int next_segment(unsigned long len, int offset)
2634 if (len > PAGE_SIZE - offset)
2635 return PAGE_SIZE - offset;
2640 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2641 void *data, int offset, int len)
2646 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2647 if (kvm_is_error_hva(addr))
2649 r = __copy_from_user(data, (void __user *)addr + offset, len);
2655 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2658 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2660 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2662 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2664 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2665 int offset, int len)
2667 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2669 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2671 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2673 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2675 gfn_t gfn = gpa >> PAGE_SHIFT;
2677 int offset = offset_in_page(gpa);
2680 while ((seg = next_segment(len, offset)) != 0) {
2681 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2691 EXPORT_SYMBOL_GPL(kvm_read_guest);
2693 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2695 gfn_t gfn = gpa >> PAGE_SHIFT;
2697 int offset = offset_in_page(gpa);
2700 while ((seg = next_segment(len, offset)) != 0) {
2701 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2711 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2713 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2714 void *data, int offset, unsigned long len)
2719 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2720 if (kvm_is_error_hva(addr))
2722 pagefault_disable();
2723 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2730 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2731 void *data, unsigned long len)
2733 gfn_t gfn = gpa >> PAGE_SHIFT;
2734 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2735 int offset = offset_in_page(gpa);
2737 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2739 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2741 static int __kvm_write_guest_page(struct kvm *kvm,
2742 struct kvm_memory_slot *memslot, gfn_t gfn,
2743 const void *data, int offset, int len)
2748 addr = gfn_to_hva_memslot(memslot, gfn);
2749 if (kvm_is_error_hva(addr))
2751 r = __copy_to_user((void __user *)addr + offset, data, len);
2754 mark_page_dirty_in_slot(kvm, memslot, gfn);
2758 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2759 const void *data, int offset, int len)
2761 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2763 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2765 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2767 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2768 const void *data, int offset, int len)
2770 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2772 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2774 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2776 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2779 gfn_t gfn = gpa >> PAGE_SHIFT;
2781 int offset = offset_in_page(gpa);
2784 while ((seg = next_segment(len, offset)) != 0) {
2785 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2795 EXPORT_SYMBOL_GPL(kvm_write_guest);
2797 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2800 gfn_t gfn = gpa >> PAGE_SHIFT;
2802 int offset = offset_in_page(gpa);
2805 while ((seg = next_segment(len, offset)) != 0) {
2806 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2816 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2818 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2819 struct gfn_to_hva_cache *ghc,
2820 gpa_t gpa, unsigned long len)
2822 int offset = offset_in_page(gpa);
2823 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2824 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2825 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2826 gfn_t nr_pages_avail;
2828 /* Update ghc->generation before performing any error checks. */
2829 ghc->generation = slots->generation;
2831 if (start_gfn > end_gfn) {
2832 ghc->hva = KVM_HVA_ERR_BAD;
2837 * If the requested region crosses two memslots, we still
2838 * verify that the entire region is valid here.
2840 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2841 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2842 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2844 if (kvm_is_error_hva(ghc->hva))
2848 /* Use the slow path for cross page reads and writes. */
2849 if (nr_pages_needed == 1)
2852 ghc->memslot = NULL;
2859 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2860 gpa_t gpa, unsigned long len)
2862 struct kvm_memslots *slots = kvm_memslots(kvm);
2863 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2865 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2867 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2868 void *data, unsigned int offset,
2871 struct kvm_memslots *slots = kvm_memslots(kvm);
2873 gpa_t gpa = ghc->gpa + offset;
2875 BUG_ON(len + offset > ghc->len);
2877 if (slots->generation != ghc->generation) {
2878 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2882 if (kvm_is_error_hva(ghc->hva))
2885 if (unlikely(!ghc->memslot))
2886 return kvm_write_guest(kvm, gpa, data, len);
2888 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2891 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2895 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2897 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2898 void *data, unsigned long len)
2900 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2902 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2904 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2905 void *data, unsigned int offset,
2908 struct kvm_memslots *slots = kvm_memslots(kvm);
2910 gpa_t gpa = ghc->gpa + offset;
2912 BUG_ON(len + offset > ghc->len);
2914 if (slots->generation != ghc->generation) {
2915 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2919 if (kvm_is_error_hva(ghc->hva))
2922 if (unlikely(!ghc->memslot))
2923 return kvm_read_guest(kvm, gpa, data, len);
2925 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2931 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2933 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2934 void *data, unsigned long len)
2936 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2938 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2940 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2942 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2943 gfn_t gfn = gpa >> PAGE_SHIFT;
2945 int offset = offset_in_page(gpa);
2948 while ((seg = next_segment(len, offset)) != 0) {
2949 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2958 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2960 void mark_page_dirty_in_slot(struct kvm *kvm,
2961 struct kvm_memory_slot *memslot,
2964 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2965 unsigned long rel_gfn = gfn - memslot->base_gfn;
2966 u32 slot = (memslot->as_id << 16) | memslot->id;
2968 if (kvm->dirty_ring_size)
2969 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2972 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2975 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2977 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2979 struct kvm_memory_slot *memslot;
2981 memslot = gfn_to_memslot(kvm, gfn);
2982 mark_page_dirty_in_slot(kvm, memslot, gfn);
2984 EXPORT_SYMBOL_GPL(mark_page_dirty);
2986 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2988 struct kvm_memory_slot *memslot;
2990 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2991 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2993 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2995 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2997 if (!vcpu->sigset_active)
3001 * This does a lockless modification of ->real_blocked, which is fine
3002 * because, only current can change ->real_blocked and all readers of
3003 * ->real_blocked don't care as long ->real_blocked is always a subset
3006 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3009 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3011 if (!vcpu->sigset_active)
3014 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3015 sigemptyset(¤t->real_blocked);
3018 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3020 unsigned int old, val, grow, grow_start;
3022 old = val = vcpu->halt_poll_ns;
3023 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3024 grow = READ_ONCE(halt_poll_ns_grow);
3029 if (val < grow_start)
3032 if (val > vcpu->kvm->max_halt_poll_ns)
3033 val = vcpu->kvm->max_halt_poll_ns;
3035 vcpu->halt_poll_ns = val;
3037 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3040 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3042 unsigned int old, val, shrink;
3044 old = val = vcpu->halt_poll_ns;
3045 shrink = READ_ONCE(halt_poll_ns_shrink);
3051 vcpu->halt_poll_ns = val;
3052 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3055 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3058 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3060 if (kvm_arch_vcpu_runnable(vcpu)) {
3061 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3064 if (kvm_cpu_has_pending_timer(vcpu))
3066 if (signal_pending(current))
3068 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3073 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3078 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3081 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3083 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3087 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3089 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3091 ktime_t start, cur, poll_end;
3092 bool waited = false;
3095 kvm_arch_vcpu_blocking(vcpu);
3097 start = cur = poll_end = ktime_get();
3098 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3099 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3101 ++vcpu->stat.generic.halt_attempted_poll;
3104 * This sets KVM_REQ_UNHALT if an interrupt
3107 if (kvm_vcpu_check_block(vcpu) < 0) {
3108 ++vcpu->stat.generic.halt_successful_poll;
3109 if (!vcpu_valid_wakeup(vcpu))
3110 ++vcpu->stat.generic.halt_poll_invalid;
3113 poll_end = cur = ktime_get();
3114 } while (kvm_vcpu_can_poll(cur, stop));
3117 prepare_to_rcuwait(&vcpu->wait);
3119 set_current_state(TASK_INTERRUPTIBLE);
3121 if (kvm_vcpu_check_block(vcpu) < 0)
3127 finish_rcuwait(&vcpu->wait);
3130 kvm_arch_vcpu_unblocking(vcpu);
3131 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3133 update_halt_poll_stats(
3134 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3136 if (!kvm_arch_no_poll(vcpu)) {
3137 if (!vcpu_valid_wakeup(vcpu)) {
3138 shrink_halt_poll_ns(vcpu);
3139 } else if (vcpu->kvm->max_halt_poll_ns) {
3140 if (block_ns <= vcpu->halt_poll_ns)
3142 /* we had a long block, shrink polling */
3143 else if (vcpu->halt_poll_ns &&
3144 block_ns > vcpu->kvm->max_halt_poll_ns)
3145 shrink_halt_poll_ns(vcpu);
3146 /* we had a short halt and our poll time is too small */
3147 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3148 block_ns < vcpu->kvm->max_halt_poll_ns)
3149 grow_halt_poll_ns(vcpu);
3151 vcpu->halt_poll_ns = 0;
3155 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3156 kvm_arch_vcpu_block_finish(vcpu);
3158 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3160 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3162 struct rcuwait *waitp;
3164 waitp = kvm_arch_vcpu_get_wait(vcpu);
3165 if (rcuwait_wake_up(waitp)) {
3166 WRITE_ONCE(vcpu->ready, true);
3167 ++vcpu->stat.generic.halt_wakeup;
3173 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3177 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3179 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3182 int cpu = vcpu->cpu;
3184 if (kvm_vcpu_wake_up(vcpu))
3188 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3189 if (kvm_arch_vcpu_should_kick(vcpu))
3190 smp_send_reschedule(cpu);
3193 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3194 #endif /* !CONFIG_S390 */
3196 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3199 struct task_struct *task = NULL;
3203 pid = rcu_dereference(target->pid);
3205 task = get_pid_task(pid, PIDTYPE_PID);
3209 ret = yield_to(task, 1);
3210 put_task_struct(task);
3214 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3217 * Helper that checks whether a VCPU is eligible for directed yield.
3218 * Most eligible candidate to yield is decided by following heuristics:
3220 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3221 * (preempted lock holder), indicated by @in_spin_loop.
3222 * Set at the beginning and cleared at the end of interception/PLE handler.
3224 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3225 * chance last time (mostly it has become eligible now since we have probably
3226 * yielded to lockholder in last iteration. This is done by toggling
3227 * @dy_eligible each time a VCPU checked for eligibility.)
3229 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3230 * to preempted lock-holder could result in wrong VCPU selection and CPU
3231 * burning. Giving priority for a potential lock-holder increases lock
3234 * Since algorithm is based on heuristics, accessing another VCPU data without
3235 * locking does not harm. It may result in trying to yield to same VCPU, fail
3236 * and continue with next VCPU and so on.
3238 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3240 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3243 eligible = !vcpu->spin_loop.in_spin_loop ||
3244 vcpu->spin_loop.dy_eligible;
3246 if (vcpu->spin_loop.in_spin_loop)
3247 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3256 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3257 * a vcpu_load/vcpu_put pair. However, for most architectures
3258 * kvm_arch_vcpu_runnable does not require vcpu_load.
3260 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3262 return kvm_arch_vcpu_runnable(vcpu);
3265 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3267 if (kvm_arch_dy_runnable(vcpu))
3270 #ifdef CONFIG_KVM_ASYNC_PF
3271 if (!list_empty_careful(&vcpu->async_pf.done))
3278 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3283 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3285 struct kvm *kvm = me->kvm;
3286 struct kvm_vcpu *vcpu;
3287 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3293 kvm_vcpu_set_in_spin_loop(me, true);
3295 * We boost the priority of a VCPU that is runnable but not
3296 * currently running, because it got preempted by something
3297 * else and called schedule in __vcpu_run. Hopefully that
3298 * VCPU is holding the lock that we need and will release it.
3299 * We approximate round-robin by starting at the last boosted VCPU.
3301 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3302 kvm_for_each_vcpu(i, vcpu, kvm) {
3303 if (!pass && i <= last_boosted_vcpu) {
3304 i = last_boosted_vcpu;
3306 } else if (pass && i > last_boosted_vcpu)
3308 if (!READ_ONCE(vcpu->ready))
3312 if (rcuwait_active(&vcpu->wait) &&
3313 !vcpu_dy_runnable(vcpu))
3315 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3316 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3317 !kvm_arch_vcpu_in_kernel(vcpu))
3319 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3322 yielded = kvm_vcpu_yield_to(vcpu);
3324 kvm->last_boosted_vcpu = i;
3326 } else if (yielded < 0) {
3333 kvm_vcpu_set_in_spin_loop(me, false);
3335 /* Ensure vcpu is not eligible during next spinloop */
3336 kvm_vcpu_set_dy_eligible(me, false);
3338 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3340 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3342 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3343 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3344 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3345 kvm->dirty_ring_size / PAGE_SIZE);
3351 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3353 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3356 if (vmf->pgoff == 0)
3357 page = virt_to_page(vcpu->run);
3359 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3360 page = virt_to_page(vcpu->arch.pio_data);
3362 #ifdef CONFIG_KVM_MMIO
3363 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3364 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3366 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3367 page = kvm_dirty_ring_get_page(
3369 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3371 return kvm_arch_vcpu_fault(vcpu, vmf);
3377 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3378 .fault = kvm_vcpu_fault,
3381 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3383 struct kvm_vcpu *vcpu = file->private_data;
3384 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3386 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3387 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3388 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3391 vma->vm_ops = &kvm_vcpu_vm_ops;
3395 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3397 struct kvm_vcpu *vcpu = filp->private_data;
3399 kvm_put_kvm(vcpu->kvm);
3403 static struct file_operations kvm_vcpu_fops = {
3404 .release = kvm_vcpu_release,
3405 .unlocked_ioctl = kvm_vcpu_ioctl,
3406 .mmap = kvm_vcpu_mmap,
3407 .llseek = noop_llseek,
3408 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3412 * Allocates an inode for the vcpu.
3414 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3416 char name[8 + 1 + ITOA_MAX_LEN + 1];
3418 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3419 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3422 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3424 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3425 struct dentry *debugfs_dentry;
3426 char dir_name[ITOA_MAX_LEN * 2];
3428 if (!debugfs_initialized())
3431 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3432 debugfs_dentry = debugfs_create_dir(dir_name,
3433 vcpu->kvm->debugfs_dentry);
3435 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3440 * Creates some virtual cpus. Good luck creating more than one.
3442 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3445 struct kvm_vcpu *vcpu;
3448 if (id >= KVM_MAX_VCPU_ID)
3451 mutex_lock(&kvm->lock);
3452 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3453 mutex_unlock(&kvm->lock);
3457 kvm->created_vcpus++;
3458 mutex_unlock(&kvm->lock);
3460 r = kvm_arch_vcpu_precreate(kvm, id);
3462 goto vcpu_decrement;
3464 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3467 goto vcpu_decrement;
3470 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3471 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3476 vcpu->run = page_address(page);
3478 kvm_vcpu_init(vcpu, kvm, id);
3480 r = kvm_arch_vcpu_create(vcpu);
3482 goto vcpu_free_run_page;
3484 if (kvm->dirty_ring_size) {
3485 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3486 id, kvm->dirty_ring_size);
3488 goto arch_vcpu_destroy;
3491 mutex_lock(&kvm->lock);
3492 if (kvm_get_vcpu_by_id(kvm, id)) {
3494 goto unlock_vcpu_destroy;
3497 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3498 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3500 /* Fill the stats id string for the vcpu */
3501 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3502 task_pid_nr(current), id);
3504 /* Now it's all set up, let userspace reach it */
3506 r = create_vcpu_fd(vcpu);
3508 kvm_put_kvm_no_destroy(kvm);
3509 goto unlock_vcpu_destroy;
3512 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3515 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3516 * before kvm->online_vcpu's incremented value.
3519 atomic_inc(&kvm->online_vcpus);
3521 mutex_unlock(&kvm->lock);
3522 kvm_arch_vcpu_postcreate(vcpu);
3523 kvm_create_vcpu_debugfs(vcpu);
3526 unlock_vcpu_destroy:
3527 mutex_unlock(&kvm->lock);
3528 kvm_dirty_ring_free(&vcpu->dirty_ring);
3530 kvm_arch_vcpu_destroy(vcpu);
3532 free_page((unsigned long)vcpu->run);
3534 kmem_cache_free(kvm_vcpu_cache, vcpu);
3536 mutex_lock(&kvm->lock);
3537 kvm->created_vcpus--;
3538 mutex_unlock(&kvm->lock);
3542 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3545 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3546 vcpu->sigset_active = 1;
3547 vcpu->sigset = *sigset;
3549 vcpu->sigset_active = 0;
3553 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3554 size_t size, loff_t *offset)
3556 struct kvm_vcpu *vcpu = file->private_data;
3558 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3559 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3560 sizeof(vcpu->stat), user_buffer, size, offset);
3563 static const struct file_operations kvm_vcpu_stats_fops = {
3564 .read = kvm_vcpu_stats_read,
3565 .llseek = noop_llseek,
3568 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3572 char name[15 + ITOA_MAX_LEN + 1];
3574 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3576 fd = get_unused_fd_flags(O_CLOEXEC);
3580 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3583 return PTR_ERR(file);
3585 file->f_mode |= FMODE_PREAD;
3586 fd_install(fd, file);
3591 static long kvm_vcpu_ioctl(struct file *filp,
3592 unsigned int ioctl, unsigned long arg)
3594 struct kvm_vcpu *vcpu = filp->private_data;
3595 void __user *argp = (void __user *)arg;
3597 struct kvm_fpu *fpu = NULL;
3598 struct kvm_sregs *kvm_sregs = NULL;
3600 if (vcpu->kvm->mm != current->mm)
3603 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3607 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3608 * execution; mutex_lock() would break them.
3610 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3611 if (r != -ENOIOCTLCMD)
3614 if (mutex_lock_killable(&vcpu->mutex))
3622 oldpid = rcu_access_pointer(vcpu->pid);
3623 if (unlikely(oldpid != task_pid(current))) {
3624 /* The thread running this VCPU changed. */
3627 r = kvm_arch_vcpu_run_pid_change(vcpu);
3631 newpid = get_task_pid(current, PIDTYPE_PID);
3632 rcu_assign_pointer(vcpu->pid, newpid);
3637 r = kvm_arch_vcpu_ioctl_run(vcpu);
3638 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3641 case KVM_GET_REGS: {
3642 struct kvm_regs *kvm_regs;
3645 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3648 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3652 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3659 case KVM_SET_REGS: {
3660 struct kvm_regs *kvm_regs;
3662 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3663 if (IS_ERR(kvm_regs)) {
3664 r = PTR_ERR(kvm_regs);
3667 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3671 case KVM_GET_SREGS: {
3672 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3673 GFP_KERNEL_ACCOUNT);
3677 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3681 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3686 case KVM_SET_SREGS: {
3687 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3688 if (IS_ERR(kvm_sregs)) {
3689 r = PTR_ERR(kvm_sregs);
3693 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3696 case KVM_GET_MP_STATE: {
3697 struct kvm_mp_state mp_state;
3699 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3703 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3708 case KVM_SET_MP_STATE: {
3709 struct kvm_mp_state mp_state;
3712 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3714 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3717 case KVM_TRANSLATE: {
3718 struct kvm_translation tr;
3721 if (copy_from_user(&tr, argp, sizeof(tr)))
3723 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3727 if (copy_to_user(argp, &tr, sizeof(tr)))
3732 case KVM_SET_GUEST_DEBUG: {
3733 struct kvm_guest_debug dbg;
3736 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3738 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3741 case KVM_SET_SIGNAL_MASK: {
3742 struct kvm_signal_mask __user *sigmask_arg = argp;
3743 struct kvm_signal_mask kvm_sigmask;
3744 sigset_t sigset, *p;
3749 if (copy_from_user(&kvm_sigmask, argp,
3750 sizeof(kvm_sigmask)))
3753 if (kvm_sigmask.len != sizeof(sigset))
3756 if (copy_from_user(&sigset, sigmask_arg->sigset,
3761 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3765 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3769 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3773 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3779 fpu = memdup_user(argp, sizeof(*fpu));
3785 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3788 case KVM_GET_STATS_FD: {
3789 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3793 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3796 mutex_unlock(&vcpu->mutex);
3802 #ifdef CONFIG_KVM_COMPAT
3803 static long kvm_vcpu_compat_ioctl(struct file *filp,
3804 unsigned int ioctl, unsigned long arg)
3806 struct kvm_vcpu *vcpu = filp->private_data;
3807 void __user *argp = compat_ptr(arg);
3810 if (vcpu->kvm->mm != current->mm)
3814 case KVM_SET_SIGNAL_MASK: {
3815 struct kvm_signal_mask __user *sigmask_arg = argp;
3816 struct kvm_signal_mask kvm_sigmask;
3821 if (copy_from_user(&kvm_sigmask, argp,
3822 sizeof(kvm_sigmask)))
3825 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3828 if (get_compat_sigset(&sigset,
3829 (compat_sigset_t __user *)sigmask_arg->sigset))
3831 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3833 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3837 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3845 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3847 struct kvm_device *dev = filp->private_data;
3850 return dev->ops->mmap(dev, vma);
3855 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3856 int (*accessor)(struct kvm_device *dev,
3857 struct kvm_device_attr *attr),
3860 struct kvm_device_attr attr;
3865 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3868 return accessor(dev, &attr);
3871 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3874 struct kvm_device *dev = filp->private_data;
3876 if (dev->kvm->mm != current->mm)
3880 case KVM_SET_DEVICE_ATTR:
3881 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3882 case KVM_GET_DEVICE_ATTR:
3883 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3884 case KVM_HAS_DEVICE_ATTR:
3885 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3887 if (dev->ops->ioctl)
3888 return dev->ops->ioctl(dev, ioctl, arg);
3894 static int kvm_device_release(struct inode *inode, struct file *filp)
3896 struct kvm_device *dev = filp->private_data;
3897 struct kvm *kvm = dev->kvm;
3899 if (dev->ops->release) {
3900 mutex_lock(&kvm->lock);
3901 list_del(&dev->vm_node);
3902 dev->ops->release(dev);
3903 mutex_unlock(&kvm->lock);
3910 static const struct file_operations kvm_device_fops = {
3911 .unlocked_ioctl = kvm_device_ioctl,
3912 .release = kvm_device_release,
3913 KVM_COMPAT(kvm_device_ioctl),
3914 .mmap = kvm_device_mmap,
3917 struct kvm_device *kvm_device_from_filp(struct file *filp)
3919 if (filp->f_op != &kvm_device_fops)
3922 return filp->private_data;
3925 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3926 #ifdef CONFIG_KVM_MPIC
3927 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3928 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3932 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3934 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3937 if (kvm_device_ops_table[type] != NULL)
3940 kvm_device_ops_table[type] = ops;
3944 void kvm_unregister_device_ops(u32 type)
3946 if (kvm_device_ops_table[type] != NULL)
3947 kvm_device_ops_table[type] = NULL;
3950 static int kvm_ioctl_create_device(struct kvm *kvm,
3951 struct kvm_create_device *cd)
3953 const struct kvm_device_ops *ops = NULL;
3954 struct kvm_device *dev;
3955 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3959 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3962 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3963 ops = kvm_device_ops_table[type];
3970 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3977 mutex_lock(&kvm->lock);
3978 ret = ops->create(dev, type);
3980 mutex_unlock(&kvm->lock);
3984 list_add(&dev->vm_node, &kvm->devices);
3985 mutex_unlock(&kvm->lock);
3991 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3993 kvm_put_kvm_no_destroy(kvm);
3994 mutex_lock(&kvm->lock);
3995 list_del(&dev->vm_node);
3996 mutex_unlock(&kvm->lock);
4005 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4008 case KVM_CAP_USER_MEMORY:
4009 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4010 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4011 case KVM_CAP_INTERNAL_ERROR_DATA:
4012 #ifdef CONFIG_HAVE_KVM_MSI
4013 case KVM_CAP_SIGNAL_MSI:
4015 #ifdef CONFIG_HAVE_KVM_IRQFD
4017 case KVM_CAP_IRQFD_RESAMPLE:
4019 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4020 case KVM_CAP_CHECK_EXTENSION_VM:
4021 case KVM_CAP_ENABLE_CAP_VM:
4022 case KVM_CAP_HALT_POLL:
4024 #ifdef CONFIG_KVM_MMIO
4025 case KVM_CAP_COALESCED_MMIO:
4026 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4027 case KVM_CAP_COALESCED_PIO:
4030 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4031 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4032 return KVM_DIRTY_LOG_MANUAL_CAPS;
4034 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4035 case KVM_CAP_IRQ_ROUTING:
4036 return KVM_MAX_IRQ_ROUTES;
4038 #if KVM_ADDRESS_SPACE_NUM > 1
4039 case KVM_CAP_MULTI_ADDRESS_SPACE:
4040 return KVM_ADDRESS_SPACE_NUM;
4042 case KVM_CAP_NR_MEMSLOTS:
4043 return KVM_USER_MEM_SLOTS;
4044 case KVM_CAP_DIRTY_LOG_RING:
4045 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4046 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4050 case KVM_CAP_BINARY_STATS_FD:
4055 return kvm_vm_ioctl_check_extension(kvm, arg);
4058 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4062 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4065 /* the size should be power of 2 */
4066 if (!size || (size & (size - 1)))
4069 /* Should be bigger to keep the reserved entries, or a page */
4070 if (size < kvm_dirty_ring_get_rsvd_entries() *
4071 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4074 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4075 sizeof(struct kvm_dirty_gfn))
4078 /* We only allow it to set once */
4079 if (kvm->dirty_ring_size)
4082 mutex_lock(&kvm->lock);
4084 if (kvm->created_vcpus) {
4085 /* We don't allow to change this value after vcpu created */
4088 kvm->dirty_ring_size = size;
4092 mutex_unlock(&kvm->lock);
4096 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4099 struct kvm_vcpu *vcpu;
4102 if (!kvm->dirty_ring_size)
4105 mutex_lock(&kvm->slots_lock);
4107 kvm_for_each_vcpu(i, vcpu, kvm)
4108 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4110 mutex_unlock(&kvm->slots_lock);
4113 kvm_flush_remote_tlbs(kvm);
4118 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4119 struct kvm_enable_cap *cap)
4124 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4125 struct kvm_enable_cap *cap)
4128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4129 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4130 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4132 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4133 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4135 if (cap->flags || (cap->args[0] & ~allowed_options))
4137 kvm->manual_dirty_log_protect = cap->args[0];
4141 case KVM_CAP_HALT_POLL: {
4142 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4145 kvm->max_halt_poll_ns = cap->args[0];
4148 case KVM_CAP_DIRTY_LOG_RING:
4149 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4151 return kvm_vm_ioctl_enable_cap(kvm, cap);
4155 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4156 size_t size, loff_t *offset)
4158 struct kvm *kvm = file->private_data;
4160 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4161 &kvm_vm_stats_desc[0], &kvm->stat,
4162 sizeof(kvm->stat), user_buffer, size, offset);
4165 static const struct file_operations kvm_vm_stats_fops = {
4166 .read = kvm_vm_stats_read,
4167 .llseek = noop_llseek,
4170 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4175 fd = get_unused_fd_flags(O_CLOEXEC);
4179 file = anon_inode_getfile("kvm-vm-stats",
4180 &kvm_vm_stats_fops, kvm, O_RDONLY);
4183 return PTR_ERR(file);
4185 file->f_mode |= FMODE_PREAD;
4186 fd_install(fd, file);
4191 static long kvm_vm_ioctl(struct file *filp,
4192 unsigned int ioctl, unsigned long arg)
4194 struct kvm *kvm = filp->private_data;
4195 void __user *argp = (void __user *)arg;
4198 if (kvm->mm != current->mm)
4201 case KVM_CREATE_VCPU:
4202 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4204 case KVM_ENABLE_CAP: {
4205 struct kvm_enable_cap cap;
4208 if (copy_from_user(&cap, argp, sizeof(cap)))
4210 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4213 case KVM_SET_USER_MEMORY_REGION: {
4214 struct kvm_userspace_memory_region kvm_userspace_mem;
4217 if (copy_from_user(&kvm_userspace_mem, argp,
4218 sizeof(kvm_userspace_mem)))
4221 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4224 case KVM_GET_DIRTY_LOG: {
4225 struct kvm_dirty_log log;
4228 if (copy_from_user(&log, argp, sizeof(log)))
4230 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4233 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4234 case KVM_CLEAR_DIRTY_LOG: {
4235 struct kvm_clear_dirty_log log;
4238 if (copy_from_user(&log, argp, sizeof(log)))
4240 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4244 #ifdef CONFIG_KVM_MMIO
4245 case KVM_REGISTER_COALESCED_MMIO: {
4246 struct kvm_coalesced_mmio_zone zone;
4249 if (copy_from_user(&zone, argp, sizeof(zone)))
4251 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4254 case KVM_UNREGISTER_COALESCED_MMIO: {
4255 struct kvm_coalesced_mmio_zone zone;
4258 if (copy_from_user(&zone, argp, sizeof(zone)))
4260 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4265 struct kvm_irqfd data;
4268 if (copy_from_user(&data, argp, sizeof(data)))
4270 r = kvm_irqfd(kvm, &data);
4273 case KVM_IOEVENTFD: {
4274 struct kvm_ioeventfd data;
4277 if (copy_from_user(&data, argp, sizeof(data)))
4279 r = kvm_ioeventfd(kvm, &data);
4282 #ifdef CONFIG_HAVE_KVM_MSI
4283 case KVM_SIGNAL_MSI: {
4287 if (copy_from_user(&msi, argp, sizeof(msi)))
4289 r = kvm_send_userspace_msi(kvm, &msi);
4293 #ifdef __KVM_HAVE_IRQ_LINE
4294 case KVM_IRQ_LINE_STATUS:
4295 case KVM_IRQ_LINE: {
4296 struct kvm_irq_level irq_event;
4299 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4302 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4303 ioctl == KVM_IRQ_LINE_STATUS);
4308 if (ioctl == KVM_IRQ_LINE_STATUS) {
4309 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4317 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4318 case KVM_SET_GSI_ROUTING: {
4319 struct kvm_irq_routing routing;
4320 struct kvm_irq_routing __user *urouting;
4321 struct kvm_irq_routing_entry *entries = NULL;
4324 if (copy_from_user(&routing, argp, sizeof(routing)))
4327 if (!kvm_arch_can_set_irq_routing(kvm))
4329 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4335 entries = vmemdup_user(urouting->entries,
4336 array_size(sizeof(*entries),
4338 if (IS_ERR(entries)) {
4339 r = PTR_ERR(entries);
4343 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4348 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4349 case KVM_CREATE_DEVICE: {
4350 struct kvm_create_device cd;
4353 if (copy_from_user(&cd, argp, sizeof(cd)))
4356 r = kvm_ioctl_create_device(kvm, &cd);
4361 if (copy_to_user(argp, &cd, sizeof(cd)))
4367 case KVM_CHECK_EXTENSION:
4368 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4370 case KVM_RESET_DIRTY_RINGS:
4371 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4373 case KVM_GET_STATS_FD:
4374 r = kvm_vm_ioctl_get_stats_fd(kvm);
4377 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4383 #ifdef CONFIG_KVM_COMPAT
4384 struct compat_kvm_dirty_log {
4388 compat_uptr_t dirty_bitmap; /* one bit per page */
4393 static long kvm_vm_compat_ioctl(struct file *filp,
4394 unsigned int ioctl, unsigned long arg)
4396 struct kvm *kvm = filp->private_data;
4399 if (kvm->mm != current->mm)
4402 case KVM_GET_DIRTY_LOG: {
4403 struct compat_kvm_dirty_log compat_log;
4404 struct kvm_dirty_log log;
4406 if (copy_from_user(&compat_log, (void __user *)arg,
4407 sizeof(compat_log)))
4409 log.slot = compat_log.slot;
4410 log.padding1 = compat_log.padding1;
4411 log.padding2 = compat_log.padding2;
4412 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4414 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4418 r = kvm_vm_ioctl(filp, ioctl, arg);
4424 static struct file_operations kvm_vm_fops = {
4425 .release = kvm_vm_release,
4426 .unlocked_ioctl = kvm_vm_ioctl,
4427 .llseek = noop_llseek,
4428 KVM_COMPAT(kvm_vm_compat_ioctl),
4431 bool file_is_kvm(struct file *file)
4433 return file && file->f_op == &kvm_vm_fops;
4435 EXPORT_SYMBOL_GPL(file_is_kvm);
4437 static int kvm_dev_ioctl_create_vm(unsigned long type)
4443 kvm = kvm_create_vm(type);
4445 return PTR_ERR(kvm);
4446 #ifdef CONFIG_KVM_MMIO
4447 r = kvm_coalesced_mmio_init(kvm);
4451 r = get_unused_fd_flags(O_CLOEXEC);
4455 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4456 "kvm-%d", task_pid_nr(current));
4458 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4466 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4467 * already set, with ->release() being kvm_vm_release(). In error
4468 * cases it will be called by the final fput(file) and will take
4469 * care of doing kvm_put_kvm(kvm).
4471 if (kvm_create_vm_debugfs(kvm, r) < 0) {
4476 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4478 fd_install(r, file);
4486 static long kvm_dev_ioctl(struct file *filp,
4487 unsigned int ioctl, unsigned long arg)
4492 case KVM_GET_API_VERSION:
4495 r = KVM_API_VERSION;
4498 r = kvm_dev_ioctl_create_vm(arg);
4500 case KVM_CHECK_EXTENSION:
4501 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4503 case KVM_GET_VCPU_MMAP_SIZE:
4506 r = PAGE_SIZE; /* struct kvm_run */
4508 r += PAGE_SIZE; /* pio data page */
4510 #ifdef CONFIG_KVM_MMIO
4511 r += PAGE_SIZE; /* coalesced mmio ring page */
4514 case KVM_TRACE_ENABLE:
4515 case KVM_TRACE_PAUSE:
4516 case KVM_TRACE_DISABLE:
4520 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4526 static struct file_operations kvm_chardev_ops = {
4527 .unlocked_ioctl = kvm_dev_ioctl,
4528 .llseek = noop_llseek,
4529 KVM_COMPAT(kvm_dev_ioctl),
4532 static struct miscdevice kvm_dev = {
4538 static void hardware_enable_nolock(void *junk)
4540 int cpu = raw_smp_processor_id();
4543 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4546 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4548 r = kvm_arch_hardware_enable();
4551 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4552 atomic_inc(&hardware_enable_failed);
4553 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4557 static int kvm_starting_cpu(unsigned int cpu)
4559 raw_spin_lock(&kvm_count_lock);
4560 if (kvm_usage_count)
4561 hardware_enable_nolock(NULL);
4562 raw_spin_unlock(&kvm_count_lock);
4566 static void hardware_disable_nolock(void *junk)
4568 int cpu = raw_smp_processor_id();
4570 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4572 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4573 kvm_arch_hardware_disable();
4576 static int kvm_dying_cpu(unsigned int cpu)
4578 raw_spin_lock(&kvm_count_lock);
4579 if (kvm_usage_count)
4580 hardware_disable_nolock(NULL);
4581 raw_spin_unlock(&kvm_count_lock);
4585 static void hardware_disable_all_nolock(void)
4587 BUG_ON(!kvm_usage_count);
4590 if (!kvm_usage_count)
4591 on_each_cpu(hardware_disable_nolock, NULL, 1);
4594 static void hardware_disable_all(void)
4596 raw_spin_lock(&kvm_count_lock);
4597 hardware_disable_all_nolock();
4598 raw_spin_unlock(&kvm_count_lock);
4601 static int hardware_enable_all(void)
4605 raw_spin_lock(&kvm_count_lock);
4608 if (kvm_usage_count == 1) {
4609 atomic_set(&hardware_enable_failed, 0);
4610 on_each_cpu(hardware_enable_nolock, NULL, 1);
4612 if (atomic_read(&hardware_enable_failed)) {
4613 hardware_disable_all_nolock();
4618 raw_spin_unlock(&kvm_count_lock);
4623 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4627 * Some (well, at least mine) BIOSes hang on reboot if
4630 * And Intel TXT required VMX off for all cpu when system shutdown.
4632 pr_info("kvm: exiting hardware virtualization\n");
4633 kvm_rebooting = true;
4634 on_each_cpu(hardware_disable_nolock, NULL, 1);
4638 static struct notifier_block kvm_reboot_notifier = {
4639 .notifier_call = kvm_reboot,
4643 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4647 for (i = 0; i < bus->dev_count; i++) {
4648 struct kvm_io_device *pos = bus->range[i].dev;
4650 kvm_iodevice_destructor(pos);
4655 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4656 const struct kvm_io_range *r2)
4658 gpa_t addr1 = r1->addr;
4659 gpa_t addr2 = r2->addr;
4664 /* If r2->len == 0, match the exact address. If r2->len != 0,
4665 * accept any overlapping write. Any order is acceptable for
4666 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4667 * we process all of them.
4680 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4682 return kvm_io_bus_cmp(p1, p2);
4685 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4686 gpa_t addr, int len)
4688 struct kvm_io_range *range, key;
4691 key = (struct kvm_io_range) {
4696 range = bsearch(&key, bus->range, bus->dev_count,
4697 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4701 off = range - bus->range;
4703 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4709 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4710 struct kvm_io_range *range, const void *val)
4714 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4718 while (idx < bus->dev_count &&
4719 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4720 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4729 /* kvm_io_bus_write - called under kvm->slots_lock */
4730 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4731 int len, const void *val)
4733 struct kvm_io_bus *bus;
4734 struct kvm_io_range range;
4737 range = (struct kvm_io_range) {
4742 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4745 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4746 return r < 0 ? r : 0;
4748 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4750 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4751 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4752 gpa_t addr, int len, const void *val, long cookie)
4754 struct kvm_io_bus *bus;
4755 struct kvm_io_range range;
4757 range = (struct kvm_io_range) {
4762 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4766 /* First try the device referenced by cookie. */
4767 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4768 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4769 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4774 * cookie contained garbage; fall back to search and return the
4775 * correct cookie value.
4777 return __kvm_io_bus_write(vcpu, bus, &range, val);
4780 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4781 struct kvm_io_range *range, void *val)
4785 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4789 while (idx < bus->dev_count &&
4790 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4791 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4800 /* kvm_io_bus_read - called under kvm->slots_lock */
4801 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4804 struct kvm_io_bus *bus;
4805 struct kvm_io_range range;
4808 range = (struct kvm_io_range) {
4813 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4816 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4817 return r < 0 ? r : 0;
4820 /* Caller must hold slots_lock. */
4821 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4822 int len, struct kvm_io_device *dev)
4825 struct kvm_io_bus *new_bus, *bus;
4826 struct kvm_io_range range;
4828 bus = kvm_get_bus(kvm, bus_idx);
4832 /* exclude ioeventfd which is limited by maximum fd */
4833 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4836 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4837 GFP_KERNEL_ACCOUNT);
4841 range = (struct kvm_io_range) {
4847 for (i = 0; i < bus->dev_count; i++)
4848 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4851 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4852 new_bus->dev_count++;
4853 new_bus->range[i] = range;
4854 memcpy(new_bus->range + i + 1, bus->range + i,
4855 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4856 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4857 synchronize_srcu_expedited(&kvm->srcu);
4863 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4864 struct kvm_io_device *dev)
4867 struct kvm_io_bus *new_bus, *bus;
4869 lockdep_assert_held(&kvm->slots_lock);
4871 bus = kvm_get_bus(kvm, bus_idx);
4875 for (i = 0; i < bus->dev_count; i++) {
4876 if (bus->range[i].dev == dev) {
4881 if (i == bus->dev_count)
4884 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4885 GFP_KERNEL_ACCOUNT);
4887 memcpy(new_bus, bus, struct_size(bus, range, i));
4888 new_bus->dev_count--;
4889 memcpy(new_bus->range + i, bus->range + i + 1,
4890 flex_array_size(new_bus, range, new_bus->dev_count - i));
4893 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4894 synchronize_srcu_expedited(&kvm->srcu);
4896 /* Destroy the old bus _after_ installing the (null) bus. */
4898 pr_err("kvm: failed to shrink bus, removing it completely\n");
4899 for (j = 0; j < bus->dev_count; j++) {
4902 kvm_iodevice_destructor(bus->range[j].dev);
4907 return new_bus ? 0 : -ENOMEM;
4910 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4913 struct kvm_io_bus *bus;
4914 int dev_idx, srcu_idx;
4915 struct kvm_io_device *iodev = NULL;
4917 srcu_idx = srcu_read_lock(&kvm->srcu);
4919 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4923 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4927 iodev = bus->range[dev_idx].dev;
4930 srcu_read_unlock(&kvm->srcu, srcu_idx);
4934 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4936 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4937 int (*get)(void *, u64 *), int (*set)(void *, u64),
4940 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4943 /* The debugfs files are a reference to the kvm struct which
4944 * is still valid when kvm_destroy_vm is called.
4945 * To avoid the race between open and the removal of the debugfs
4946 * directory we test against the users count.
4948 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4951 if (simple_attr_open(inode, file, get,
4952 kvm_stats_debugfs_mode(stat_data->desc) & 0222
4955 kvm_put_kvm(stat_data->kvm);
4962 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4964 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4967 simple_attr_release(inode, file);
4968 kvm_put_kvm(stat_data->kvm);
4973 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4975 *val = *(u64 *)((void *)(&kvm->stat) + offset);
4980 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4982 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
4987 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4990 struct kvm_vcpu *vcpu;
4994 kvm_for_each_vcpu(i, vcpu, kvm)
4995 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5000 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5003 struct kvm_vcpu *vcpu;
5005 kvm_for_each_vcpu(i, vcpu, kvm)
5006 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5011 static int kvm_stat_data_get(void *data, u64 *val)
5014 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5016 switch (stat_data->kind) {
5018 r = kvm_get_stat_per_vm(stat_data->kvm,
5019 stat_data->desc->desc.offset, val);
5022 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5023 stat_data->desc->desc.offset, val);
5030 static int kvm_stat_data_clear(void *data, u64 val)
5033 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5038 switch (stat_data->kind) {
5040 r = kvm_clear_stat_per_vm(stat_data->kvm,
5041 stat_data->desc->desc.offset);
5044 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5045 stat_data->desc->desc.offset);
5052 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5054 __simple_attr_check_format("%llu\n", 0ull);
5055 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5056 kvm_stat_data_clear, "%llu\n");
5059 static const struct file_operations stat_fops_per_vm = {
5060 .owner = THIS_MODULE,
5061 .open = kvm_stat_data_open,
5062 .release = kvm_debugfs_release,
5063 .read = simple_attr_read,
5064 .write = simple_attr_write,
5065 .llseek = no_llseek,
5068 static int vm_stat_get(void *_offset, u64 *val)
5070 unsigned offset = (long)_offset;
5075 mutex_lock(&kvm_lock);
5076 list_for_each_entry(kvm, &vm_list, vm_list) {
5077 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5080 mutex_unlock(&kvm_lock);
5084 static int vm_stat_clear(void *_offset, u64 val)
5086 unsigned offset = (long)_offset;
5092 mutex_lock(&kvm_lock);
5093 list_for_each_entry(kvm, &vm_list, vm_list) {
5094 kvm_clear_stat_per_vm(kvm, offset);
5096 mutex_unlock(&kvm_lock);
5101 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5102 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5104 static int vcpu_stat_get(void *_offset, u64 *val)
5106 unsigned offset = (long)_offset;
5111 mutex_lock(&kvm_lock);
5112 list_for_each_entry(kvm, &vm_list, vm_list) {
5113 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5116 mutex_unlock(&kvm_lock);
5120 static int vcpu_stat_clear(void *_offset, u64 val)
5122 unsigned offset = (long)_offset;
5128 mutex_lock(&kvm_lock);
5129 list_for_each_entry(kvm, &vm_list, vm_list) {
5130 kvm_clear_stat_per_vcpu(kvm, offset);
5132 mutex_unlock(&kvm_lock);
5137 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5139 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5141 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5143 struct kobj_uevent_env *env;
5144 unsigned long long created, active;
5146 if (!kvm_dev.this_device || !kvm)
5149 mutex_lock(&kvm_lock);
5150 if (type == KVM_EVENT_CREATE_VM) {
5151 kvm_createvm_count++;
5153 } else if (type == KVM_EVENT_DESTROY_VM) {
5156 created = kvm_createvm_count;
5157 active = kvm_active_vms;
5158 mutex_unlock(&kvm_lock);
5160 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5164 add_uevent_var(env, "CREATED=%llu", created);
5165 add_uevent_var(env, "COUNT=%llu", active);
5167 if (type == KVM_EVENT_CREATE_VM) {
5168 add_uevent_var(env, "EVENT=create");
5169 kvm->userspace_pid = task_pid_nr(current);
5170 } else if (type == KVM_EVENT_DESTROY_VM) {
5171 add_uevent_var(env, "EVENT=destroy");
5173 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5175 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
5176 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5179 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5181 add_uevent_var(env, "STATS_PATH=%s", tmp);
5185 /* no need for checks, since we are adding at most only 5 keys */
5186 env->envp[env->envp_idx++] = NULL;
5187 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5191 static void kvm_init_debug(void)
5193 const struct file_operations *fops;
5194 const struct _kvm_stats_desc *pdesc;
5197 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5199 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5200 pdesc = &kvm_vm_stats_desc[i];
5201 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5202 fops = &vm_stat_fops;
5204 fops = &vm_stat_readonly_fops;
5205 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5207 (void *)(long)pdesc->desc.offset, fops);
5210 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5211 pdesc = &kvm_vcpu_stats_desc[i];
5212 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5213 fops = &vcpu_stat_fops;
5215 fops = &vcpu_stat_readonly_fops;
5216 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5218 (void *)(long)pdesc->desc.offset, fops);
5222 static int kvm_suspend(void)
5224 if (kvm_usage_count)
5225 hardware_disable_nolock(NULL);
5229 static void kvm_resume(void)
5231 if (kvm_usage_count) {
5232 #ifdef CONFIG_LOCKDEP
5233 WARN_ON(lockdep_is_held(&kvm_count_lock));
5235 hardware_enable_nolock(NULL);
5239 static struct syscore_ops kvm_syscore_ops = {
5240 .suspend = kvm_suspend,
5241 .resume = kvm_resume,
5245 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5247 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5250 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5252 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5254 WRITE_ONCE(vcpu->preempted, false);
5255 WRITE_ONCE(vcpu->ready, false);
5257 __this_cpu_write(kvm_running_vcpu, vcpu);
5258 kvm_arch_sched_in(vcpu, cpu);
5259 kvm_arch_vcpu_load(vcpu, cpu);
5262 static void kvm_sched_out(struct preempt_notifier *pn,
5263 struct task_struct *next)
5265 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5267 if (current->on_rq) {
5268 WRITE_ONCE(vcpu->preempted, true);
5269 WRITE_ONCE(vcpu->ready, true);
5271 kvm_arch_vcpu_put(vcpu);
5272 __this_cpu_write(kvm_running_vcpu, NULL);
5276 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5278 * We can disable preemption locally around accessing the per-CPU variable,
5279 * and use the resolved vcpu pointer after enabling preemption again,
5280 * because even if the current thread is migrated to another CPU, reading
5281 * the per-CPU value later will give us the same value as we update the
5282 * per-CPU variable in the preempt notifier handlers.
5284 struct kvm_vcpu *kvm_get_running_vcpu(void)
5286 struct kvm_vcpu *vcpu;
5289 vcpu = __this_cpu_read(kvm_running_vcpu);
5294 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5297 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5299 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5301 return &kvm_running_vcpu;
5304 struct kvm_cpu_compat_check {
5309 static void check_processor_compat(void *data)
5311 struct kvm_cpu_compat_check *c = data;
5313 *c->ret = kvm_arch_check_processor_compat(c->opaque);
5316 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5317 struct module *module)
5319 struct kvm_cpu_compat_check c;
5323 r = kvm_arch_init(opaque);
5328 * kvm_arch_init makes sure there's at most one caller
5329 * for architectures that support multiple implementations,
5330 * like intel and amd on x86.
5331 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5332 * conflicts in case kvm is already setup for another implementation.
5334 r = kvm_irqfd_init();
5338 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5343 r = kvm_arch_hardware_setup(opaque);
5349 for_each_online_cpu(cpu) {
5350 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5355 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5356 kvm_starting_cpu, kvm_dying_cpu);
5359 register_reboot_notifier(&kvm_reboot_notifier);
5361 /* A kmem cache lets us meet the alignment requirements of fx_save. */
5363 vcpu_align = __alignof__(struct kvm_vcpu);
5365 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5367 offsetof(struct kvm_vcpu, arch),
5368 offsetofend(struct kvm_vcpu, stats_id)
5369 - offsetof(struct kvm_vcpu, arch),
5371 if (!kvm_vcpu_cache) {
5376 r = kvm_async_pf_init();
5380 kvm_chardev_ops.owner = module;
5381 kvm_vm_fops.owner = module;
5382 kvm_vcpu_fops.owner = module;
5384 r = misc_register(&kvm_dev);
5386 pr_err("kvm: misc device register failed\n");
5390 register_syscore_ops(&kvm_syscore_ops);
5392 kvm_preempt_ops.sched_in = kvm_sched_in;
5393 kvm_preempt_ops.sched_out = kvm_sched_out;
5397 r = kvm_vfio_ops_init();
5403 kvm_async_pf_deinit();
5405 kmem_cache_destroy(kvm_vcpu_cache);
5407 unregister_reboot_notifier(&kvm_reboot_notifier);
5408 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5410 kvm_arch_hardware_unsetup();
5412 free_cpumask_var(cpus_hardware_enabled);
5420 EXPORT_SYMBOL_GPL(kvm_init);
5424 debugfs_remove_recursive(kvm_debugfs_dir);
5425 misc_deregister(&kvm_dev);
5426 kmem_cache_destroy(kvm_vcpu_cache);
5427 kvm_async_pf_deinit();
5428 unregister_syscore_ops(&kvm_syscore_ops);
5429 unregister_reboot_notifier(&kvm_reboot_notifier);
5430 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5431 on_each_cpu(hardware_disable_nolock, NULL, 1);
5432 kvm_arch_hardware_unsetup();
5435 free_cpumask_var(cpus_hardware_enabled);
5436 kvm_vfio_ops_exit();
5438 EXPORT_SYMBOL_GPL(kvm_exit);
5440 struct kvm_vm_worker_thread_context {
5442 struct task_struct *parent;
5443 struct completion init_done;
5444 kvm_vm_thread_fn_t thread_fn;
5449 static int kvm_vm_worker_thread(void *context)
5452 * The init_context is allocated on the stack of the parent thread, so
5453 * we have to locally copy anything that is needed beyond initialization
5455 struct kvm_vm_worker_thread_context *init_context = context;
5456 struct kvm *kvm = init_context->kvm;
5457 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5458 uintptr_t data = init_context->data;
5461 err = kthread_park(current);
5462 /* kthread_park(current) is never supposed to return an error */
5467 err = cgroup_attach_task_all(init_context->parent, current);
5469 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5474 set_user_nice(current, task_nice(init_context->parent));
5477 init_context->err = err;
5478 complete(&init_context->init_done);
5479 init_context = NULL;
5484 /* Wait to be woken up by the spawner before proceeding. */
5487 if (!kthread_should_stop())
5488 err = thread_fn(kvm, data);
5493 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5494 uintptr_t data, const char *name,
5495 struct task_struct **thread_ptr)
5497 struct kvm_vm_worker_thread_context init_context = {};
5498 struct task_struct *thread;
5501 init_context.kvm = kvm;
5502 init_context.parent = current;
5503 init_context.thread_fn = thread_fn;
5504 init_context.data = data;
5505 init_completion(&init_context.init_done);
5507 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5508 "%s-%d", name, task_pid_nr(current));
5510 return PTR_ERR(thread);
5512 /* kthread_run is never supposed to return NULL */
5513 WARN_ON(thread == NULL);
5515 wait_for_completion(&init_context.init_done);
5517 if (!init_context.err)
5518 *thread_ptr = thread;
5520 return init_context.err;