x86/kvm: Introduce kvm_(un)map_gfn()
[platform/kernel/linux-rpi.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 struct kmem_cache *kvm_vcpu_cache;
108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations *stat_fops_per_vm[];
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 static bool largepages_enabled = true;
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161                 unsigned long start, unsigned long end, bool blockable)
162 {
163         return 0;
164 }
165
166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168         /*
169          * The metadata used by is_zone_device_page() to determine whether or
170          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171          * the device has been pinned, e.g. by get_user_pages().  WARN if the
172          * page_count() is zero to help detect bad usage of this helper.
173          */
174         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175                 return false;
176
177         return is_zone_device_page(pfn_to_page(pfn));
178 }
179
180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182         /*
183          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184          * perspective they are "normal" pages, albeit with slightly different
185          * usage rules.
186          */
187         if (pfn_valid(pfn))
188                 return PageReserved(pfn_to_page(pfn)) &&
189                        !kvm_is_zone_device_pfn(pfn);
190
191         return true;
192 }
193
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199         int cpu = get_cpu();
200         preempt_notifier_register(&vcpu->preempt_notifier);
201         kvm_arch_vcpu_load(vcpu, cpu);
202         put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205
206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208         preempt_disable();
209         kvm_arch_vcpu_put(vcpu);
210         preempt_notifier_unregister(&vcpu->preempt_notifier);
211         preempt_enable();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_put);
214
215 /* TODO: merge with kvm_arch_vcpu_should_kick */
216 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
217 {
218         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
219
220         /*
221          * We need to wait for the VCPU to reenable interrupts and get out of
222          * READING_SHADOW_PAGE_TABLES mode.
223          */
224         if (req & KVM_REQUEST_WAIT)
225                 return mode != OUTSIDE_GUEST_MODE;
226
227         /*
228          * Need to kick a running VCPU, but otherwise there is nothing to do.
229          */
230         return mode == IN_GUEST_MODE;
231 }
232
233 static void ack_flush(void *_completed)
234 {
235 }
236
237 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
238 {
239         if (unlikely(!cpus))
240                 cpus = cpu_online_mask;
241
242         if (cpumask_empty(cpus))
243                 return false;
244
245         smp_call_function_many(cpus, ack_flush, NULL, wait);
246         return true;
247 }
248
249 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
250                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
251 {
252         int i, cpu, me;
253         struct kvm_vcpu *vcpu;
254         bool called;
255
256         me = get_cpu();
257
258         kvm_for_each_vcpu(i, vcpu, kvm) {
259                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
260                         continue;
261
262                 kvm_make_request(req, vcpu);
263                 cpu = vcpu->cpu;
264
265                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266                         continue;
267
268                 if (tmp != NULL && cpu != -1 && cpu != me &&
269                     kvm_request_needs_ipi(vcpu, req))
270                         __cpumask_set_cpu(cpu, tmp);
271         }
272
273         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
274         put_cpu();
275
276         return called;
277 }
278
279 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
280 {
281         cpumask_var_t cpus;
282         bool called;
283
284         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
285
286         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
287
288         free_cpumask_var(cpus);
289         return called;
290 }
291
292 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
293 void kvm_flush_remote_tlbs(struct kvm *kvm)
294 {
295         /*
296          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
297          * kvm_make_all_cpus_request.
298          */
299         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
300
301         /*
302          * We want to publish modifications to the page tables before reading
303          * mode. Pairs with a memory barrier in arch-specific code.
304          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
305          * and smp_mb in walk_shadow_page_lockless_begin/end.
306          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
307          *
308          * There is already an smp_mb__after_atomic() before
309          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
310          * barrier here.
311          */
312         if (!kvm_arch_flush_remote_tlb(kvm)
313             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
314                 ++kvm->stat.remote_tlb_flush;
315         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
316 }
317 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
318 #endif
319
320 void kvm_reload_remote_mmus(struct kvm *kvm)
321 {
322         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
323 }
324
325 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
326 {
327         struct page *page;
328         int r;
329
330         mutex_init(&vcpu->mutex);
331         vcpu->cpu = -1;
332         vcpu->kvm = kvm;
333         vcpu->vcpu_id = id;
334         vcpu->pid = NULL;
335         init_swait_queue_head(&vcpu->wq);
336         kvm_async_pf_vcpu_init(vcpu);
337
338         vcpu->pre_pcpu = -1;
339         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
340
341         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
342         if (!page) {
343                 r = -ENOMEM;
344                 goto fail;
345         }
346         vcpu->run = page_address(page);
347
348         kvm_vcpu_set_in_spin_loop(vcpu, false);
349         kvm_vcpu_set_dy_eligible(vcpu, false);
350         vcpu->preempted = false;
351         vcpu->ready = false;
352
353         r = kvm_arch_vcpu_init(vcpu);
354         if (r < 0)
355                 goto fail_free_run;
356         return 0;
357
358 fail_free_run:
359         free_page((unsigned long)vcpu->run);
360 fail:
361         return r;
362 }
363 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
364
365 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
366 {
367         /*
368          * no need for rcu_read_lock as VCPU_RUN is the only place that
369          * will change the vcpu->pid pointer and on uninit all file
370          * descriptors are already gone.
371          */
372         put_pid(rcu_dereference_protected(vcpu->pid, 1));
373         kvm_arch_vcpu_uninit(vcpu);
374         free_page((unsigned long)vcpu->run);
375 }
376 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
377
378 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
379 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
380 {
381         return container_of(mn, struct kvm, mmu_notifier);
382 }
383
384 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
385                                         struct mm_struct *mm,
386                                         unsigned long address,
387                                         pte_t pte)
388 {
389         struct kvm *kvm = mmu_notifier_to_kvm(mn);
390         int idx;
391
392         idx = srcu_read_lock(&kvm->srcu);
393         spin_lock(&kvm->mmu_lock);
394         kvm->mmu_notifier_seq++;
395
396         if (kvm_set_spte_hva(kvm, address, pte))
397                 kvm_flush_remote_tlbs(kvm);
398
399         spin_unlock(&kvm->mmu_lock);
400         srcu_read_unlock(&kvm->srcu, idx);
401 }
402
403 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
404                                         const struct mmu_notifier_range *range)
405 {
406         struct kvm *kvm = mmu_notifier_to_kvm(mn);
407         int need_tlb_flush = 0, idx;
408         int ret;
409
410         idx = srcu_read_lock(&kvm->srcu);
411         spin_lock(&kvm->mmu_lock);
412         /*
413          * The count increase must become visible at unlock time as no
414          * spte can be established without taking the mmu_lock and
415          * count is also read inside the mmu_lock critical section.
416          */
417         kvm->mmu_notifier_count++;
418         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
419         need_tlb_flush |= kvm->tlbs_dirty;
420         /* we've to flush the tlb before the pages can be freed */
421         if (need_tlb_flush)
422                 kvm_flush_remote_tlbs(kvm);
423
424         spin_unlock(&kvm->mmu_lock);
425
426         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
427                                         range->end,
428                                         mmu_notifier_range_blockable(range));
429
430         srcu_read_unlock(&kvm->srcu, idx);
431
432         return ret;
433 }
434
435 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
436                                         const struct mmu_notifier_range *range)
437 {
438         struct kvm *kvm = mmu_notifier_to_kvm(mn);
439
440         spin_lock(&kvm->mmu_lock);
441         /*
442          * This sequence increase will notify the kvm page fault that
443          * the page that is going to be mapped in the spte could have
444          * been freed.
445          */
446         kvm->mmu_notifier_seq++;
447         smp_wmb();
448         /*
449          * The above sequence increase must be visible before the
450          * below count decrease, which is ensured by the smp_wmb above
451          * in conjunction with the smp_rmb in mmu_notifier_retry().
452          */
453         kvm->mmu_notifier_count--;
454         spin_unlock(&kvm->mmu_lock);
455
456         BUG_ON(kvm->mmu_notifier_count < 0);
457 }
458
459 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
460                                               struct mm_struct *mm,
461                                               unsigned long start,
462                                               unsigned long end)
463 {
464         struct kvm *kvm = mmu_notifier_to_kvm(mn);
465         int young, idx;
466
467         idx = srcu_read_lock(&kvm->srcu);
468         spin_lock(&kvm->mmu_lock);
469
470         young = kvm_age_hva(kvm, start, end);
471         if (young)
472                 kvm_flush_remote_tlbs(kvm);
473
474         spin_unlock(&kvm->mmu_lock);
475         srcu_read_unlock(&kvm->srcu, idx);
476
477         return young;
478 }
479
480 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
481                                         struct mm_struct *mm,
482                                         unsigned long start,
483                                         unsigned long end)
484 {
485         struct kvm *kvm = mmu_notifier_to_kvm(mn);
486         int young, idx;
487
488         idx = srcu_read_lock(&kvm->srcu);
489         spin_lock(&kvm->mmu_lock);
490         /*
491          * Even though we do not flush TLB, this will still adversely
492          * affect performance on pre-Haswell Intel EPT, where there is
493          * no EPT Access Bit to clear so that we have to tear down EPT
494          * tables instead. If we find this unacceptable, we can always
495          * add a parameter to kvm_age_hva so that it effectively doesn't
496          * do anything on clear_young.
497          *
498          * Also note that currently we never issue secondary TLB flushes
499          * from clear_young, leaving this job up to the regular system
500          * cadence. If we find this inaccurate, we might come up with a
501          * more sophisticated heuristic later.
502          */
503         young = kvm_age_hva(kvm, start, end);
504         spin_unlock(&kvm->mmu_lock);
505         srcu_read_unlock(&kvm->srcu, idx);
506
507         return young;
508 }
509
510 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
511                                        struct mm_struct *mm,
512                                        unsigned long address)
513 {
514         struct kvm *kvm = mmu_notifier_to_kvm(mn);
515         int young, idx;
516
517         idx = srcu_read_lock(&kvm->srcu);
518         spin_lock(&kvm->mmu_lock);
519         young = kvm_test_age_hva(kvm, address);
520         spin_unlock(&kvm->mmu_lock);
521         srcu_read_unlock(&kvm->srcu, idx);
522
523         return young;
524 }
525
526 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
527                                      struct mm_struct *mm)
528 {
529         struct kvm *kvm = mmu_notifier_to_kvm(mn);
530         int idx;
531
532         idx = srcu_read_lock(&kvm->srcu);
533         kvm_arch_flush_shadow_all(kvm);
534         srcu_read_unlock(&kvm->srcu, idx);
535 }
536
537 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
538         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
539         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
540         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
541         .clear_young            = kvm_mmu_notifier_clear_young,
542         .test_young             = kvm_mmu_notifier_test_young,
543         .change_pte             = kvm_mmu_notifier_change_pte,
544         .release                = kvm_mmu_notifier_release,
545 };
546
547 static int kvm_init_mmu_notifier(struct kvm *kvm)
548 {
549         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
550         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
551 }
552
553 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
554
555 static int kvm_init_mmu_notifier(struct kvm *kvm)
556 {
557         return 0;
558 }
559
560 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
561
562 static struct kvm_memslots *kvm_alloc_memslots(void)
563 {
564         int i;
565         struct kvm_memslots *slots;
566
567         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
568         if (!slots)
569                 return NULL;
570
571         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
572                 slots->id_to_index[i] = slots->memslots[i].id = i;
573
574         return slots;
575 }
576
577 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
578 {
579         if (!memslot->dirty_bitmap)
580                 return;
581
582         kvfree(memslot->dirty_bitmap);
583         memslot->dirty_bitmap = NULL;
584 }
585
586 /*
587  * Free any memory in @free but not in @dont.
588  */
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
590                               struct kvm_memory_slot *dont)
591 {
592         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
593                 kvm_destroy_dirty_bitmap(free);
594
595         kvm_arch_free_memslot(kvm, free, dont);
596
597         free->npages = 0;
598 }
599
600 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
601 {
602         struct kvm_memory_slot *memslot;
603
604         if (!slots)
605                 return;
606
607         kvm_for_each_memslot(memslot, slots)
608                 kvm_free_memslot(kvm, memslot, NULL);
609
610         kvfree(slots);
611 }
612
613 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
614 {
615         int i;
616
617         if (!kvm->debugfs_dentry)
618                 return;
619
620         debugfs_remove_recursive(kvm->debugfs_dentry);
621
622         if (kvm->debugfs_stat_data) {
623                 for (i = 0; i < kvm_debugfs_num_entries; i++)
624                         kfree(kvm->debugfs_stat_data[i]);
625                 kfree(kvm->debugfs_stat_data);
626         }
627 }
628
629 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
630 {
631         char dir_name[ITOA_MAX_LEN * 2];
632         struct kvm_stat_data *stat_data;
633         struct kvm_stats_debugfs_item *p;
634
635         if (!debugfs_initialized())
636                 return 0;
637
638         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
639         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
640
641         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
642                                          sizeof(*kvm->debugfs_stat_data),
643                                          GFP_KERNEL_ACCOUNT);
644         if (!kvm->debugfs_stat_data)
645                 return -ENOMEM;
646
647         for (p = debugfs_entries; p->name; p++) {
648                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
649                 if (!stat_data)
650                         return -ENOMEM;
651
652                 stat_data->kvm = kvm;
653                 stat_data->offset = p->offset;
654                 stat_data->mode = p->mode ? p->mode : 0644;
655                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
656                 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
657                                     stat_data, stat_fops_per_vm[p->kind]);
658         }
659         return 0;
660 }
661
662 /*
663  * Called after the VM is otherwise initialized, but just before adding it to
664  * the vm_list.
665  */
666 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
667 {
668         return 0;
669 }
670
671 /*
672  * Called just after removing the VM from the vm_list, but before doing any
673  * other destruction.
674  */
675 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
676 {
677 }
678
679 static struct kvm *kvm_create_vm(unsigned long type)
680 {
681         struct kvm *kvm = kvm_arch_alloc_vm();
682         int r = -ENOMEM;
683         int i;
684
685         if (!kvm)
686                 return ERR_PTR(-ENOMEM);
687
688         spin_lock_init(&kvm->mmu_lock);
689         mmgrab(current->mm);
690         kvm->mm = current->mm;
691         kvm_eventfd_init(kvm);
692         mutex_init(&kvm->lock);
693         mutex_init(&kvm->irq_lock);
694         mutex_init(&kvm->slots_lock);
695         INIT_LIST_HEAD(&kvm->devices);
696
697         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
698
699         if (init_srcu_struct(&kvm->srcu))
700                 goto out_err_no_srcu;
701         if (init_srcu_struct(&kvm->irq_srcu))
702                 goto out_err_no_irq_srcu;
703
704         refcount_set(&kvm->users_count, 1);
705         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
706                 struct kvm_memslots *slots = kvm_alloc_memslots();
707
708                 if (!slots)
709                         goto out_err_no_arch_destroy_vm;
710                 /* Generations must be different for each address space. */
711                 slots->generation = i;
712                 rcu_assign_pointer(kvm->memslots[i], slots);
713         }
714
715         for (i = 0; i < KVM_NR_BUSES; i++) {
716                 rcu_assign_pointer(kvm->buses[i],
717                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
718                 if (!kvm->buses[i])
719                         goto out_err_no_arch_destroy_vm;
720         }
721
722         r = kvm_arch_init_vm(kvm, type);
723         if (r)
724                 goto out_err_no_arch_destroy_vm;
725
726         r = hardware_enable_all();
727         if (r)
728                 goto out_err_no_disable;
729
730 #ifdef CONFIG_HAVE_KVM_IRQFD
731         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
732 #endif
733
734         r = kvm_init_mmu_notifier(kvm);
735         if (r)
736                 goto out_err_no_mmu_notifier;
737
738         r = kvm_arch_post_init_vm(kvm);
739         if (r)
740                 goto out_err;
741
742         mutex_lock(&kvm_lock);
743         list_add(&kvm->vm_list, &vm_list);
744         mutex_unlock(&kvm_lock);
745
746         preempt_notifier_inc();
747
748         return kvm;
749
750 out_err:
751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752         if (kvm->mmu_notifier.ops)
753                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
754 #endif
755 out_err_no_mmu_notifier:
756         hardware_disable_all();
757 out_err_no_disable:
758         kvm_arch_destroy_vm(kvm);
759 out_err_no_arch_destroy_vm:
760         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
761         for (i = 0; i < KVM_NR_BUSES; i++)
762                 kfree(kvm_get_bus(kvm, i));
763         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
764                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
765         cleanup_srcu_struct(&kvm->irq_srcu);
766 out_err_no_irq_srcu:
767         cleanup_srcu_struct(&kvm->srcu);
768 out_err_no_srcu:
769         kvm_arch_free_vm(kvm);
770         mmdrop(current->mm);
771         return ERR_PTR(r);
772 }
773
774 static void kvm_destroy_devices(struct kvm *kvm)
775 {
776         struct kvm_device *dev, *tmp;
777
778         /*
779          * We do not need to take the kvm->lock here, because nobody else
780          * has a reference to the struct kvm at this point and therefore
781          * cannot access the devices list anyhow.
782          */
783         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
784                 list_del(&dev->vm_node);
785                 dev->ops->destroy(dev);
786         }
787 }
788
789 static void kvm_destroy_vm(struct kvm *kvm)
790 {
791         int i;
792         struct mm_struct *mm = kvm->mm;
793
794         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
795         kvm_destroy_vm_debugfs(kvm);
796         kvm_arch_sync_events(kvm);
797         mutex_lock(&kvm_lock);
798         list_del(&kvm->vm_list);
799         mutex_unlock(&kvm_lock);
800         kvm_arch_pre_destroy_vm(kvm);
801
802         kvm_free_irq_routing(kvm);
803         for (i = 0; i < KVM_NR_BUSES; i++) {
804                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
805
806                 if (bus)
807                         kvm_io_bus_destroy(bus);
808                 kvm->buses[i] = NULL;
809         }
810         kvm_coalesced_mmio_free(kvm);
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
813 #else
814         kvm_arch_flush_shadow_all(kvm);
815 #endif
816         kvm_arch_destroy_vm(kvm);
817         kvm_destroy_devices(kvm);
818         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
819                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820         cleanup_srcu_struct(&kvm->irq_srcu);
821         cleanup_srcu_struct(&kvm->srcu);
822         kvm_arch_free_vm(kvm);
823         preempt_notifier_dec();
824         hardware_disable_all();
825         mmdrop(mm);
826 }
827
828 void kvm_get_kvm(struct kvm *kvm)
829 {
830         refcount_inc(&kvm->users_count);
831 }
832 EXPORT_SYMBOL_GPL(kvm_get_kvm);
833
834 void kvm_put_kvm(struct kvm *kvm)
835 {
836         if (refcount_dec_and_test(&kvm->users_count))
837                 kvm_destroy_vm(kvm);
838 }
839 EXPORT_SYMBOL_GPL(kvm_put_kvm);
840
841
842 static int kvm_vm_release(struct inode *inode, struct file *filp)
843 {
844         struct kvm *kvm = filp->private_data;
845
846         kvm_irqfd_release(kvm);
847
848         kvm_put_kvm(kvm);
849         return 0;
850 }
851
852 /*
853  * Allocation size is twice as large as the actual dirty bitmap size.
854  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
855  */
856 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
857 {
858         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
859
860         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
861         if (!memslot->dirty_bitmap)
862                 return -ENOMEM;
863
864         return 0;
865 }
866
867 /*
868  * Insert memslot and re-sort memslots based on their GFN,
869  * so binary search could be used to lookup GFN.
870  * Sorting algorithm takes advantage of having initially
871  * sorted array and known changed memslot position.
872  */
873 static void update_memslots(struct kvm_memslots *slots,
874                             struct kvm_memory_slot *new,
875                             enum kvm_mr_change change)
876 {
877         int id = new->id;
878         int i = slots->id_to_index[id];
879         struct kvm_memory_slot *mslots = slots->memslots;
880
881         WARN_ON(mslots[i].id != id);
882         switch (change) {
883         case KVM_MR_CREATE:
884                 slots->used_slots++;
885                 WARN_ON(mslots[i].npages || !new->npages);
886                 break;
887         case KVM_MR_DELETE:
888                 slots->used_slots--;
889                 WARN_ON(new->npages || !mslots[i].npages);
890                 break;
891         default:
892                 break;
893         }
894
895         while (i < KVM_MEM_SLOTS_NUM - 1 &&
896                new->base_gfn <= mslots[i + 1].base_gfn) {
897                 if (!mslots[i + 1].npages)
898                         break;
899                 mslots[i] = mslots[i + 1];
900                 slots->id_to_index[mslots[i].id] = i;
901                 i++;
902         }
903
904         /*
905          * The ">=" is needed when creating a slot with base_gfn == 0,
906          * so that it moves before all those with base_gfn == npages == 0.
907          *
908          * On the other hand, if new->npages is zero, the above loop has
909          * already left i pointing to the beginning of the empty part of
910          * mslots, and the ">=" would move the hole backwards in this
911          * case---which is wrong.  So skip the loop when deleting a slot.
912          */
913         if (new->npages) {
914                 while (i > 0 &&
915                        new->base_gfn >= mslots[i - 1].base_gfn) {
916                         mslots[i] = mslots[i - 1];
917                         slots->id_to_index[mslots[i].id] = i;
918                         i--;
919                 }
920         } else
921                 WARN_ON_ONCE(i != slots->used_slots);
922
923         mslots[i] = *new;
924         slots->id_to_index[mslots[i].id] = i;
925 }
926
927 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
928 {
929         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
930
931 #ifdef __KVM_HAVE_READONLY_MEM
932         valid_flags |= KVM_MEM_READONLY;
933 #endif
934
935         if (mem->flags & ~valid_flags)
936                 return -EINVAL;
937
938         return 0;
939 }
940
941 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
942                 int as_id, struct kvm_memslots *slots)
943 {
944         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
945         u64 gen = old_memslots->generation;
946
947         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
948         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
949
950         rcu_assign_pointer(kvm->memslots[as_id], slots);
951         synchronize_srcu_expedited(&kvm->srcu);
952
953         /*
954          * Increment the new memslot generation a second time, dropping the
955          * update in-progress flag and incrementing then generation based on
956          * the number of address spaces.  This provides a unique and easily
957          * identifiable generation number while the memslots are in flux.
958          */
959         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
960
961         /*
962          * Generations must be unique even across address spaces.  We do not need
963          * a global counter for that, instead the generation space is evenly split
964          * across address spaces.  For example, with two address spaces, address
965          * space 0 will use generations 0, 2, 4, ... while address space 1 will
966          * use generations 1, 3, 5, ...
967          */
968         gen += KVM_ADDRESS_SPACE_NUM;
969
970         kvm_arch_memslots_updated(kvm, gen);
971
972         slots->generation = gen;
973
974         return old_memslots;
975 }
976
977 /*
978  * Allocate some memory and give it an address in the guest physical address
979  * space.
980  *
981  * Discontiguous memory is allowed, mostly for framebuffers.
982  *
983  * Must be called holding kvm->slots_lock for write.
984  */
985 int __kvm_set_memory_region(struct kvm *kvm,
986                             const struct kvm_userspace_memory_region *mem)
987 {
988         int r;
989         gfn_t base_gfn;
990         unsigned long npages;
991         struct kvm_memory_slot *slot;
992         struct kvm_memory_slot old, new;
993         struct kvm_memslots *slots = NULL, *old_memslots;
994         int as_id, id;
995         enum kvm_mr_change change;
996
997         r = check_memory_region_flags(mem);
998         if (r)
999                 goto out;
1000
1001         r = -EINVAL;
1002         as_id = mem->slot >> 16;
1003         id = (u16)mem->slot;
1004
1005         /* General sanity checks */
1006         if (mem->memory_size & (PAGE_SIZE - 1))
1007                 goto out;
1008         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1009                 goto out;
1010         /* We can read the guest memory with __xxx_user() later on. */
1011         if ((id < KVM_USER_MEM_SLOTS) &&
1012             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1013              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1014                         mem->memory_size)))
1015                 goto out;
1016         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1017                 goto out;
1018         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1019                 goto out;
1020
1021         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1022         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1023         npages = mem->memory_size >> PAGE_SHIFT;
1024
1025         if (npages > KVM_MEM_MAX_NR_PAGES)
1026                 goto out;
1027
1028         new = old = *slot;
1029
1030         new.id = id;
1031         new.base_gfn = base_gfn;
1032         new.npages = npages;
1033         new.flags = mem->flags;
1034
1035         if (npages) {
1036                 if (!old.npages)
1037                         change = KVM_MR_CREATE;
1038                 else { /* Modify an existing slot. */
1039                         if ((mem->userspace_addr != old.userspace_addr) ||
1040                             (npages != old.npages) ||
1041                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1042                                 goto out;
1043
1044                         if (base_gfn != old.base_gfn)
1045                                 change = KVM_MR_MOVE;
1046                         else if (new.flags != old.flags)
1047                                 change = KVM_MR_FLAGS_ONLY;
1048                         else { /* Nothing to change. */
1049                                 r = 0;
1050                                 goto out;
1051                         }
1052                 }
1053         } else {
1054                 if (!old.npages)
1055                         goto out;
1056
1057                 change = KVM_MR_DELETE;
1058                 new.base_gfn = 0;
1059                 new.flags = 0;
1060         }
1061
1062         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1063                 /* Check for overlaps */
1064                 r = -EEXIST;
1065                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1066                         if (slot->id == id)
1067                                 continue;
1068                         if (!((base_gfn + npages <= slot->base_gfn) ||
1069                               (base_gfn >= slot->base_gfn + slot->npages)))
1070                                 goto out;
1071                 }
1072         }
1073
1074         /* Free page dirty bitmap if unneeded */
1075         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1076                 new.dirty_bitmap = NULL;
1077
1078         r = -ENOMEM;
1079         if (change == KVM_MR_CREATE) {
1080                 new.userspace_addr = mem->userspace_addr;
1081
1082                 if (kvm_arch_create_memslot(kvm, &new, npages))
1083                         goto out_free;
1084         }
1085
1086         /* Allocate page dirty bitmap if needed */
1087         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1088                 if (kvm_create_dirty_bitmap(&new) < 0)
1089                         goto out_free;
1090         }
1091
1092         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1093         if (!slots)
1094                 goto out_free;
1095         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1096
1097         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1098                 slot = id_to_memslot(slots, id);
1099                 slot->flags |= KVM_MEMSLOT_INVALID;
1100
1101                 old_memslots = install_new_memslots(kvm, as_id, slots);
1102
1103                 /* From this point no new shadow pages pointing to a deleted,
1104                  * or moved, memslot will be created.
1105                  *
1106                  * validation of sp->gfn happens in:
1107                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1108                  *      - kvm_is_visible_gfn (mmu_check_roots)
1109                  */
1110                 kvm_arch_flush_shadow_memslot(kvm, slot);
1111
1112                 /*
1113                  * We can re-use the old_memslots from above, the only difference
1114                  * from the currently installed memslots is the invalid flag.  This
1115                  * will get overwritten by update_memslots anyway.
1116                  */
1117                 slots = old_memslots;
1118         }
1119
1120         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1121         if (r)
1122                 goto out_slots;
1123
1124         /* actual memory is freed via old in kvm_free_memslot below */
1125         if (change == KVM_MR_DELETE) {
1126                 new.dirty_bitmap = NULL;
1127                 memset(&new.arch, 0, sizeof(new.arch));
1128         }
1129
1130         update_memslots(slots, &new, change);
1131         old_memslots = install_new_memslots(kvm, as_id, slots);
1132
1133         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1134
1135         kvm_free_memslot(kvm, &old, &new);
1136         kvfree(old_memslots);
1137         return 0;
1138
1139 out_slots:
1140         kvfree(slots);
1141 out_free:
1142         kvm_free_memslot(kvm, &new, &old);
1143 out:
1144         return r;
1145 }
1146 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1147
1148 int kvm_set_memory_region(struct kvm *kvm,
1149                           const struct kvm_userspace_memory_region *mem)
1150 {
1151         int r;
1152
1153         mutex_lock(&kvm->slots_lock);
1154         r = __kvm_set_memory_region(kvm, mem);
1155         mutex_unlock(&kvm->slots_lock);
1156         return r;
1157 }
1158 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1159
1160 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1161                                           struct kvm_userspace_memory_region *mem)
1162 {
1163         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1164                 return -EINVAL;
1165
1166         return kvm_set_memory_region(kvm, mem);
1167 }
1168
1169 int kvm_get_dirty_log(struct kvm *kvm,
1170                         struct kvm_dirty_log *log, int *is_dirty)
1171 {
1172         struct kvm_memslots *slots;
1173         struct kvm_memory_slot *memslot;
1174         int i, as_id, id;
1175         unsigned long n;
1176         unsigned long any = 0;
1177
1178         as_id = log->slot >> 16;
1179         id = (u16)log->slot;
1180         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1181                 return -EINVAL;
1182
1183         slots = __kvm_memslots(kvm, as_id);
1184         memslot = id_to_memslot(slots, id);
1185         if (!memslot->dirty_bitmap)
1186                 return -ENOENT;
1187
1188         n = kvm_dirty_bitmap_bytes(memslot);
1189
1190         for (i = 0; !any && i < n/sizeof(long); ++i)
1191                 any = memslot->dirty_bitmap[i];
1192
1193         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1194                 return -EFAULT;
1195
1196         if (any)
1197                 *is_dirty = 1;
1198         return 0;
1199 }
1200 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1201
1202 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1203 /**
1204  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1205  *      and reenable dirty page tracking for the corresponding pages.
1206  * @kvm:        pointer to kvm instance
1207  * @log:        slot id and address to which we copy the log
1208  * @flush:      true if TLB flush is needed by caller
1209  *
1210  * We need to keep it in mind that VCPU threads can write to the bitmap
1211  * concurrently. So, to avoid losing track of dirty pages we keep the
1212  * following order:
1213  *
1214  *    1. Take a snapshot of the bit and clear it if needed.
1215  *    2. Write protect the corresponding page.
1216  *    3. Copy the snapshot to the userspace.
1217  *    4. Upon return caller flushes TLB's if needed.
1218  *
1219  * Between 2 and 4, the guest may write to the page using the remaining TLB
1220  * entry.  This is not a problem because the page is reported dirty using
1221  * the snapshot taken before and step 4 ensures that writes done after
1222  * exiting to userspace will be logged for the next call.
1223  *
1224  */
1225 int kvm_get_dirty_log_protect(struct kvm *kvm,
1226                         struct kvm_dirty_log *log, bool *flush)
1227 {
1228         struct kvm_memslots *slots;
1229         struct kvm_memory_slot *memslot;
1230         int i, as_id, id;
1231         unsigned long n;
1232         unsigned long *dirty_bitmap;
1233         unsigned long *dirty_bitmap_buffer;
1234
1235         as_id = log->slot >> 16;
1236         id = (u16)log->slot;
1237         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1238                 return -EINVAL;
1239
1240         slots = __kvm_memslots(kvm, as_id);
1241         memslot = id_to_memslot(slots, id);
1242
1243         dirty_bitmap = memslot->dirty_bitmap;
1244         if (!dirty_bitmap)
1245                 return -ENOENT;
1246
1247         n = kvm_dirty_bitmap_bytes(memslot);
1248         *flush = false;
1249         if (kvm->manual_dirty_log_protect) {
1250                 /*
1251                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1252                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1253                  * is some code duplication between this function and
1254                  * kvm_get_dirty_log, but hopefully all architecture
1255                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1256                  * can be eliminated.
1257                  */
1258                 dirty_bitmap_buffer = dirty_bitmap;
1259         } else {
1260                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1261                 memset(dirty_bitmap_buffer, 0, n);
1262
1263                 spin_lock(&kvm->mmu_lock);
1264                 for (i = 0; i < n / sizeof(long); i++) {
1265                         unsigned long mask;
1266                         gfn_t offset;
1267
1268                         if (!dirty_bitmap[i])
1269                                 continue;
1270
1271                         *flush = true;
1272                         mask = xchg(&dirty_bitmap[i], 0);
1273                         dirty_bitmap_buffer[i] = mask;
1274
1275                         offset = i * BITS_PER_LONG;
1276                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1277                                                                 offset, mask);
1278                 }
1279                 spin_unlock(&kvm->mmu_lock);
1280         }
1281
1282         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1283                 return -EFAULT;
1284         return 0;
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1287
1288 /**
1289  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1290  *      and reenable dirty page tracking for the corresponding pages.
1291  * @kvm:        pointer to kvm instance
1292  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1293  * @flush:      true if TLB flush is needed by caller
1294  */
1295 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1296                                 struct kvm_clear_dirty_log *log, bool *flush)
1297 {
1298         struct kvm_memslots *slots;
1299         struct kvm_memory_slot *memslot;
1300         int as_id, id;
1301         gfn_t offset;
1302         unsigned long i, n;
1303         unsigned long *dirty_bitmap;
1304         unsigned long *dirty_bitmap_buffer;
1305
1306         as_id = log->slot >> 16;
1307         id = (u16)log->slot;
1308         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1309                 return -EINVAL;
1310
1311         if (log->first_page & 63)
1312                 return -EINVAL;
1313
1314         slots = __kvm_memslots(kvm, as_id);
1315         memslot = id_to_memslot(slots, id);
1316
1317         dirty_bitmap = memslot->dirty_bitmap;
1318         if (!dirty_bitmap)
1319                 return -ENOENT;
1320
1321         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1322
1323         if (log->first_page > memslot->npages ||
1324             log->num_pages > memslot->npages - log->first_page ||
1325             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1326             return -EINVAL;
1327
1328         *flush = false;
1329         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1330         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1331                 return -EFAULT;
1332
1333         spin_lock(&kvm->mmu_lock);
1334         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1335                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1336              i++, offset += BITS_PER_LONG) {
1337                 unsigned long mask = *dirty_bitmap_buffer++;
1338                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1339                 if (!mask)
1340                         continue;
1341
1342                 mask &= atomic_long_fetch_andnot(mask, p);
1343
1344                 /*
1345                  * mask contains the bits that really have been cleared.  This
1346                  * never includes any bits beyond the length of the memslot (if
1347                  * the length is not aligned to 64 pages), therefore it is not
1348                  * a problem if userspace sets them in log->dirty_bitmap.
1349                 */
1350                 if (mask) {
1351                         *flush = true;
1352                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1353                                                                 offset, mask);
1354                 }
1355         }
1356         spin_unlock(&kvm->mmu_lock);
1357
1358         return 0;
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1361 #endif
1362
1363 bool kvm_largepages_enabled(void)
1364 {
1365         return largepages_enabled;
1366 }
1367
1368 void kvm_disable_largepages(void)
1369 {
1370         largepages_enabled = false;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1373
1374 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1375 {
1376         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1377 }
1378 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1379
1380 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1381 {
1382         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1383 }
1384
1385 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1386 {
1387         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1388
1389         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1390               memslot->flags & KVM_MEMSLOT_INVALID)
1391                 return false;
1392
1393         return true;
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1396
1397 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1398 {
1399         struct vm_area_struct *vma;
1400         unsigned long addr, size;
1401
1402         size = PAGE_SIZE;
1403
1404         addr = gfn_to_hva(kvm, gfn);
1405         if (kvm_is_error_hva(addr))
1406                 return PAGE_SIZE;
1407
1408         down_read(&current->mm->mmap_sem);
1409         vma = find_vma(current->mm, addr);
1410         if (!vma)
1411                 goto out;
1412
1413         size = vma_kernel_pagesize(vma);
1414
1415 out:
1416         up_read(&current->mm->mmap_sem);
1417
1418         return size;
1419 }
1420
1421 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1422 {
1423         return slot->flags & KVM_MEM_READONLY;
1424 }
1425
1426 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1427                                        gfn_t *nr_pages, bool write)
1428 {
1429         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1430                 return KVM_HVA_ERR_BAD;
1431
1432         if (memslot_is_readonly(slot) && write)
1433                 return KVM_HVA_ERR_RO_BAD;
1434
1435         if (nr_pages)
1436                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1437
1438         return __gfn_to_hva_memslot(slot, gfn);
1439 }
1440
1441 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1442                                      gfn_t *nr_pages)
1443 {
1444         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1445 }
1446
1447 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1448                                         gfn_t gfn)
1449 {
1450         return gfn_to_hva_many(slot, gfn, NULL);
1451 }
1452 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1453
1454 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1455 {
1456         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1457 }
1458 EXPORT_SYMBOL_GPL(gfn_to_hva);
1459
1460 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1461 {
1462         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1465
1466 /*
1467  * Return the hva of a @gfn and the R/W attribute if possible.
1468  *
1469  * @slot: the kvm_memory_slot which contains @gfn
1470  * @gfn: the gfn to be translated
1471  * @writable: used to return the read/write attribute of the @slot if the hva
1472  * is valid and @writable is not NULL
1473  */
1474 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1475                                       gfn_t gfn, bool *writable)
1476 {
1477         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1478
1479         if (!kvm_is_error_hva(hva) && writable)
1480                 *writable = !memslot_is_readonly(slot);
1481
1482         return hva;
1483 }
1484
1485 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1486 {
1487         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1488
1489         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1490 }
1491
1492 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1493 {
1494         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1495
1496         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1497 }
1498
1499 static inline int check_user_page_hwpoison(unsigned long addr)
1500 {
1501         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1502
1503         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1504         return rc == -EHWPOISON;
1505 }
1506
1507 /*
1508  * The fast path to get the writable pfn which will be stored in @pfn,
1509  * true indicates success, otherwise false is returned.  It's also the
1510  * only part that runs if we can are in atomic context.
1511  */
1512 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1513                             bool *writable, kvm_pfn_t *pfn)
1514 {
1515         struct page *page[1];
1516         int npages;
1517
1518         /*
1519          * Fast pin a writable pfn only if it is a write fault request
1520          * or the caller allows to map a writable pfn for a read fault
1521          * request.
1522          */
1523         if (!(write_fault || writable))
1524                 return false;
1525
1526         npages = __get_user_pages_fast(addr, 1, 1, page);
1527         if (npages == 1) {
1528                 *pfn = page_to_pfn(page[0]);
1529
1530                 if (writable)
1531                         *writable = true;
1532                 return true;
1533         }
1534
1535         return false;
1536 }
1537
1538 /*
1539  * The slow path to get the pfn of the specified host virtual address,
1540  * 1 indicates success, -errno is returned if error is detected.
1541  */
1542 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1543                            bool *writable, kvm_pfn_t *pfn)
1544 {
1545         unsigned int flags = FOLL_HWPOISON;
1546         struct page *page;
1547         int npages = 0;
1548
1549         might_sleep();
1550
1551         if (writable)
1552                 *writable = write_fault;
1553
1554         if (write_fault)
1555                 flags |= FOLL_WRITE;
1556         if (async)
1557                 flags |= FOLL_NOWAIT;
1558
1559         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1560         if (npages != 1)
1561                 return npages;
1562
1563         /* map read fault as writable if possible */
1564         if (unlikely(!write_fault) && writable) {
1565                 struct page *wpage;
1566
1567                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1568                         *writable = true;
1569                         put_page(page);
1570                         page = wpage;
1571                 }
1572         }
1573         *pfn = page_to_pfn(page);
1574         return npages;
1575 }
1576
1577 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1578 {
1579         if (unlikely(!(vma->vm_flags & VM_READ)))
1580                 return false;
1581
1582         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1583                 return false;
1584
1585         return true;
1586 }
1587
1588 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1589                                unsigned long addr, bool *async,
1590                                bool write_fault, bool *writable,
1591                                kvm_pfn_t *p_pfn)
1592 {
1593         unsigned long pfn;
1594         int r;
1595
1596         r = follow_pfn(vma, addr, &pfn);
1597         if (r) {
1598                 /*
1599                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1600                  * not call the fault handler, so do it here.
1601                  */
1602                 bool unlocked = false;
1603                 r = fixup_user_fault(current, current->mm, addr,
1604                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1605                                      &unlocked);
1606                 if (unlocked)
1607                         return -EAGAIN;
1608                 if (r)
1609                         return r;
1610
1611                 r = follow_pfn(vma, addr, &pfn);
1612                 if (r)
1613                         return r;
1614
1615         }
1616
1617         if (writable)
1618                 *writable = true;
1619
1620         /*
1621          * Get a reference here because callers of *hva_to_pfn* and
1622          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1623          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1624          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1625          * simply do nothing for reserved pfns.
1626          *
1627          * Whoever called remap_pfn_range is also going to call e.g.
1628          * unmap_mapping_range before the underlying pages are freed,
1629          * causing a call to our MMU notifier.
1630          */ 
1631         kvm_get_pfn(pfn);
1632
1633         *p_pfn = pfn;
1634         return 0;
1635 }
1636
1637 /*
1638  * Pin guest page in memory and return its pfn.
1639  * @addr: host virtual address which maps memory to the guest
1640  * @atomic: whether this function can sleep
1641  * @async: whether this function need to wait IO complete if the
1642  *         host page is not in the memory
1643  * @write_fault: whether we should get a writable host page
1644  * @writable: whether it allows to map a writable host page for !@write_fault
1645  *
1646  * The function will map a writable host page for these two cases:
1647  * 1): @write_fault = true
1648  * 2): @write_fault = false && @writable, @writable will tell the caller
1649  *     whether the mapping is writable.
1650  */
1651 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1652                         bool write_fault, bool *writable)
1653 {
1654         struct vm_area_struct *vma;
1655         kvm_pfn_t pfn = 0;
1656         int npages, r;
1657
1658         /* we can do it either atomically or asynchronously, not both */
1659         BUG_ON(atomic && async);
1660
1661         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1662                 return pfn;
1663
1664         if (atomic)
1665                 return KVM_PFN_ERR_FAULT;
1666
1667         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1668         if (npages == 1)
1669                 return pfn;
1670
1671         down_read(&current->mm->mmap_sem);
1672         if (npages == -EHWPOISON ||
1673               (!async && check_user_page_hwpoison(addr))) {
1674                 pfn = KVM_PFN_ERR_HWPOISON;
1675                 goto exit;
1676         }
1677
1678 retry:
1679         vma = find_vma_intersection(current->mm, addr, addr + 1);
1680
1681         if (vma == NULL)
1682                 pfn = KVM_PFN_ERR_FAULT;
1683         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1684                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1685                 if (r == -EAGAIN)
1686                         goto retry;
1687                 if (r < 0)
1688                         pfn = KVM_PFN_ERR_FAULT;
1689         } else {
1690                 if (async && vma_is_valid(vma, write_fault))
1691                         *async = true;
1692                 pfn = KVM_PFN_ERR_FAULT;
1693         }
1694 exit:
1695         up_read(&current->mm->mmap_sem);
1696         return pfn;
1697 }
1698
1699 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1700                                bool atomic, bool *async, bool write_fault,
1701                                bool *writable)
1702 {
1703         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1704
1705         if (addr == KVM_HVA_ERR_RO_BAD) {
1706                 if (writable)
1707                         *writable = false;
1708                 return KVM_PFN_ERR_RO_FAULT;
1709         }
1710
1711         if (kvm_is_error_hva(addr)) {
1712                 if (writable)
1713                         *writable = false;
1714                 return KVM_PFN_NOSLOT;
1715         }
1716
1717         /* Do not map writable pfn in the readonly memslot. */
1718         if (writable && memslot_is_readonly(slot)) {
1719                 *writable = false;
1720                 writable = NULL;
1721         }
1722
1723         return hva_to_pfn(addr, atomic, async, write_fault,
1724                           writable);
1725 }
1726 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1727
1728 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1729                       bool *writable)
1730 {
1731         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1732                                     write_fault, writable);
1733 }
1734 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1735
1736 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1737 {
1738         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1739 }
1740 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1741
1742 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1743 {
1744         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1745 }
1746 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1747
1748 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1749 {
1750         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1753
1754 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1755 {
1756         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1759
1760 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1761 {
1762         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1763 }
1764 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1765
1766 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1767 {
1768         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1771
1772 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1773                             struct page **pages, int nr_pages)
1774 {
1775         unsigned long addr;
1776         gfn_t entry = 0;
1777
1778         addr = gfn_to_hva_many(slot, gfn, &entry);
1779         if (kvm_is_error_hva(addr))
1780                 return -1;
1781
1782         if (entry < nr_pages)
1783                 return 0;
1784
1785         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1786 }
1787 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1788
1789 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1790 {
1791         if (is_error_noslot_pfn(pfn))
1792                 return KVM_ERR_PTR_BAD_PAGE;
1793
1794         if (kvm_is_reserved_pfn(pfn)) {
1795                 WARN_ON(1);
1796                 return KVM_ERR_PTR_BAD_PAGE;
1797         }
1798
1799         return pfn_to_page(pfn);
1800 }
1801
1802 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1803 {
1804         kvm_pfn_t pfn;
1805
1806         pfn = gfn_to_pfn(kvm, gfn);
1807
1808         return kvm_pfn_to_page(pfn);
1809 }
1810 EXPORT_SYMBOL_GPL(gfn_to_page);
1811
1812 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
1813                          struct kvm_host_map *map)
1814 {
1815         kvm_pfn_t pfn;
1816         void *hva = NULL;
1817         struct page *page = KVM_UNMAPPED_PAGE;
1818         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
1819
1820         if (!map)
1821                 return -EINVAL;
1822
1823         pfn = gfn_to_pfn_memslot(slot, gfn);
1824         if (is_error_noslot_pfn(pfn))
1825                 return -EINVAL;
1826
1827         if (pfn_valid(pfn)) {
1828                 page = pfn_to_page(pfn);
1829                 hva = kmap(page);
1830 #ifdef CONFIG_HAS_IOMEM
1831         } else {
1832                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1833 #endif
1834         }
1835
1836         if (!hva)
1837                 return -EFAULT;
1838
1839         map->page = page;
1840         map->hva = hva;
1841         map->pfn = pfn;
1842         map->gfn = gfn;
1843
1844         return 0;
1845 }
1846
1847 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1848 {
1849         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_map_gfn);
1852
1853 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1854 {
1855         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map);
1856 }
1857 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1858
1859 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
1860                         struct kvm_host_map *map, bool dirty)
1861 {
1862         if (!map)
1863                 return;
1864
1865         if (!map->hva)
1866                 return;
1867
1868         if (map->page != KVM_UNMAPPED_PAGE)
1869                 kunmap(map->page);
1870 #ifdef CONFIG_HAS_IOMEM
1871         else
1872                 memunmap(map->hva);
1873 #endif
1874
1875         if (dirty) {
1876                 mark_page_dirty_in_slot(memslot, map->gfn);
1877                 kvm_release_pfn_dirty(map->pfn);
1878         } else {
1879                 kvm_release_pfn_clean(map->pfn);
1880         }
1881
1882         map->hva = NULL;
1883         map->page = NULL;
1884 }
1885
1886 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1887 {
1888         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map, dirty);
1889         return 0;
1890 }
1891 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
1892
1893 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1894 {
1895         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, dirty);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1898
1899 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1900 {
1901         kvm_pfn_t pfn;
1902
1903         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1904
1905         return kvm_pfn_to_page(pfn);
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1908
1909 void kvm_release_page_clean(struct page *page)
1910 {
1911         WARN_ON(is_error_page(page));
1912
1913         kvm_release_pfn_clean(page_to_pfn(page));
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1916
1917 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1918 {
1919         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1920                 put_page(pfn_to_page(pfn));
1921 }
1922 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1923
1924 void kvm_release_page_dirty(struct page *page)
1925 {
1926         WARN_ON(is_error_page(page));
1927
1928         kvm_release_pfn_dirty(page_to_pfn(page));
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1931
1932 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1933 {
1934         kvm_set_pfn_dirty(pfn);
1935         kvm_release_pfn_clean(pfn);
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1938
1939 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1940 {
1941         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1942                 struct page *page = pfn_to_page(pfn);
1943
1944                 SetPageDirty(page);
1945         }
1946 }
1947 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1948
1949 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1950 {
1951         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1952                 mark_page_accessed(pfn_to_page(pfn));
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1955
1956 void kvm_get_pfn(kvm_pfn_t pfn)
1957 {
1958         if (!kvm_is_reserved_pfn(pfn))
1959                 get_page(pfn_to_page(pfn));
1960 }
1961 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1962
1963 static int next_segment(unsigned long len, int offset)
1964 {
1965         if (len > PAGE_SIZE - offset)
1966                 return PAGE_SIZE - offset;
1967         else
1968                 return len;
1969 }
1970
1971 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1972                                  void *data, int offset, int len)
1973 {
1974         int r;
1975         unsigned long addr;
1976
1977         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1978         if (kvm_is_error_hva(addr))
1979                 return -EFAULT;
1980         r = __copy_from_user(data, (void __user *)addr + offset, len);
1981         if (r)
1982                 return -EFAULT;
1983         return 0;
1984 }
1985
1986 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1987                         int len)
1988 {
1989         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1990
1991         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1994
1995 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1996                              int offset, int len)
1997 {
1998         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1999
2000         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2001 }
2002 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2003
2004 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2005 {
2006         gfn_t gfn = gpa >> PAGE_SHIFT;
2007         int seg;
2008         int offset = offset_in_page(gpa);
2009         int ret;
2010
2011         while ((seg = next_segment(len, offset)) != 0) {
2012                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2013                 if (ret < 0)
2014                         return ret;
2015                 offset = 0;
2016                 len -= seg;
2017                 data += seg;
2018                 ++gfn;
2019         }
2020         return 0;
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_read_guest);
2023
2024 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2025 {
2026         gfn_t gfn = gpa >> PAGE_SHIFT;
2027         int seg;
2028         int offset = offset_in_page(gpa);
2029         int ret;
2030
2031         while ((seg = next_segment(len, offset)) != 0) {
2032                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2033                 if (ret < 0)
2034                         return ret;
2035                 offset = 0;
2036                 len -= seg;
2037                 data += seg;
2038                 ++gfn;
2039         }
2040         return 0;
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2043
2044 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2045                                    void *data, int offset, unsigned long len)
2046 {
2047         int r;
2048         unsigned long addr;
2049
2050         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2051         if (kvm_is_error_hva(addr))
2052                 return -EFAULT;
2053         pagefault_disable();
2054         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2055         pagefault_enable();
2056         if (r)
2057                 return -EFAULT;
2058         return 0;
2059 }
2060
2061 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2062                           unsigned long len)
2063 {
2064         gfn_t gfn = gpa >> PAGE_SHIFT;
2065         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2066         int offset = offset_in_page(gpa);
2067
2068         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2071
2072 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2073                                void *data, unsigned long len)
2074 {
2075         gfn_t gfn = gpa >> PAGE_SHIFT;
2076         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2077         int offset = offset_in_page(gpa);
2078
2079         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2082
2083 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2084                                   const void *data, int offset, int len)
2085 {
2086         int r;
2087         unsigned long addr;
2088
2089         addr = gfn_to_hva_memslot(memslot, gfn);
2090         if (kvm_is_error_hva(addr))
2091                 return -EFAULT;
2092         r = __copy_to_user((void __user *)addr + offset, data, len);
2093         if (r)
2094                 return -EFAULT;
2095         mark_page_dirty_in_slot(memslot, gfn);
2096         return 0;
2097 }
2098
2099 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2100                          const void *data, int offset, int len)
2101 {
2102         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2103
2104         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2107
2108 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2109                               const void *data, int offset, int len)
2110 {
2111         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2112
2113         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2116
2117 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2118                     unsigned long len)
2119 {
2120         gfn_t gfn = gpa >> PAGE_SHIFT;
2121         int seg;
2122         int offset = offset_in_page(gpa);
2123         int ret;
2124
2125         while ((seg = next_segment(len, offset)) != 0) {
2126                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2127                 if (ret < 0)
2128                         return ret;
2129                 offset = 0;
2130                 len -= seg;
2131                 data += seg;
2132                 ++gfn;
2133         }
2134         return 0;
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_write_guest);
2137
2138 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2139                          unsigned long len)
2140 {
2141         gfn_t gfn = gpa >> PAGE_SHIFT;
2142         int seg;
2143         int offset = offset_in_page(gpa);
2144         int ret;
2145
2146         while ((seg = next_segment(len, offset)) != 0) {
2147                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2148                 if (ret < 0)
2149                         return ret;
2150                 offset = 0;
2151                 len -= seg;
2152                 data += seg;
2153                 ++gfn;
2154         }
2155         return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2158
2159 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2160                                        struct gfn_to_hva_cache *ghc,
2161                                        gpa_t gpa, unsigned long len)
2162 {
2163         int offset = offset_in_page(gpa);
2164         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2165         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2166         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2167         gfn_t nr_pages_avail;
2168         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2169
2170         ghc->gpa = gpa;
2171         ghc->generation = slots->generation;
2172         ghc->len = len;
2173         ghc->hva = KVM_HVA_ERR_BAD;
2174
2175         /*
2176          * If the requested region crosses two memslots, we still
2177          * verify that the entire region is valid here.
2178          */
2179         while (!r && start_gfn <= end_gfn) {
2180                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2181                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2182                                            &nr_pages_avail);
2183                 if (kvm_is_error_hva(ghc->hva))
2184                         r = -EFAULT;
2185                 start_gfn += nr_pages_avail;
2186         }
2187
2188         /* Use the slow path for cross page reads and writes. */
2189         if (!r && nr_pages_needed == 1)
2190                 ghc->hva += offset;
2191         else
2192                 ghc->memslot = NULL;
2193
2194         return r;
2195 }
2196
2197 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2198                               gpa_t gpa, unsigned long len)
2199 {
2200         struct kvm_memslots *slots = kvm_memslots(kvm);
2201         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2202 }
2203 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2204
2205 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2206                                   void *data, unsigned int offset,
2207                                   unsigned long len)
2208 {
2209         struct kvm_memslots *slots = kvm_memslots(kvm);
2210         int r;
2211         gpa_t gpa = ghc->gpa + offset;
2212
2213         BUG_ON(len + offset > ghc->len);
2214
2215         if (slots->generation != ghc->generation)
2216                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2217
2218         if (unlikely(!ghc->memslot))
2219                 return kvm_write_guest(kvm, gpa, data, len);
2220
2221         if (kvm_is_error_hva(ghc->hva))
2222                 return -EFAULT;
2223
2224         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2225         if (r)
2226                 return -EFAULT;
2227         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2228
2229         return 0;
2230 }
2231 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2232
2233 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2234                            void *data, unsigned long len)
2235 {
2236         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2239
2240 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2241                            void *data, unsigned long len)
2242 {
2243         struct kvm_memslots *slots = kvm_memslots(kvm);
2244         int r;
2245
2246         BUG_ON(len > ghc->len);
2247
2248         if (slots->generation != ghc->generation)
2249                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2250
2251         if (unlikely(!ghc->memslot))
2252                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2253
2254         if (kvm_is_error_hva(ghc->hva))
2255                 return -EFAULT;
2256
2257         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2258         if (r)
2259                 return -EFAULT;
2260
2261         return 0;
2262 }
2263 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2264
2265 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2266 {
2267         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2268
2269         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2270 }
2271 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2272
2273 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2274 {
2275         gfn_t gfn = gpa >> PAGE_SHIFT;
2276         int seg;
2277         int offset = offset_in_page(gpa);
2278         int ret;
2279
2280         while ((seg = next_segment(len, offset)) != 0) {
2281                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2282                 if (ret < 0)
2283                         return ret;
2284                 offset = 0;
2285                 len -= seg;
2286                 ++gfn;
2287         }
2288         return 0;
2289 }
2290 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2291
2292 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2293                                     gfn_t gfn)
2294 {
2295         if (memslot && memslot->dirty_bitmap) {
2296                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2297
2298                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2299         }
2300 }
2301
2302 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2303 {
2304         struct kvm_memory_slot *memslot;
2305
2306         memslot = gfn_to_memslot(kvm, gfn);
2307         mark_page_dirty_in_slot(memslot, gfn);
2308 }
2309 EXPORT_SYMBOL_GPL(mark_page_dirty);
2310
2311 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2312 {
2313         struct kvm_memory_slot *memslot;
2314
2315         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2316         mark_page_dirty_in_slot(memslot, gfn);
2317 }
2318 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2319
2320 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2321 {
2322         if (!vcpu->sigset_active)
2323                 return;
2324
2325         /*
2326          * This does a lockless modification of ->real_blocked, which is fine
2327          * because, only current can change ->real_blocked and all readers of
2328          * ->real_blocked don't care as long ->real_blocked is always a subset
2329          * of ->blocked.
2330          */
2331         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2332 }
2333
2334 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2335 {
2336         if (!vcpu->sigset_active)
2337                 return;
2338
2339         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2340         sigemptyset(&current->real_blocked);
2341 }
2342
2343 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2344 {
2345         unsigned int old, val, grow, grow_start;
2346
2347         old = val = vcpu->halt_poll_ns;
2348         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2349         grow = READ_ONCE(halt_poll_ns_grow);
2350         if (!grow)
2351                 goto out;
2352
2353         val *= grow;
2354         if (val < grow_start)
2355                 val = grow_start;
2356
2357         if (val > halt_poll_ns)
2358                 val = halt_poll_ns;
2359
2360         vcpu->halt_poll_ns = val;
2361 out:
2362         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2363 }
2364
2365 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2366 {
2367         unsigned int old, val, shrink;
2368
2369         old = val = vcpu->halt_poll_ns;
2370         shrink = READ_ONCE(halt_poll_ns_shrink);
2371         if (shrink == 0)
2372                 val = 0;
2373         else
2374                 val /= shrink;
2375
2376         vcpu->halt_poll_ns = val;
2377         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2378 }
2379
2380 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2381 {
2382         int ret = -EINTR;
2383         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2384
2385         if (kvm_arch_vcpu_runnable(vcpu)) {
2386                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2387                 goto out;
2388         }
2389         if (kvm_cpu_has_pending_timer(vcpu))
2390                 goto out;
2391         if (signal_pending(current))
2392                 goto out;
2393
2394         ret = 0;
2395 out:
2396         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2397         return ret;
2398 }
2399
2400 /*
2401  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2402  */
2403 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2404 {
2405         ktime_t start, cur;
2406         DECLARE_SWAITQUEUE(wait);
2407         bool waited = false;
2408         u64 block_ns;
2409
2410         kvm_arch_vcpu_blocking(vcpu);
2411
2412         start = cur = ktime_get();
2413         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2414                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2415
2416                 ++vcpu->stat.halt_attempted_poll;
2417                 do {
2418                         /*
2419                          * This sets KVM_REQ_UNHALT if an interrupt
2420                          * arrives.
2421                          */
2422                         if (kvm_vcpu_check_block(vcpu) < 0) {
2423                                 ++vcpu->stat.halt_successful_poll;
2424                                 if (!vcpu_valid_wakeup(vcpu))
2425                                         ++vcpu->stat.halt_poll_invalid;
2426                                 goto out;
2427                         }
2428                         cur = ktime_get();
2429                 } while (single_task_running() && ktime_before(cur, stop));
2430         }
2431
2432         for (;;) {
2433                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2434
2435                 if (kvm_vcpu_check_block(vcpu) < 0)
2436                         break;
2437
2438                 waited = true;
2439                 schedule();
2440         }
2441
2442         finish_swait(&vcpu->wq, &wait);
2443         cur = ktime_get();
2444 out:
2445         kvm_arch_vcpu_unblocking(vcpu);
2446         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2447
2448         if (!kvm_arch_no_poll(vcpu)) {
2449                 if (!vcpu_valid_wakeup(vcpu)) {
2450                         shrink_halt_poll_ns(vcpu);
2451                 } else if (halt_poll_ns) {
2452                         if (block_ns <= vcpu->halt_poll_ns)
2453                                 ;
2454                         /* we had a long block, shrink polling */
2455                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2456                                 shrink_halt_poll_ns(vcpu);
2457                         /* we had a short halt and our poll time is too small */
2458                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2459                                 block_ns < halt_poll_ns)
2460                                 grow_halt_poll_ns(vcpu);
2461                 } else {
2462                         vcpu->halt_poll_ns = 0;
2463                 }
2464         }
2465
2466         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2467         kvm_arch_vcpu_block_finish(vcpu);
2468 }
2469 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2470
2471 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2472 {
2473         struct swait_queue_head *wqp;
2474
2475         wqp = kvm_arch_vcpu_wq(vcpu);
2476         if (swq_has_sleeper(wqp)) {
2477                 swake_up_one(wqp);
2478                 WRITE_ONCE(vcpu->ready, true);
2479                 ++vcpu->stat.halt_wakeup;
2480                 return true;
2481         }
2482
2483         return false;
2484 }
2485 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2486
2487 #ifndef CONFIG_S390
2488 /*
2489  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2490  */
2491 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2492 {
2493         int me;
2494         int cpu = vcpu->cpu;
2495
2496         if (kvm_vcpu_wake_up(vcpu))
2497                 return;
2498
2499         me = get_cpu();
2500         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2501                 if (kvm_arch_vcpu_should_kick(vcpu))
2502                         smp_send_reschedule(cpu);
2503         put_cpu();
2504 }
2505 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2506 #endif /* !CONFIG_S390 */
2507
2508 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2509 {
2510         struct pid *pid;
2511         struct task_struct *task = NULL;
2512         int ret = 0;
2513
2514         rcu_read_lock();
2515         pid = rcu_dereference(target->pid);
2516         if (pid)
2517                 task = get_pid_task(pid, PIDTYPE_PID);
2518         rcu_read_unlock();
2519         if (!task)
2520                 return ret;
2521         ret = yield_to(task, 1);
2522         put_task_struct(task);
2523
2524         return ret;
2525 }
2526 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2527
2528 /*
2529  * Helper that checks whether a VCPU is eligible for directed yield.
2530  * Most eligible candidate to yield is decided by following heuristics:
2531  *
2532  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2533  *  (preempted lock holder), indicated by @in_spin_loop.
2534  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2535  *
2536  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2537  *  chance last time (mostly it has become eligible now since we have probably
2538  *  yielded to lockholder in last iteration. This is done by toggling
2539  *  @dy_eligible each time a VCPU checked for eligibility.)
2540  *
2541  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2542  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2543  *  burning. Giving priority for a potential lock-holder increases lock
2544  *  progress.
2545  *
2546  *  Since algorithm is based on heuristics, accessing another VCPU data without
2547  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2548  *  and continue with next VCPU and so on.
2549  */
2550 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2551 {
2552 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2553         bool eligible;
2554
2555         eligible = !vcpu->spin_loop.in_spin_loop ||
2556                     vcpu->spin_loop.dy_eligible;
2557
2558         if (vcpu->spin_loop.in_spin_loop)
2559                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2560
2561         return eligible;
2562 #else
2563         return true;
2564 #endif
2565 }
2566
2567 /*
2568  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2569  * a vcpu_load/vcpu_put pair.  However, for most architectures
2570  * kvm_arch_vcpu_runnable does not require vcpu_load.
2571  */
2572 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2573 {
2574         return kvm_arch_vcpu_runnable(vcpu);
2575 }
2576
2577 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2578 {
2579         if (kvm_arch_dy_runnable(vcpu))
2580                 return true;
2581
2582 #ifdef CONFIG_KVM_ASYNC_PF
2583         if (!list_empty_careful(&vcpu->async_pf.done))
2584                 return true;
2585 #endif
2586
2587         return false;
2588 }
2589
2590 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2591 {
2592         struct kvm *kvm = me->kvm;
2593         struct kvm_vcpu *vcpu;
2594         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2595         int yielded = 0;
2596         int try = 3;
2597         int pass;
2598         int i;
2599
2600         kvm_vcpu_set_in_spin_loop(me, true);
2601         /*
2602          * We boost the priority of a VCPU that is runnable but not
2603          * currently running, because it got preempted by something
2604          * else and called schedule in __vcpu_run.  Hopefully that
2605          * VCPU is holding the lock that we need and will release it.
2606          * We approximate round-robin by starting at the last boosted VCPU.
2607          */
2608         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2609                 kvm_for_each_vcpu(i, vcpu, kvm) {
2610                         if (!pass && i <= last_boosted_vcpu) {
2611                                 i = last_boosted_vcpu;
2612                                 continue;
2613                         } else if (pass && i > last_boosted_vcpu)
2614                                 break;
2615                         if (!READ_ONCE(vcpu->ready))
2616                                 continue;
2617                         if (vcpu == me)
2618                                 continue;
2619                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2620                                 continue;
2621                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2622                                 !kvm_arch_vcpu_in_kernel(vcpu))
2623                                 continue;
2624                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2625                                 continue;
2626
2627                         yielded = kvm_vcpu_yield_to(vcpu);
2628                         if (yielded > 0) {
2629                                 kvm->last_boosted_vcpu = i;
2630                                 break;
2631                         } else if (yielded < 0) {
2632                                 try--;
2633                                 if (!try)
2634                                         break;
2635                         }
2636                 }
2637         }
2638         kvm_vcpu_set_in_spin_loop(me, false);
2639
2640         /* Ensure vcpu is not eligible during next spinloop */
2641         kvm_vcpu_set_dy_eligible(me, false);
2642 }
2643 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2644
2645 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2646 {
2647         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2648         struct page *page;
2649
2650         if (vmf->pgoff == 0)
2651                 page = virt_to_page(vcpu->run);
2652 #ifdef CONFIG_X86
2653         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2654                 page = virt_to_page(vcpu->arch.pio_data);
2655 #endif
2656 #ifdef CONFIG_KVM_MMIO
2657         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2658                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2659 #endif
2660         else
2661                 return kvm_arch_vcpu_fault(vcpu, vmf);
2662         get_page(page);
2663         vmf->page = page;
2664         return 0;
2665 }
2666
2667 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2668         .fault = kvm_vcpu_fault,
2669 };
2670
2671 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2672 {
2673         vma->vm_ops = &kvm_vcpu_vm_ops;
2674         return 0;
2675 }
2676
2677 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2678 {
2679         struct kvm_vcpu *vcpu = filp->private_data;
2680
2681         debugfs_remove_recursive(vcpu->debugfs_dentry);
2682         kvm_put_kvm(vcpu->kvm);
2683         return 0;
2684 }
2685
2686 static struct file_operations kvm_vcpu_fops = {
2687         .release        = kvm_vcpu_release,
2688         .unlocked_ioctl = kvm_vcpu_ioctl,
2689         .mmap           = kvm_vcpu_mmap,
2690         .llseek         = noop_llseek,
2691         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2692 };
2693
2694 /*
2695  * Allocates an inode for the vcpu.
2696  */
2697 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2698 {
2699         char name[8 + 1 + ITOA_MAX_LEN + 1];
2700
2701         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2702         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2703 }
2704
2705 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2706 {
2707 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2708         char dir_name[ITOA_MAX_LEN * 2];
2709
2710         if (!debugfs_initialized())
2711                 return;
2712
2713         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2714         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2715                                                   vcpu->kvm->debugfs_dentry);
2716
2717         kvm_arch_create_vcpu_debugfs(vcpu);
2718 #endif
2719 }
2720
2721 /*
2722  * Creates some virtual cpus.  Good luck creating more than one.
2723  */
2724 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2725 {
2726         int r;
2727         struct kvm_vcpu *vcpu;
2728
2729         if (id >= KVM_MAX_VCPU_ID)
2730                 return -EINVAL;
2731
2732         mutex_lock(&kvm->lock);
2733         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2734                 mutex_unlock(&kvm->lock);
2735                 return -EINVAL;
2736         }
2737
2738         kvm->created_vcpus++;
2739         mutex_unlock(&kvm->lock);
2740
2741         vcpu = kvm_arch_vcpu_create(kvm, id);
2742         if (IS_ERR(vcpu)) {
2743                 r = PTR_ERR(vcpu);
2744                 goto vcpu_decrement;
2745         }
2746
2747         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2748
2749         r = kvm_arch_vcpu_setup(vcpu);
2750         if (r)
2751                 goto vcpu_destroy;
2752
2753         kvm_create_vcpu_debugfs(vcpu);
2754
2755         mutex_lock(&kvm->lock);
2756         if (kvm_get_vcpu_by_id(kvm, id)) {
2757                 r = -EEXIST;
2758                 goto unlock_vcpu_destroy;
2759         }
2760
2761         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2762
2763         /* Now it's all set up, let userspace reach it */
2764         kvm_get_kvm(kvm);
2765         r = create_vcpu_fd(vcpu);
2766         if (r < 0) {
2767                 kvm_put_kvm(kvm);
2768                 goto unlock_vcpu_destroy;
2769         }
2770
2771         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2772
2773         /*
2774          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2775          * before kvm->online_vcpu's incremented value.
2776          */
2777         smp_wmb();
2778         atomic_inc(&kvm->online_vcpus);
2779
2780         mutex_unlock(&kvm->lock);
2781         kvm_arch_vcpu_postcreate(vcpu);
2782         return r;
2783
2784 unlock_vcpu_destroy:
2785         mutex_unlock(&kvm->lock);
2786         debugfs_remove_recursive(vcpu->debugfs_dentry);
2787 vcpu_destroy:
2788         kvm_arch_vcpu_destroy(vcpu);
2789 vcpu_decrement:
2790         mutex_lock(&kvm->lock);
2791         kvm->created_vcpus--;
2792         mutex_unlock(&kvm->lock);
2793         return r;
2794 }
2795
2796 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2797 {
2798         if (sigset) {
2799                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2800                 vcpu->sigset_active = 1;
2801                 vcpu->sigset = *sigset;
2802         } else
2803                 vcpu->sigset_active = 0;
2804         return 0;
2805 }
2806
2807 static long kvm_vcpu_ioctl(struct file *filp,
2808                            unsigned int ioctl, unsigned long arg)
2809 {
2810         struct kvm_vcpu *vcpu = filp->private_data;
2811         void __user *argp = (void __user *)arg;
2812         int r;
2813         struct kvm_fpu *fpu = NULL;
2814         struct kvm_sregs *kvm_sregs = NULL;
2815
2816         if (vcpu->kvm->mm != current->mm)
2817                 return -EIO;
2818
2819         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2820                 return -EINVAL;
2821
2822         /*
2823          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2824          * execution; mutex_lock() would break them.
2825          */
2826         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2827         if (r != -ENOIOCTLCMD)
2828                 return r;
2829
2830         if (mutex_lock_killable(&vcpu->mutex))
2831                 return -EINTR;
2832         switch (ioctl) {
2833         case KVM_RUN: {
2834                 struct pid *oldpid;
2835                 r = -EINVAL;
2836                 if (arg)
2837                         goto out;
2838                 oldpid = rcu_access_pointer(vcpu->pid);
2839                 if (unlikely(oldpid != task_pid(current))) {
2840                         /* The thread running this VCPU changed. */
2841                         struct pid *newpid;
2842
2843                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2844                         if (r)
2845                                 break;
2846
2847                         newpid = get_task_pid(current, PIDTYPE_PID);
2848                         rcu_assign_pointer(vcpu->pid, newpid);
2849                         if (oldpid)
2850                                 synchronize_rcu();
2851                         put_pid(oldpid);
2852                 }
2853                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2854                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2855                 break;
2856         }
2857         case KVM_GET_REGS: {
2858                 struct kvm_regs *kvm_regs;
2859
2860                 r = -ENOMEM;
2861                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2862                 if (!kvm_regs)
2863                         goto out;
2864                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2865                 if (r)
2866                         goto out_free1;
2867                 r = -EFAULT;
2868                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2869                         goto out_free1;
2870                 r = 0;
2871 out_free1:
2872                 kfree(kvm_regs);
2873                 break;
2874         }
2875         case KVM_SET_REGS: {
2876                 struct kvm_regs *kvm_regs;
2877
2878                 r = -ENOMEM;
2879                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2880                 if (IS_ERR(kvm_regs)) {
2881                         r = PTR_ERR(kvm_regs);
2882                         goto out;
2883                 }
2884                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2885                 kfree(kvm_regs);
2886                 break;
2887         }
2888         case KVM_GET_SREGS: {
2889                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2890                                     GFP_KERNEL_ACCOUNT);
2891                 r = -ENOMEM;
2892                 if (!kvm_sregs)
2893                         goto out;
2894                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2895                 if (r)
2896                         goto out;
2897                 r = -EFAULT;
2898                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2899                         goto out;
2900                 r = 0;
2901                 break;
2902         }
2903         case KVM_SET_SREGS: {
2904                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2905                 if (IS_ERR(kvm_sregs)) {
2906                         r = PTR_ERR(kvm_sregs);
2907                         kvm_sregs = NULL;
2908                         goto out;
2909                 }
2910                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2911                 break;
2912         }
2913         case KVM_GET_MP_STATE: {
2914                 struct kvm_mp_state mp_state;
2915
2916                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2917                 if (r)
2918                         goto out;
2919                 r = -EFAULT;
2920                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2921                         goto out;
2922                 r = 0;
2923                 break;
2924         }
2925         case KVM_SET_MP_STATE: {
2926                 struct kvm_mp_state mp_state;
2927
2928                 r = -EFAULT;
2929                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2930                         goto out;
2931                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2932                 break;
2933         }
2934         case KVM_TRANSLATE: {
2935                 struct kvm_translation tr;
2936
2937                 r = -EFAULT;
2938                 if (copy_from_user(&tr, argp, sizeof(tr)))
2939                         goto out;
2940                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2941                 if (r)
2942                         goto out;
2943                 r = -EFAULT;
2944                 if (copy_to_user(argp, &tr, sizeof(tr)))
2945                         goto out;
2946                 r = 0;
2947                 break;
2948         }
2949         case KVM_SET_GUEST_DEBUG: {
2950                 struct kvm_guest_debug dbg;
2951
2952                 r = -EFAULT;
2953                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2954                         goto out;
2955                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2956                 break;
2957         }
2958         case KVM_SET_SIGNAL_MASK: {
2959                 struct kvm_signal_mask __user *sigmask_arg = argp;
2960                 struct kvm_signal_mask kvm_sigmask;
2961                 sigset_t sigset, *p;
2962
2963                 p = NULL;
2964                 if (argp) {
2965                         r = -EFAULT;
2966                         if (copy_from_user(&kvm_sigmask, argp,
2967                                            sizeof(kvm_sigmask)))
2968                                 goto out;
2969                         r = -EINVAL;
2970                         if (kvm_sigmask.len != sizeof(sigset))
2971                                 goto out;
2972                         r = -EFAULT;
2973                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2974                                            sizeof(sigset)))
2975                                 goto out;
2976                         p = &sigset;
2977                 }
2978                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2979                 break;
2980         }
2981         case KVM_GET_FPU: {
2982                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2983                 r = -ENOMEM;
2984                 if (!fpu)
2985                         goto out;
2986                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2987                 if (r)
2988                         goto out;
2989                 r = -EFAULT;
2990                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2991                         goto out;
2992                 r = 0;
2993                 break;
2994         }
2995         case KVM_SET_FPU: {
2996                 fpu = memdup_user(argp, sizeof(*fpu));
2997                 if (IS_ERR(fpu)) {
2998                         r = PTR_ERR(fpu);
2999                         fpu = NULL;
3000                         goto out;
3001                 }
3002                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3003                 break;
3004         }
3005         default:
3006                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3007         }
3008 out:
3009         mutex_unlock(&vcpu->mutex);
3010         kfree(fpu);
3011         kfree(kvm_sregs);
3012         return r;
3013 }
3014
3015 #ifdef CONFIG_KVM_COMPAT
3016 static long kvm_vcpu_compat_ioctl(struct file *filp,
3017                                   unsigned int ioctl, unsigned long arg)
3018 {
3019         struct kvm_vcpu *vcpu = filp->private_data;
3020         void __user *argp = compat_ptr(arg);
3021         int r;
3022
3023         if (vcpu->kvm->mm != current->mm)
3024                 return -EIO;
3025
3026         switch (ioctl) {
3027         case KVM_SET_SIGNAL_MASK: {
3028                 struct kvm_signal_mask __user *sigmask_arg = argp;
3029                 struct kvm_signal_mask kvm_sigmask;
3030                 sigset_t sigset;
3031
3032                 if (argp) {
3033                         r = -EFAULT;
3034                         if (copy_from_user(&kvm_sigmask, argp,
3035                                            sizeof(kvm_sigmask)))
3036                                 goto out;
3037                         r = -EINVAL;
3038                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3039                                 goto out;
3040                         r = -EFAULT;
3041                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3042                                 goto out;
3043                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3044                 } else
3045                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3046                 break;
3047         }
3048         default:
3049                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3050         }
3051
3052 out:
3053         return r;
3054 }
3055 #endif
3056
3057 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3058 {
3059         struct kvm_device *dev = filp->private_data;
3060
3061         if (dev->ops->mmap)
3062                 return dev->ops->mmap(dev, vma);
3063
3064         return -ENODEV;
3065 }
3066
3067 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3068                                  int (*accessor)(struct kvm_device *dev,
3069                                                  struct kvm_device_attr *attr),
3070                                  unsigned long arg)
3071 {
3072         struct kvm_device_attr attr;
3073
3074         if (!accessor)
3075                 return -EPERM;
3076
3077         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3078                 return -EFAULT;
3079
3080         return accessor(dev, &attr);
3081 }
3082
3083 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3084                              unsigned long arg)
3085 {
3086         struct kvm_device *dev = filp->private_data;
3087
3088         if (dev->kvm->mm != current->mm)
3089                 return -EIO;
3090
3091         switch (ioctl) {
3092         case KVM_SET_DEVICE_ATTR:
3093                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3094         case KVM_GET_DEVICE_ATTR:
3095                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3096         case KVM_HAS_DEVICE_ATTR:
3097                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3098         default:
3099                 if (dev->ops->ioctl)
3100                         return dev->ops->ioctl(dev, ioctl, arg);
3101
3102                 return -ENOTTY;
3103         }
3104 }
3105
3106 static int kvm_device_release(struct inode *inode, struct file *filp)
3107 {
3108         struct kvm_device *dev = filp->private_data;
3109         struct kvm *kvm = dev->kvm;
3110
3111         if (dev->ops->release) {
3112                 mutex_lock(&kvm->lock);
3113                 list_del(&dev->vm_node);
3114                 dev->ops->release(dev);
3115                 mutex_unlock(&kvm->lock);
3116         }
3117
3118         kvm_put_kvm(kvm);
3119         return 0;
3120 }
3121
3122 static const struct file_operations kvm_device_fops = {
3123         .unlocked_ioctl = kvm_device_ioctl,
3124         .release = kvm_device_release,
3125         KVM_COMPAT(kvm_device_ioctl),
3126         .mmap = kvm_device_mmap,
3127 };
3128
3129 struct kvm_device *kvm_device_from_filp(struct file *filp)
3130 {
3131         if (filp->f_op != &kvm_device_fops)
3132                 return NULL;
3133
3134         return filp->private_data;
3135 }
3136
3137 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3138 #ifdef CONFIG_KVM_MPIC
3139         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3140         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3141 #endif
3142 };
3143
3144 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3145 {
3146         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3147                 return -ENOSPC;
3148
3149         if (kvm_device_ops_table[type] != NULL)
3150                 return -EEXIST;
3151
3152         kvm_device_ops_table[type] = ops;
3153         return 0;
3154 }
3155
3156 void kvm_unregister_device_ops(u32 type)
3157 {
3158         if (kvm_device_ops_table[type] != NULL)
3159                 kvm_device_ops_table[type] = NULL;
3160 }
3161
3162 static int kvm_ioctl_create_device(struct kvm *kvm,
3163                                    struct kvm_create_device *cd)
3164 {
3165         struct kvm_device_ops *ops = NULL;
3166         struct kvm_device *dev;
3167         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3168         int type;
3169         int ret;
3170
3171         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3172                 return -ENODEV;
3173
3174         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3175         ops = kvm_device_ops_table[type];
3176         if (ops == NULL)
3177                 return -ENODEV;
3178
3179         if (test)
3180                 return 0;
3181
3182         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3183         if (!dev)
3184                 return -ENOMEM;
3185
3186         dev->ops = ops;
3187         dev->kvm = kvm;
3188
3189         mutex_lock(&kvm->lock);
3190         ret = ops->create(dev, type);
3191         if (ret < 0) {
3192                 mutex_unlock(&kvm->lock);
3193                 kfree(dev);
3194                 return ret;
3195         }
3196         list_add(&dev->vm_node, &kvm->devices);
3197         mutex_unlock(&kvm->lock);
3198
3199         if (ops->init)
3200                 ops->init(dev);
3201
3202         kvm_get_kvm(kvm);
3203         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3204         if (ret < 0) {
3205                 kvm_put_kvm(kvm);
3206                 mutex_lock(&kvm->lock);
3207                 list_del(&dev->vm_node);
3208                 mutex_unlock(&kvm->lock);
3209                 ops->destroy(dev);
3210                 return ret;
3211         }
3212
3213         cd->fd = ret;
3214         return 0;
3215 }
3216
3217 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3218 {
3219         switch (arg) {
3220         case KVM_CAP_USER_MEMORY:
3221         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3222         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3223         case KVM_CAP_INTERNAL_ERROR_DATA:
3224 #ifdef CONFIG_HAVE_KVM_MSI
3225         case KVM_CAP_SIGNAL_MSI:
3226 #endif
3227 #ifdef CONFIG_HAVE_KVM_IRQFD
3228         case KVM_CAP_IRQFD:
3229         case KVM_CAP_IRQFD_RESAMPLE:
3230 #endif
3231         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3232         case KVM_CAP_CHECK_EXTENSION_VM:
3233         case KVM_CAP_ENABLE_CAP_VM:
3234 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3235         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3236 #endif
3237                 return 1;
3238 #ifdef CONFIG_KVM_MMIO
3239         case KVM_CAP_COALESCED_MMIO:
3240                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3241         case KVM_CAP_COALESCED_PIO:
3242                 return 1;
3243 #endif
3244 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3245         case KVM_CAP_IRQ_ROUTING:
3246                 return KVM_MAX_IRQ_ROUTES;
3247 #endif
3248 #if KVM_ADDRESS_SPACE_NUM > 1
3249         case KVM_CAP_MULTI_ADDRESS_SPACE:
3250                 return KVM_ADDRESS_SPACE_NUM;
3251 #endif
3252         case KVM_CAP_NR_MEMSLOTS:
3253                 return KVM_USER_MEM_SLOTS;
3254         default:
3255                 break;
3256         }
3257         return kvm_vm_ioctl_check_extension(kvm, arg);
3258 }
3259
3260 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3261                                                   struct kvm_enable_cap *cap)
3262 {
3263         return -EINVAL;
3264 }
3265
3266 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3267                                            struct kvm_enable_cap *cap)
3268 {
3269         switch (cap->cap) {
3270 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3271         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3272                 if (cap->flags || (cap->args[0] & ~1))
3273                         return -EINVAL;
3274                 kvm->manual_dirty_log_protect = cap->args[0];
3275                 return 0;
3276 #endif
3277         default:
3278                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3279         }
3280 }
3281
3282 static long kvm_vm_ioctl(struct file *filp,
3283                            unsigned int ioctl, unsigned long arg)
3284 {
3285         struct kvm *kvm = filp->private_data;
3286         void __user *argp = (void __user *)arg;
3287         int r;
3288
3289         if (kvm->mm != current->mm)
3290                 return -EIO;
3291         switch (ioctl) {
3292         case KVM_CREATE_VCPU:
3293                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3294                 break;
3295         case KVM_ENABLE_CAP: {
3296                 struct kvm_enable_cap cap;
3297
3298                 r = -EFAULT;
3299                 if (copy_from_user(&cap, argp, sizeof(cap)))
3300                         goto out;
3301                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3302                 break;
3303         }
3304         case KVM_SET_USER_MEMORY_REGION: {
3305                 struct kvm_userspace_memory_region kvm_userspace_mem;
3306
3307                 r = -EFAULT;
3308                 if (copy_from_user(&kvm_userspace_mem, argp,
3309                                                 sizeof(kvm_userspace_mem)))
3310                         goto out;
3311
3312                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3313                 break;
3314         }
3315         case KVM_GET_DIRTY_LOG: {
3316                 struct kvm_dirty_log log;
3317
3318                 r = -EFAULT;
3319                 if (copy_from_user(&log, argp, sizeof(log)))
3320                         goto out;
3321                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3322                 break;
3323         }
3324 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3325         case KVM_CLEAR_DIRTY_LOG: {
3326                 struct kvm_clear_dirty_log log;
3327
3328                 r = -EFAULT;
3329                 if (copy_from_user(&log, argp, sizeof(log)))
3330                         goto out;
3331                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3332                 break;
3333         }
3334 #endif
3335 #ifdef CONFIG_KVM_MMIO
3336         case KVM_REGISTER_COALESCED_MMIO: {
3337                 struct kvm_coalesced_mmio_zone zone;
3338
3339                 r = -EFAULT;
3340                 if (copy_from_user(&zone, argp, sizeof(zone)))
3341                         goto out;
3342                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3343                 break;
3344         }
3345         case KVM_UNREGISTER_COALESCED_MMIO: {
3346                 struct kvm_coalesced_mmio_zone zone;
3347
3348                 r = -EFAULT;
3349                 if (copy_from_user(&zone, argp, sizeof(zone)))
3350                         goto out;
3351                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3352                 break;
3353         }
3354 #endif
3355         case KVM_IRQFD: {
3356                 struct kvm_irqfd data;
3357
3358                 r = -EFAULT;
3359                 if (copy_from_user(&data, argp, sizeof(data)))
3360                         goto out;
3361                 r = kvm_irqfd(kvm, &data);
3362                 break;
3363         }
3364         case KVM_IOEVENTFD: {
3365                 struct kvm_ioeventfd data;
3366
3367                 r = -EFAULT;
3368                 if (copy_from_user(&data, argp, sizeof(data)))
3369                         goto out;
3370                 r = kvm_ioeventfd(kvm, &data);
3371                 break;
3372         }
3373 #ifdef CONFIG_HAVE_KVM_MSI
3374         case KVM_SIGNAL_MSI: {
3375                 struct kvm_msi msi;
3376
3377                 r = -EFAULT;
3378                 if (copy_from_user(&msi, argp, sizeof(msi)))
3379                         goto out;
3380                 r = kvm_send_userspace_msi(kvm, &msi);
3381                 break;
3382         }
3383 #endif
3384 #ifdef __KVM_HAVE_IRQ_LINE
3385         case KVM_IRQ_LINE_STATUS:
3386         case KVM_IRQ_LINE: {
3387                 struct kvm_irq_level irq_event;
3388
3389                 r = -EFAULT;
3390                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3391                         goto out;
3392
3393                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3394                                         ioctl == KVM_IRQ_LINE_STATUS);
3395                 if (r)
3396                         goto out;
3397
3398                 r = -EFAULT;
3399                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3400                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3401                                 goto out;
3402                 }
3403
3404                 r = 0;
3405                 break;
3406         }
3407 #endif
3408 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3409         case KVM_SET_GSI_ROUTING: {
3410                 struct kvm_irq_routing routing;
3411                 struct kvm_irq_routing __user *urouting;
3412                 struct kvm_irq_routing_entry *entries = NULL;
3413
3414                 r = -EFAULT;
3415                 if (copy_from_user(&routing, argp, sizeof(routing)))
3416                         goto out;
3417                 r = -EINVAL;
3418                 if (!kvm_arch_can_set_irq_routing(kvm))
3419                         goto out;
3420                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3421                         goto out;
3422                 if (routing.flags)
3423                         goto out;
3424                 if (routing.nr) {
3425                         r = -ENOMEM;
3426                         entries = vmalloc(array_size(sizeof(*entries),
3427                                                      routing.nr));
3428                         if (!entries)
3429                                 goto out;
3430                         r = -EFAULT;
3431                         urouting = argp;
3432                         if (copy_from_user(entries, urouting->entries,
3433                                            routing.nr * sizeof(*entries)))
3434                                 goto out_free_irq_routing;
3435                 }
3436                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3437                                         routing.flags);
3438 out_free_irq_routing:
3439                 vfree(entries);
3440                 break;
3441         }
3442 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3443         case KVM_CREATE_DEVICE: {
3444                 struct kvm_create_device cd;
3445
3446                 r = -EFAULT;
3447                 if (copy_from_user(&cd, argp, sizeof(cd)))
3448                         goto out;
3449
3450                 r = kvm_ioctl_create_device(kvm, &cd);
3451                 if (r)
3452                         goto out;
3453
3454                 r = -EFAULT;
3455                 if (copy_to_user(argp, &cd, sizeof(cd)))
3456                         goto out;
3457
3458                 r = 0;
3459                 break;
3460         }
3461         case KVM_CHECK_EXTENSION:
3462                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3463                 break;
3464         default:
3465                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3466         }
3467 out:
3468         return r;
3469 }
3470
3471 #ifdef CONFIG_KVM_COMPAT
3472 struct compat_kvm_dirty_log {
3473         __u32 slot;
3474         __u32 padding1;
3475         union {
3476                 compat_uptr_t dirty_bitmap; /* one bit per page */
3477                 __u64 padding2;
3478         };
3479 };
3480
3481 static long kvm_vm_compat_ioctl(struct file *filp,
3482                            unsigned int ioctl, unsigned long arg)
3483 {
3484         struct kvm *kvm = filp->private_data;
3485         int r;
3486
3487         if (kvm->mm != current->mm)
3488                 return -EIO;
3489         switch (ioctl) {
3490         case KVM_GET_DIRTY_LOG: {
3491                 struct compat_kvm_dirty_log compat_log;
3492                 struct kvm_dirty_log log;
3493
3494                 if (copy_from_user(&compat_log, (void __user *)arg,
3495                                    sizeof(compat_log)))
3496                         return -EFAULT;
3497                 log.slot         = compat_log.slot;
3498                 log.padding1     = compat_log.padding1;
3499                 log.padding2     = compat_log.padding2;
3500                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3501
3502                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3503                 break;
3504         }
3505         default:
3506                 r = kvm_vm_ioctl(filp, ioctl, arg);
3507         }
3508         return r;
3509 }
3510 #endif
3511
3512 static struct file_operations kvm_vm_fops = {
3513         .release        = kvm_vm_release,
3514         .unlocked_ioctl = kvm_vm_ioctl,
3515         .llseek         = noop_llseek,
3516         KVM_COMPAT(kvm_vm_compat_ioctl),
3517 };
3518
3519 static int kvm_dev_ioctl_create_vm(unsigned long type)
3520 {
3521         int r;
3522         struct kvm *kvm;
3523         struct file *file;
3524
3525         kvm = kvm_create_vm(type);
3526         if (IS_ERR(kvm))
3527                 return PTR_ERR(kvm);
3528 #ifdef CONFIG_KVM_MMIO
3529         r = kvm_coalesced_mmio_init(kvm);
3530         if (r < 0)
3531                 goto put_kvm;
3532 #endif
3533         r = get_unused_fd_flags(O_CLOEXEC);
3534         if (r < 0)
3535                 goto put_kvm;
3536
3537         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3538         if (IS_ERR(file)) {
3539                 put_unused_fd(r);
3540                 r = PTR_ERR(file);
3541                 goto put_kvm;
3542         }
3543
3544         /*
3545          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3546          * already set, with ->release() being kvm_vm_release().  In error
3547          * cases it will be called by the final fput(file) and will take
3548          * care of doing kvm_put_kvm(kvm).
3549          */
3550         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3551                 put_unused_fd(r);
3552                 fput(file);
3553                 return -ENOMEM;
3554         }
3555         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3556
3557         fd_install(r, file);
3558         return r;
3559
3560 put_kvm:
3561         kvm_put_kvm(kvm);
3562         return r;
3563 }
3564
3565 static long kvm_dev_ioctl(struct file *filp,
3566                           unsigned int ioctl, unsigned long arg)
3567 {
3568         long r = -EINVAL;
3569
3570         switch (ioctl) {
3571         case KVM_GET_API_VERSION:
3572                 if (arg)
3573                         goto out;
3574                 r = KVM_API_VERSION;
3575                 break;
3576         case KVM_CREATE_VM:
3577                 r = kvm_dev_ioctl_create_vm(arg);
3578                 break;
3579         case KVM_CHECK_EXTENSION:
3580                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3581                 break;
3582         case KVM_GET_VCPU_MMAP_SIZE:
3583                 if (arg)
3584                         goto out;
3585                 r = PAGE_SIZE;     /* struct kvm_run */
3586 #ifdef CONFIG_X86
3587                 r += PAGE_SIZE;    /* pio data page */
3588 #endif
3589 #ifdef CONFIG_KVM_MMIO
3590                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3591 #endif
3592                 break;
3593         case KVM_TRACE_ENABLE:
3594         case KVM_TRACE_PAUSE:
3595         case KVM_TRACE_DISABLE:
3596                 r = -EOPNOTSUPP;
3597                 break;
3598         default:
3599                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3600         }
3601 out:
3602         return r;
3603 }
3604
3605 static struct file_operations kvm_chardev_ops = {
3606         .unlocked_ioctl = kvm_dev_ioctl,
3607         .llseek         = noop_llseek,
3608         KVM_COMPAT(kvm_dev_ioctl),
3609 };
3610
3611 static struct miscdevice kvm_dev = {
3612         KVM_MINOR,
3613         "kvm",
3614         &kvm_chardev_ops,
3615 };
3616
3617 static void hardware_enable_nolock(void *junk)
3618 {
3619         int cpu = raw_smp_processor_id();
3620         int r;
3621
3622         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3623                 return;
3624
3625         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3626
3627         r = kvm_arch_hardware_enable();
3628
3629         if (r) {
3630                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3631                 atomic_inc(&hardware_enable_failed);
3632                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3633         }
3634 }
3635
3636 static int kvm_starting_cpu(unsigned int cpu)
3637 {
3638         raw_spin_lock(&kvm_count_lock);
3639         if (kvm_usage_count)
3640                 hardware_enable_nolock(NULL);
3641         raw_spin_unlock(&kvm_count_lock);
3642         return 0;
3643 }
3644
3645 static void hardware_disable_nolock(void *junk)
3646 {
3647         int cpu = raw_smp_processor_id();
3648
3649         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3650                 return;
3651         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3652         kvm_arch_hardware_disable();
3653 }
3654
3655 static int kvm_dying_cpu(unsigned int cpu)
3656 {
3657         raw_spin_lock(&kvm_count_lock);
3658         if (kvm_usage_count)
3659                 hardware_disable_nolock(NULL);
3660         raw_spin_unlock(&kvm_count_lock);
3661         return 0;
3662 }
3663
3664 static void hardware_disable_all_nolock(void)
3665 {
3666         BUG_ON(!kvm_usage_count);
3667
3668         kvm_usage_count--;
3669         if (!kvm_usage_count)
3670                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3671 }
3672
3673 static void hardware_disable_all(void)
3674 {
3675         raw_spin_lock(&kvm_count_lock);
3676         hardware_disable_all_nolock();
3677         raw_spin_unlock(&kvm_count_lock);
3678 }
3679
3680 static int hardware_enable_all(void)
3681 {
3682         int r = 0;
3683
3684         raw_spin_lock(&kvm_count_lock);
3685
3686         kvm_usage_count++;
3687         if (kvm_usage_count == 1) {
3688                 atomic_set(&hardware_enable_failed, 0);
3689                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3690
3691                 if (atomic_read(&hardware_enable_failed)) {
3692                         hardware_disable_all_nolock();
3693                         r = -EBUSY;
3694                 }
3695         }
3696
3697         raw_spin_unlock(&kvm_count_lock);
3698
3699         return r;
3700 }
3701
3702 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3703                       void *v)
3704 {
3705         /*
3706          * Some (well, at least mine) BIOSes hang on reboot if
3707          * in vmx root mode.
3708          *
3709          * And Intel TXT required VMX off for all cpu when system shutdown.
3710          */
3711         pr_info("kvm: exiting hardware virtualization\n");
3712         kvm_rebooting = true;
3713         on_each_cpu(hardware_disable_nolock, NULL, 1);
3714         return NOTIFY_OK;
3715 }
3716
3717 static struct notifier_block kvm_reboot_notifier = {
3718         .notifier_call = kvm_reboot,
3719         .priority = 0,
3720 };
3721
3722 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3723 {
3724         int i;
3725
3726         for (i = 0; i < bus->dev_count; i++) {
3727                 struct kvm_io_device *pos = bus->range[i].dev;
3728
3729                 kvm_iodevice_destructor(pos);
3730         }
3731         kfree(bus);
3732 }
3733
3734 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3735                                  const struct kvm_io_range *r2)
3736 {
3737         gpa_t addr1 = r1->addr;
3738         gpa_t addr2 = r2->addr;
3739
3740         if (addr1 < addr2)
3741                 return -1;
3742
3743         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3744          * accept any overlapping write.  Any order is acceptable for
3745          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3746          * we process all of them.
3747          */
3748         if (r2->len) {
3749                 addr1 += r1->len;
3750                 addr2 += r2->len;
3751         }
3752
3753         if (addr1 > addr2)
3754                 return 1;
3755
3756         return 0;
3757 }
3758
3759 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3760 {
3761         return kvm_io_bus_cmp(p1, p2);
3762 }
3763
3764 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3765                              gpa_t addr, int len)
3766 {
3767         struct kvm_io_range *range, key;
3768         int off;
3769
3770         key = (struct kvm_io_range) {
3771                 .addr = addr,
3772                 .len = len,
3773         };
3774
3775         range = bsearch(&key, bus->range, bus->dev_count,
3776                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3777         if (range == NULL)
3778                 return -ENOENT;
3779
3780         off = range - bus->range;
3781
3782         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3783                 off--;
3784
3785         return off;
3786 }
3787
3788 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3789                               struct kvm_io_range *range, const void *val)
3790 {
3791         int idx;
3792
3793         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3794         if (idx < 0)
3795                 return -EOPNOTSUPP;
3796
3797         while (idx < bus->dev_count &&
3798                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3799                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3800                                         range->len, val))
3801                         return idx;
3802                 idx++;
3803         }
3804
3805         return -EOPNOTSUPP;
3806 }
3807
3808 /* kvm_io_bus_write - called under kvm->slots_lock */
3809 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3810                      int len, const void *val)
3811 {
3812         struct kvm_io_bus *bus;
3813         struct kvm_io_range range;
3814         int r;
3815
3816         range = (struct kvm_io_range) {
3817                 .addr = addr,
3818                 .len = len,
3819         };
3820
3821         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3822         if (!bus)
3823                 return -ENOMEM;
3824         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3825         return r < 0 ? r : 0;
3826 }
3827 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3828
3829 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3830 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3831                             gpa_t addr, int len, const void *val, long cookie)
3832 {
3833         struct kvm_io_bus *bus;
3834         struct kvm_io_range range;
3835
3836         range = (struct kvm_io_range) {
3837                 .addr = addr,
3838                 .len = len,
3839         };
3840
3841         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3842         if (!bus)
3843                 return -ENOMEM;
3844
3845         /* First try the device referenced by cookie. */
3846         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3847             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3848                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3849                                         val))
3850                         return cookie;
3851
3852         /*
3853          * cookie contained garbage; fall back to search and return the
3854          * correct cookie value.
3855          */
3856         return __kvm_io_bus_write(vcpu, bus, &range, val);
3857 }
3858
3859 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3860                              struct kvm_io_range *range, void *val)
3861 {
3862         int idx;
3863
3864         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3865         if (idx < 0)
3866                 return -EOPNOTSUPP;
3867
3868         while (idx < bus->dev_count &&
3869                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3870                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3871                                        range->len, val))
3872                         return idx;
3873                 idx++;
3874         }
3875
3876         return -EOPNOTSUPP;
3877 }
3878
3879 /* kvm_io_bus_read - called under kvm->slots_lock */
3880 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3881                     int len, void *val)
3882 {
3883         struct kvm_io_bus *bus;
3884         struct kvm_io_range range;
3885         int r;
3886
3887         range = (struct kvm_io_range) {
3888                 .addr = addr,
3889                 .len = len,
3890         };
3891
3892         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3893         if (!bus)
3894                 return -ENOMEM;
3895         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3896         return r < 0 ? r : 0;
3897 }
3898
3899 /* Caller must hold slots_lock. */
3900 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3901                             int len, struct kvm_io_device *dev)
3902 {
3903         int i;
3904         struct kvm_io_bus *new_bus, *bus;
3905         struct kvm_io_range range;
3906
3907         bus = kvm_get_bus(kvm, bus_idx);
3908         if (!bus)
3909                 return -ENOMEM;
3910
3911         /* exclude ioeventfd which is limited by maximum fd */
3912         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3913                 return -ENOSPC;
3914
3915         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3916                           GFP_KERNEL_ACCOUNT);
3917         if (!new_bus)
3918                 return -ENOMEM;
3919
3920         range = (struct kvm_io_range) {
3921                 .addr = addr,
3922                 .len = len,
3923                 .dev = dev,
3924         };
3925
3926         for (i = 0; i < bus->dev_count; i++)
3927                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3928                         break;
3929
3930         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3931         new_bus->dev_count++;
3932         new_bus->range[i] = range;
3933         memcpy(new_bus->range + i + 1, bus->range + i,
3934                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3935         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3936         synchronize_srcu_expedited(&kvm->srcu);
3937         kfree(bus);
3938
3939         return 0;
3940 }
3941
3942 /* Caller must hold slots_lock. */
3943 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3944                                struct kvm_io_device *dev)
3945 {
3946         int i;
3947         struct kvm_io_bus *new_bus, *bus;
3948
3949         bus = kvm_get_bus(kvm, bus_idx);
3950         if (!bus)
3951                 return;
3952
3953         for (i = 0; i < bus->dev_count; i++)
3954                 if (bus->range[i].dev == dev) {
3955                         break;
3956                 }
3957
3958         if (i == bus->dev_count)
3959                 return;
3960
3961         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3962                           GFP_KERNEL_ACCOUNT);
3963         if (!new_bus)  {
3964                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3965                 goto broken;
3966         }
3967
3968         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3969         new_bus->dev_count--;
3970         memcpy(new_bus->range + i, bus->range + i + 1,
3971                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3972
3973 broken:
3974         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3975         synchronize_srcu_expedited(&kvm->srcu);
3976         kfree(bus);
3977         return;
3978 }
3979
3980 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3981                                          gpa_t addr)
3982 {
3983         struct kvm_io_bus *bus;
3984         int dev_idx, srcu_idx;
3985         struct kvm_io_device *iodev = NULL;
3986
3987         srcu_idx = srcu_read_lock(&kvm->srcu);
3988
3989         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3990         if (!bus)
3991                 goto out_unlock;
3992
3993         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3994         if (dev_idx < 0)
3995                 goto out_unlock;
3996
3997         iodev = bus->range[dev_idx].dev;
3998
3999 out_unlock:
4000         srcu_read_unlock(&kvm->srcu, srcu_idx);
4001
4002         return iodev;
4003 }
4004 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4005
4006 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4007                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4008                            const char *fmt)
4009 {
4010         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4011                                           inode->i_private;
4012
4013         /* The debugfs files are a reference to the kvm struct which
4014          * is still valid when kvm_destroy_vm is called.
4015          * To avoid the race between open and the removal of the debugfs
4016          * directory we test against the users count.
4017          */
4018         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4019                 return -ENOENT;
4020
4021         if (simple_attr_open(inode, file, get,
4022                              stat_data->mode & S_IWUGO ? set : NULL,
4023                              fmt)) {
4024                 kvm_put_kvm(stat_data->kvm);
4025                 return -ENOMEM;
4026         }
4027
4028         return 0;
4029 }
4030
4031 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4032 {
4033         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4034                                           inode->i_private;
4035
4036         simple_attr_release(inode, file);
4037         kvm_put_kvm(stat_data->kvm);
4038
4039         return 0;
4040 }
4041
4042 static int vm_stat_get_per_vm(void *data, u64 *val)
4043 {
4044         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4045
4046         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4047
4048         return 0;
4049 }
4050
4051 static int vm_stat_clear_per_vm(void *data, u64 val)
4052 {
4053         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4054
4055         if (val)
4056                 return -EINVAL;
4057
4058         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4059
4060         return 0;
4061 }
4062
4063 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4064 {
4065         __simple_attr_check_format("%llu\n", 0ull);
4066         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4067                                 vm_stat_clear_per_vm, "%llu\n");
4068 }
4069
4070 static const struct file_operations vm_stat_get_per_vm_fops = {
4071         .owner   = THIS_MODULE,
4072         .open    = vm_stat_get_per_vm_open,
4073         .release = kvm_debugfs_release,
4074         .read    = simple_attr_read,
4075         .write   = simple_attr_write,
4076         .llseek  = no_llseek,
4077 };
4078
4079 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4080 {
4081         int i;
4082         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4083         struct kvm_vcpu *vcpu;
4084
4085         *val = 0;
4086
4087         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4088                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4089
4090         return 0;
4091 }
4092
4093 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4094 {
4095         int i;
4096         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4097         struct kvm_vcpu *vcpu;
4098
4099         if (val)
4100                 return -EINVAL;
4101
4102         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4103                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4104
4105         return 0;
4106 }
4107
4108 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4109 {
4110         __simple_attr_check_format("%llu\n", 0ull);
4111         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4112                                  vcpu_stat_clear_per_vm, "%llu\n");
4113 }
4114
4115 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4116         .owner   = THIS_MODULE,
4117         .open    = vcpu_stat_get_per_vm_open,
4118         .release = kvm_debugfs_release,
4119         .read    = simple_attr_read,
4120         .write   = simple_attr_write,
4121         .llseek  = no_llseek,
4122 };
4123
4124 static const struct file_operations *stat_fops_per_vm[] = {
4125         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4126         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4127 };
4128
4129 static int vm_stat_get(void *_offset, u64 *val)
4130 {
4131         unsigned offset = (long)_offset;
4132         struct kvm *kvm;
4133         struct kvm_stat_data stat_tmp = {.offset = offset};
4134         u64 tmp_val;
4135
4136         *val = 0;
4137         mutex_lock(&kvm_lock);
4138         list_for_each_entry(kvm, &vm_list, vm_list) {
4139                 stat_tmp.kvm = kvm;
4140                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4141                 *val += tmp_val;
4142         }
4143         mutex_unlock(&kvm_lock);
4144         return 0;
4145 }
4146
4147 static int vm_stat_clear(void *_offset, u64 val)
4148 {
4149         unsigned offset = (long)_offset;
4150         struct kvm *kvm;
4151         struct kvm_stat_data stat_tmp = {.offset = offset};
4152
4153         if (val)
4154                 return -EINVAL;
4155
4156         mutex_lock(&kvm_lock);
4157         list_for_each_entry(kvm, &vm_list, vm_list) {
4158                 stat_tmp.kvm = kvm;
4159                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4160         }
4161         mutex_unlock(&kvm_lock);
4162
4163         return 0;
4164 }
4165
4166 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4167
4168 static int vcpu_stat_get(void *_offset, u64 *val)
4169 {
4170         unsigned offset = (long)_offset;
4171         struct kvm *kvm;
4172         struct kvm_stat_data stat_tmp = {.offset = offset};
4173         u64 tmp_val;
4174
4175         *val = 0;
4176         mutex_lock(&kvm_lock);
4177         list_for_each_entry(kvm, &vm_list, vm_list) {
4178                 stat_tmp.kvm = kvm;
4179                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4180                 *val += tmp_val;
4181         }
4182         mutex_unlock(&kvm_lock);
4183         return 0;
4184 }
4185
4186 static int vcpu_stat_clear(void *_offset, u64 val)
4187 {
4188         unsigned offset = (long)_offset;
4189         struct kvm *kvm;
4190         struct kvm_stat_data stat_tmp = {.offset = offset};
4191
4192         if (val)
4193                 return -EINVAL;
4194
4195         mutex_lock(&kvm_lock);
4196         list_for_each_entry(kvm, &vm_list, vm_list) {
4197                 stat_tmp.kvm = kvm;
4198                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4199         }
4200         mutex_unlock(&kvm_lock);
4201
4202         return 0;
4203 }
4204
4205 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4206                         "%llu\n");
4207
4208 static const struct file_operations *stat_fops[] = {
4209         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4210         [KVM_STAT_VM]   = &vm_stat_fops,
4211 };
4212
4213 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4214 {
4215         struct kobj_uevent_env *env;
4216         unsigned long long created, active;
4217
4218         if (!kvm_dev.this_device || !kvm)
4219                 return;
4220
4221         mutex_lock(&kvm_lock);
4222         if (type == KVM_EVENT_CREATE_VM) {
4223                 kvm_createvm_count++;
4224                 kvm_active_vms++;
4225         } else if (type == KVM_EVENT_DESTROY_VM) {
4226                 kvm_active_vms--;
4227         }
4228         created = kvm_createvm_count;
4229         active = kvm_active_vms;
4230         mutex_unlock(&kvm_lock);
4231
4232         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4233         if (!env)
4234                 return;
4235
4236         add_uevent_var(env, "CREATED=%llu", created);
4237         add_uevent_var(env, "COUNT=%llu", active);
4238
4239         if (type == KVM_EVENT_CREATE_VM) {
4240                 add_uevent_var(env, "EVENT=create");
4241                 kvm->userspace_pid = task_pid_nr(current);
4242         } else if (type == KVM_EVENT_DESTROY_VM) {
4243                 add_uevent_var(env, "EVENT=destroy");
4244         }
4245         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4246
4247         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4248                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4249
4250                 if (p) {
4251                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4252                         if (!IS_ERR(tmp))
4253                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4254                         kfree(p);
4255                 }
4256         }
4257         /* no need for checks, since we are adding at most only 5 keys */
4258         env->envp[env->envp_idx++] = NULL;
4259         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4260         kfree(env);
4261 }
4262
4263 static void kvm_init_debug(void)
4264 {
4265         struct kvm_stats_debugfs_item *p;
4266
4267         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4268
4269         kvm_debugfs_num_entries = 0;
4270         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4271                 int mode = p->mode ? p->mode : 0644;
4272                 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4273                                     (void *)(long)p->offset,
4274                                     stat_fops[p->kind]);
4275         }
4276 }
4277
4278 static int kvm_suspend(void)
4279 {
4280         if (kvm_usage_count)
4281                 hardware_disable_nolock(NULL);
4282         return 0;
4283 }
4284
4285 static void kvm_resume(void)
4286 {
4287         if (kvm_usage_count) {
4288 #ifdef CONFIG_LOCKDEP
4289                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4290 #endif
4291                 hardware_enable_nolock(NULL);
4292         }
4293 }
4294
4295 static struct syscore_ops kvm_syscore_ops = {
4296         .suspend = kvm_suspend,
4297         .resume = kvm_resume,
4298 };
4299
4300 static inline
4301 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4302 {
4303         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4304 }
4305
4306 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4307 {
4308         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4309
4310         WRITE_ONCE(vcpu->preempted, false);
4311         WRITE_ONCE(vcpu->ready, false);
4312
4313         kvm_arch_sched_in(vcpu, cpu);
4314
4315         kvm_arch_vcpu_load(vcpu, cpu);
4316 }
4317
4318 static void kvm_sched_out(struct preempt_notifier *pn,
4319                           struct task_struct *next)
4320 {
4321         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4322
4323         if (current->state == TASK_RUNNING) {
4324                 WRITE_ONCE(vcpu->preempted, true);
4325                 WRITE_ONCE(vcpu->ready, true);
4326         }
4327         kvm_arch_vcpu_put(vcpu);
4328 }
4329
4330 static void check_processor_compat(void *rtn)
4331 {
4332         *(int *)rtn = kvm_arch_check_processor_compat();
4333 }
4334
4335 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4336                   struct module *module)
4337 {
4338         int r;
4339         int cpu;
4340
4341         r = kvm_arch_init(opaque);
4342         if (r)
4343                 goto out_fail;
4344
4345         /*
4346          * kvm_arch_init makes sure there's at most one caller
4347          * for architectures that support multiple implementations,
4348          * like intel and amd on x86.
4349          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4350          * conflicts in case kvm is already setup for another implementation.
4351          */
4352         r = kvm_irqfd_init();
4353         if (r)
4354                 goto out_irqfd;
4355
4356         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4357                 r = -ENOMEM;
4358                 goto out_free_0;
4359         }
4360
4361         r = kvm_arch_hardware_setup();
4362         if (r < 0)
4363                 goto out_free_0a;
4364
4365         for_each_online_cpu(cpu) {
4366                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4367                 if (r < 0)
4368                         goto out_free_1;
4369         }
4370
4371         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4372                                       kvm_starting_cpu, kvm_dying_cpu);
4373         if (r)
4374                 goto out_free_2;
4375         register_reboot_notifier(&kvm_reboot_notifier);
4376
4377         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4378         if (!vcpu_align)
4379                 vcpu_align = __alignof__(struct kvm_vcpu);
4380         kvm_vcpu_cache =
4381                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4382                                            SLAB_ACCOUNT,
4383                                            offsetof(struct kvm_vcpu, arch),
4384                                            sizeof_field(struct kvm_vcpu, arch),
4385                                            NULL);
4386         if (!kvm_vcpu_cache) {
4387                 r = -ENOMEM;
4388                 goto out_free_3;
4389         }
4390
4391         r = kvm_async_pf_init();
4392         if (r)
4393                 goto out_free;
4394
4395         kvm_chardev_ops.owner = module;
4396         kvm_vm_fops.owner = module;
4397         kvm_vcpu_fops.owner = module;
4398
4399         r = misc_register(&kvm_dev);
4400         if (r) {
4401                 pr_err("kvm: misc device register failed\n");
4402                 goto out_unreg;
4403         }
4404
4405         register_syscore_ops(&kvm_syscore_ops);
4406
4407         kvm_preempt_ops.sched_in = kvm_sched_in;
4408         kvm_preempt_ops.sched_out = kvm_sched_out;
4409
4410         kvm_init_debug();
4411
4412         r = kvm_vfio_ops_init();
4413         WARN_ON(r);
4414
4415         return 0;
4416
4417 out_unreg:
4418         kvm_async_pf_deinit();
4419 out_free:
4420         kmem_cache_destroy(kvm_vcpu_cache);
4421 out_free_3:
4422         unregister_reboot_notifier(&kvm_reboot_notifier);
4423         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4424 out_free_2:
4425 out_free_1:
4426         kvm_arch_hardware_unsetup();
4427 out_free_0a:
4428         free_cpumask_var(cpus_hardware_enabled);
4429 out_free_0:
4430         kvm_irqfd_exit();
4431 out_irqfd:
4432         kvm_arch_exit();
4433 out_fail:
4434         return r;
4435 }
4436 EXPORT_SYMBOL_GPL(kvm_init);
4437
4438 void kvm_exit(void)
4439 {
4440         debugfs_remove_recursive(kvm_debugfs_dir);
4441         misc_deregister(&kvm_dev);
4442         kmem_cache_destroy(kvm_vcpu_cache);
4443         kvm_async_pf_deinit();
4444         unregister_syscore_ops(&kvm_syscore_ops);
4445         unregister_reboot_notifier(&kvm_reboot_notifier);
4446         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4447         on_each_cpu(hardware_disable_nolock, NULL, 1);
4448         kvm_arch_hardware_unsetup();
4449         kvm_arch_exit();
4450         kvm_irqfd_exit();
4451         free_cpumask_var(cpus_hardware_enabled);
4452         kvm_vfio_ops_exit();
4453 }
4454 EXPORT_SYMBOL_GPL(kvm_exit);
4455
4456 struct kvm_vm_worker_thread_context {
4457         struct kvm *kvm;
4458         struct task_struct *parent;
4459         struct completion init_done;
4460         kvm_vm_thread_fn_t thread_fn;
4461         uintptr_t data;
4462         int err;
4463 };
4464
4465 static int kvm_vm_worker_thread(void *context)
4466 {
4467         /*
4468          * The init_context is allocated on the stack of the parent thread, so
4469          * we have to locally copy anything that is needed beyond initialization
4470          */
4471         struct kvm_vm_worker_thread_context *init_context = context;
4472         struct kvm *kvm = init_context->kvm;
4473         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4474         uintptr_t data = init_context->data;
4475         int err;
4476
4477         err = kthread_park(current);
4478         /* kthread_park(current) is never supposed to return an error */
4479         WARN_ON(err != 0);
4480         if (err)
4481                 goto init_complete;
4482
4483         err = cgroup_attach_task_all(init_context->parent, current);
4484         if (err) {
4485                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4486                         __func__, err);
4487                 goto init_complete;
4488         }
4489
4490         set_user_nice(current, task_nice(init_context->parent));
4491
4492 init_complete:
4493         init_context->err = err;
4494         complete(&init_context->init_done);
4495         init_context = NULL;
4496
4497         if (err)
4498                 return err;
4499
4500         /* Wait to be woken up by the spawner before proceeding. */
4501         kthread_parkme();
4502
4503         if (!kthread_should_stop())
4504                 err = thread_fn(kvm, data);
4505
4506         return err;
4507 }
4508
4509 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4510                                 uintptr_t data, const char *name,
4511                                 struct task_struct **thread_ptr)
4512 {
4513         struct kvm_vm_worker_thread_context init_context = {};
4514         struct task_struct *thread;
4515
4516         *thread_ptr = NULL;
4517         init_context.kvm = kvm;
4518         init_context.parent = current;
4519         init_context.thread_fn = thread_fn;
4520         init_context.data = data;
4521         init_completion(&init_context.init_done);
4522
4523         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4524                              "%s-%d", name, task_pid_nr(current));
4525         if (IS_ERR(thread))
4526                 return PTR_ERR(thread);
4527
4528         /* kthread_run is never supposed to return NULL */
4529         WARN_ON(thread == NULL);
4530
4531         wait_for_completion(&init_context.init_done);
4532
4533         if (!init_context.err)
4534                 *thread_ptr = thread;
4535
4536         return init_context.err;
4537 }