Merge tag 'platform-drivers-x86-v5.15-3' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                                                    unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 /*
193  * Switches to specified vcpu, until a matching vcpu_put()
194  */
195 void vcpu_load(struct kvm_vcpu *vcpu)
196 {
197         int cpu = get_cpu();
198
199         __this_cpu_write(kvm_running_vcpu, vcpu);
200         preempt_notifier_register(&vcpu->preempt_notifier);
201         kvm_arch_vcpu_load(vcpu, cpu);
202         put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205
206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208         preempt_disable();
209         kvm_arch_vcpu_put(vcpu);
210         preempt_notifier_unregister(&vcpu->preempt_notifier);
211         __this_cpu_write(kvm_running_vcpu, NULL);
212         preempt_enable();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_put);
215
216 /* TODO: merge with kvm_arch_vcpu_should_kick */
217 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
218 {
219         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
220
221         /*
222          * We need to wait for the VCPU to reenable interrupts and get out of
223          * READING_SHADOW_PAGE_TABLES mode.
224          */
225         if (req & KVM_REQUEST_WAIT)
226                 return mode != OUTSIDE_GUEST_MODE;
227
228         /*
229          * Need to kick a running VCPU, but otherwise there is nothing to do.
230          */
231         return mode == IN_GUEST_MODE;
232 }
233
234 static void ack_flush(void *_completed)
235 {
236 }
237
238 static inline bool kvm_kick_many_cpus(cpumask_var_t tmp, bool wait)
239 {
240         const struct cpumask *cpus;
241
242         if (likely(cpumask_available(tmp)))
243                 cpus = tmp;
244         else
245                 cpus = cpu_online_mask;
246
247         if (cpumask_empty(cpus))
248                 return false;
249
250         smp_call_function_many(cpus, ack_flush, NULL, wait);
251         return true;
252 }
253
254 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
255                                  struct kvm_vcpu *except,
256                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
257 {
258         int i, cpu, me;
259         struct kvm_vcpu *vcpu;
260         bool called;
261
262         me = get_cpu();
263
264         kvm_for_each_vcpu(i, vcpu, kvm) {
265                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
266                     vcpu == except)
267                         continue;
268
269                 kvm_make_request(req, vcpu);
270
271                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
272                         continue;
273
274                 /*
275                  * tmp can be "unavailable" if cpumasks are allocated off stack
276                  * as allocation of the mask is deliberately not fatal and is
277                  * handled by falling back to kicking all online CPUs.
278                  */
279                 if (!cpumask_available(tmp))
280                         continue;
281
282                 /*
283                  * Note, the vCPU could get migrated to a different pCPU at any
284                  * point after kvm_request_needs_ipi(), which could result in
285                  * sending an IPI to the previous pCPU.  But, that's ok because
286                  * the purpose of the IPI is to ensure the vCPU returns to
287                  * OUTSIDE_GUEST_MODE, which is satisfied if the vCPU migrates.
288                  * Entering READING_SHADOW_PAGE_TABLES after this point is also
289                  * ok, as the requirement is only that KVM wait for vCPUs that
290                  * were reading SPTEs _before_ any changes were finalized.  See
291                  * kvm_vcpu_kick() for more details on handling requests.
292                  */
293                 if (kvm_request_needs_ipi(vcpu, req)) {
294                         cpu = READ_ONCE(vcpu->cpu);
295                         if (cpu != -1 && cpu != me)
296                                 __cpumask_set_cpu(cpu, tmp);
297                 }
298         }
299
300         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
301         put_cpu();
302
303         return called;
304 }
305
306 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
307                                       struct kvm_vcpu *except)
308 {
309         cpumask_var_t cpus;
310         bool called;
311
312         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
313
314         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
315
316         free_cpumask_var(cpus);
317         return called;
318 }
319
320 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
321 {
322         return kvm_make_all_cpus_request_except(kvm, req, NULL);
323 }
324 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
325
326 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
327 void kvm_flush_remote_tlbs(struct kvm *kvm)
328 {
329         ++kvm->stat.generic.remote_tlb_flush_requests;
330
331         /*
332          * We want to publish modifications to the page tables before reading
333          * mode. Pairs with a memory barrier in arch-specific code.
334          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
335          * and smp_mb in walk_shadow_page_lockless_begin/end.
336          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
337          *
338          * There is already an smp_mb__after_atomic() before
339          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
340          * barrier here.
341          */
342         if (!kvm_arch_flush_remote_tlb(kvm)
343             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
344                 ++kvm->stat.generic.remote_tlb_flush;
345 }
346 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
347 #endif
348
349 void kvm_reload_remote_mmus(struct kvm *kvm)
350 {
351         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
352 }
353
354 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
355 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
356                                                gfp_t gfp_flags)
357 {
358         gfp_flags |= mc->gfp_zero;
359
360         if (mc->kmem_cache)
361                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
362         else
363                 return (void *)__get_free_page(gfp_flags);
364 }
365
366 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
367 {
368         void *obj;
369
370         if (mc->nobjs >= min)
371                 return 0;
372         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
373                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
374                 if (!obj)
375                         return mc->nobjs >= min ? 0 : -ENOMEM;
376                 mc->objects[mc->nobjs++] = obj;
377         }
378         return 0;
379 }
380
381 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
382 {
383         return mc->nobjs;
384 }
385
386 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
387 {
388         while (mc->nobjs) {
389                 if (mc->kmem_cache)
390                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
391                 else
392                         free_page((unsigned long)mc->objects[--mc->nobjs]);
393         }
394 }
395
396 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
397 {
398         void *p;
399
400         if (WARN_ON(!mc->nobjs))
401                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
402         else
403                 p = mc->objects[--mc->nobjs];
404         BUG_ON(!p);
405         return p;
406 }
407 #endif
408
409 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
410 {
411         mutex_init(&vcpu->mutex);
412         vcpu->cpu = -1;
413         vcpu->kvm = kvm;
414         vcpu->vcpu_id = id;
415         vcpu->pid = NULL;
416         rcuwait_init(&vcpu->wait);
417         kvm_async_pf_vcpu_init(vcpu);
418
419         vcpu->pre_pcpu = -1;
420         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
421
422         kvm_vcpu_set_in_spin_loop(vcpu, false);
423         kvm_vcpu_set_dy_eligible(vcpu, false);
424         vcpu->preempted = false;
425         vcpu->ready = false;
426         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
427         vcpu->last_used_slot = 0;
428 }
429
430 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
431 {
432         kvm_dirty_ring_free(&vcpu->dirty_ring);
433         kvm_arch_vcpu_destroy(vcpu);
434
435         /*
436          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
437          * the vcpu->pid pointer, and at destruction time all file descriptors
438          * are already gone.
439          */
440         put_pid(rcu_dereference_protected(vcpu->pid, 1));
441
442         free_page((unsigned long)vcpu->run);
443         kmem_cache_free(kvm_vcpu_cache, vcpu);
444 }
445 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
446
447 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
448 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
449 {
450         return container_of(mn, struct kvm, mmu_notifier);
451 }
452
453 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
454                                               struct mm_struct *mm,
455                                               unsigned long start, unsigned long end)
456 {
457         struct kvm *kvm = mmu_notifier_to_kvm(mn);
458         int idx;
459
460         idx = srcu_read_lock(&kvm->srcu);
461         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
462         srcu_read_unlock(&kvm->srcu, idx);
463 }
464
465 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
466
467 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
468                              unsigned long end);
469
470 struct kvm_hva_range {
471         unsigned long start;
472         unsigned long end;
473         pte_t pte;
474         hva_handler_t handler;
475         on_lock_fn_t on_lock;
476         bool flush_on_ret;
477         bool may_block;
478 };
479
480 /*
481  * Use a dedicated stub instead of NULL to indicate that there is no callback
482  * function/handler.  The compiler technically can't guarantee that a real
483  * function will have a non-zero address, and so it will generate code to
484  * check for !NULL, whereas comparing against a stub will be elided at compile
485  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
486  */
487 static void kvm_null_fn(void)
488 {
489
490 }
491 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
492
493 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
494                                                   const struct kvm_hva_range *range)
495 {
496         bool ret = false, locked = false;
497         struct kvm_gfn_range gfn_range;
498         struct kvm_memory_slot *slot;
499         struct kvm_memslots *slots;
500         int i, idx;
501
502         /* A null handler is allowed if and only if on_lock() is provided. */
503         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
504                          IS_KVM_NULL_FN(range->handler)))
505                 return 0;
506
507         idx = srcu_read_lock(&kvm->srcu);
508
509         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
510                 slots = __kvm_memslots(kvm, i);
511                 kvm_for_each_memslot(slot, slots) {
512                         unsigned long hva_start, hva_end;
513
514                         hva_start = max(range->start, slot->userspace_addr);
515                         hva_end = min(range->end, slot->userspace_addr +
516                                                   (slot->npages << PAGE_SHIFT));
517                         if (hva_start >= hva_end)
518                                 continue;
519
520                         /*
521                          * To optimize for the likely case where the address
522                          * range is covered by zero or one memslots, don't
523                          * bother making these conditional (to avoid writes on
524                          * the second or later invocation of the handler).
525                          */
526                         gfn_range.pte = range->pte;
527                         gfn_range.may_block = range->may_block;
528
529                         /*
530                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
531                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
532                          */
533                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
534                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
535                         gfn_range.slot = slot;
536
537                         if (!locked) {
538                                 locked = true;
539                                 KVM_MMU_LOCK(kvm);
540                                 if (!IS_KVM_NULL_FN(range->on_lock))
541                                         range->on_lock(kvm, range->start, range->end);
542                                 if (IS_KVM_NULL_FN(range->handler))
543                                         break;
544                         }
545                         ret |= range->handler(kvm, &gfn_range);
546                 }
547         }
548
549         if (range->flush_on_ret && ret)
550                 kvm_flush_remote_tlbs(kvm);
551
552         if (locked)
553                 KVM_MMU_UNLOCK(kvm);
554
555         srcu_read_unlock(&kvm->srcu, idx);
556
557         /* The notifiers are averse to booleans. :-( */
558         return (int)ret;
559 }
560
561 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
562                                                 unsigned long start,
563                                                 unsigned long end,
564                                                 pte_t pte,
565                                                 hva_handler_t handler)
566 {
567         struct kvm *kvm = mmu_notifier_to_kvm(mn);
568         const struct kvm_hva_range range = {
569                 .start          = start,
570                 .end            = end,
571                 .pte            = pte,
572                 .handler        = handler,
573                 .on_lock        = (void *)kvm_null_fn,
574                 .flush_on_ret   = true,
575                 .may_block      = false,
576         };
577
578         return __kvm_handle_hva_range(kvm, &range);
579 }
580
581 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
582                                                          unsigned long start,
583                                                          unsigned long end,
584                                                          hva_handler_t handler)
585 {
586         struct kvm *kvm = mmu_notifier_to_kvm(mn);
587         const struct kvm_hva_range range = {
588                 .start          = start,
589                 .end            = end,
590                 .pte            = __pte(0),
591                 .handler        = handler,
592                 .on_lock        = (void *)kvm_null_fn,
593                 .flush_on_ret   = false,
594                 .may_block      = false,
595         };
596
597         return __kvm_handle_hva_range(kvm, &range);
598 }
599 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
600                                         struct mm_struct *mm,
601                                         unsigned long address,
602                                         pte_t pte)
603 {
604         struct kvm *kvm = mmu_notifier_to_kvm(mn);
605
606         trace_kvm_set_spte_hva(address);
607
608         /*
609          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
610          * If mmu_notifier_count is zero, then no in-progress invalidations,
611          * including this one, found a relevant memslot at start(); rechecking
612          * memslots here is unnecessary.  Note, a false positive (count elevated
613          * by a different invalidation) is sub-optimal but functionally ok.
614          */
615         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
616         if (!READ_ONCE(kvm->mmu_notifier_count))
617                 return;
618
619         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
620 }
621
622 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
623                                    unsigned long end)
624 {
625         /*
626          * The count increase must become visible at unlock time as no
627          * spte can be established without taking the mmu_lock and
628          * count is also read inside the mmu_lock critical section.
629          */
630         kvm->mmu_notifier_count++;
631         if (likely(kvm->mmu_notifier_count == 1)) {
632                 kvm->mmu_notifier_range_start = start;
633                 kvm->mmu_notifier_range_end = end;
634         } else {
635                 /*
636                  * Fully tracking multiple concurrent ranges has dimishing
637                  * returns. Keep things simple and just find the minimal range
638                  * which includes the current and new ranges. As there won't be
639                  * enough information to subtract a range after its invalidate
640                  * completes, any ranges invalidated concurrently will
641                  * accumulate and persist until all outstanding invalidates
642                  * complete.
643                  */
644                 kvm->mmu_notifier_range_start =
645                         min(kvm->mmu_notifier_range_start, start);
646                 kvm->mmu_notifier_range_end =
647                         max(kvm->mmu_notifier_range_end, end);
648         }
649 }
650
651 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
652                                         const struct mmu_notifier_range *range)
653 {
654         struct kvm *kvm = mmu_notifier_to_kvm(mn);
655         const struct kvm_hva_range hva_range = {
656                 .start          = range->start,
657                 .end            = range->end,
658                 .pte            = __pte(0),
659                 .handler        = kvm_unmap_gfn_range,
660                 .on_lock        = kvm_inc_notifier_count,
661                 .flush_on_ret   = true,
662                 .may_block      = mmu_notifier_range_blockable(range),
663         };
664
665         trace_kvm_unmap_hva_range(range->start, range->end);
666
667         /*
668          * Prevent memslot modification between range_start() and range_end()
669          * so that conditionally locking provides the same result in both
670          * functions.  Without that guarantee, the mmu_notifier_count
671          * adjustments will be imbalanced.
672          *
673          * Pairs with the decrement in range_end().
674          */
675         spin_lock(&kvm->mn_invalidate_lock);
676         kvm->mn_active_invalidate_count++;
677         spin_unlock(&kvm->mn_invalidate_lock);
678
679         __kvm_handle_hva_range(kvm, &hva_range);
680
681         return 0;
682 }
683
684 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
685                                    unsigned long end)
686 {
687         /*
688          * This sequence increase will notify the kvm page fault that
689          * the page that is going to be mapped in the spte could have
690          * been freed.
691          */
692         kvm->mmu_notifier_seq++;
693         smp_wmb();
694         /*
695          * The above sequence increase must be visible before the
696          * below count decrease, which is ensured by the smp_wmb above
697          * in conjunction with the smp_rmb in mmu_notifier_retry().
698          */
699         kvm->mmu_notifier_count--;
700 }
701
702 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
703                                         const struct mmu_notifier_range *range)
704 {
705         struct kvm *kvm = mmu_notifier_to_kvm(mn);
706         const struct kvm_hva_range hva_range = {
707                 .start          = range->start,
708                 .end            = range->end,
709                 .pte            = __pte(0),
710                 .handler        = (void *)kvm_null_fn,
711                 .on_lock        = kvm_dec_notifier_count,
712                 .flush_on_ret   = false,
713                 .may_block      = mmu_notifier_range_blockable(range),
714         };
715         bool wake;
716
717         __kvm_handle_hva_range(kvm, &hva_range);
718
719         /* Pairs with the increment in range_start(). */
720         spin_lock(&kvm->mn_invalidate_lock);
721         wake = (--kvm->mn_active_invalidate_count == 0);
722         spin_unlock(&kvm->mn_invalidate_lock);
723
724         /*
725          * There can only be one waiter, since the wait happens under
726          * slots_lock.
727          */
728         if (wake)
729                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
730
731         BUG_ON(kvm->mmu_notifier_count < 0);
732 }
733
734 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
735                                               struct mm_struct *mm,
736                                               unsigned long start,
737                                               unsigned long end)
738 {
739         trace_kvm_age_hva(start, end);
740
741         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
742 }
743
744 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
745                                         struct mm_struct *mm,
746                                         unsigned long start,
747                                         unsigned long end)
748 {
749         trace_kvm_age_hva(start, end);
750
751         /*
752          * Even though we do not flush TLB, this will still adversely
753          * affect performance on pre-Haswell Intel EPT, where there is
754          * no EPT Access Bit to clear so that we have to tear down EPT
755          * tables instead. If we find this unacceptable, we can always
756          * add a parameter to kvm_age_hva so that it effectively doesn't
757          * do anything on clear_young.
758          *
759          * Also note that currently we never issue secondary TLB flushes
760          * from clear_young, leaving this job up to the regular system
761          * cadence. If we find this inaccurate, we might come up with a
762          * more sophisticated heuristic later.
763          */
764         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
765 }
766
767 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
768                                        struct mm_struct *mm,
769                                        unsigned long address)
770 {
771         trace_kvm_test_age_hva(address);
772
773         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
774                                              kvm_test_age_gfn);
775 }
776
777 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
778                                      struct mm_struct *mm)
779 {
780         struct kvm *kvm = mmu_notifier_to_kvm(mn);
781         int idx;
782
783         idx = srcu_read_lock(&kvm->srcu);
784         kvm_arch_flush_shadow_all(kvm);
785         srcu_read_unlock(&kvm->srcu, idx);
786 }
787
788 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
789         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
790         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
791         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
792         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
793         .clear_young            = kvm_mmu_notifier_clear_young,
794         .test_young             = kvm_mmu_notifier_test_young,
795         .change_pte             = kvm_mmu_notifier_change_pte,
796         .release                = kvm_mmu_notifier_release,
797 };
798
799 static int kvm_init_mmu_notifier(struct kvm *kvm)
800 {
801         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
802         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
803 }
804
805 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
806
807 static int kvm_init_mmu_notifier(struct kvm *kvm)
808 {
809         return 0;
810 }
811
812 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
813
814 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
815 static int kvm_pm_notifier_call(struct notifier_block *bl,
816                                 unsigned long state,
817                                 void *unused)
818 {
819         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
820
821         return kvm_arch_pm_notifier(kvm, state);
822 }
823
824 static void kvm_init_pm_notifier(struct kvm *kvm)
825 {
826         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
827         /* Suspend KVM before we suspend ftrace, RCU, etc. */
828         kvm->pm_notifier.priority = INT_MAX;
829         register_pm_notifier(&kvm->pm_notifier);
830 }
831
832 static void kvm_destroy_pm_notifier(struct kvm *kvm)
833 {
834         unregister_pm_notifier(&kvm->pm_notifier);
835 }
836 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
837 static void kvm_init_pm_notifier(struct kvm *kvm)
838 {
839 }
840
841 static void kvm_destroy_pm_notifier(struct kvm *kvm)
842 {
843 }
844 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
845
846 static struct kvm_memslots *kvm_alloc_memslots(void)
847 {
848         int i;
849         struct kvm_memslots *slots;
850
851         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
852         if (!slots)
853                 return NULL;
854
855         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
856                 slots->id_to_index[i] = -1;
857
858         return slots;
859 }
860
861 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
862 {
863         if (!memslot->dirty_bitmap)
864                 return;
865
866         kvfree(memslot->dirty_bitmap);
867         memslot->dirty_bitmap = NULL;
868 }
869
870 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
871 {
872         kvm_destroy_dirty_bitmap(slot);
873
874         kvm_arch_free_memslot(kvm, slot);
875
876         slot->flags = 0;
877         slot->npages = 0;
878 }
879
880 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
881 {
882         struct kvm_memory_slot *memslot;
883
884         if (!slots)
885                 return;
886
887         kvm_for_each_memslot(memslot, slots)
888                 kvm_free_memslot(kvm, memslot);
889
890         kvfree(slots);
891 }
892
893 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
894 {
895         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
896         case KVM_STATS_TYPE_INSTANT:
897                 return 0444;
898         case KVM_STATS_TYPE_CUMULATIVE:
899         case KVM_STATS_TYPE_PEAK:
900         default:
901                 return 0644;
902         }
903 }
904
905
906 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
907 {
908         int i;
909         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
910                                       kvm_vcpu_stats_header.num_desc;
911
912         if (!kvm->debugfs_dentry)
913                 return;
914
915         debugfs_remove_recursive(kvm->debugfs_dentry);
916
917         if (kvm->debugfs_stat_data) {
918                 for (i = 0; i < kvm_debugfs_num_entries; i++)
919                         kfree(kvm->debugfs_stat_data[i]);
920                 kfree(kvm->debugfs_stat_data);
921         }
922 }
923
924 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
925 {
926         static DEFINE_MUTEX(kvm_debugfs_lock);
927         struct dentry *dent;
928         char dir_name[ITOA_MAX_LEN * 2];
929         struct kvm_stat_data *stat_data;
930         const struct _kvm_stats_desc *pdesc;
931         int i, ret;
932         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
933                                       kvm_vcpu_stats_header.num_desc;
934
935         if (!debugfs_initialized())
936                 return 0;
937
938         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
939         mutex_lock(&kvm_debugfs_lock);
940         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
941         if (dent) {
942                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
943                 dput(dent);
944                 mutex_unlock(&kvm_debugfs_lock);
945                 return 0;
946         }
947         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
948         mutex_unlock(&kvm_debugfs_lock);
949         if (IS_ERR(dent))
950                 return 0;
951
952         kvm->debugfs_dentry = dent;
953         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
954                                          sizeof(*kvm->debugfs_stat_data),
955                                          GFP_KERNEL_ACCOUNT);
956         if (!kvm->debugfs_stat_data)
957                 return -ENOMEM;
958
959         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
960                 pdesc = &kvm_vm_stats_desc[i];
961                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
962                 if (!stat_data)
963                         return -ENOMEM;
964
965                 stat_data->kvm = kvm;
966                 stat_data->desc = pdesc;
967                 stat_data->kind = KVM_STAT_VM;
968                 kvm->debugfs_stat_data[i] = stat_data;
969                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
970                                     kvm->debugfs_dentry, stat_data,
971                                     &stat_fops_per_vm);
972         }
973
974         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
975                 pdesc = &kvm_vcpu_stats_desc[i];
976                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
977                 if (!stat_data)
978                         return -ENOMEM;
979
980                 stat_data->kvm = kvm;
981                 stat_data->desc = pdesc;
982                 stat_data->kind = KVM_STAT_VCPU;
983                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
984                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
985                                     kvm->debugfs_dentry, stat_data,
986                                     &stat_fops_per_vm);
987         }
988
989         ret = kvm_arch_create_vm_debugfs(kvm);
990         if (ret) {
991                 kvm_destroy_vm_debugfs(kvm);
992                 return i;
993         }
994
995         return 0;
996 }
997
998 /*
999  * Called after the VM is otherwise initialized, but just before adding it to
1000  * the vm_list.
1001  */
1002 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1003 {
1004         return 0;
1005 }
1006
1007 /*
1008  * Called just after removing the VM from the vm_list, but before doing any
1009  * other destruction.
1010  */
1011 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1012 {
1013 }
1014
1015 /*
1016  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1017  * be setup already, so we can create arch-specific debugfs entries under it.
1018  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1019  * a per-arch destroy interface is not needed.
1020  */
1021 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1022 {
1023         return 0;
1024 }
1025
1026 static struct kvm *kvm_create_vm(unsigned long type)
1027 {
1028         struct kvm *kvm = kvm_arch_alloc_vm();
1029         int r = -ENOMEM;
1030         int i;
1031
1032         if (!kvm)
1033                 return ERR_PTR(-ENOMEM);
1034
1035         KVM_MMU_LOCK_INIT(kvm);
1036         mmgrab(current->mm);
1037         kvm->mm = current->mm;
1038         kvm_eventfd_init(kvm);
1039         mutex_init(&kvm->lock);
1040         mutex_init(&kvm->irq_lock);
1041         mutex_init(&kvm->slots_lock);
1042         mutex_init(&kvm->slots_arch_lock);
1043         spin_lock_init(&kvm->mn_invalidate_lock);
1044         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1045
1046         INIT_LIST_HEAD(&kvm->devices);
1047
1048         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1049
1050         if (init_srcu_struct(&kvm->srcu))
1051                 goto out_err_no_srcu;
1052         if (init_srcu_struct(&kvm->irq_srcu))
1053                 goto out_err_no_irq_srcu;
1054
1055         refcount_set(&kvm->users_count, 1);
1056         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1057                 struct kvm_memslots *slots = kvm_alloc_memslots();
1058
1059                 if (!slots)
1060                         goto out_err_no_arch_destroy_vm;
1061                 /* Generations must be different for each address space. */
1062                 slots->generation = i;
1063                 rcu_assign_pointer(kvm->memslots[i], slots);
1064         }
1065
1066         for (i = 0; i < KVM_NR_BUSES; i++) {
1067                 rcu_assign_pointer(kvm->buses[i],
1068                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1069                 if (!kvm->buses[i])
1070                         goto out_err_no_arch_destroy_vm;
1071         }
1072
1073         kvm->max_halt_poll_ns = halt_poll_ns;
1074
1075         r = kvm_arch_init_vm(kvm, type);
1076         if (r)
1077                 goto out_err_no_arch_destroy_vm;
1078
1079         r = hardware_enable_all();
1080         if (r)
1081                 goto out_err_no_disable;
1082
1083 #ifdef CONFIG_HAVE_KVM_IRQFD
1084         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1085 #endif
1086
1087         r = kvm_init_mmu_notifier(kvm);
1088         if (r)
1089                 goto out_err_no_mmu_notifier;
1090
1091         r = kvm_arch_post_init_vm(kvm);
1092         if (r)
1093                 goto out_err;
1094
1095         mutex_lock(&kvm_lock);
1096         list_add(&kvm->vm_list, &vm_list);
1097         mutex_unlock(&kvm_lock);
1098
1099         preempt_notifier_inc();
1100         kvm_init_pm_notifier(kvm);
1101
1102         return kvm;
1103
1104 out_err:
1105 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1106         if (kvm->mmu_notifier.ops)
1107                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1108 #endif
1109 out_err_no_mmu_notifier:
1110         hardware_disable_all();
1111 out_err_no_disable:
1112         kvm_arch_destroy_vm(kvm);
1113 out_err_no_arch_destroy_vm:
1114         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1115         for (i = 0; i < KVM_NR_BUSES; i++)
1116                 kfree(kvm_get_bus(kvm, i));
1117         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1118                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1119         cleanup_srcu_struct(&kvm->irq_srcu);
1120 out_err_no_irq_srcu:
1121         cleanup_srcu_struct(&kvm->srcu);
1122 out_err_no_srcu:
1123         kvm_arch_free_vm(kvm);
1124         mmdrop(current->mm);
1125         return ERR_PTR(r);
1126 }
1127
1128 static void kvm_destroy_devices(struct kvm *kvm)
1129 {
1130         struct kvm_device *dev, *tmp;
1131
1132         /*
1133          * We do not need to take the kvm->lock here, because nobody else
1134          * has a reference to the struct kvm at this point and therefore
1135          * cannot access the devices list anyhow.
1136          */
1137         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1138                 list_del(&dev->vm_node);
1139                 dev->ops->destroy(dev);
1140         }
1141 }
1142
1143 static void kvm_destroy_vm(struct kvm *kvm)
1144 {
1145         int i;
1146         struct mm_struct *mm = kvm->mm;
1147
1148         kvm_destroy_pm_notifier(kvm);
1149         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1150         kvm_destroy_vm_debugfs(kvm);
1151         kvm_arch_sync_events(kvm);
1152         mutex_lock(&kvm_lock);
1153         list_del(&kvm->vm_list);
1154         mutex_unlock(&kvm_lock);
1155         kvm_arch_pre_destroy_vm(kvm);
1156
1157         kvm_free_irq_routing(kvm);
1158         for (i = 0; i < KVM_NR_BUSES; i++) {
1159                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1160
1161                 if (bus)
1162                         kvm_io_bus_destroy(bus);
1163                 kvm->buses[i] = NULL;
1164         }
1165         kvm_coalesced_mmio_free(kvm);
1166 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1167         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1168         /*
1169          * At this point, pending calls to invalidate_range_start()
1170          * have completed but no more MMU notifiers will run, so
1171          * mn_active_invalidate_count may remain unbalanced.
1172          * No threads can be waiting in install_new_memslots as the
1173          * last reference on KVM has been dropped, but freeing
1174          * memslots would deadlock without this manual intervention.
1175          */
1176         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1177         kvm->mn_active_invalidate_count = 0;
1178 #else
1179         kvm_arch_flush_shadow_all(kvm);
1180 #endif
1181         kvm_arch_destroy_vm(kvm);
1182         kvm_destroy_devices(kvm);
1183         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1184                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1185         cleanup_srcu_struct(&kvm->irq_srcu);
1186         cleanup_srcu_struct(&kvm->srcu);
1187         kvm_arch_free_vm(kvm);
1188         preempt_notifier_dec();
1189         hardware_disable_all();
1190         mmdrop(mm);
1191 }
1192
1193 void kvm_get_kvm(struct kvm *kvm)
1194 {
1195         refcount_inc(&kvm->users_count);
1196 }
1197 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1198
1199 /*
1200  * Make sure the vm is not during destruction, which is a safe version of
1201  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1202  */
1203 bool kvm_get_kvm_safe(struct kvm *kvm)
1204 {
1205         return refcount_inc_not_zero(&kvm->users_count);
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1208
1209 void kvm_put_kvm(struct kvm *kvm)
1210 {
1211         if (refcount_dec_and_test(&kvm->users_count))
1212                 kvm_destroy_vm(kvm);
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1215
1216 /*
1217  * Used to put a reference that was taken on behalf of an object associated
1218  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1219  * of the new file descriptor fails and the reference cannot be transferred to
1220  * its final owner.  In such cases, the caller is still actively using @kvm and
1221  * will fail miserably if the refcount unexpectedly hits zero.
1222  */
1223 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1224 {
1225         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1228
1229 static int kvm_vm_release(struct inode *inode, struct file *filp)
1230 {
1231         struct kvm *kvm = filp->private_data;
1232
1233         kvm_irqfd_release(kvm);
1234
1235         kvm_put_kvm(kvm);
1236         return 0;
1237 }
1238
1239 /*
1240  * Allocation size is twice as large as the actual dirty bitmap size.
1241  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1242  */
1243 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1244 {
1245         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1246
1247         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1248         if (!memslot->dirty_bitmap)
1249                 return -ENOMEM;
1250
1251         return 0;
1252 }
1253
1254 /*
1255  * Delete a memslot by decrementing the number of used slots and shifting all
1256  * other entries in the array forward one spot.
1257  */
1258 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1259                                       struct kvm_memory_slot *memslot)
1260 {
1261         struct kvm_memory_slot *mslots = slots->memslots;
1262         int i;
1263
1264         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1265                 return;
1266
1267         slots->used_slots--;
1268
1269         if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1270                 atomic_set(&slots->last_used_slot, 0);
1271
1272         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1273                 mslots[i] = mslots[i + 1];
1274                 slots->id_to_index[mslots[i].id] = i;
1275         }
1276         mslots[i] = *memslot;
1277         slots->id_to_index[memslot->id] = -1;
1278 }
1279
1280 /*
1281  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1282  * the new slot's initial index into the memslots array.
1283  */
1284 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1285 {
1286         return slots->used_slots++;
1287 }
1288
1289 /*
1290  * Move a changed memslot backwards in the array by shifting existing slots
1291  * with a higher GFN toward the front of the array.  Note, the changed memslot
1292  * itself is not preserved in the array, i.e. not swapped at this time, only
1293  * its new index into the array is tracked.  Returns the changed memslot's
1294  * current index into the memslots array.
1295  */
1296 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1297                                             struct kvm_memory_slot *memslot)
1298 {
1299         struct kvm_memory_slot *mslots = slots->memslots;
1300         int i;
1301
1302         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1303             WARN_ON_ONCE(!slots->used_slots))
1304                 return -1;
1305
1306         /*
1307          * Move the target memslot backward in the array by shifting existing
1308          * memslots with a higher GFN (than the target memslot) towards the
1309          * front of the array.
1310          */
1311         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1312                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1313                         break;
1314
1315                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1316
1317                 /* Shift the next memslot forward one and update its index. */
1318                 mslots[i] = mslots[i + 1];
1319                 slots->id_to_index[mslots[i].id] = i;
1320         }
1321         return i;
1322 }
1323
1324 /*
1325  * Move a changed memslot forwards in the array by shifting existing slots with
1326  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1327  * is not preserved in the array, i.e. not swapped at this time, only its new
1328  * index into the array is tracked.  Returns the changed memslot's final index
1329  * into the memslots array.
1330  */
1331 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1332                                            struct kvm_memory_slot *memslot,
1333                                            int start)
1334 {
1335         struct kvm_memory_slot *mslots = slots->memslots;
1336         int i;
1337
1338         for (i = start; i > 0; i--) {
1339                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1340                         break;
1341
1342                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1343
1344                 /* Shift the next memslot back one and update its index. */
1345                 mslots[i] = mslots[i - 1];
1346                 slots->id_to_index[mslots[i].id] = i;
1347         }
1348         return i;
1349 }
1350
1351 /*
1352  * Re-sort memslots based on their GFN to account for an added, deleted, or
1353  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1354  * memslot lookup.
1355  *
1356  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1357  * at memslots[0] has the highest GFN.
1358  *
1359  * The sorting algorithm takes advantage of having initially sorted memslots
1360  * and knowing the position of the changed memslot.  Sorting is also optimized
1361  * by not swapping the updated memslot and instead only shifting other memslots
1362  * and tracking the new index for the update memslot.  Only once its final
1363  * index is known is the updated memslot copied into its position in the array.
1364  *
1365  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1366  *    the end of the array.
1367  *
1368  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1369  *    end of the array and then it forward to its correct location.
1370  *
1371  *  - When moving a memslot, the algorithm first moves the updated memslot
1372  *    backward to handle the scenario where the memslot's GFN was changed to a
1373  *    lower value.  update_memslots() then falls through and runs the same flow
1374  *    as creating a memslot to move the memslot forward to handle the scenario
1375  *    where its GFN was changed to a higher value.
1376  *
1377  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1378  * historical reasons.  Originally, invalid memslots where denoted by having
1379  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1380  * to the end of the array.  The current algorithm uses dedicated logic to
1381  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1382  *
1383  * The other historical motiviation for highest->lowest was to improve the
1384  * performance of memslot lookup.  KVM originally used a linear search starting
1385  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1386  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1387  * single memslot above the 4gb boundary.  As the largest memslot is also the
1388  * most likely to be referenced, sorting it to the front of the array was
1389  * advantageous.  The current binary search starts from the middle of the array
1390  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1391  */
1392 static void update_memslots(struct kvm_memslots *slots,
1393                             struct kvm_memory_slot *memslot,
1394                             enum kvm_mr_change change)
1395 {
1396         int i;
1397
1398         if (change == KVM_MR_DELETE) {
1399                 kvm_memslot_delete(slots, memslot);
1400         } else {
1401                 if (change == KVM_MR_CREATE)
1402                         i = kvm_memslot_insert_back(slots);
1403                 else
1404                         i = kvm_memslot_move_backward(slots, memslot);
1405                 i = kvm_memslot_move_forward(slots, memslot, i);
1406
1407                 /*
1408                  * Copy the memslot to its new position in memslots and update
1409                  * its index accordingly.
1410                  */
1411                 slots->memslots[i] = *memslot;
1412                 slots->id_to_index[memslot->id] = i;
1413         }
1414 }
1415
1416 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1417 {
1418         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1419
1420 #ifdef __KVM_HAVE_READONLY_MEM
1421         valid_flags |= KVM_MEM_READONLY;
1422 #endif
1423
1424         if (mem->flags & ~valid_flags)
1425                 return -EINVAL;
1426
1427         return 0;
1428 }
1429
1430 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1431                 int as_id, struct kvm_memslots *slots)
1432 {
1433         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1434         u64 gen = old_memslots->generation;
1435
1436         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1437         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1438
1439         /*
1440          * Do not store the new memslots while there are invalidations in
1441          * progress, otherwise the locking in invalidate_range_start and
1442          * invalidate_range_end will be unbalanced.
1443          */
1444         spin_lock(&kvm->mn_invalidate_lock);
1445         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1446         while (kvm->mn_active_invalidate_count) {
1447                 set_current_state(TASK_UNINTERRUPTIBLE);
1448                 spin_unlock(&kvm->mn_invalidate_lock);
1449                 schedule();
1450                 spin_lock(&kvm->mn_invalidate_lock);
1451         }
1452         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1453         rcu_assign_pointer(kvm->memslots[as_id], slots);
1454         spin_unlock(&kvm->mn_invalidate_lock);
1455
1456         /*
1457          * Acquired in kvm_set_memslot. Must be released before synchronize
1458          * SRCU below in order to avoid deadlock with another thread
1459          * acquiring the slots_arch_lock in an srcu critical section.
1460          */
1461         mutex_unlock(&kvm->slots_arch_lock);
1462
1463         synchronize_srcu_expedited(&kvm->srcu);
1464
1465         /*
1466          * Increment the new memslot generation a second time, dropping the
1467          * update in-progress flag and incrementing the generation based on
1468          * the number of address spaces.  This provides a unique and easily
1469          * identifiable generation number while the memslots are in flux.
1470          */
1471         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1472
1473         /*
1474          * Generations must be unique even across address spaces.  We do not need
1475          * a global counter for that, instead the generation space is evenly split
1476          * across address spaces.  For example, with two address spaces, address
1477          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1478          * use generations 1, 3, 5, ...
1479          */
1480         gen += KVM_ADDRESS_SPACE_NUM;
1481
1482         kvm_arch_memslots_updated(kvm, gen);
1483
1484         slots->generation = gen;
1485
1486         return old_memslots;
1487 }
1488
1489 static size_t kvm_memslots_size(int slots)
1490 {
1491         return sizeof(struct kvm_memslots) +
1492                (sizeof(struct kvm_memory_slot) * slots);
1493 }
1494
1495 static void kvm_copy_memslots(struct kvm_memslots *to,
1496                               struct kvm_memslots *from)
1497 {
1498         memcpy(to, from, kvm_memslots_size(from->used_slots));
1499 }
1500
1501 /*
1502  * Note, at a minimum, the current number of used slots must be allocated, even
1503  * when deleting a memslot, as we need a complete duplicate of the memslots for
1504  * use when invalidating a memslot prior to deleting/moving the memslot.
1505  */
1506 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1507                                              enum kvm_mr_change change)
1508 {
1509         struct kvm_memslots *slots;
1510         size_t new_size;
1511
1512         if (change == KVM_MR_CREATE)
1513                 new_size = kvm_memslots_size(old->used_slots + 1);
1514         else
1515                 new_size = kvm_memslots_size(old->used_slots);
1516
1517         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1518         if (likely(slots))
1519                 kvm_copy_memslots(slots, old);
1520
1521         return slots;
1522 }
1523
1524 static int kvm_set_memslot(struct kvm *kvm,
1525                            const struct kvm_userspace_memory_region *mem,
1526                            struct kvm_memory_slot *old,
1527                            struct kvm_memory_slot *new, int as_id,
1528                            enum kvm_mr_change change)
1529 {
1530         struct kvm_memory_slot *slot;
1531         struct kvm_memslots *slots;
1532         int r;
1533
1534         /*
1535          * Released in install_new_memslots.
1536          *
1537          * Must be held from before the current memslots are copied until
1538          * after the new memslots are installed with rcu_assign_pointer,
1539          * then released before the synchronize srcu in install_new_memslots.
1540          *
1541          * When modifying memslots outside of the slots_lock, must be held
1542          * before reading the pointer to the current memslots until after all
1543          * changes to those memslots are complete.
1544          *
1545          * These rules ensure that installing new memslots does not lose
1546          * changes made to the previous memslots.
1547          */
1548         mutex_lock(&kvm->slots_arch_lock);
1549
1550         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1551         if (!slots) {
1552                 mutex_unlock(&kvm->slots_arch_lock);
1553                 return -ENOMEM;
1554         }
1555
1556         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1557                 /*
1558                  * Note, the INVALID flag needs to be in the appropriate entry
1559                  * in the freshly allocated memslots, not in @old or @new.
1560                  */
1561                 slot = id_to_memslot(slots, old->id);
1562                 slot->flags |= KVM_MEMSLOT_INVALID;
1563
1564                 /*
1565                  * We can re-use the memory from the old memslots.
1566                  * It will be overwritten with a copy of the new memslots
1567                  * after reacquiring the slots_arch_lock below.
1568                  */
1569                 slots = install_new_memslots(kvm, as_id, slots);
1570
1571                 /* From this point no new shadow pages pointing to a deleted,
1572                  * or moved, memslot will be created.
1573                  *
1574                  * validation of sp->gfn happens in:
1575                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1576                  *      - kvm_is_visible_gfn (mmu_check_root)
1577                  */
1578                 kvm_arch_flush_shadow_memslot(kvm, slot);
1579
1580                 /* Released in install_new_memslots. */
1581                 mutex_lock(&kvm->slots_arch_lock);
1582
1583                 /*
1584                  * The arch-specific fields of the memslots could have changed
1585                  * between releasing the slots_arch_lock in
1586                  * install_new_memslots and here, so get a fresh copy of the
1587                  * slots.
1588                  */
1589                 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1590         }
1591
1592         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1593         if (r)
1594                 goto out_slots;
1595
1596         update_memslots(slots, new, change);
1597         slots = install_new_memslots(kvm, as_id, slots);
1598
1599         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1600
1601         kvfree(slots);
1602         return 0;
1603
1604 out_slots:
1605         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1606                 slot = id_to_memslot(slots, old->id);
1607                 slot->flags &= ~KVM_MEMSLOT_INVALID;
1608                 slots = install_new_memslots(kvm, as_id, slots);
1609         } else {
1610                 mutex_unlock(&kvm->slots_arch_lock);
1611         }
1612         kvfree(slots);
1613         return r;
1614 }
1615
1616 static int kvm_delete_memslot(struct kvm *kvm,
1617                               const struct kvm_userspace_memory_region *mem,
1618                               struct kvm_memory_slot *old, int as_id)
1619 {
1620         struct kvm_memory_slot new;
1621         int r;
1622
1623         if (!old->npages)
1624                 return -EINVAL;
1625
1626         memset(&new, 0, sizeof(new));
1627         new.id = old->id;
1628         /*
1629          * This is only for debugging purpose; it should never be referenced
1630          * for a removed memslot.
1631          */
1632         new.as_id = as_id;
1633
1634         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1635         if (r)
1636                 return r;
1637
1638         kvm_free_memslot(kvm, old);
1639         return 0;
1640 }
1641
1642 /*
1643  * Allocate some memory and give it an address in the guest physical address
1644  * space.
1645  *
1646  * Discontiguous memory is allowed, mostly for framebuffers.
1647  *
1648  * Must be called holding kvm->slots_lock for write.
1649  */
1650 int __kvm_set_memory_region(struct kvm *kvm,
1651                             const struct kvm_userspace_memory_region *mem)
1652 {
1653         struct kvm_memory_slot old, new;
1654         struct kvm_memory_slot *tmp;
1655         enum kvm_mr_change change;
1656         int as_id, id;
1657         int r;
1658
1659         r = check_memory_region_flags(mem);
1660         if (r)
1661                 return r;
1662
1663         as_id = mem->slot >> 16;
1664         id = (u16)mem->slot;
1665
1666         /* General sanity checks */
1667         if (mem->memory_size & (PAGE_SIZE - 1))
1668                 return -EINVAL;
1669         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1670                 return -EINVAL;
1671         /* We can read the guest memory with __xxx_user() later on. */
1672         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1673             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1674              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1675                         mem->memory_size))
1676                 return -EINVAL;
1677         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1678                 return -EINVAL;
1679         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1680                 return -EINVAL;
1681
1682         /*
1683          * Make a full copy of the old memslot, the pointer will become stale
1684          * when the memslots are re-sorted by update_memslots(), and the old
1685          * memslot needs to be referenced after calling update_memslots(), e.g.
1686          * to free its resources and for arch specific behavior.
1687          */
1688         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1689         if (tmp) {
1690                 old = *tmp;
1691                 tmp = NULL;
1692         } else {
1693                 memset(&old, 0, sizeof(old));
1694                 old.id = id;
1695         }
1696
1697         if (!mem->memory_size)
1698                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1699
1700         new.as_id = as_id;
1701         new.id = id;
1702         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1703         new.npages = mem->memory_size >> PAGE_SHIFT;
1704         new.flags = mem->flags;
1705         new.userspace_addr = mem->userspace_addr;
1706
1707         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1708                 return -EINVAL;
1709
1710         if (!old.npages) {
1711                 change = KVM_MR_CREATE;
1712                 new.dirty_bitmap = NULL;
1713                 memset(&new.arch, 0, sizeof(new.arch));
1714         } else { /* Modify an existing slot. */
1715                 if ((new.userspace_addr != old.userspace_addr) ||
1716                     (new.npages != old.npages) ||
1717                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1718                         return -EINVAL;
1719
1720                 if (new.base_gfn != old.base_gfn)
1721                         change = KVM_MR_MOVE;
1722                 else if (new.flags != old.flags)
1723                         change = KVM_MR_FLAGS_ONLY;
1724                 else /* Nothing to change. */
1725                         return 0;
1726
1727                 /* Copy dirty_bitmap and arch from the current memslot. */
1728                 new.dirty_bitmap = old.dirty_bitmap;
1729                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1730         }
1731
1732         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1733                 /* Check for overlaps */
1734                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1735                         if (tmp->id == id)
1736                                 continue;
1737                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1738                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1739                                 return -EEXIST;
1740                 }
1741         }
1742
1743         /* Allocate/free page dirty bitmap as needed */
1744         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1745                 new.dirty_bitmap = NULL;
1746         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1747                 r = kvm_alloc_dirty_bitmap(&new);
1748                 if (r)
1749                         return r;
1750
1751                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1752                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1753         }
1754
1755         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1756         if (r)
1757                 goto out_bitmap;
1758
1759         if (old.dirty_bitmap && !new.dirty_bitmap)
1760                 kvm_destroy_dirty_bitmap(&old);
1761         return 0;
1762
1763 out_bitmap:
1764         if (new.dirty_bitmap && !old.dirty_bitmap)
1765                 kvm_destroy_dirty_bitmap(&new);
1766         return r;
1767 }
1768 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1769
1770 int kvm_set_memory_region(struct kvm *kvm,
1771                           const struct kvm_userspace_memory_region *mem)
1772 {
1773         int r;
1774
1775         mutex_lock(&kvm->slots_lock);
1776         r = __kvm_set_memory_region(kvm, mem);
1777         mutex_unlock(&kvm->slots_lock);
1778         return r;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1781
1782 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1783                                           struct kvm_userspace_memory_region *mem)
1784 {
1785         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1786                 return -EINVAL;
1787
1788         return kvm_set_memory_region(kvm, mem);
1789 }
1790
1791 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1792 /**
1793  * kvm_get_dirty_log - get a snapshot of dirty pages
1794  * @kvm:        pointer to kvm instance
1795  * @log:        slot id and address to which we copy the log
1796  * @is_dirty:   set to '1' if any dirty pages were found
1797  * @memslot:    set to the associated memslot, always valid on success
1798  */
1799 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1800                       int *is_dirty, struct kvm_memory_slot **memslot)
1801 {
1802         struct kvm_memslots *slots;
1803         int i, as_id, id;
1804         unsigned long n;
1805         unsigned long any = 0;
1806
1807         /* Dirty ring tracking is exclusive to dirty log tracking */
1808         if (kvm->dirty_ring_size)
1809                 return -ENXIO;
1810
1811         *memslot = NULL;
1812         *is_dirty = 0;
1813
1814         as_id = log->slot >> 16;
1815         id = (u16)log->slot;
1816         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1817                 return -EINVAL;
1818
1819         slots = __kvm_memslots(kvm, as_id);
1820         *memslot = id_to_memslot(slots, id);
1821         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1822                 return -ENOENT;
1823
1824         kvm_arch_sync_dirty_log(kvm, *memslot);
1825
1826         n = kvm_dirty_bitmap_bytes(*memslot);
1827
1828         for (i = 0; !any && i < n/sizeof(long); ++i)
1829                 any = (*memslot)->dirty_bitmap[i];
1830
1831         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1832                 return -EFAULT;
1833
1834         if (any)
1835                 *is_dirty = 1;
1836         return 0;
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1839
1840 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1841 /**
1842  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1843  *      and reenable dirty page tracking for the corresponding pages.
1844  * @kvm:        pointer to kvm instance
1845  * @log:        slot id and address to which we copy the log
1846  *
1847  * We need to keep it in mind that VCPU threads can write to the bitmap
1848  * concurrently. So, to avoid losing track of dirty pages we keep the
1849  * following order:
1850  *
1851  *    1. Take a snapshot of the bit and clear it if needed.
1852  *    2. Write protect the corresponding page.
1853  *    3. Copy the snapshot to the userspace.
1854  *    4. Upon return caller flushes TLB's if needed.
1855  *
1856  * Between 2 and 4, the guest may write to the page using the remaining TLB
1857  * entry.  This is not a problem because the page is reported dirty using
1858  * the snapshot taken before and step 4 ensures that writes done after
1859  * exiting to userspace will be logged for the next call.
1860  *
1861  */
1862 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1863 {
1864         struct kvm_memslots *slots;
1865         struct kvm_memory_slot *memslot;
1866         int i, as_id, id;
1867         unsigned long n;
1868         unsigned long *dirty_bitmap;
1869         unsigned long *dirty_bitmap_buffer;
1870         bool flush;
1871
1872         /* Dirty ring tracking is exclusive to dirty log tracking */
1873         if (kvm->dirty_ring_size)
1874                 return -ENXIO;
1875
1876         as_id = log->slot >> 16;
1877         id = (u16)log->slot;
1878         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1879                 return -EINVAL;
1880
1881         slots = __kvm_memslots(kvm, as_id);
1882         memslot = id_to_memslot(slots, id);
1883         if (!memslot || !memslot->dirty_bitmap)
1884                 return -ENOENT;
1885
1886         dirty_bitmap = memslot->dirty_bitmap;
1887
1888         kvm_arch_sync_dirty_log(kvm, memslot);
1889
1890         n = kvm_dirty_bitmap_bytes(memslot);
1891         flush = false;
1892         if (kvm->manual_dirty_log_protect) {
1893                 /*
1894                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1895                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1896                  * is some code duplication between this function and
1897                  * kvm_get_dirty_log, but hopefully all architecture
1898                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1899                  * can be eliminated.
1900                  */
1901                 dirty_bitmap_buffer = dirty_bitmap;
1902         } else {
1903                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1904                 memset(dirty_bitmap_buffer, 0, n);
1905
1906                 KVM_MMU_LOCK(kvm);
1907                 for (i = 0; i < n / sizeof(long); i++) {
1908                         unsigned long mask;
1909                         gfn_t offset;
1910
1911                         if (!dirty_bitmap[i])
1912                                 continue;
1913
1914                         flush = true;
1915                         mask = xchg(&dirty_bitmap[i], 0);
1916                         dirty_bitmap_buffer[i] = mask;
1917
1918                         offset = i * BITS_PER_LONG;
1919                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1920                                                                 offset, mask);
1921                 }
1922                 KVM_MMU_UNLOCK(kvm);
1923         }
1924
1925         if (flush)
1926                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1927
1928         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1929                 return -EFAULT;
1930         return 0;
1931 }
1932
1933
1934 /**
1935  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1936  * @kvm: kvm instance
1937  * @log: slot id and address to which we copy the log
1938  *
1939  * Steps 1-4 below provide general overview of dirty page logging. See
1940  * kvm_get_dirty_log_protect() function description for additional details.
1941  *
1942  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1943  * always flush the TLB (step 4) even if previous step failed  and the dirty
1944  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1945  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1946  * writes will be marked dirty for next log read.
1947  *
1948  *   1. Take a snapshot of the bit and clear it if needed.
1949  *   2. Write protect the corresponding page.
1950  *   3. Copy the snapshot to the userspace.
1951  *   4. Flush TLB's if needed.
1952  */
1953 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1954                                       struct kvm_dirty_log *log)
1955 {
1956         int r;
1957
1958         mutex_lock(&kvm->slots_lock);
1959
1960         r = kvm_get_dirty_log_protect(kvm, log);
1961
1962         mutex_unlock(&kvm->slots_lock);
1963         return r;
1964 }
1965
1966 /**
1967  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1968  *      and reenable dirty page tracking for the corresponding pages.
1969  * @kvm:        pointer to kvm instance
1970  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1971  */
1972 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1973                                        struct kvm_clear_dirty_log *log)
1974 {
1975         struct kvm_memslots *slots;
1976         struct kvm_memory_slot *memslot;
1977         int as_id, id;
1978         gfn_t offset;
1979         unsigned long i, n;
1980         unsigned long *dirty_bitmap;
1981         unsigned long *dirty_bitmap_buffer;
1982         bool flush;
1983
1984         /* Dirty ring tracking is exclusive to dirty log tracking */
1985         if (kvm->dirty_ring_size)
1986                 return -ENXIO;
1987
1988         as_id = log->slot >> 16;
1989         id = (u16)log->slot;
1990         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1991                 return -EINVAL;
1992
1993         if (log->first_page & 63)
1994                 return -EINVAL;
1995
1996         slots = __kvm_memslots(kvm, as_id);
1997         memslot = id_to_memslot(slots, id);
1998         if (!memslot || !memslot->dirty_bitmap)
1999                 return -ENOENT;
2000
2001         dirty_bitmap = memslot->dirty_bitmap;
2002
2003         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2004
2005         if (log->first_page > memslot->npages ||
2006             log->num_pages > memslot->npages - log->first_page ||
2007             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2008             return -EINVAL;
2009
2010         kvm_arch_sync_dirty_log(kvm, memslot);
2011
2012         flush = false;
2013         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2014         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2015                 return -EFAULT;
2016
2017         KVM_MMU_LOCK(kvm);
2018         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2019                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2020              i++, offset += BITS_PER_LONG) {
2021                 unsigned long mask = *dirty_bitmap_buffer++;
2022                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2023                 if (!mask)
2024                         continue;
2025
2026                 mask &= atomic_long_fetch_andnot(mask, p);
2027
2028                 /*
2029                  * mask contains the bits that really have been cleared.  This
2030                  * never includes any bits beyond the length of the memslot (if
2031                  * the length is not aligned to 64 pages), therefore it is not
2032                  * a problem if userspace sets them in log->dirty_bitmap.
2033                 */
2034                 if (mask) {
2035                         flush = true;
2036                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2037                                                                 offset, mask);
2038                 }
2039         }
2040         KVM_MMU_UNLOCK(kvm);
2041
2042         if (flush)
2043                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2044
2045         return 0;
2046 }
2047
2048 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2049                                         struct kvm_clear_dirty_log *log)
2050 {
2051         int r;
2052
2053         mutex_lock(&kvm->slots_lock);
2054
2055         r = kvm_clear_dirty_log_protect(kvm, log);
2056
2057         mutex_unlock(&kvm->slots_lock);
2058         return r;
2059 }
2060 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2061
2062 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2063 {
2064         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2065 }
2066 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2067
2068 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2069 {
2070         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2071         struct kvm_memory_slot *slot;
2072         int slot_index;
2073
2074         slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2075         if (slot)
2076                 return slot;
2077
2078         /*
2079          * Fall back to searching all memslots. We purposely use
2080          * search_memslots() instead of __gfn_to_memslot() to avoid
2081          * thrashing the VM-wide last_used_index in kvm_memslots.
2082          */
2083         slot = search_memslots(slots, gfn, &slot_index);
2084         if (slot) {
2085                 vcpu->last_used_slot = slot_index;
2086                 return slot;
2087         }
2088
2089         return NULL;
2090 }
2091 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2092
2093 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2094 {
2095         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2096
2097         return kvm_is_visible_memslot(memslot);
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2100
2101 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2102 {
2103         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2104
2105         return kvm_is_visible_memslot(memslot);
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2108
2109 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2110 {
2111         struct vm_area_struct *vma;
2112         unsigned long addr, size;
2113
2114         size = PAGE_SIZE;
2115
2116         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2117         if (kvm_is_error_hva(addr))
2118                 return PAGE_SIZE;
2119
2120         mmap_read_lock(current->mm);
2121         vma = find_vma(current->mm, addr);
2122         if (!vma)
2123                 goto out;
2124
2125         size = vma_kernel_pagesize(vma);
2126
2127 out:
2128         mmap_read_unlock(current->mm);
2129
2130         return size;
2131 }
2132
2133 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2134 {
2135         return slot->flags & KVM_MEM_READONLY;
2136 }
2137
2138 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2139                                        gfn_t *nr_pages, bool write)
2140 {
2141         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2142                 return KVM_HVA_ERR_BAD;
2143
2144         if (memslot_is_readonly(slot) && write)
2145                 return KVM_HVA_ERR_RO_BAD;
2146
2147         if (nr_pages)
2148                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2149
2150         return __gfn_to_hva_memslot(slot, gfn);
2151 }
2152
2153 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2154                                      gfn_t *nr_pages)
2155 {
2156         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2157 }
2158
2159 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2160                                         gfn_t gfn)
2161 {
2162         return gfn_to_hva_many(slot, gfn, NULL);
2163 }
2164 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2165
2166 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2167 {
2168         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2169 }
2170 EXPORT_SYMBOL_GPL(gfn_to_hva);
2171
2172 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2173 {
2174         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2177
2178 /*
2179  * Return the hva of a @gfn and the R/W attribute if possible.
2180  *
2181  * @slot: the kvm_memory_slot which contains @gfn
2182  * @gfn: the gfn to be translated
2183  * @writable: used to return the read/write attribute of the @slot if the hva
2184  * is valid and @writable is not NULL
2185  */
2186 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2187                                       gfn_t gfn, bool *writable)
2188 {
2189         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2190
2191         if (!kvm_is_error_hva(hva) && writable)
2192                 *writable = !memslot_is_readonly(slot);
2193
2194         return hva;
2195 }
2196
2197 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2198 {
2199         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2200
2201         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2202 }
2203
2204 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2205 {
2206         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2207
2208         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2209 }
2210
2211 static inline int check_user_page_hwpoison(unsigned long addr)
2212 {
2213         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2214
2215         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2216         return rc == -EHWPOISON;
2217 }
2218
2219 /*
2220  * The fast path to get the writable pfn which will be stored in @pfn,
2221  * true indicates success, otherwise false is returned.  It's also the
2222  * only part that runs if we can in atomic context.
2223  */
2224 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2225                             bool *writable, kvm_pfn_t *pfn)
2226 {
2227         struct page *page[1];
2228
2229         /*
2230          * Fast pin a writable pfn only if it is a write fault request
2231          * or the caller allows to map a writable pfn for a read fault
2232          * request.
2233          */
2234         if (!(write_fault || writable))
2235                 return false;
2236
2237         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2238                 *pfn = page_to_pfn(page[0]);
2239
2240                 if (writable)
2241                         *writable = true;
2242                 return true;
2243         }
2244
2245         return false;
2246 }
2247
2248 /*
2249  * The slow path to get the pfn of the specified host virtual address,
2250  * 1 indicates success, -errno is returned if error is detected.
2251  */
2252 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2253                            bool *writable, kvm_pfn_t *pfn)
2254 {
2255         unsigned int flags = FOLL_HWPOISON;
2256         struct page *page;
2257         int npages = 0;
2258
2259         might_sleep();
2260
2261         if (writable)
2262                 *writable = write_fault;
2263
2264         if (write_fault)
2265                 flags |= FOLL_WRITE;
2266         if (async)
2267                 flags |= FOLL_NOWAIT;
2268
2269         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2270         if (npages != 1)
2271                 return npages;
2272
2273         /* map read fault as writable if possible */
2274         if (unlikely(!write_fault) && writable) {
2275                 struct page *wpage;
2276
2277                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2278                         *writable = true;
2279                         put_page(page);
2280                         page = wpage;
2281                 }
2282         }
2283         *pfn = page_to_pfn(page);
2284         return npages;
2285 }
2286
2287 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2288 {
2289         if (unlikely(!(vma->vm_flags & VM_READ)))
2290                 return false;
2291
2292         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2293                 return false;
2294
2295         return true;
2296 }
2297
2298 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2299 {
2300         if (kvm_is_reserved_pfn(pfn))
2301                 return 1;
2302         return get_page_unless_zero(pfn_to_page(pfn));
2303 }
2304
2305 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2306                                unsigned long addr, bool *async,
2307                                bool write_fault, bool *writable,
2308                                kvm_pfn_t *p_pfn)
2309 {
2310         kvm_pfn_t pfn;
2311         pte_t *ptep;
2312         spinlock_t *ptl;
2313         int r;
2314
2315         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2316         if (r) {
2317                 /*
2318                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2319                  * not call the fault handler, so do it here.
2320                  */
2321                 bool unlocked = false;
2322                 r = fixup_user_fault(current->mm, addr,
2323                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2324                                      &unlocked);
2325                 if (unlocked)
2326                         return -EAGAIN;
2327                 if (r)
2328                         return r;
2329
2330                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2331                 if (r)
2332                         return r;
2333         }
2334
2335         if (write_fault && !pte_write(*ptep)) {
2336                 pfn = KVM_PFN_ERR_RO_FAULT;
2337                 goto out;
2338         }
2339
2340         if (writable)
2341                 *writable = pte_write(*ptep);
2342         pfn = pte_pfn(*ptep);
2343
2344         /*
2345          * Get a reference here because callers of *hva_to_pfn* and
2346          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2347          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2348          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2349          * simply do nothing for reserved pfns.
2350          *
2351          * Whoever called remap_pfn_range is also going to call e.g.
2352          * unmap_mapping_range before the underlying pages are freed,
2353          * causing a call to our MMU notifier.
2354          *
2355          * Certain IO or PFNMAP mappings can be backed with valid
2356          * struct pages, but be allocated without refcounting e.g.,
2357          * tail pages of non-compound higher order allocations, which
2358          * would then underflow the refcount when the caller does the
2359          * required put_page. Don't allow those pages here.
2360          */ 
2361         if (!kvm_try_get_pfn(pfn))
2362                 r = -EFAULT;
2363
2364 out:
2365         pte_unmap_unlock(ptep, ptl);
2366         *p_pfn = pfn;
2367
2368         return r;
2369 }
2370
2371 /*
2372  * Pin guest page in memory and return its pfn.
2373  * @addr: host virtual address which maps memory to the guest
2374  * @atomic: whether this function can sleep
2375  * @async: whether this function need to wait IO complete if the
2376  *         host page is not in the memory
2377  * @write_fault: whether we should get a writable host page
2378  * @writable: whether it allows to map a writable host page for !@write_fault
2379  *
2380  * The function will map a writable host page for these two cases:
2381  * 1): @write_fault = true
2382  * 2): @write_fault = false && @writable, @writable will tell the caller
2383  *     whether the mapping is writable.
2384  */
2385 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2386                         bool write_fault, bool *writable)
2387 {
2388         struct vm_area_struct *vma;
2389         kvm_pfn_t pfn = 0;
2390         int npages, r;
2391
2392         /* we can do it either atomically or asynchronously, not both */
2393         BUG_ON(atomic && async);
2394
2395         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2396                 return pfn;
2397
2398         if (atomic)
2399                 return KVM_PFN_ERR_FAULT;
2400
2401         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2402         if (npages == 1)
2403                 return pfn;
2404
2405         mmap_read_lock(current->mm);
2406         if (npages == -EHWPOISON ||
2407               (!async && check_user_page_hwpoison(addr))) {
2408                 pfn = KVM_PFN_ERR_HWPOISON;
2409                 goto exit;
2410         }
2411
2412 retry:
2413         vma = vma_lookup(current->mm, addr);
2414
2415         if (vma == NULL)
2416                 pfn = KVM_PFN_ERR_FAULT;
2417         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2418                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2419                 if (r == -EAGAIN)
2420                         goto retry;
2421                 if (r < 0)
2422                         pfn = KVM_PFN_ERR_FAULT;
2423         } else {
2424                 if (async && vma_is_valid(vma, write_fault))
2425                         *async = true;
2426                 pfn = KVM_PFN_ERR_FAULT;
2427         }
2428 exit:
2429         mmap_read_unlock(current->mm);
2430         return pfn;
2431 }
2432
2433 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2434                                bool atomic, bool *async, bool write_fault,
2435                                bool *writable, hva_t *hva)
2436 {
2437         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2438
2439         if (hva)
2440                 *hva = addr;
2441
2442         if (addr == KVM_HVA_ERR_RO_BAD) {
2443                 if (writable)
2444                         *writable = false;
2445                 return KVM_PFN_ERR_RO_FAULT;
2446         }
2447
2448         if (kvm_is_error_hva(addr)) {
2449                 if (writable)
2450                         *writable = false;
2451                 return KVM_PFN_NOSLOT;
2452         }
2453
2454         /* Do not map writable pfn in the readonly memslot. */
2455         if (writable && memslot_is_readonly(slot)) {
2456                 *writable = false;
2457                 writable = NULL;
2458         }
2459
2460         return hva_to_pfn(addr, atomic, async, write_fault,
2461                           writable);
2462 }
2463 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2464
2465 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2466                       bool *writable)
2467 {
2468         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2469                                     write_fault, writable, NULL);
2470 }
2471 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2472
2473 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2474 {
2475         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2476 }
2477 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2478
2479 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2480 {
2481         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2482 }
2483 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2484
2485 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2486 {
2487         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2488 }
2489 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2490
2491 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2492 {
2493         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2494 }
2495 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2496
2497 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2498 {
2499         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2500 }
2501 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2502
2503 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2504                             struct page **pages, int nr_pages)
2505 {
2506         unsigned long addr;
2507         gfn_t entry = 0;
2508
2509         addr = gfn_to_hva_many(slot, gfn, &entry);
2510         if (kvm_is_error_hva(addr))
2511                 return -1;
2512
2513         if (entry < nr_pages)
2514                 return 0;
2515
2516         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2517 }
2518 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2519
2520 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2521 {
2522         if (is_error_noslot_pfn(pfn))
2523                 return KVM_ERR_PTR_BAD_PAGE;
2524
2525         if (kvm_is_reserved_pfn(pfn)) {
2526                 WARN_ON(1);
2527                 return KVM_ERR_PTR_BAD_PAGE;
2528         }
2529
2530         return pfn_to_page(pfn);
2531 }
2532
2533 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2534 {
2535         kvm_pfn_t pfn;
2536
2537         pfn = gfn_to_pfn(kvm, gfn);
2538
2539         return kvm_pfn_to_page(pfn);
2540 }
2541 EXPORT_SYMBOL_GPL(gfn_to_page);
2542
2543 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2544 {
2545         if (pfn == 0)
2546                 return;
2547
2548         if (cache)
2549                 cache->pfn = cache->gfn = 0;
2550
2551         if (dirty)
2552                 kvm_release_pfn_dirty(pfn);
2553         else
2554                 kvm_release_pfn_clean(pfn);
2555 }
2556
2557 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2558                                  struct gfn_to_pfn_cache *cache, u64 gen)
2559 {
2560         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2561
2562         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2563         cache->gfn = gfn;
2564         cache->dirty = false;
2565         cache->generation = gen;
2566 }
2567
2568 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2569                          struct kvm_host_map *map,
2570                          struct gfn_to_pfn_cache *cache,
2571                          bool atomic)
2572 {
2573         kvm_pfn_t pfn;
2574         void *hva = NULL;
2575         struct page *page = KVM_UNMAPPED_PAGE;
2576         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2577         u64 gen = slots->generation;
2578
2579         if (!map)
2580                 return -EINVAL;
2581
2582         if (cache) {
2583                 if (!cache->pfn || cache->gfn != gfn ||
2584                         cache->generation != gen) {
2585                         if (atomic)
2586                                 return -EAGAIN;
2587                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2588                 }
2589                 pfn = cache->pfn;
2590         } else {
2591                 if (atomic)
2592                         return -EAGAIN;
2593                 pfn = gfn_to_pfn_memslot(slot, gfn);
2594         }
2595         if (is_error_noslot_pfn(pfn))
2596                 return -EINVAL;
2597
2598         if (pfn_valid(pfn)) {
2599                 page = pfn_to_page(pfn);
2600                 if (atomic)
2601                         hva = kmap_atomic(page);
2602                 else
2603                         hva = kmap(page);
2604 #ifdef CONFIG_HAS_IOMEM
2605         } else if (!atomic) {
2606                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2607         } else {
2608                 return -EINVAL;
2609 #endif
2610         }
2611
2612         if (!hva)
2613                 return -EFAULT;
2614
2615         map->page = page;
2616         map->hva = hva;
2617         map->pfn = pfn;
2618         map->gfn = gfn;
2619
2620         return 0;
2621 }
2622
2623 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2624                 struct gfn_to_pfn_cache *cache, bool atomic)
2625 {
2626         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2627                         cache, atomic);
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2630
2631 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2632 {
2633         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2634                 NULL, false);
2635 }
2636 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2637
2638 static void __kvm_unmap_gfn(struct kvm *kvm,
2639                         struct kvm_memory_slot *memslot,
2640                         struct kvm_host_map *map,
2641                         struct gfn_to_pfn_cache *cache,
2642                         bool dirty, bool atomic)
2643 {
2644         if (!map)
2645                 return;
2646
2647         if (!map->hva)
2648                 return;
2649
2650         if (map->page != KVM_UNMAPPED_PAGE) {
2651                 if (atomic)
2652                         kunmap_atomic(map->hva);
2653                 else
2654                         kunmap(map->page);
2655         }
2656 #ifdef CONFIG_HAS_IOMEM
2657         else if (!atomic)
2658                 memunmap(map->hva);
2659         else
2660                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2661 #endif
2662
2663         if (dirty)
2664                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2665
2666         if (cache)
2667                 cache->dirty |= dirty;
2668         else
2669                 kvm_release_pfn(map->pfn, dirty, NULL);
2670
2671         map->hva = NULL;
2672         map->page = NULL;
2673 }
2674
2675 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2676                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2677 {
2678         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2679                         cache, dirty, atomic);
2680         return 0;
2681 }
2682 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2683
2684 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2685 {
2686         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2687                         map, NULL, dirty, false);
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2690
2691 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2692 {
2693         kvm_pfn_t pfn;
2694
2695         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2696
2697         return kvm_pfn_to_page(pfn);
2698 }
2699 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2700
2701 void kvm_release_page_clean(struct page *page)
2702 {
2703         WARN_ON(is_error_page(page));
2704
2705         kvm_release_pfn_clean(page_to_pfn(page));
2706 }
2707 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2708
2709 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2710 {
2711         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2712                 put_page(pfn_to_page(pfn));
2713 }
2714 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2715
2716 void kvm_release_page_dirty(struct page *page)
2717 {
2718         WARN_ON(is_error_page(page));
2719
2720         kvm_release_pfn_dirty(page_to_pfn(page));
2721 }
2722 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2723
2724 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2725 {
2726         kvm_set_pfn_dirty(pfn);
2727         kvm_release_pfn_clean(pfn);
2728 }
2729 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2730
2731 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2732 {
2733         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2734                 SetPageDirty(pfn_to_page(pfn));
2735 }
2736 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2737
2738 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2739 {
2740         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2741                 mark_page_accessed(pfn_to_page(pfn));
2742 }
2743 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2744
2745 static int next_segment(unsigned long len, int offset)
2746 {
2747         if (len > PAGE_SIZE - offset)
2748                 return PAGE_SIZE - offset;
2749         else
2750                 return len;
2751 }
2752
2753 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2754                                  void *data, int offset, int len)
2755 {
2756         int r;
2757         unsigned long addr;
2758
2759         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2760         if (kvm_is_error_hva(addr))
2761                 return -EFAULT;
2762         r = __copy_from_user(data, (void __user *)addr + offset, len);
2763         if (r)
2764                 return -EFAULT;
2765         return 0;
2766 }
2767
2768 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2769                         int len)
2770 {
2771         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2772
2773         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2774 }
2775 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2776
2777 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2778                              int offset, int len)
2779 {
2780         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2781
2782         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2783 }
2784 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2785
2786 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2787 {
2788         gfn_t gfn = gpa >> PAGE_SHIFT;
2789         int seg;
2790         int offset = offset_in_page(gpa);
2791         int ret;
2792
2793         while ((seg = next_segment(len, offset)) != 0) {
2794                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2795                 if (ret < 0)
2796                         return ret;
2797                 offset = 0;
2798                 len -= seg;
2799                 data += seg;
2800                 ++gfn;
2801         }
2802         return 0;
2803 }
2804 EXPORT_SYMBOL_GPL(kvm_read_guest);
2805
2806 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2807 {
2808         gfn_t gfn = gpa >> PAGE_SHIFT;
2809         int seg;
2810         int offset = offset_in_page(gpa);
2811         int ret;
2812
2813         while ((seg = next_segment(len, offset)) != 0) {
2814                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2815                 if (ret < 0)
2816                         return ret;
2817                 offset = 0;
2818                 len -= seg;
2819                 data += seg;
2820                 ++gfn;
2821         }
2822         return 0;
2823 }
2824 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2825
2826 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2827                                    void *data, int offset, unsigned long len)
2828 {
2829         int r;
2830         unsigned long addr;
2831
2832         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2833         if (kvm_is_error_hva(addr))
2834                 return -EFAULT;
2835         pagefault_disable();
2836         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2837         pagefault_enable();
2838         if (r)
2839                 return -EFAULT;
2840         return 0;
2841 }
2842
2843 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2844                                void *data, unsigned long len)
2845 {
2846         gfn_t gfn = gpa >> PAGE_SHIFT;
2847         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2848         int offset = offset_in_page(gpa);
2849
2850         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2851 }
2852 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2853
2854 static int __kvm_write_guest_page(struct kvm *kvm,
2855                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2856                                   const void *data, int offset, int len)
2857 {
2858         int r;
2859         unsigned long addr;
2860
2861         addr = gfn_to_hva_memslot(memslot, gfn);
2862         if (kvm_is_error_hva(addr))
2863                 return -EFAULT;
2864         r = __copy_to_user((void __user *)addr + offset, data, len);
2865         if (r)
2866                 return -EFAULT;
2867         mark_page_dirty_in_slot(kvm, memslot, gfn);
2868         return 0;
2869 }
2870
2871 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2872                          const void *data, int offset, int len)
2873 {
2874         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2875
2876         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2877 }
2878 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2879
2880 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2881                               const void *data, int offset, int len)
2882 {
2883         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2884
2885         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2888
2889 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2890                     unsigned long len)
2891 {
2892         gfn_t gfn = gpa >> PAGE_SHIFT;
2893         int seg;
2894         int offset = offset_in_page(gpa);
2895         int ret;
2896
2897         while ((seg = next_segment(len, offset)) != 0) {
2898                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2899                 if (ret < 0)
2900                         return ret;
2901                 offset = 0;
2902                 len -= seg;
2903                 data += seg;
2904                 ++gfn;
2905         }
2906         return 0;
2907 }
2908 EXPORT_SYMBOL_GPL(kvm_write_guest);
2909
2910 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2911                          unsigned long len)
2912 {
2913         gfn_t gfn = gpa >> PAGE_SHIFT;
2914         int seg;
2915         int offset = offset_in_page(gpa);
2916         int ret;
2917
2918         while ((seg = next_segment(len, offset)) != 0) {
2919                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2920                 if (ret < 0)
2921                         return ret;
2922                 offset = 0;
2923                 len -= seg;
2924                 data += seg;
2925                 ++gfn;
2926         }
2927         return 0;
2928 }
2929 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2930
2931 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2932                                        struct gfn_to_hva_cache *ghc,
2933                                        gpa_t gpa, unsigned long len)
2934 {
2935         int offset = offset_in_page(gpa);
2936         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2937         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2938         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2939         gfn_t nr_pages_avail;
2940
2941         /* Update ghc->generation before performing any error checks. */
2942         ghc->generation = slots->generation;
2943
2944         if (start_gfn > end_gfn) {
2945                 ghc->hva = KVM_HVA_ERR_BAD;
2946                 return -EINVAL;
2947         }
2948
2949         /*
2950          * If the requested region crosses two memslots, we still
2951          * verify that the entire region is valid here.
2952          */
2953         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2954                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2955                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2956                                            &nr_pages_avail);
2957                 if (kvm_is_error_hva(ghc->hva))
2958                         return -EFAULT;
2959         }
2960
2961         /* Use the slow path for cross page reads and writes. */
2962         if (nr_pages_needed == 1)
2963                 ghc->hva += offset;
2964         else
2965                 ghc->memslot = NULL;
2966
2967         ghc->gpa = gpa;
2968         ghc->len = len;
2969         return 0;
2970 }
2971
2972 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2973                               gpa_t gpa, unsigned long len)
2974 {
2975         struct kvm_memslots *slots = kvm_memslots(kvm);
2976         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2977 }
2978 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2979
2980 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2981                                   void *data, unsigned int offset,
2982                                   unsigned long len)
2983 {
2984         struct kvm_memslots *slots = kvm_memslots(kvm);
2985         int r;
2986         gpa_t gpa = ghc->gpa + offset;
2987
2988         BUG_ON(len + offset > ghc->len);
2989
2990         if (slots->generation != ghc->generation) {
2991                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2992                         return -EFAULT;
2993         }
2994
2995         if (kvm_is_error_hva(ghc->hva))
2996                 return -EFAULT;
2997
2998         if (unlikely(!ghc->memslot))
2999                 return kvm_write_guest(kvm, gpa, data, len);
3000
3001         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3002         if (r)
3003                 return -EFAULT;
3004         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3005
3006         return 0;
3007 }
3008 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3009
3010 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3011                            void *data, unsigned long len)
3012 {
3013         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3014 }
3015 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3016
3017 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3018                                  void *data, unsigned int offset,
3019                                  unsigned long len)
3020 {
3021         struct kvm_memslots *slots = kvm_memslots(kvm);
3022         int r;
3023         gpa_t gpa = ghc->gpa + offset;
3024
3025         BUG_ON(len + offset > ghc->len);
3026
3027         if (slots->generation != ghc->generation) {
3028                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3029                         return -EFAULT;
3030         }
3031
3032         if (kvm_is_error_hva(ghc->hva))
3033                 return -EFAULT;
3034
3035         if (unlikely(!ghc->memslot))
3036                 return kvm_read_guest(kvm, gpa, data, len);
3037
3038         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3039         if (r)
3040                 return -EFAULT;
3041
3042         return 0;
3043 }
3044 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3045
3046 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3047                           void *data, unsigned long len)
3048 {
3049         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3050 }
3051 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3052
3053 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3054 {
3055         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3056         gfn_t gfn = gpa >> PAGE_SHIFT;
3057         int seg;
3058         int offset = offset_in_page(gpa);
3059         int ret;
3060
3061         while ((seg = next_segment(len, offset)) != 0) {
3062                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3063                 if (ret < 0)
3064                         return ret;
3065                 offset = 0;
3066                 len -= seg;
3067                 ++gfn;
3068         }
3069         return 0;
3070 }
3071 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3072
3073 void mark_page_dirty_in_slot(struct kvm *kvm,
3074                              struct kvm_memory_slot *memslot,
3075                              gfn_t gfn)
3076 {
3077         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3078                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3079                 u32 slot = (memslot->as_id << 16) | memslot->id;
3080
3081                 if (kvm->dirty_ring_size)
3082                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3083                                             slot, rel_gfn);
3084                 else
3085                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3086         }
3087 }
3088 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3089
3090 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3091 {
3092         struct kvm_memory_slot *memslot;
3093
3094         memslot = gfn_to_memslot(kvm, gfn);
3095         mark_page_dirty_in_slot(kvm, memslot, gfn);
3096 }
3097 EXPORT_SYMBOL_GPL(mark_page_dirty);
3098
3099 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3100 {
3101         struct kvm_memory_slot *memslot;
3102
3103         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3104         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3105 }
3106 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3107
3108 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3109 {
3110         if (!vcpu->sigset_active)
3111                 return;
3112
3113         /*
3114          * This does a lockless modification of ->real_blocked, which is fine
3115          * because, only current can change ->real_blocked and all readers of
3116          * ->real_blocked don't care as long ->real_blocked is always a subset
3117          * of ->blocked.
3118          */
3119         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3120 }
3121
3122 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3123 {
3124         if (!vcpu->sigset_active)
3125                 return;
3126
3127         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3128         sigemptyset(&current->real_blocked);
3129 }
3130
3131 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3132 {
3133         unsigned int old, val, grow, grow_start;
3134
3135         old = val = vcpu->halt_poll_ns;
3136         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3137         grow = READ_ONCE(halt_poll_ns_grow);
3138         if (!grow)
3139                 goto out;
3140
3141         val *= grow;
3142         if (val < grow_start)
3143                 val = grow_start;
3144
3145         if (val > vcpu->kvm->max_halt_poll_ns)
3146                 val = vcpu->kvm->max_halt_poll_ns;
3147
3148         vcpu->halt_poll_ns = val;
3149 out:
3150         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3151 }
3152
3153 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3154 {
3155         unsigned int old, val, shrink, grow_start;
3156
3157         old = val = vcpu->halt_poll_ns;
3158         shrink = READ_ONCE(halt_poll_ns_shrink);
3159         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3160         if (shrink == 0)
3161                 val = 0;
3162         else
3163                 val /= shrink;
3164
3165         if (val < grow_start)
3166                 val = 0;
3167
3168         vcpu->halt_poll_ns = val;
3169         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3170 }
3171
3172 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3173 {
3174         int ret = -EINTR;
3175         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3176
3177         if (kvm_arch_vcpu_runnable(vcpu)) {
3178                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3179                 goto out;
3180         }
3181         if (kvm_cpu_has_pending_timer(vcpu))
3182                 goto out;
3183         if (signal_pending(current))
3184                 goto out;
3185         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3186                 goto out;
3187
3188         ret = 0;
3189 out:
3190         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3191         return ret;
3192 }
3193
3194 static inline void
3195 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3196 {
3197         if (waited)
3198                 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3199         else
3200                 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3201 }
3202
3203 /*
3204  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3205  */
3206 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3207 {
3208         ktime_t start, cur, poll_end;
3209         bool waited = false;
3210         u64 block_ns;
3211
3212         kvm_arch_vcpu_blocking(vcpu);
3213
3214         start = cur = poll_end = ktime_get();
3215         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3216                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3217
3218                 ++vcpu->stat.generic.halt_attempted_poll;
3219                 do {
3220                         /*
3221                          * This sets KVM_REQ_UNHALT if an interrupt
3222                          * arrives.
3223                          */
3224                         if (kvm_vcpu_check_block(vcpu) < 0) {
3225                                 ++vcpu->stat.generic.halt_successful_poll;
3226                                 if (!vcpu_valid_wakeup(vcpu))
3227                                         ++vcpu->stat.generic.halt_poll_invalid;
3228
3229                                 KVM_STATS_LOG_HIST_UPDATE(
3230                                       vcpu->stat.generic.halt_poll_success_hist,
3231                                       ktime_to_ns(ktime_get()) -
3232                                       ktime_to_ns(start));
3233                                 goto out;
3234                         }
3235                         cpu_relax();
3236                         poll_end = cur = ktime_get();
3237                 } while (kvm_vcpu_can_poll(cur, stop));
3238
3239                 KVM_STATS_LOG_HIST_UPDATE(
3240                                 vcpu->stat.generic.halt_poll_fail_hist,
3241                                 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3242         }
3243
3244
3245         prepare_to_rcuwait(&vcpu->wait);
3246         for (;;) {
3247                 set_current_state(TASK_INTERRUPTIBLE);
3248
3249                 if (kvm_vcpu_check_block(vcpu) < 0)
3250                         break;
3251
3252                 waited = true;
3253                 schedule();
3254         }
3255         finish_rcuwait(&vcpu->wait);
3256         cur = ktime_get();
3257         if (waited) {
3258                 vcpu->stat.generic.halt_wait_ns +=
3259                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3260                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3261                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3262         }
3263 out:
3264         kvm_arch_vcpu_unblocking(vcpu);
3265         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3266
3267         update_halt_poll_stats(
3268                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3269
3270         if (!kvm_arch_no_poll(vcpu)) {
3271                 if (!vcpu_valid_wakeup(vcpu)) {
3272                         shrink_halt_poll_ns(vcpu);
3273                 } else if (vcpu->kvm->max_halt_poll_ns) {
3274                         if (block_ns <= vcpu->halt_poll_ns)
3275                                 ;
3276                         /* we had a long block, shrink polling */
3277                         else if (vcpu->halt_poll_ns &&
3278                                         block_ns > vcpu->kvm->max_halt_poll_ns)
3279                                 shrink_halt_poll_ns(vcpu);
3280                         /* we had a short halt and our poll time is too small */
3281                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3282                                         block_ns < vcpu->kvm->max_halt_poll_ns)
3283                                 grow_halt_poll_ns(vcpu);
3284                 } else {
3285                         vcpu->halt_poll_ns = 0;
3286                 }
3287         }
3288
3289         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3290         kvm_arch_vcpu_block_finish(vcpu);
3291 }
3292 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3293
3294 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3295 {
3296         struct rcuwait *waitp;
3297
3298         waitp = kvm_arch_vcpu_get_wait(vcpu);
3299         if (rcuwait_wake_up(waitp)) {
3300                 WRITE_ONCE(vcpu->ready, true);
3301                 ++vcpu->stat.generic.halt_wakeup;
3302                 return true;
3303         }
3304
3305         return false;
3306 }
3307 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3308
3309 #ifndef CONFIG_S390
3310 /*
3311  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3312  */
3313 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3314 {
3315         int me, cpu;
3316
3317         if (kvm_vcpu_wake_up(vcpu))
3318                 return;
3319
3320         /*
3321          * Note, the vCPU could get migrated to a different pCPU at any point
3322          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3323          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3324          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3325          * vCPU also requires it to leave IN_GUEST_MODE.
3326          */
3327         me = get_cpu();
3328         if (kvm_arch_vcpu_should_kick(vcpu)) {
3329                 cpu = READ_ONCE(vcpu->cpu);
3330                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3331                         smp_send_reschedule(cpu);
3332         }
3333         put_cpu();
3334 }
3335 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3336 #endif /* !CONFIG_S390 */
3337
3338 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3339 {
3340         struct pid *pid;
3341         struct task_struct *task = NULL;
3342         int ret = 0;
3343
3344         rcu_read_lock();
3345         pid = rcu_dereference(target->pid);
3346         if (pid)
3347                 task = get_pid_task(pid, PIDTYPE_PID);
3348         rcu_read_unlock();
3349         if (!task)
3350                 return ret;
3351         ret = yield_to(task, 1);
3352         put_task_struct(task);
3353
3354         return ret;
3355 }
3356 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3357
3358 /*
3359  * Helper that checks whether a VCPU is eligible for directed yield.
3360  * Most eligible candidate to yield is decided by following heuristics:
3361  *
3362  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3363  *  (preempted lock holder), indicated by @in_spin_loop.
3364  *  Set at the beginning and cleared at the end of interception/PLE handler.
3365  *
3366  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3367  *  chance last time (mostly it has become eligible now since we have probably
3368  *  yielded to lockholder in last iteration. This is done by toggling
3369  *  @dy_eligible each time a VCPU checked for eligibility.)
3370  *
3371  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3372  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3373  *  burning. Giving priority for a potential lock-holder increases lock
3374  *  progress.
3375  *
3376  *  Since algorithm is based on heuristics, accessing another VCPU data without
3377  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3378  *  and continue with next VCPU and so on.
3379  */
3380 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3381 {
3382 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3383         bool eligible;
3384
3385         eligible = !vcpu->spin_loop.in_spin_loop ||
3386                     vcpu->spin_loop.dy_eligible;
3387
3388         if (vcpu->spin_loop.in_spin_loop)
3389                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3390
3391         return eligible;
3392 #else
3393         return true;
3394 #endif
3395 }
3396
3397 /*
3398  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3399  * a vcpu_load/vcpu_put pair.  However, for most architectures
3400  * kvm_arch_vcpu_runnable does not require vcpu_load.
3401  */
3402 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3403 {
3404         return kvm_arch_vcpu_runnable(vcpu);
3405 }
3406
3407 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3408 {
3409         if (kvm_arch_dy_runnable(vcpu))
3410                 return true;
3411
3412 #ifdef CONFIG_KVM_ASYNC_PF
3413         if (!list_empty_careful(&vcpu->async_pf.done))
3414                 return true;
3415 #endif
3416
3417         return false;
3418 }
3419
3420 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3421 {
3422         return false;
3423 }
3424
3425 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3426 {
3427         struct kvm *kvm = me->kvm;
3428         struct kvm_vcpu *vcpu;
3429         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3430         int yielded = 0;
3431         int try = 3;
3432         int pass;
3433         int i;
3434
3435         kvm_vcpu_set_in_spin_loop(me, true);
3436         /*
3437          * We boost the priority of a VCPU that is runnable but not
3438          * currently running, because it got preempted by something
3439          * else and called schedule in __vcpu_run.  Hopefully that
3440          * VCPU is holding the lock that we need and will release it.
3441          * We approximate round-robin by starting at the last boosted VCPU.
3442          */
3443         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3444                 kvm_for_each_vcpu(i, vcpu, kvm) {
3445                         if (!pass && i <= last_boosted_vcpu) {
3446                                 i = last_boosted_vcpu;
3447                                 continue;
3448                         } else if (pass && i > last_boosted_vcpu)
3449                                 break;
3450                         if (!READ_ONCE(vcpu->ready))
3451                                 continue;
3452                         if (vcpu == me)
3453                                 continue;
3454                         if (rcuwait_active(&vcpu->wait) &&
3455                             !vcpu_dy_runnable(vcpu))
3456                                 continue;
3457                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3458                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3459                             !kvm_arch_vcpu_in_kernel(vcpu))
3460                                 continue;
3461                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3462                                 continue;
3463
3464                         yielded = kvm_vcpu_yield_to(vcpu);
3465                         if (yielded > 0) {
3466                                 kvm->last_boosted_vcpu = i;
3467                                 break;
3468                         } else if (yielded < 0) {
3469                                 try--;
3470                                 if (!try)
3471                                         break;
3472                         }
3473                 }
3474         }
3475         kvm_vcpu_set_in_spin_loop(me, false);
3476
3477         /* Ensure vcpu is not eligible during next spinloop */
3478         kvm_vcpu_set_dy_eligible(me, false);
3479 }
3480 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3481
3482 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3483 {
3484 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3485         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3486             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3487              kvm->dirty_ring_size / PAGE_SIZE);
3488 #else
3489         return false;
3490 #endif
3491 }
3492
3493 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3494 {
3495         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3496         struct page *page;
3497
3498         if (vmf->pgoff == 0)
3499                 page = virt_to_page(vcpu->run);
3500 #ifdef CONFIG_X86
3501         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3502                 page = virt_to_page(vcpu->arch.pio_data);
3503 #endif
3504 #ifdef CONFIG_KVM_MMIO
3505         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3506                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3507 #endif
3508         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3509                 page = kvm_dirty_ring_get_page(
3510                     &vcpu->dirty_ring,
3511                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3512         else
3513                 return kvm_arch_vcpu_fault(vcpu, vmf);
3514         get_page(page);
3515         vmf->page = page;
3516         return 0;
3517 }
3518
3519 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3520         .fault = kvm_vcpu_fault,
3521 };
3522
3523 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3524 {
3525         struct kvm_vcpu *vcpu = file->private_data;
3526         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3527
3528         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3529              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3530             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3531                 return -EINVAL;
3532
3533         vma->vm_ops = &kvm_vcpu_vm_ops;
3534         return 0;
3535 }
3536
3537 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3538 {
3539         struct kvm_vcpu *vcpu = filp->private_data;
3540
3541         kvm_put_kvm(vcpu->kvm);
3542         return 0;
3543 }
3544
3545 static struct file_operations kvm_vcpu_fops = {
3546         .release        = kvm_vcpu_release,
3547         .unlocked_ioctl = kvm_vcpu_ioctl,
3548         .mmap           = kvm_vcpu_mmap,
3549         .llseek         = noop_llseek,
3550         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3551 };
3552
3553 /*
3554  * Allocates an inode for the vcpu.
3555  */
3556 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3557 {
3558         char name[8 + 1 + ITOA_MAX_LEN + 1];
3559
3560         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3561         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3562 }
3563
3564 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3565 {
3566 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3567         struct dentry *debugfs_dentry;
3568         char dir_name[ITOA_MAX_LEN * 2];
3569
3570         if (!debugfs_initialized())
3571                 return;
3572
3573         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3574         debugfs_dentry = debugfs_create_dir(dir_name,
3575                                             vcpu->kvm->debugfs_dentry);
3576
3577         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3578 #endif
3579 }
3580
3581 /*
3582  * Creates some virtual cpus.  Good luck creating more than one.
3583  */
3584 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3585 {
3586         int r;
3587         struct kvm_vcpu *vcpu;
3588         struct page *page;
3589
3590         if (id >= KVM_MAX_VCPU_ID)
3591                 return -EINVAL;
3592
3593         mutex_lock(&kvm->lock);
3594         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3595                 mutex_unlock(&kvm->lock);
3596                 return -EINVAL;
3597         }
3598
3599         kvm->created_vcpus++;
3600         mutex_unlock(&kvm->lock);
3601
3602         r = kvm_arch_vcpu_precreate(kvm, id);
3603         if (r)
3604                 goto vcpu_decrement;
3605
3606         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3607         if (!vcpu) {
3608                 r = -ENOMEM;
3609                 goto vcpu_decrement;
3610         }
3611
3612         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3613         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3614         if (!page) {
3615                 r = -ENOMEM;
3616                 goto vcpu_free;
3617         }
3618         vcpu->run = page_address(page);
3619
3620         kvm_vcpu_init(vcpu, kvm, id);
3621
3622         r = kvm_arch_vcpu_create(vcpu);
3623         if (r)
3624                 goto vcpu_free_run_page;
3625
3626         if (kvm->dirty_ring_size) {
3627                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3628                                          id, kvm->dirty_ring_size);
3629                 if (r)
3630                         goto arch_vcpu_destroy;
3631         }
3632
3633         mutex_lock(&kvm->lock);
3634         if (kvm_get_vcpu_by_id(kvm, id)) {
3635                 r = -EEXIST;
3636                 goto unlock_vcpu_destroy;
3637         }
3638
3639         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3640         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3641
3642         /* Fill the stats id string for the vcpu */
3643         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3644                  task_pid_nr(current), id);
3645
3646         /* Now it's all set up, let userspace reach it */
3647         kvm_get_kvm(kvm);
3648         r = create_vcpu_fd(vcpu);
3649         if (r < 0) {
3650                 kvm_put_kvm_no_destroy(kvm);
3651                 goto unlock_vcpu_destroy;
3652         }
3653
3654         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3655
3656         /*
3657          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3658          * before kvm->online_vcpu's incremented value.
3659          */
3660         smp_wmb();
3661         atomic_inc(&kvm->online_vcpus);
3662
3663         mutex_unlock(&kvm->lock);
3664         kvm_arch_vcpu_postcreate(vcpu);
3665         kvm_create_vcpu_debugfs(vcpu);
3666         return r;
3667
3668 unlock_vcpu_destroy:
3669         mutex_unlock(&kvm->lock);
3670         kvm_dirty_ring_free(&vcpu->dirty_ring);
3671 arch_vcpu_destroy:
3672         kvm_arch_vcpu_destroy(vcpu);
3673 vcpu_free_run_page:
3674         free_page((unsigned long)vcpu->run);
3675 vcpu_free:
3676         kmem_cache_free(kvm_vcpu_cache, vcpu);
3677 vcpu_decrement:
3678         mutex_lock(&kvm->lock);
3679         kvm->created_vcpus--;
3680         mutex_unlock(&kvm->lock);
3681         return r;
3682 }
3683
3684 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3685 {
3686         if (sigset) {
3687                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3688                 vcpu->sigset_active = 1;
3689                 vcpu->sigset = *sigset;
3690         } else
3691                 vcpu->sigset_active = 0;
3692         return 0;
3693 }
3694
3695 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3696                               size_t size, loff_t *offset)
3697 {
3698         struct kvm_vcpu *vcpu = file->private_data;
3699
3700         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3701                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3702                         sizeof(vcpu->stat), user_buffer, size, offset);
3703 }
3704
3705 static const struct file_operations kvm_vcpu_stats_fops = {
3706         .read = kvm_vcpu_stats_read,
3707         .llseek = noop_llseek,
3708 };
3709
3710 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3711 {
3712         int fd;
3713         struct file *file;
3714         char name[15 + ITOA_MAX_LEN + 1];
3715
3716         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3717
3718         fd = get_unused_fd_flags(O_CLOEXEC);
3719         if (fd < 0)
3720                 return fd;
3721
3722         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3723         if (IS_ERR(file)) {
3724                 put_unused_fd(fd);
3725                 return PTR_ERR(file);
3726         }
3727         file->f_mode |= FMODE_PREAD;
3728         fd_install(fd, file);
3729
3730         return fd;
3731 }
3732
3733 static long kvm_vcpu_ioctl(struct file *filp,
3734                            unsigned int ioctl, unsigned long arg)
3735 {
3736         struct kvm_vcpu *vcpu = filp->private_data;
3737         void __user *argp = (void __user *)arg;
3738         int r;
3739         struct kvm_fpu *fpu = NULL;
3740         struct kvm_sregs *kvm_sregs = NULL;
3741
3742         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3743                 return -EIO;
3744
3745         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3746                 return -EINVAL;
3747
3748         /*
3749          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3750          * execution; mutex_lock() would break them.
3751          */
3752         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3753         if (r != -ENOIOCTLCMD)
3754                 return r;
3755
3756         if (mutex_lock_killable(&vcpu->mutex))
3757                 return -EINTR;
3758         switch (ioctl) {
3759         case KVM_RUN: {
3760                 struct pid *oldpid;
3761                 r = -EINVAL;
3762                 if (arg)
3763                         goto out;
3764                 oldpid = rcu_access_pointer(vcpu->pid);
3765                 if (unlikely(oldpid != task_pid(current))) {
3766                         /* The thread running this VCPU changed. */
3767                         struct pid *newpid;
3768
3769                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3770                         if (r)
3771                                 break;
3772
3773                         newpid = get_task_pid(current, PIDTYPE_PID);
3774                         rcu_assign_pointer(vcpu->pid, newpid);
3775                         if (oldpid)
3776                                 synchronize_rcu();
3777                         put_pid(oldpid);
3778                 }
3779                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3780                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3781                 break;
3782         }
3783         case KVM_GET_REGS: {
3784                 struct kvm_regs *kvm_regs;
3785
3786                 r = -ENOMEM;
3787                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3788                 if (!kvm_regs)
3789                         goto out;
3790                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3791                 if (r)
3792                         goto out_free1;
3793                 r = -EFAULT;
3794                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3795                         goto out_free1;
3796                 r = 0;
3797 out_free1:
3798                 kfree(kvm_regs);
3799                 break;
3800         }
3801         case KVM_SET_REGS: {
3802                 struct kvm_regs *kvm_regs;
3803
3804                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3805                 if (IS_ERR(kvm_regs)) {
3806                         r = PTR_ERR(kvm_regs);
3807                         goto out;
3808                 }
3809                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3810                 kfree(kvm_regs);
3811                 break;
3812         }
3813         case KVM_GET_SREGS: {
3814                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3815                                     GFP_KERNEL_ACCOUNT);
3816                 r = -ENOMEM;
3817                 if (!kvm_sregs)
3818                         goto out;
3819                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3820                 if (r)
3821                         goto out;
3822                 r = -EFAULT;
3823                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3824                         goto out;
3825                 r = 0;
3826                 break;
3827         }
3828         case KVM_SET_SREGS: {
3829                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3830                 if (IS_ERR(kvm_sregs)) {
3831                         r = PTR_ERR(kvm_sregs);
3832                         kvm_sregs = NULL;
3833                         goto out;
3834                 }
3835                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3836                 break;
3837         }
3838         case KVM_GET_MP_STATE: {
3839                 struct kvm_mp_state mp_state;
3840
3841                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3842                 if (r)
3843                         goto out;
3844                 r = -EFAULT;
3845                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3846                         goto out;
3847                 r = 0;
3848                 break;
3849         }
3850         case KVM_SET_MP_STATE: {
3851                 struct kvm_mp_state mp_state;
3852
3853                 r = -EFAULT;
3854                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3855                         goto out;
3856                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3857                 break;
3858         }
3859         case KVM_TRANSLATE: {
3860                 struct kvm_translation tr;
3861
3862                 r = -EFAULT;
3863                 if (copy_from_user(&tr, argp, sizeof(tr)))
3864                         goto out;
3865                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3866                 if (r)
3867                         goto out;
3868                 r = -EFAULT;
3869                 if (copy_to_user(argp, &tr, sizeof(tr)))
3870                         goto out;
3871                 r = 0;
3872                 break;
3873         }
3874         case KVM_SET_GUEST_DEBUG: {
3875                 struct kvm_guest_debug dbg;
3876
3877                 r = -EFAULT;
3878                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3879                         goto out;
3880                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3881                 break;
3882         }
3883         case KVM_SET_SIGNAL_MASK: {
3884                 struct kvm_signal_mask __user *sigmask_arg = argp;
3885                 struct kvm_signal_mask kvm_sigmask;
3886                 sigset_t sigset, *p;
3887
3888                 p = NULL;
3889                 if (argp) {
3890                         r = -EFAULT;
3891                         if (copy_from_user(&kvm_sigmask, argp,
3892                                            sizeof(kvm_sigmask)))
3893                                 goto out;
3894                         r = -EINVAL;
3895                         if (kvm_sigmask.len != sizeof(sigset))
3896                                 goto out;
3897                         r = -EFAULT;
3898                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3899                                            sizeof(sigset)))
3900                                 goto out;
3901                         p = &sigset;
3902                 }
3903                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3904                 break;
3905         }
3906         case KVM_GET_FPU: {
3907                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3908                 r = -ENOMEM;
3909                 if (!fpu)
3910                         goto out;
3911                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3912                 if (r)
3913                         goto out;
3914                 r = -EFAULT;
3915                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3916                         goto out;
3917                 r = 0;
3918                 break;
3919         }
3920         case KVM_SET_FPU: {
3921                 fpu = memdup_user(argp, sizeof(*fpu));
3922                 if (IS_ERR(fpu)) {
3923                         r = PTR_ERR(fpu);
3924                         fpu = NULL;
3925                         goto out;
3926                 }
3927                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3928                 break;
3929         }
3930         case KVM_GET_STATS_FD: {
3931                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3932                 break;
3933         }
3934         default:
3935                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3936         }
3937 out:
3938         mutex_unlock(&vcpu->mutex);
3939         kfree(fpu);
3940         kfree(kvm_sregs);
3941         return r;
3942 }
3943
3944 #ifdef CONFIG_KVM_COMPAT
3945 static long kvm_vcpu_compat_ioctl(struct file *filp,
3946                                   unsigned int ioctl, unsigned long arg)
3947 {
3948         struct kvm_vcpu *vcpu = filp->private_data;
3949         void __user *argp = compat_ptr(arg);
3950         int r;
3951
3952         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3953                 return -EIO;
3954
3955         switch (ioctl) {
3956         case KVM_SET_SIGNAL_MASK: {
3957                 struct kvm_signal_mask __user *sigmask_arg = argp;
3958                 struct kvm_signal_mask kvm_sigmask;
3959                 sigset_t sigset;
3960
3961                 if (argp) {
3962                         r = -EFAULT;
3963                         if (copy_from_user(&kvm_sigmask, argp,
3964                                            sizeof(kvm_sigmask)))
3965                                 goto out;
3966                         r = -EINVAL;
3967                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3968                                 goto out;
3969                         r = -EFAULT;
3970                         if (get_compat_sigset(&sigset,
3971                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3972                                 goto out;
3973                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3974                 } else
3975                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3976                 break;
3977         }
3978         default:
3979                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3980         }
3981
3982 out:
3983         return r;
3984 }
3985 #endif
3986
3987 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3988 {
3989         struct kvm_device *dev = filp->private_data;
3990
3991         if (dev->ops->mmap)
3992                 return dev->ops->mmap(dev, vma);
3993
3994         return -ENODEV;
3995 }
3996
3997 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3998                                  int (*accessor)(struct kvm_device *dev,
3999                                                  struct kvm_device_attr *attr),
4000                                  unsigned long arg)
4001 {
4002         struct kvm_device_attr attr;
4003
4004         if (!accessor)
4005                 return -EPERM;
4006
4007         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4008                 return -EFAULT;
4009
4010         return accessor(dev, &attr);
4011 }
4012
4013 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4014                              unsigned long arg)
4015 {
4016         struct kvm_device *dev = filp->private_data;
4017
4018         if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
4019                 return -EIO;
4020
4021         switch (ioctl) {
4022         case KVM_SET_DEVICE_ATTR:
4023                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4024         case KVM_GET_DEVICE_ATTR:
4025                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4026         case KVM_HAS_DEVICE_ATTR:
4027                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4028         default:
4029                 if (dev->ops->ioctl)
4030                         return dev->ops->ioctl(dev, ioctl, arg);
4031
4032                 return -ENOTTY;
4033         }
4034 }
4035
4036 static int kvm_device_release(struct inode *inode, struct file *filp)
4037 {
4038         struct kvm_device *dev = filp->private_data;
4039         struct kvm *kvm = dev->kvm;
4040
4041         if (dev->ops->release) {
4042                 mutex_lock(&kvm->lock);
4043                 list_del(&dev->vm_node);
4044                 dev->ops->release(dev);
4045                 mutex_unlock(&kvm->lock);
4046         }
4047
4048         kvm_put_kvm(kvm);
4049         return 0;
4050 }
4051
4052 static const struct file_operations kvm_device_fops = {
4053         .unlocked_ioctl = kvm_device_ioctl,
4054         .release = kvm_device_release,
4055         KVM_COMPAT(kvm_device_ioctl),
4056         .mmap = kvm_device_mmap,
4057 };
4058
4059 struct kvm_device *kvm_device_from_filp(struct file *filp)
4060 {
4061         if (filp->f_op != &kvm_device_fops)
4062                 return NULL;
4063
4064         return filp->private_data;
4065 }
4066
4067 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4068 #ifdef CONFIG_KVM_MPIC
4069         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4070         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4071 #endif
4072 };
4073
4074 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4075 {
4076         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4077                 return -ENOSPC;
4078
4079         if (kvm_device_ops_table[type] != NULL)
4080                 return -EEXIST;
4081
4082         kvm_device_ops_table[type] = ops;
4083         return 0;
4084 }
4085
4086 void kvm_unregister_device_ops(u32 type)
4087 {
4088         if (kvm_device_ops_table[type] != NULL)
4089                 kvm_device_ops_table[type] = NULL;
4090 }
4091
4092 static int kvm_ioctl_create_device(struct kvm *kvm,
4093                                    struct kvm_create_device *cd)
4094 {
4095         const struct kvm_device_ops *ops = NULL;
4096         struct kvm_device *dev;
4097         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4098         int type;
4099         int ret;
4100
4101         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4102                 return -ENODEV;
4103
4104         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4105         ops = kvm_device_ops_table[type];
4106         if (ops == NULL)
4107                 return -ENODEV;
4108
4109         if (test)
4110                 return 0;
4111
4112         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4113         if (!dev)
4114                 return -ENOMEM;
4115
4116         dev->ops = ops;
4117         dev->kvm = kvm;
4118
4119         mutex_lock(&kvm->lock);
4120         ret = ops->create(dev, type);
4121         if (ret < 0) {
4122                 mutex_unlock(&kvm->lock);
4123                 kfree(dev);
4124                 return ret;
4125         }
4126         list_add(&dev->vm_node, &kvm->devices);
4127         mutex_unlock(&kvm->lock);
4128
4129         if (ops->init)
4130                 ops->init(dev);
4131
4132         kvm_get_kvm(kvm);
4133         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4134         if (ret < 0) {
4135                 kvm_put_kvm_no_destroy(kvm);
4136                 mutex_lock(&kvm->lock);
4137                 list_del(&dev->vm_node);
4138                 mutex_unlock(&kvm->lock);
4139                 ops->destroy(dev);
4140                 return ret;
4141         }
4142
4143         cd->fd = ret;
4144         return 0;
4145 }
4146
4147 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4148 {
4149         switch (arg) {
4150         case KVM_CAP_USER_MEMORY:
4151         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4152         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4153         case KVM_CAP_INTERNAL_ERROR_DATA:
4154 #ifdef CONFIG_HAVE_KVM_MSI
4155         case KVM_CAP_SIGNAL_MSI:
4156 #endif
4157 #ifdef CONFIG_HAVE_KVM_IRQFD
4158         case KVM_CAP_IRQFD:
4159         case KVM_CAP_IRQFD_RESAMPLE:
4160 #endif
4161         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4162         case KVM_CAP_CHECK_EXTENSION_VM:
4163         case KVM_CAP_ENABLE_CAP_VM:
4164         case KVM_CAP_HALT_POLL:
4165                 return 1;
4166 #ifdef CONFIG_KVM_MMIO
4167         case KVM_CAP_COALESCED_MMIO:
4168                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4169         case KVM_CAP_COALESCED_PIO:
4170                 return 1;
4171 #endif
4172 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4173         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4174                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4175 #endif
4176 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4177         case KVM_CAP_IRQ_ROUTING:
4178                 return KVM_MAX_IRQ_ROUTES;
4179 #endif
4180 #if KVM_ADDRESS_SPACE_NUM > 1
4181         case KVM_CAP_MULTI_ADDRESS_SPACE:
4182                 return KVM_ADDRESS_SPACE_NUM;
4183 #endif
4184         case KVM_CAP_NR_MEMSLOTS:
4185                 return KVM_USER_MEM_SLOTS;
4186         case KVM_CAP_DIRTY_LOG_RING:
4187 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4188                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4189 #else
4190                 return 0;
4191 #endif
4192         case KVM_CAP_BINARY_STATS_FD:
4193                 return 1;
4194         default:
4195                 break;
4196         }
4197         return kvm_vm_ioctl_check_extension(kvm, arg);
4198 }
4199
4200 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4201 {
4202         int r;
4203
4204         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4205                 return -EINVAL;
4206
4207         /* the size should be power of 2 */
4208         if (!size || (size & (size - 1)))
4209                 return -EINVAL;
4210
4211         /* Should be bigger to keep the reserved entries, or a page */
4212         if (size < kvm_dirty_ring_get_rsvd_entries() *
4213             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4214                 return -EINVAL;
4215
4216         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4217             sizeof(struct kvm_dirty_gfn))
4218                 return -E2BIG;
4219
4220         /* We only allow it to set once */
4221         if (kvm->dirty_ring_size)
4222                 return -EINVAL;
4223
4224         mutex_lock(&kvm->lock);
4225
4226         if (kvm->created_vcpus) {
4227                 /* We don't allow to change this value after vcpu created */
4228                 r = -EINVAL;
4229         } else {
4230                 kvm->dirty_ring_size = size;
4231                 r = 0;
4232         }
4233
4234         mutex_unlock(&kvm->lock);
4235         return r;
4236 }
4237
4238 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4239 {
4240         int i;
4241         struct kvm_vcpu *vcpu;
4242         int cleared = 0;
4243
4244         if (!kvm->dirty_ring_size)
4245                 return -EINVAL;
4246
4247         mutex_lock(&kvm->slots_lock);
4248
4249         kvm_for_each_vcpu(i, vcpu, kvm)
4250                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4251
4252         mutex_unlock(&kvm->slots_lock);
4253
4254         if (cleared)
4255                 kvm_flush_remote_tlbs(kvm);
4256
4257         return cleared;
4258 }
4259
4260 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4261                                                   struct kvm_enable_cap *cap)
4262 {
4263         return -EINVAL;
4264 }
4265
4266 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4267                                            struct kvm_enable_cap *cap)
4268 {
4269         switch (cap->cap) {
4270 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4271         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4272                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4273
4274                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4275                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4276
4277                 if (cap->flags || (cap->args[0] & ~allowed_options))
4278                         return -EINVAL;
4279                 kvm->manual_dirty_log_protect = cap->args[0];
4280                 return 0;
4281         }
4282 #endif
4283         case KVM_CAP_HALT_POLL: {
4284                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4285                         return -EINVAL;
4286
4287                 kvm->max_halt_poll_ns = cap->args[0];
4288                 return 0;
4289         }
4290         case KVM_CAP_DIRTY_LOG_RING:
4291                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4292         default:
4293                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4294         }
4295 }
4296
4297 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4298                               size_t size, loff_t *offset)
4299 {
4300         struct kvm *kvm = file->private_data;
4301
4302         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4303                                 &kvm_vm_stats_desc[0], &kvm->stat,
4304                                 sizeof(kvm->stat), user_buffer, size, offset);
4305 }
4306
4307 static const struct file_operations kvm_vm_stats_fops = {
4308         .read = kvm_vm_stats_read,
4309         .llseek = noop_llseek,
4310 };
4311
4312 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4313 {
4314         int fd;
4315         struct file *file;
4316
4317         fd = get_unused_fd_flags(O_CLOEXEC);
4318         if (fd < 0)
4319                 return fd;
4320
4321         file = anon_inode_getfile("kvm-vm-stats",
4322                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4323         if (IS_ERR(file)) {
4324                 put_unused_fd(fd);
4325                 return PTR_ERR(file);
4326         }
4327         file->f_mode |= FMODE_PREAD;
4328         fd_install(fd, file);
4329
4330         return fd;
4331 }
4332
4333 static long kvm_vm_ioctl(struct file *filp,
4334                            unsigned int ioctl, unsigned long arg)
4335 {
4336         struct kvm *kvm = filp->private_data;
4337         void __user *argp = (void __user *)arg;
4338         int r;
4339
4340         if (kvm->mm != current->mm || kvm->vm_bugged)
4341                 return -EIO;
4342         switch (ioctl) {
4343         case KVM_CREATE_VCPU:
4344                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4345                 break;
4346         case KVM_ENABLE_CAP: {
4347                 struct kvm_enable_cap cap;
4348
4349                 r = -EFAULT;
4350                 if (copy_from_user(&cap, argp, sizeof(cap)))
4351                         goto out;
4352                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4353                 break;
4354         }
4355         case KVM_SET_USER_MEMORY_REGION: {
4356                 struct kvm_userspace_memory_region kvm_userspace_mem;
4357
4358                 r = -EFAULT;
4359                 if (copy_from_user(&kvm_userspace_mem, argp,
4360                                                 sizeof(kvm_userspace_mem)))
4361                         goto out;
4362
4363                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4364                 break;
4365         }
4366         case KVM_GET_DIRTY_LOG: {
4367                 struct kvm_dirty_log log;
4368
4369                 r = -EFAULT;
4370                 if (copy_from_user(&log, argp, sizeof(log)))
4371                         goto out;
4372                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4373                 break;
4374         }
4375 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4376         case KVM_CLEAR_DIRTY_LOG: {
4377                 struct kvm_clear_dirty_log log;
4378
4379                 r = -EFAULT;
4380                 if (copy_from_user(&log, argp, sizeof(log)))
4381                         goto out;
4382                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4383                 break;
4384         }
4385 #endif
4386 #ifdef CONFIG_KVM_MMIO
4387         case KVM_REGISTER_COALESCED_MMIO: {
4388                 struct kvm_coalesced_mmio_zone zone;
4389
4390                 r = -EFAULT;
4391                 if (copy_from_user(&zone, argp, sizeof(zone)))
4392                         goto out;
4393                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4394                 break;
4395         }
4396         case KVM_UNREGISTER_COALESCED_MMIO: {
4397                 struct kvm_coalesced_mmio_zone zone;
4398
4399                 r = -EFAULT;
4400                 if (copy_from_user(&zone, argp, sizeof(zone)))
4401                         goto out;
4402                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4403                 break;
4404         }
4405 #endif
4406         case KVM_IRQFD: {
4407                 struct kvm_irqfd data;
4408
4409                 r = -EFAULT;
4410                 if (copy_from_user(&data, argp, sizeof(data)))
4411                         goto out;
4412                 r = kvm_irqfd(kvm, &data);
4413                 break;
4414         }
4415         case KVM_IOEVENTFD: {
4416                 struct kvm_ioeventfd data;
4417
4418                 r = -EFAULT;
4419                 if (copy_from_user(&data, argp, sizeof(data)))
4420                         goto out;
4421                 r = kvm_ioeventfd(kvm, &data);
4422                 break;
4423         }
4424 #ifdef CONFIG_HAVE_KVM_MSI
4425         case KVM_SIGNAL_MSI: {
4426                 struct kvm_msi msi;
4427
4428                 r = -EFAULT;
4429                 if (copy_from_user(&msi, argp, sizeof(msi)))
4430                         goto out;
4431                 r = kvm_send_userspace_msi(kvm, &msi);
4432                 break;
4433         }
4434 #endif
4435 #ifdef __KVM_HAVE_IRQ_LINE
4436         case KVM_IRQ_LINE_STATUS:
4437         case KVM_IRQ_LINE: {
4438                 struct kvm_irq_level irq_event;
4439
4440                 r = -EFAULT;
4441                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4442                         goto out;
4443
4444                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4445                                         ioctl == KVM_IRQ_LINE_STATUS);
4446                 if (r)
4447                         goto out;
4448
4449                 r = -EFAULT;
4450                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4451                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4452                                 goto out;
4453                 }
4454
4455                 r = 0;
4456                 break;
4457         }
4458 #endif
4459 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4460         case KVM_SET_GSI_ROUTING: {
4461                 struct kvm_irq_routing routing;
4462                 struct kvm_irq_routing __user *urouting;
4463                 struct kvm_irq_routing_entry *entries = NULL;
4464
4465                 r = -EFAULT;
4466                 if (copy_from_user(&routing, argp, sizeof(routing)))
4467                         goto out;
4468                 r = -EINVAL;
4469                 if (!kvm_arch_can_set_irq_routing(kvm))
4470                         goto out;
4471                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4472                         goto out;
4473                 if (routing.flags)
4474                         goto out;
4475                 if (routing.nr) {
4476                         urouting = argp;
4477                         entries = vmemdup_user(urouting->entries,
4478                                                array_size(sizeof(*entries),
4479                                                           routing.nr));
4480                         if (IS_ERR(entries)) {
4481                                 r = PTR_ERR(entries);
4482                                 goto out;
4483                         }
4484                 }
4485                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4486                                         routing.flags);
4487                 kvfree(entries);
4488                 break;
4489         }
4490 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4491         case KVM_CREATE_DEVICE: {
4492                 struct kvm_create_device cd;
4493
4494                 r = -EFAULT;
4495                 if (copy_from_user(&cd, argp, sizeof(cd)))
4496                         goto out;
4497
4498                 r = kvm_ioctl_create_device(kvm, &cd);
4499                 if (r)
4500                         goto out;
4501
4502                 r = -EFAULT;
4503                 if (copy_to_user(argp, &cd, sizeof(cd)))
4504                         goto out;
4505
4506                 r = 0;
4507                 break;
4508         }
4509         case KVM_CHECK_EXTENSION:
4510                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4511                 break;
4512         case KVM_RESET_DIRTY_RINGS:
4513                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4514                 break;
4515         case KVM_GET_STATS_FD:
4516                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4517                 break;
4518         default:
4519                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4520         }
4521 out:
4522         return r;
4523 }
4524
4525 #ifdef CONFIG_KVM_COMPAT
4526 struct compat_kvm_dirty_log {
4527         __u32 slot;
4528         __u32 padding1;
4529         union {
4530                 compat_uptr_t dirty_bitmap; /* one bit per page */
4531                 __u64 padding2;
4532         };
4533 };
4534
4535 struct compat_kvm_clear_dirty_log {
4536         __u32 slot;
4537         __u32 num_pages;
4538         __u64 first_page;
4539         union {
4540                 compat_uptr_t dirty_bitmap; /* one bit per page */
4541                 __u64 padding2;
4542         };
4543 };
4544
4545 static long kvm_vm_compat_ioctl(struct file *filp,
4546                            unsigned int ioctl, unsigned long arg)
4547 {
4548         struct kvm *kvm = filp->private_data;
4549         int r;
4550
4551         if (kvm->mm != current->mm || kvm->vm_bugged)
4552                 return -EIO;
4553         switch (ioctl) {
4554 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4555         case KVM_CLEAR_DIRTY_LOG: {
4556                 struct compat_kvm_clear_dirty_log compat_log;
4557                 struct kvm_clear_dirty_log log;
4558
4559                 if (copy_from_user(&compat_log, (void __user *)arg,
4560                                    sizeof(compat_log)))
4561                         return -EFAULT;
4562                 log.slot         = compat_log.slot;
4563                 log.num_pages    = compat_log.num_pages;
4564                 log.first_page   = compat_log.first_page;
4565                 log.padding2     = compat_log.padding2;
4566                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4567
4568                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4569                 break;
4570         }
4571 #endif
4572         case KVM_GET_DIRTY_LOG: {
4573                 struct compat_kvm_dirty_log compat_log;
4574                 struct kvm_dirty_log log;
4575
4576                 if (copy_from_user(&compat_log, (void __user *)arg,
4577                                    sizeof(compat_log)))
4578                         return -EFAULT;
4579                 log.slot         = compat_log.slot;
4580                 log.padding1     = compat_log.padding1;
4581                 log.padding2     = compat_log.padding2;
4582                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4583
4584                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4585                 break;
4586         }
4587         default:
4588                 r = kvm_vm_ioctl(filp, ioctl, arg);
4589         }
4590         return r;
4591 }
4592 #endif
4593
4594 static struct file_operations kvm_vm_fops = {
4595         .release        = kvm_vm_release,
4596         .unlocked_ioctl = kvm_vm_ioctl,
4597         .llseek         = noop_llseek,
4598         KVM_COMPAT(kvm_vm_compat_ioctl),
4599 };
4600
4601 bool file_is_kvm(struct file *file)
4602 {
4603         return file && file->f_op == &kvm_vm_fops;
4604 }
4605 EXPORT_SYMBOL_GPL(file_is_kvm);
4606
4607 static int kvm_dev_ioctl_create_vm(unsigned long type)
4608 {
4609         int r;
4610         struct kvm *kvm;
4611         struct file *file;
4612
4613         kvm = kvm_create_vm(type);
4614         if (IS_ERR(kvm))
4615                 return PTR_ERR(kvm);
4616 #ifdef CONFIG_KVM_MMIO
4617         r = kvm_coalesced_mmio_init(kvm);
4618         if (r < 0)
4619                 goto put_kvm;
4620 #endif
4621         r = get_unused_fd_flags(O_CLOEXEC);
4622         if (r < 0)
4623                 goto put_kvm;
4624
4625         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4626                         "kvm-%d", task_pid_nr(current));
4627
4628         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4629         if (IS_ERR(file)) {
4630                 put_unused_fd(r);
4631                 r = PTR_ERR(file);
4632                 goto put_kvm;
4633         }
4634
4635         /*
4636          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4637          * already set, with ->release() being kvm_vm_release().  In error
4638          * cases it will be called by the final fput(file) and will take
4639          * care of doing kvm_put_kvm(kvm).
4640          */
4641         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4642                 put_unused_fd(r);
4643                 fput(file);
4644                 return -ENOMEM;
4645         }
4646         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4647
4648         fd_install(r, file);
4649         return r;
4650
4651 put_kvm:
4652         kvm_put_kvm(kvm);
4653         return r;
4654 }
4655
4656 static long kvm_dev_ioctl(struct file *filp,
4657                           unsigned int ioctl, unsigned long arg)
4658 {
4659         long r = -EINVAL;
4660
4661         switch (ioctl) {
4662         case KVM_GET_API_VERSION:
4663                 if (arg)
4664                         goto out;
4665                 r = KVM_API_VERSION;
4666                 break;
4667         case KVM_CREATE_VM:
4668                 r = kvm_dev_ioctl_create_vm(arg);
4669                 break;
4670         case KVM_CHECK_EXTENSION:
4671                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4672                 break;
4673         case KVM_GET_VCPU_MMAP_SIZE:
4674                 if (arg)
4675                         goto out;
4676                 r = PAGE_SIZE;     /* struct kvm_run */
4677 #ifdef CONFIG_X86
4678                 r += PAGE_SIZE;    /* pio data page */
4679 #endif
4680 #ifdef CONFIG_KVM_MMIO
4681                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4682 #endif
4683                 break;
4684         case KVM_TRACE_ENABLE:
4685         case KVM_TRACE_PAUSE:
4686         case KVM_TRACE_DISABLE:
4687                 r = -EOPNOTSUPP;
4688                 break;
4689         default:
4690                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4691         }
4692 out:
4693         return r;
4694 }
4695
4696 static struct file_operations kvm_chardev_ops = {
4697         .unlocked_ioctl = kvm_dev_ioctl,
4698         .llseek         = noop_llseek,
4699         KVM_COMPAT(kvm_dev_ioctl),
4700 };
4701
4702 static struct miscdevice kvm_dev = {
4703         KVM_MINOR,
4704         "kvm",
4705         &kvm_chardev_ops,
4706 };
4707
4708 static void hardware_enable_nolock(void *junk)
4709 {
4710         int cpu = raw_smp_processor_id();
4711         int r;
4712
4713         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4714                 return;
4715
4716         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4717
4718         r = kvm_arch_hardware_enable();
4719
4720         if (r) {
4721                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4722                 atomic_inc(&hardware_enable_failed);
4723                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4724         }
4725 }
4726
4727 static int kvm_starting_cpu(unsigned int cpu)
4728 {
4729         raw_spin_lock(&kvm_count_lock);
4730         if (kvm_usage_count)
4731                 hardware_enable_nolock(NULL);
4732         raw_spin_unlock(&kvm_count_lock);
4733         return 0;
4734 }
4735
4736 static void hardware_disable_nolock(void *junk)
4737 {
4738         int cpu = raw_smp_processor_id();
4739
4740         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4741                 return;
4742         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4743         kvm_arch_hardware_disable();
4744 }
4745
4746 static int kvm_dying_cpu(unsigned int cpu)
4747 {
4748         raw_spin_lock(&kvm_count_lock);
4749         if (kvm_usage_count)
4750                 hardware_disable_nolock(NULL);
4751         raw_spin_unlock(&kvm_count_lock);
4752         return 0;
4753 }
4754
4755 static void hardware_disable_all_nolock(void)
4756 {
4757         BUG_ON(!kvm_usage_count);
4758
4759         kvm_usage_count--;
4760         if (!kvm_usage_count)
4761                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4762 }
4763
4764 static void hardware_disable_all(void)
4765 {
4766         raw_spin_lock(&kvm_count_lock);
4767         hardware_disable_all_nolock();
4768         raw_spin_unlock(&kvm_count_lock);
4769 }
4770
4771 static int hardware_enable_all(void)
4772 {
4773         int r = 0;
4774
4775         raw_spin_lock(&kvm_count_lock);
4776
4777         kvm_usage_count++;
4778         if (kvm_usage_count == 1) {
4779                 atomic_set(&hardware_enable_failed, 0);
4780                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4781
4782                 if (atomic_read(&hardware_enable_failed)) {
4783                         hardware_disable_all_nolock();
4784                         r = -EBUSY;
4785                 }
4786         }
4787
4788         raw_spin_unlock(&kvm_count_lock);
4789
4790         return r;
4791 }
4792
4793 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4794                       void *v)
4795 {
4796         /*
4797          * Some (well, at least mine) BIOSes hang on reboot if
4798          * in vmx root mode.
4799          *
4800          * And Intel TXT required VMX off for all cpu when system shutdown.
4801          */
4802         pr_info("kvm: exiting hardware virtualization\n");
4803         kvm_rebooting = true;
4804         on_each_cpu(hardware_disable_nolock, NULL, 1);
4805         return NOTIFY_OK;
4806 }
4807
4808 static struct notifier_block kvm_reboot_notifier = {
4809         .notifier_call = kvm_reboot,
4810         .priority = 0,
4811 };
4812
4813 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4814 {
4815         int i;
4816
4817         for (i = 0; i < bus->dev_count; i++) {
4818                 struct kvm_io_device *pos = bus->range[i].dev;
4819
4820                 kvm_iodevice_destructor(pos);
4821         }
4822         kfree(bus);
4823 }
4824
4825 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4826                                  const struct kvm_io_range *r2)
4827 {
4828         gpa_t addr1 = r1->addr;
4829         gpa_t addr2 = r2->addr;
4830
4831         if (addr1 < addr2)
4832                 return -1;
4833
4834         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4835          * accept any overlapping write.  Any order is acceptable for
4836          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4837          * we process all of them.
4838          */
4839         if (r2->len) {
4840                 addr1 += r1->len;
4841                 addr2 += r2->len;
4842         }
4843
4844         if (addr1 > addr2)
4845                 return 1;
4846
4847         return 0;
4848 }
4849
4850 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4851 {
4852         return kvm_io_bus_cmp(p1, p2);
4853 }
4854
4855 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4856                              gpa_t addr, int len)
4857 {
4858         struct kvm_io_range *range, key;
4859         int off;
4860
4861         key = (struct kvm_io_range) {
4862                 .addr = addr,
4863                 .len = len,
4864         };
4865
4866         range = bsearch(&key, bus->range, bus->dev_count,
4867                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4868         if (range == NULL)
4869                 return -ENOENT;
4870
4871         off = range - bus->range;
4872
4873         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4874                 off--;
4875
4876         return off;
4877 }
4878
4879 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4880                               struct kvm_io_range *range, const void *val)
4881 {
4882         int idx;
4883
4884         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4885         if (idx < 0)
4886                 return -EOPNOTSUPP;
4887
4888         while (idx < bus->dev_count &&
4889                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4890                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4891                                         range->len, val))
4892                         return idx;
4893                 idx++;
4894         }
4895
4896         return -EOPNOTSUPP;
4897 }
4898
4899 /* kvm_io_bus_write - called under kvm->slots_lock */
4900 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4901                      int len, const void *val)
4902 {
4903         struct kvm_io_bus *bus;
4904         struct kvm_io_range range;
4905         int r;
4906
4907         range = (struct kvm_io_range) {
4908                 .addr = addr,
4909                 .len = len,
4910         };
4911
4912         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4913         if (!bus)
4914                 return -ENOMEM;
4915         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4916         return r < 0 ? r : 0;
4917 }
4918 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4919
4920 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4921 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4922                             gpa_t addr, int len, const void *val, long cookie)
4923 {
4924         struct kvm_io_bus *bus;
4925         struct kvm_io_range range;
4926
4927         range = (struct kvm_io_range) {
4928                 .addr = addr,
4929                 .len = len,
4930         };
4931
4932         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4933         if (!bus)
4934                 return -ENOMEM;
4935
4936         /* First try the device referenced by cookie. */
4937         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4938             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4939                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4940                                         val))
4941                         return cookie;
4942
4943         /*
4944          * cookie contained garbage; fall back to search and return the
4945          * correct cookie value.
4946          */
4947         return __kvm_io_bus_write(vcpu, bus, &range, val);
4948 }
4949
4950 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4951                              struct kvm_io_range *range, void *val)
4952 {
4953         int idx;
4954
4955         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4956         if (idx < 0)
4957                 return -EOPNOTSUPP;
4958
4959         while (idx < bus->dev_count &&
4960                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4961                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4962                                        range->len, val))
4963                         return idx;
4964                 idx++;
4965         }
4966
4967         return -EOPNOTSUPP;
4968 }
4969
4970 /* kvm_io_bus_read - called under kvm->slots_lock */
4971 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4972                     int len, void *val)
4973 {
4974         struct kvm_io_bus *bus;
4975         struct kvm_io_range range;
4976         int r;
4977
4978         range = (struct kvm_io_range) {
4979                 .addr = addr,
4980                 .len = len,
4981         };
4982
4983         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4984         if (!bus)
4985                 return -ENOMEM;
4986         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4987         return r < 0 ? r : 0;
4988 }
4989
4990 /* Caller must hold slots_lock. */
4991 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4992                             int len, struct kvm_io_device *dev)
4993 {
4994         int i;
4995         struct kvm_io_bus *new_bus, *bus;
4996         struct kvm_io_range range;
4997
4998         bus = kvm_get_bus(kvm, bus_idx);
4999         if (!bus)
5000                 return -ENOMEM;
5001
5002         /* exclude ioeventfd which is limited by maximum fd */
5003         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5004                 return -ENOSPC;
5005
5006         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5007                           GFP_KERNEL_ACCOUNT);
5008         if (!new_bus)
5009                 return -ENOMEM;
5010
5011         range = (struct kvm_io_range) {
5012                 .addr = addr,
5013                 .len = len,
5014                 .dev = dev,
5015         };
5016
5017         for (i = 0; i < bus->dev_count; i++)
5018                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5019                         break;
5020
5021         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5022         new_bus->dev_count++;
5023         new_bus->range[i] = range;
5024         memcpy(new_bus->range + i + 1, bus->range + i,
5025                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5026         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5027         synchronize_srcu_expedited(&kvm->srcu);
5028         kfree(bus);
5029
5030         return 0;
5031 }
5032
5033 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5034                               struct kvm_io_device *dev)
5035 {
5036         int i, j;
5037         struct kvm_io_bus *new_bus, *bus;
5038
5039         lockdep_assert_held(&kvm->slots_lock);
5040
5041         bus = kvm_get_bus(kvm, bus_idx);
5042         if (!bus)
5043                 return 0;
5044
5045         for (i = 0; i < bus->dev_count; i++) {
5046                 if (bus->range[i].dev == dev) {
5047                         break;
5048                 }
5049         }
5050
5051         if (i == bus->dev_count)
5052                 return 0;
5053
5054         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5055                           GFP_KERNEL_ACCOUNT);
5056         if (new_bus) {
5057                 memcpy(new_bus, bus, struct_size(bus, range, i));
5058                 new_bus->dev_count--;
5059                 memcpy(new_bus->range + i, bus->range + i + 1,
5060                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5061         }
5062
5063         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5064         synchronize_srcu_expedited(&kvm->srcu);
5065
5066         /* Destroy the old bus _after_ installing the (null) bus. */
5067         if (!new_bus) {
5068                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5069                 for (j = 0; j < bus->dev_count; j++) {
5070                         if (j == i)
5071                                 continue;
5072                         kvm_iodevice_destructor(bus->range[j].dev);
5073                 }
5074         }
5075
5076         kfree(bus);
5077         return new_bus ? 0 : -ENOMEM;
5078 }
5079
5080 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5081                                          gpa_t addr)
5082 {
5083         struct kvm_io_bus *bus;
5084         int dev_idx, srcu_idx;
5085         struct kvm_io_device *iodev = NULL;
5086
5087         srcu_idx = srcu_read_lock(&kvm->srcu);
5088
5089         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5090         if (!bus)
5091                 goto out_unlock;
5092
5093         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5094         if (dev_idx < 0)
5095                 goto out_unlock;
5096
5097         iodev = bus->range[dev_idx].dev;
5098
5099 out_unlock:
5100         srcu_read_unlock(&kvm->srcu, srcu_idx);
5101
5102         return iodev;
5103 }
5104 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5105
5106 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5107                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5108                            const char *fmt)
5109 {
5110         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5111                                           inode->i_private;
5112
5113         /*
5114          * The debugfs files are a reference to the kvm struct which
5115         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5116         * avoids the race between open and the removal of the debugfs directory.
5117          */
5118         if (!kvm_get_kvm_safe(stat_data->kvm))
5119                 return -ENOENT;
5120
5121         if (simple_attr_open(inode, file, get,
5122                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5123                     ? set : NULL,
5124                     fmt)) {
5125                 kvm_put_kvm(stat_data->kvm);
5126                 return -ENOMEM;
5127         }
5128
5129         return 0;
5130 }
5131
5132 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5133 {
5134         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5135                                           inode->i_private;
5136
5137         simple_attr_release(inode, file);
5138         kvm_put_kvm(stat_data->kvm);
5139
5140         return 0;
5141 }
5142
5143 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5144 {
5145         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5146
5147         return 0;
5148 }
5149
5150 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5151 {
5152         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5153
5154         return 0;
5155 }
5156
5157 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5158 {
5159         int i;
5160         struct kvm_vcpu *vcpu;
5161
5162         *val = 0;
5163
5164         kvm_for_each_vcpu(i, vcpu, kvm)
5165                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5166
5167         return 0;
5168 }
5169
5170 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5171 {
5172         int i;
5173         struct kvm_vcpu *vcpu;
5174
5175         kvm_for_each_vcpu(i, vcpu, kvm)
5176                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5177
5178         return 0;
5179 }
5180
5181 static int kvm_stat_data_get(void *data, u64 *val)
5182 {
5183         int r = -EFAULT;
5184         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5185
5186         switch (stat_data->kind) {
5187         case KVM_STAT_VM:
5188                 r = kvm_get_stat_per_vm(stat_data->kvm,
5189                                         stat_data->desc->desc.offset, val);
5190                 break;
5191         case KVM_STAT_VCPU:
5192                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5193                                           stat_data->desc->desc.offset, val);
5194                 break;
5195         }
5196
5197         return r;
5198 }
5199
5200 static int kvm_stat_data_clear(void *data, u64 val)
5201 {
5202         int r = -EFAULT;
5203         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5204
5205         if (val)
5206                 return -EINVAL;
5207
5208         switch (stat_data->kind) {
5209         case KVM_STAT_VM:
5210                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5211                                           stat_data->desc->desc.offset);
5212                 break;
5213         case KVM_STAT_VCPU:
5214                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5215                                             stat_data->desc->desc.offset);
5216                 break;
5217         }
5218
5219         return r;
5220 }
5221
5222 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5223 {
5224         __simple_attr_check_format("%llu\n", 0ull);
5225         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5226                                 kvm_stat_data_clear, "%llu\n");
5227 }
5228
5229 static const struct file_operations stat_fops_per_vm = {
5230         .owner = THIS_MODULE,
5231         .open = kvm_stat_data_open,
5232         .release = kvm_debugfs_release,
5233         .read = simple_attr_read,
5234         .write = simple_attr_write,
5235         .llseek = no_llseek,
5236 };
5237
5238 static int vm_stat_get(void *_offset, u64 *val)
5239 {
5240         unsigned offset = (long)_offset;
5241         struct kvm *kvm;
5242         u64 tmp_val;
5243
5244         *val = 0;
5245         mutex_lock(&kvm_lock);
5246         list_for_each_entry(kvm, &vm_list, vm_list) {
5247                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5248                 *val += tmp_val;
5249         }
5250         mutex_unlock(&kvm_lock);
5251         return 0;
5252 }
5253
5254 static int vm_stat_clear(void *_offset, u64 val)
5255 {
5256         unsigned offset = (long)_offset;
5257         struct kvm *kvm;
5258
5259         if (val)
5260                 return -EINVAL;
5261
5262         mutex_lock(&kvm_lock);
5263         list_for_each_entry(kvm, &vm_list, vm_list) {
5264                 kvm_clear_stat_per_vm(kvm, offset);
5265         }
5266         mutex_unlock(&kvm_lock);
5267
5268         return 0;
5269 }
5270
5271 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5272 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5273
5274 static int vcpu_stat_get(void *_offset, u64 *val)
5275 {
5276         unsigned offset = (long)_offset;
5277         struct kvm *kvm;
5278         u64 tmp_val;
5279
5280         *val = 0;
5281         mutex_lock(&kvm_lock);
5282         list_for_each_entry(kvm, &vm_list, vm_list) {
5283                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5284                 *val += tmp_val;
5285         }
5286         mutex_unlock(&kvm_lock);
5287         return 0;
5288 }
5289
5290 static int vcpu_stat_clear(void *_offset, u64 val)
5291 {
5292         unsigned offset = (long)_offset;
5293         struct kvm *kvm;
5294
5295         if (val)
5296                 return -EINVAL;
5297
5298         mutex_lock(&kvm_lock);
5299         list_for_each_entry(kvm, &vm_list, vm_list) {
5300                 kvm_clear_stat_per_vcpu(kvm, offset);
5301         }
5302         mutex_unlock(&kvm_lock);
5303
5304         return 0;
5305 }
5306
5307 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5308                         "%llu\n");
5309 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5310
5311 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5312 {
5313         struct kobj_uevent_env *env;
5314         unsigned long long created, active;
5315
5316         if (!kvm_dev.this_device || !kvm)
5317                 return;
5318
5319         mutex_lock(&kvm_lock);
5320         if (type == KVM_EVENT_CREATE_VM) {
5321                 kvm_createvm_count++;
5322                 kvm_active_vms++;
5323         } else if (type == KVM_EVENT_DESTROY_VM) {
5324                 kvm_active_vms--;
5325         }
5326         created = kvm_createvm_count;
5327         active = kvm_active_vms;
5328         mutex_unlock(&kvm_lock);
5329
5330         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5331         if (!env)
5332                 return;
5333
5334         add_uevent_var(env, "CREATED=%llu", created);
5335         add_uevent_var(env, "COUNT=%llu", active);
5336
5337         if (type == KVM_EVENT_CREATE_VM) {
5338                 add_uevent_var(env, "EVENT=create");
5339                 kvm->userspace_pid = task_pid_nr(current);
5340         } else if (type == KVM_EVENT_DESTROY_VM) {
5341                 add_uevent_var(env, "EVENT=destroy");
5342         }
5343         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5344
5345         if (kvm->debugfs_dentry) {
5346                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5347
5348                 if (p) {
5349                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5350                         if (!IS_ERR(tmp))
5351                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5352                         kfree(p);
5353                 }
5354         }
5355         /* no need for checks, since we are adding at most only 5 keys */
5356         env->envp[env->envp_idx++] = NULL;
5357         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5358         kfree(env);
5359 }
5360
5361 static void kvm_init_debug(void)
5362 {
5363         const struct file_operations *fops;
5364         const struct _kvm_stats_desc *pdesc;
5365         int i;
5366
5367         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5368
5369         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5370                 pdesc = &kvm_vm_stats_desc[i];
5371                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5372                         fops = &vm_stat_fops;
5373                 else
5374                         fops = &vm_stat_readonly_fops;
5375                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5376                                 kvm_debugfs_dir,
5377                                 (void *)(long)pdesc->desc.offset, fops);
5378         }
5379
5380         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5381                 pdesc = &kvm_vcpu_stats_desc[i];
5382                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5383                         fops = &vcpu_stat_fops;
5384                 else
5385                         fops = &vcpu_stat_readonly_fops;
5386                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5387                                 kvm_debugfs_dir,
5388                                 (void *)(long)pdesc->desc.offset, fops);
5389         }
5390 }
5391
5392 static int kvm_suspend(void)
5393 {
5394         if (kvm_usage_count)
5395                 hardware_disable_nolock(NULL);
5396         return 0;
5397 }
5398
5399 static void kvm_resume(void)
5400 {
5401         if (kvm_usage_count) {
5402 #ifdef CONFIG_LOCKDEP
5403                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5404 #endif
5405                 hardware_enable_nolock(NULL);
5406         }
5407 }
5408
5409 static struct syscore_ops kvm_syscore_ops = {
5410         .suspend = kvm_suspend,
5411         .resume = kvm_resume,
5412 };
5413
5414 static inline
5415 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5416 {
5417         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5418 }
5419
5420 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5421 {
5422         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5423
5424         WRITE_ONCE(vcpu->preempted, false);
5425         WRITE_ONCE(vcpu->ready, false);
5426
5427         __this_cpu_write(kvm_running_vcpu, vcpu);
5428         kvm_arch_sched_in(vcpu, cpu);
5429         kvm_arch_vcpu_load(vcpu, cpu);
5430 }
5431
5432 static void kvm_sched_out(struct preempt_notifier *pn,
5433                           struct task_struct *next)
5434 {
5435         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5436
5437         if (current->on_rq) {
5438                 WRITE_ONCE(vcpu->preempted, true);
5439                 WRITE_ONCE(vcpu->ready, true);
5440         }
5441         kvm_arch_vcpu_put(vcpu);
5442         __this_cpu_write(kvm_running_vcpu, NULL);
5443 }
5444
5445 /**
5446  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5447  *
5448  * We can disable preemption locally around accessing the per-CPU variable,
5449  * and use the resolved vcpu pointer after enabling preemption again,
5450  * because even if the current thread is migrated to another CPU, reading
5451  * the per-CPU value later will give us the same value as we update the
5452  * per-CPU variable in the preempt notifier handlers.
5453  */
5454 struct kvm_vcpu *kvm_get_running_vcpu(void)
5455 {
5456         struct kvm_vcpu *vcpu;
5457
5458         preempt_disable();
5459         vcpu = __this_cpu_read(kvm_running_vcpu);
5460         preempt_enable();
5461
5462         return vcpu;
5463 }
5464 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5465
5466 /**
5467  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5468  */
5469 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5470 {
5471         return &kvm_running_vcpu;
5472 }
5473
5474 struct kvm_cpu_compat_check {
5475         void *opaque;
5476         int *ret;
5477 };
5478
5479 static void check_processor_compat(void *data)
5480 {
5481         struct kvm_cpu_compat_check *c = data;
5482
5483         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5484 }
5485
5486 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5487                   struct module *module)
5488 {
5489         struct kvm_cpu_compat_check c;
5490         int r;
5491         int cpu;
5492
5493         r = kvm_arch_init(opaque);
5494         if (r)
5495                 goto out_fail;
5496
5497         /*
5498          * kvm_arch_init makes sure there's at most one caller
5499          * for architectures that support multiple implementations,
5500          * like intel and amd on x86.
5501          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5502          * conflicts in case kvm is already setup for another implementation.
5503          */
5504         r = kvm_irqfd_init();
5505         if (r)
5506                 goto out_irqfd;
5507
5508         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5509                 r = -ENOMEM;
5510                 goto out_free_0;
5511         }
5512
5513         r = kvm_arch_hardware_setup(opaque);
5514         if (r < 0)
5515                 goto out_free_1;
5516
5517         c.ret = &r;
5518         c.opaque = opaque;
5519         for_each_online_cpu(cpu) {
5520                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5521                 if (r < 0)
5522                         goto out_free_2;
5523         }
5524
5525         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5526                                       kvm_starting_cpu, kvm_dying_cpu);
5527         if (r)
5528                 goto out_free_2;
5529         register_reboot_notifier(&kvm_reboot_notifier);
5530
5531         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5532         if (!vcpu_align)
5533                 vcpu_align = __alignof__(struct kvm_vcpu);
5534         kvm_vcpu_cache =
5535                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5536                                            SLAB_ACCOUNT,
5537                                            offsetof(struct kvm_vcpu, arch),
5538                                            offsetofend(struct kvm_vcpu, stats_id)
5539                                            - offsetof(struct kvm_vcpu, arch),
5540                                            NULL);
5541         if (!kvm_vcpu_cache) {
5542                 r = -ENOMEM;
5543                 goto out_free_3;
5544         }
5545
5546         r = kvm_async_pf_init();
5547         if (r)
5548                 goto out_free;
5549
5550         kvm_chardev_ops.owner = module;
5551         kvm_vm_fops.owner = module;
5552         kvm_vcpu_fops.owner = module;
5553
5554         r = misc_register(&kvm_dev);
5555         if (r) {
5556                 pr_err("kvm: misc device register failed\n");
5557                 goto out_unreg;
5558         }
5559
5560         register_syscore_ops(&kvm_syscore_ops);
5561
5562         kvm_preempt_ops.sched_in = kvm_sched_in;
5563         kvm_preempt_ops.sched_out = kvm_sched_out;
5564
5565         kvm_init_debug();
5566
5567         r = kvm_vfio_ops_init();
5568         WARN_ON(r);
5569
5570         return 0;
5571
5572 out_unreg:
5573         kvm_async_pf_deinit();
5574 out_free:
5575         kmem_cache_destroy(kvm_vcpu_cache);
5576 out_free_3:
5577         unregister_reboot_notifier(&kvm_reboot_notifier);
5578         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5579 out_free_2:
5580         kvm_arch_hardware_unsetup();
5581 out_free_1:
5582         free_cpumask_var(cpus_hardware_enabled);
5583 out_free_0:
5584         kvm_irqfd_exit();
5585 out_irqfd:
5586         kvm_arch_exit();
5587 out_fail:
5588         return r;
5589 }
5590 EXPORT_SYMBOL_GPL(kvm_init);
5591
5592 void kvm_exit(void)
5593 {
5594         debugfs_remove_recursive(kvm_debugfs_dir);
5595         misc_deregister(&kvm_dev);
5596         kmem_cache_destroy(kvm_vcpu_cache);
5597         kvm_async_pf_deinit();
5598         unregister_syscore_ops(&kvm_syscore_ops);
5599         unregister_reboot_notifier(&kvm_reboot_notifier);
5600         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5601         on_each_cpu(hardware_disable_nolock, NULL, 1);
5602         kvm_arch_hardware_unsetup();
5603         kvm_arch_exit();
5604         kvm_irqfd_exit();
5605         free_cpumask_var(cpus_hardware_enabled);
5606         kvm_vfio_ops_exit();
5607 }
5608 EXPORT_SYMBOL_GPL(kvm_exit);
5609
5610 struct kvm_vm_worker_thread_context {
5611         struct kvm *kvm;
5612         struct task_struct *parent;
5613         struct completion init_done;
5614         kvm_vm_thread_fn_t thread_fn;
5615         uintptr_t data;
5616         int err;
5617 };
5618
5619 static int kvm_vm_worker_thread(void *context)
5620 {
5621         /*
5622          * The init_context is allocated on the stack of the parent thread, so
5623          * we have to locally copy anything that is needed beyond initialization
5624          */
5625         struct kvm_vm_worker_thread_context *init_context = context;
5626         struct kvm *kvm = init_context->kvm;
5627         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5628         uintptr_t data = init_context->data;
5629         int err;
5630
5631         err = kthread_park(current);
5632         /* kthread_park(current) is never supposed to return an error */
5633         WARN_ON(err != 0);
5634         if (err)
5635                 goto init_complete;
5636
5637         err = cgroup_attach_task_all(init_context->parent, current);
5638         if (err) {
5639                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5640                         __func__, err);
5641                 goto init_complete;
5642         }
5643
5644         set_user_nice(current, task_nice(init_context->parent));
5645
5646 init_complete:
5647         init_context->err = err;
5648         complete(&init_context->init_done);
5649         init_context = NULL;
5650
5651         if (err)
5652                 return err;
5653
5654         /* Wait to be woken up by the spawner before proceeding. */
5655         kthread_parkme();
5656
5657         if (!kthread_should_stop())
5658                 err = thread_fn(kvm, data);
5659
5660         return err;
5661 }
5662
5663 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5664                                 uintptr_t data, const char *name,
5665                                 struct task_struct **thread_ptr)
5666 {
5667         struct kvm_vm_worker_thread_context init_context = {};
5668         struct task_struct *thread;
5669
5670         *thread_ptr = NULL;
5671         init_context.kvm = kvm;
5672         init_context.parent = current;
5673         init_context.thread_fn = thread_fn;
5674         init_context.data = data;
5675         init_completion(&init_context.init_done);
5676
5677         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5678                              "%s-%d", name, task_pid_nr(current));
5679         if (IS_ERR(thread))
5680                 return PTR_ERR(thread);
5681
5682         /* kthread_run is never supposed to return NULL */
5683         WARN_ON(thread == NULL);
5684
5685         wait_for_completion(&init_context.init_done);
5686
5687         if (!init_context.err)
5688                 *thread_ptr = thread;
5689
5690         return init_context.err;
5691 }