Merge tag 'kvmarm-fixes-5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmar...
[platform/kernel/linux-starfive.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93  * Ordering of locks:
94  *
95  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 static struct kmem_cache *kvm_vcpu_cache;
107
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132                                 unsigned long arg) { return -EINVAL; }
133
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136         return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
139                         .open           = kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158                                                    unsigned long start, unsigned long end)
159 {
160 }
161
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
163 {
164         /*
165          * The metadata used by is_zone_device_page() to determine whether or
166          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167          * the device has been pinned, e.g. by get_user_pages().  WARN if the
168          * page_count() is zero to help detect bad usage of this helper.
169          */
170         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
171                 return false;
172
173         return is_zone_device_page(pfn_to_page(pfn));
174 }
175
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
177 {
178         /*
179          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180          * perspective they are "normal" pages, albeit with slightly different
181          * usage rules.
182          */
183         if (pfn_valid(pfn))
184                 return PageReserved(pfn_to_page(pfn)) &&
185                        !is_zero_pfn(pfn) &&
186                        !kvm_is_zone_device_pfn(pfn);
187
188         return true;
189 }
190
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
192 {
193         struct page *page = pfn_to_page(pfn);
194
195         if (!PageTransCompoundMap(page))
196                 return false;
197
198         return is_transparent_hugepage(compound_head(page));
199 }
200
201 /*
202  * Switches to specified vcpu, until a matching vcpu_put()
203  */
204 void vcpu_load(struct kvm_vcpu *vcpu)
205 {
206         int cpu = get_cpu();
207
208         __this_cpu_write(kvm_running_vcpu, vcpu);
209         preempt_notifier_register(&vcpu->preempt_notifier);
210         kvm_arch_vcpu_load(vcpu, cpu);
211         put_cpu();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_load);
214
215 void vcpu_put(struct kvm_vcpu *vcpu)
216 {
217         preempt_disable();
218         kvm_arch_vcpu_put(vcpu);
219         preempt_notifier_unregister(&vcpu->preempt_notifier);
220         __this_cpu_write(kvm_running_vcpu, NULL);
221         preempt_enable();
222 }
223 EXPORT_SYMBOL_GPL(vcpu_put);
224
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
227 {
228         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
229
230         /*
231          * We need to wait for the VCPU to reenable interrupts and get out of
232          * READING_SHADOW_PAGE_TABLES mode.
233          */
234         if (req & KVM_REQUEST_WAIT)
235                 return mode != OUTSIDE_GUEST_MODE;
236
237         /*
238          * Need to kick a running VCPU, but otherwise there is nothing to do.
239          */
240         return mode == IN_GUEST_MODE;
241 }
242
243 static void ack_flush(void *_completed)
244 {
245 }
246
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
248 {
249         if (unlikely(!cpus))
250                 cpus = cpu_online_mask;
251
252         if (cpumask_empty(cpus))
253                 return false;
254
255         smp_call_function_many(cpus, ack_flush, NULL, wait);
256         return true;
257 }
258
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260                                  struct kvm_vcpu *except,
261                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
262 {
263         int i, cpu, me;
264         struct kvm_vcpu *vcpu;
265         bool called;
266
267         me = get_cpu();
268
269         kvm_for_each_vcpu(i, vcpu, kvm) {
270                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
271                     vcpu == except)
272                         continue;
273
274                 kvm_make_request(req, vcpu);
275                 cpu = vcpu->cpu;
276
277                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278                         continue;
279
280                 if (tmp != NULL && cpu != -1 && cpu != me &&
281                     kvm_request_needs_ipi(vcpu, req))
282                         __cpumask_set_cpu(cpu, tmp);
283         }
284
285         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286         put_cpu();
287
288         return called;
289 }
290
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292                                       struct kvm_vcpu *except)
293 {
294         cpumask_var_t cpus;
295         bool called;
296
297         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298
299         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
300
301         free_cpumask_var(cpus);
302         return called;
303 }
304
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
306 {
307         return kvm_make_all_cpus_request_except(kvm, req, NULL);
308 }
309
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
312 {
313         /*
314          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315          * kvm_make_all_cpus_request.
316          */
317         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
318
319         /*
320          * We want to publish modifications to the page tables before reading
321          * mode. Pairs with a memory barrier in arch-specific code.
322          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323          * and smp_mb in walk_shadow_page_lockless_begin/end.
324          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
325          *
326          * There is already an smp_mb__after_atomic() before
327          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
328          * barrier here.
329          */
330         if (!kvm_arch_flush_remote_tlb(kvm)
331             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332                 ++kvm->stat.remote_tlb_flush;
333         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
336 #endif
337
338 void kvm_reload_remote_mmus(struct kvm *kvm)
339 {
340         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
341 }
342
343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
345                                                gfp_t gfp_flags)
346 {
347         gfp_flags |= mc->gfp_zero;
348
349         if (mc->kmem_cache)
350                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
351         else
352                 return (void *)__get_free_page(gfp_flags);
353 }
354
355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
356 {
357         void *obj;
358
359         if (mc->nobjs >= min)
360                 return 0;
361         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
362                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
363                 if (!obj)
364                         return mc->nobjs >= min ? 0 : -ENOMEM;
365                 mc->objects[mc->nobjs++] = obj;
366         }
367         return 0;
368 }
369
370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
371 {
372         return mc->nobjs;
373 }
374
375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
376 {
377         while (mc->nobjs) {
378                 if (mc->kmem_cache)
379                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
380                 else
381                         free_page((unsigned long)mc->objects[--mc->nobjs]);
382         }
383 }
384
385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
386 {
387         void *p;
388
389         if (WARN_ON(!mc->nobjs))
390                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
391         else
392                 p = mc->objects[--mc->nobjs];
393         BUG_ON(!p);
394         return p;
395 }
396 #endif
397
398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
399 {
400         mutex_init(&vcpu->mutex);
401         vcpu->cpu = -1;
402         vcpu->kvm = kvm;
403         vcpu->vcpu_id = id;
404         vcpu->pid = NULL;
405         rcuwait_init(&vcpu->wait);
406         kvm_async_pf_vcpu_init(vcpu);
407
408         vcpu->pre_pcpu = -1;
409         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
410
411         kvm_vcpu_set_in_spin_loop(vcpu, false);
412         kvm_vcpu_set_dy_eligible(vcpu, false);
413         vcpu->preempted = false;
414         vcpu->ready = false;
415         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
416 }
417
418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
419 {
420         kvm_arch_vcpu_destroy(vcpu);
421
422         /*
423          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
424          * the vcpu->pid pointer, and at destruction time all file descriptors
425          * are already gone.
426          */
427         put_pid(rcu_dereference_protected(vcpu->pid, 1));
428
429         free_page((unsigned long)vcpu->run);
430         kmem_cache_free(kvm_vcpu_cache, vcpu);
431 }
432 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
433
434 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
435 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
436 {
437         return container_of(mn, struct kvm, mmu_notifier);
438 }
439
440 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
441                                               struct mm_struct *mm,
442                                               unsigned long start, unsigned long end)
443 {
444         struct kvm *kvm = mmu_notifier_to_kvm(mn);
445         int idx;
446
447         idx = srcu_read_lock(&kvm->srcu);
448         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
449         srcu_read_unlock(&kvm->srcu, idx);
450 }
451
452 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
453                                         struct mm_struct *mm,
454                                         unsigned long address,
455                                         pte_t pte)
456 {
457         struct kvm *kvm = mmu_notifier_to_kvm(mn);
458         int idx;
459
460         idx = srcu_read_lock(&kvm->srcu);
461         spin_lock(&kvm->mmu_lock);
462         kvm->mmu_notifier_seq++;
463
464         if (kvm_set_spte_hva(kvm, address, pte))
465                 kvm_flush_remote_tlbs(kvm);
466
467         spin_unlock(&kvm->mmu_lock);
468         srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
472                                         const struct mmu_notifier_range *range)
473 {
474         struct kvm *kvm = mmu_notifier_to_kvm(mn);
475         int need_tlb_flush = 0, idx;
476
477         idx = srcu_read_lock(&kvm->srcu);
478         spin_lock(&kvm->mmu_lock);
479         /*
480          * The count increase must become visible at unlock time as no
481          * spte can be established without taking the mmu_lock and
482          * count is also read inside the mmu_lock critical section.
483          */
484         kvm->mmu_notifier_count++;
485         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
486                                              range->flags);
487         need_tlb_flush |= kvm->tlbs_dirty;
488         /* we've to flush the tlb before the pages can be freed */
489         if (need_tlb_flush)
490                 kvm_flush_remote_tlbs(kvm);
491
492         spin_unlock(&kvm->mmu_lock);
493         srcu_read_unlock(&kvm->srcu, idx);
494
495         return 0;
496 }
497
498 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
499                                         const struct mmu_notifier_range *range)
500 {
501         struct kvm *kvm = mmu_notifier_to_kvm(mn);
502
503         spin_lock(&kvm->mmu_lock);
504         /*
505          * This sequence increase will notify the kvm page fault that
506          * the page that is going to be mapped in the spte could have
507          * been freed.
508          */
509         kvm->mmu_notifier_seq++;
510         smp_wmb();
511         /*
512          * The above sequence increase must be visible before the
513          * below count decrease, which is ensured by the smp_wmb above
514          * in conjunction with the smp_rmb in mmu_notifier_retry().
515          */
516         kvm->mmu_notifier_count--;
517         spin_unlock(&kvm->mmu_lock);
518
519         BUG_ON(kvm->mmu_notifier_count < 0);
520 }
521
522 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
523                                               struct mm_struct *mm,
524                                               unsigned long start,
525                                               unsigned long end)
526 {
527         struct kvm *kvm = mmu_notifier_to_kvm(mn);
528         int young, idx;
529
530         idx = srcu_read_lock(&kvm->srcu);
531         spin_lock(&kvm->mmu_lock);
532
533         young = kvm_age_hva(kvm, start, end);
534         if (young)
535                 kvm_flush_remote_tlbs(kvm);
536
537         spin_unlock(&kvm->mmu_lock);
538         srcu_read_unlock(&kvm->srcu, idx);
539
540         return young;
541 }
542
543 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
544                                         struct mm_struct *mm,
545                                         unsigned long start,
546                                         unsigned long end)
547 {
548         struct kvm *kvm = mmu_notifier_to_kvm(mn);
549         int young, idx;
550
551         idx = srcu_read_lock(&kvm->srcu);
552         spin_lock(&kvm->mmu_lock);
553         /*
554          * Even though we do not flush TLB, this will still adversely
555          * affect performance on pre-Haswell Intel EPT, where there is
556          * no EPT Access Bit to clear so that we have to tear down EPT
557          * tables instead. If we find this unacceptable, we can always
558          * add a parameter to kvm_age_hva so that it effectively doesn't
559          * do anything on clear_young.
560          *
561          * Also note that currently we never issue secondary TLB flushes
562          * from clear_young, leaving this job up to the regular system
563          * cadence. If we find this inaccurate, we might come up with a
564          * more sophisticated heuristic later.
565          */
566         young = kvm_age_hva(kvm, start, end);
567         spin_unlock(&kvm->mmu_lock);
568         srcu_read_unlock(&kvm->srcu, idx);
569
570         return young;
571 }
572
573 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
574                                        struct mm_struct *mm,
575                                        unsigned long address)
576 {
577         struct kvm *kvm = mmu_notifier_to_kvm(mn);
578         int young, idx;
579
580         idx = srcu_read_lock(&kvm->srcu);
581         spin_lock(&kvm->mmu_lock);
582         young = kvm_test_age_hva(kvm, address);
583         spin_unlock(&kvm->mmu_lock);
584         srcu_read_unlock(&kvm->srcu, idx);
585
586         return young;
587 }
588
589 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
590                                      struct mm_struct *mm)
591 {
592         struct kvm *kvm = mmu_notifier_to_kvm(mn);
593         int idx;
594
595         idx = srcu_read_lock(&kvm->srcu);
596         kvm_arch_flush_shadow_all(kvm);
597         srcu_read_unlock(&kvm->srcu, idx);
598 }
599
600 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
601         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
602         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
603         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
604         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
605         .clear_young            = kvm_mmu_notifier_clear_young,
606         .test_young             = kvm_mmu_notifier_test_young,
607         .change_pte             = kvm_mmu_notifier_change_pte,
608         .release                = kvm_mmu_notifier_release,
609 };
610
611 static int kvm_init_mmu_notifier(struct kvm *kvm)
612 {
613         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
614         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
615 }
616
617 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
618
619 static int kvm_init_mmu_notifier(struct kvm *kvm)
620 {
621         return 0;
622 }
623
624 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
625
626 static struct kvm_memslots *kvm_alloc_memslots(void)
627 {
628         int i;
629         struct kvm_memslots *slots;
630
631         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
632         if (!slots)
633                 return NULL;
634
635         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
636                 slots->id_to_index[i] = -1;
637
638         return slots;
639 }
640
641 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
642 {
643         if (!memslot->dirty_bitmap)
644                 return;
645
646         kvfree(memslot->dirty_bitmap);
647         memslot->dirty_bitmap = NULL;
648 }
649
650 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
651 {
652         kvm_destroy_dirty_bitmap(slot);
653
654         kvm_arch_free_memslot(kvm, slot);
655
656         slot->flags = 0;
657         slot->npages = 0;
658 }
659
660 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
661 {
662         struct kvm_memory_slot *memslot;
663
664         if (!slots)
665                 return;
666
667         kvm_for_each_memslot(memslot, slots)
668                 kvm_free_memslot(kvm, memslot);
669
670         kvfree(slots);
671 }
672
673 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
674 {
675         int i;
676
677         if (!kvm->debugfs_dentry)
678                 return;
679
680         debugfs_remove_recursive(kvm->debugfs_dentry);
681
682         if (kvm->debugfs_stat_data) {
683                 for (i = 0; i < kvm_debugfs_num_entries; i++)
684                         kfree(kvm->debugfs_stat_data[i]);
685                 kfree(kvm->debugfs_stat_data);
686         }
687 }
688
689 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
690 {
691         char dir_name[ITOA_MAX_LEN * 2];
692         struct kvm_stat_data *stat_data;
693         struct kvm_stats_debugfs_item *p;
694
695         if (!debugfs_initialized())
696                 return 0;
697
698         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
699         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
700
701         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
702                                          sizeof(*kvm->debugfs_stat_data),
703                                          GFP_KERNEL_ACCOUNT);
704         if (!kvm->debugfs_stat_data)
705                 return -ENOMEM;
706
707         for (p = debugfs_entries; p->name; p++) {
708                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
709                 if (!stat_data)
710                         return -ENOMEM;
711
712                 stat_data->kvm = kvm;
713                 stat_data->dbgfs_item = p;
714                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
715                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
716                                     kvm->debugfs_dentry, stat_data,
717                                     &stat_fops_per_vm);
718         }
719         return 0;
720 }
721
722 /*
723  * Called after the VM is otherwise initialized, but just before adding it to
724  * the vm_list.
725  */
726 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
727 {
728         return 0;
729 }
730
731 /*
732  * Called just after removing the VM from the vm_list, but before doing any
733  * other destruction.
734  */
735 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
736 {
737 }
738
739 static struct kvm *kvm_create_vm(unsigned long type)
740 {
741         struct kvm *kvm = kvm_arch_alloc_vm();
742         int r = -ENOMEM;
743         int i;
744
745         if (!kvm)
746                 return ERR_PTR(-ENOMEM);
747
748         spin_lock_init(&kvm->mmu_lock);
749         mmgrab(current->mm);
750         kvm->mm = current->mm;
751         kvm_eventfd_init(kvm);
752         mutex_init(&kvm->lock);
753         mutex_init(&kvm->irq_lock);
754         mutex_init(&kvm->slots_lock);
755         INIT_LIST_HEAD(&kvm->devices);
756
757         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
758
759         if (init_srcu_struct(&kvm->srcu))
760                 goto out_err_no_srcu;
761         if (init_srcu_struct(&kvm->irq_srcu))
762                 goto out_err_no_irq_srcu;
763
764         refcount_set(&kvm->users_count, 1);
765         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
766                 struct kvm_memslots *slots = kvm_alloc_memslots();
767
768                 if (!slots)
769                         goto out_err_no_arch_destroy_vm;
770                 /* Generations must be different for each address space. */
771                 slots->generation = i;
772                 rcu_assign_pointer(kvm->memslots[i], slots);
773         }
774
775         for (i = 0; i < KVM_NR_BUSES; i++) {
776                 rcu_assign_pointer(kvm->buses[i],
777                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
778                 if (!kvm->buses[i])
779                         goto out_err_no_arch_destroy_vm;
780         }
781
782         kvm->max_halt_poll_ns = halt_poll_ns;
783
784         r = kvm_arch_init_vm(kvm, type);
785         if (r)
786                 goto out_err_no_arch_destroy_vm;
787
788         r = hardware_enable_all();
789         if (r)
790                 goto out_err_no_disable;
791
792 #ifdef CONFIG_HAVE_KVM_IRQFD
793         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
794 #endif
795
796         r = kvm_init_mmu_notifier(kvm);
797         if (r)
798                 goto out_err_no_mmu_notifier;
799
800         r = kvm_arch_post_init_vm(kvm);
801         if (r)
802                 goto out_err;
803
804         mutex_lock(&kvm_lock);
805         list_add(&kvm->vm_list, &vm_list);
806         mutex_unlock(&kvm_lock);
807
808         preempt_notifier_inc();
809
810         return kvm;
811
812 out_err:
813 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
814         if (kvm->mmu_notifier.ops)
815                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
816 #endif
817 out_err_no_mmu_notifier:
818         hardware_disable_all();
819 out_err_no_disable:
820         kvm_arch_destroy_vm(kvm);
821 out_err_no_arch_destroy_vm:
822         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
823         for (i = 0; i < KVM_NR_BUSES; i++)
824                 kfree(kvm_get_bus(kvm, i));
825         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
826                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
827         cleanup_srcu_struct(&kvm->irq_srcu);
828 out_err_no_irq_srcu:
829         cleanup_srcu_struct(&kvm->srcu);
830 out_err_no_srcu:
831         kvm_arch_free_vm(kvm);
832         mmdrop(current->mm);
833         return ERR_PTR(r);
834 }
835
836 static void kvm_destroy_devices(struct kvm *kvm)
837 {
838         struct kvm_device *dev, *tmp;
839
840         /*
841          * We do not need to take the kvm->lock here, because nobody else
842          * has a reference to the struct kvm at this point and therefore
843          * cannot access the devices list anyhow.
844          */
845         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
846                 list_del(&dev->vm_node);
847                 dev->ops->destroy(dev);
848         }
849 }
850
851 static void kvm_destroy_vm(struct kvm *kvm)
852 {
853         int i;
854         struct mm_struct *mm = kvm->mm;
855
856         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
857         kvm_destroy_vm_debugfs(kvm);
858         kvm_arch_sync_events(kvm);
859         mutex_lock(&kvm_lock);
860         list_del(&kvm->vm_list);
861         mutex_unlock(&kvm_lock);
862         kvm_arch_pre_destroy_vm(kvm);
863
864         kvm_free_irq_routing(kvm);
865         for (i = 0; i < KVM_NR_BUSES; i++) {
866                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
867
868                 if (bus)
869                         kvm_io_bus_destroy(bus);
870                 kvm->buses[i] = NULL;
871         }
872         kvm_coalesced_mmio_free(kvm);
873 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
874         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
875 #else
876         kvm_arch_flush_shadow_all(kvm);
877 #endif
878         kvm_arch_destroy_vm(kvm);
879         kvm_destroy_devices(kvm);
880         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
881                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
882         cleanup_srcu_struct(&kvm->irq_srcu);
883         cleanup_srcu_struct(&kvm->srcu);
884         kvm_arch_free_vm(kvm);
885         preempt_notifier_dec();
886         hardware_disable_all();
887         mmdrop(mm);
888 }
889
890 void kvm_get_kvm(struct kvm *kvm)
891 {
892         refcount_inc(&kvm->users_count);
893 }
894 EXPORT_SYMBOL_GPL(kvm_get_kvm);
895
896 void kvm_put_kvm(struct kvm *kvm)
897 {
898         if (refcount_dec_and_test(&kvm->users_count))
899                 kvm_destroy_vm(kvm);
900 }
901 EXPORT_SYMBOL_GPL(kvm_put_kvm);
902
903 /*
904  * Used to put a reference that was taken on behalf of an object associated
905  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
906  * of the new file descriptor fails and the reference cannot be transferred to
907  * its final owner.  In such cases, the caller is still actively using @kvm and
908  * will fail miserably if the refcount unexpectedly hits zero.
909  */
910 void kvm_put_kvm_no_destroy(struct kvm *kvm)
911 {
912         WARN_ON(refcount_dec_and_test(&kvm->users_count));
913 }
914 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
915
916 static int kvm_vm_release(struct inode *inode, struct file *filp)
917 {
918         struct kvm *kvm = filp->private_data;
919
920         kvm_irqfd_release(kvm);
921
922         kvm_put_kvm(kvm);
923         return 0;
924 }
925
926 /*
927  * Allocation size is twice as large as the actual dirty bitmap size.
928  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
929  */
930 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
931 {
932         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
933
934         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
935         if (!memslot->dirty_bitmap)
936                 return -ENOMEM;
937
938         return 0;
939 }
940
941 /*
942  * Delete a memslot by decrementing the number of used slots and shifting all
943  * other entries in the array forward one spot.
944  */
945 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
946                                       struct kvm_memory_slot *memslot)
947 {
948         struct kvm_memory_slot *mslots = slots->memslots;
949         int i;
950
951         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
952                 return;
953
954         slots->used_slots--;
955
956         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
957                 atomic_set(&slots->lru_slot, 0);
958
959         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
960                 mslots[i] = mslots[i + 1];
961                 slots->id_to_index[mslots[i].id] = i;
962         }
963         mslots[i] = *memslot;
964         slots->id_to_index[memslot->id] = -1;
965 }
966
967 /*
968  * "Insert" a new memslot by incrementing the number of used slots.  Returns
969  * the new slot's initial index into the memslots array.
970  */
971 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
972 {
973         return slots->used_slots++;
974 }
975
976 /*
977  * Move a changed memslot backwards in the array by shifting existing slots
978  * with a higher GFN toward the front of the array.  Note, the changed memslot
979  * itself is not preserved in the array, i.e. not swapped at this time, only
980  * its new index into the array is tracked.  Returns the changed memslot's
981  * current index into the memslots array.
982  */
983 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
984                                             struct kvm_memory_slot *memslot)
985 {
986         struct kvm_memory_slot *mslots = slots->memslots;
987         int i;
988
989         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
990             WARN_ON_ONCE(!slots->used_slots))
991                 return -1;
992
993         /*
994          * Move the target memslot backward in the array by shifting existing
995          * memslots with a higher GFN (than the target memslot) towards the
996          * front of the array.
997          */
998         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
999                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1000                         break;
1001
1002                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1003
1004                 /* Shift the next memslot forward one and update its index. */
1005                 mslots[i] = mslots[i + 1];
1006                 slots->id_to_index[mslots[i].id] = i;
1007         }
1008         return i;
1009 }
1010
1011 /*
1012  * Move a changed memslot forwards in the array by shifting existing slots with
1013  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1014  * is not preserved in the array, i.e. not swapped at this time, only its new
1015  * index into the array is tracked.  Returns the changed memslot's final index
1016  * into the memslots array.
1017  */
1018 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1019                                            struct kvm_memory_slot *memslot,
1020                                            int start)
1021 {
1022         struct kvm_memory_slot *mslots = slots->memslots;
1023         int i;
1024
1025         for (i = start; i > 0; i--) {
1026                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1027                         break;
1028
1029                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1030
1031                 /* Shift the next memslot back one and update its index. */
1032                 mslots[i] = mslots[i - 1];
1033                 slots->id_to_index[mslots[i].id] = i;
1034         }
1035         return i;
1036 }
1037
1038 /*
1039  * Re-sort memslots based on their GFN to account for an added, deleted, or
1040  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1041  * memslot lookup.
1042  *
1043  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1044  * at memslots[0] has the highest GFN.
1045  *
1046  * The sorting algorithm takes advantage of having initially sorted memslots
1047  * and knowing the position of the changed memslot.  Sorting is also optimized
1048  * by not swapping the updated memslot and instead only shifting other memslots
1049  * and tracking the new index for the update memslot.  Only once its final
1050  * index is known is the updated memslot copied into its position in the array.
1051  *
1052  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1053  *    the end of the array.
1054  *
1055  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1056  *    end of the array and then it forward to its correct location.
1057  *
1058  *  - When moving a memslot, the algorithm first moves the updated memslot
1059  *    backward to handle the scenario where the memslot's GFN was changed to a
1060  *    lower value.  update_memslots() then falls through and runs the same flow
1061  *    as creating a memslot to move the memslot forward to handle the scenario
1062  *    where its GFN was changed to a higher value.
1063  *
1064  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1065  * historical reasons.  Originally, invalid memslots where denoted by having
1066  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1067  * to the end of the array.  The current algorithm uses dedicated logic to
1068  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1069  *
1070  * The other historical motiviation for highest->lowest was to improve the
1071  * performance of memslot lookup.  KVM originally used a linear search starting
1072  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1073  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1074  * single memslot above the 4gb boundary.  As the largest memslot is also the
1075  * most likely to be referenced, sorting it to the front of the array was
1076  * advantageous.  The current binary search starts from the middle of the array
1077  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1078  */
1079 static void update_memslots(struct kvm_memslots *slots,
1080                             struct kvm_memory_slot *memslot,
1081                             enum kvm_mr_change change)
1082 {
1083         int i;
1084
1085         if (change == KVM_MR_DELETE) {
1086                 kvm_memslot_delete(slots, memslot);
1087         } else {
1088                 if (change == KVM_MR_CREATE)
1089                         i = kvm_memslot_insert_back(slots);
1090                 else
1091                         i = kvm_memslot_move_backward(slots, memslot);
1092                 i = kvm_memslot_move_forward(slots, memslot, i);
1093
1094                 /*
1095                  * Copy the memslot to its new position in memslots and update
1096                  * its index accordingly.
1097                  */
1098                 slots->memslots[i] = *memslot;
1099                 slots->id_to_index[memslot->id] = i;
1100         }
1101 }
1102
1103 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1104 {
1105         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1106
1107 #ifdef __KVM_HAVE_READONLY_MEM
1108         valid_flags |= KVM_MEM_READONLY;
1109 #endif
1110
1111         if (mem->flags & ~valid_flags)
1112                 return -EINVAL;
1113
1114         return 0;
1115 }
1116
1117 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1118                 int as_id, struct kvm_memslots *slots)
1119 {
1120         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1121         u64 gen = old_memslots->generation;
1122
1123         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1124         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1125
1126         rcu_assign_pointer(kvm->memslots[as_id], slots);
1127         synchronize_srcu_expedited(&kvm->srcu);
1128
1129         /*
1130          * Increment the new memslot generation a second time, dropping the
1131          * update in-progress flag and incrementing the generation based on
1132          * the number of address spaces.  This provides a unique and easily
1133          * identifiable generation number while the memslots are in flux.
1134          */
1135         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1136
1137         /*
1138          * Generations must be unique even across address spaces.  We do not need
1139          * a global counter for that, instead the generation space is evenly split
1140          * across address spaces.  For example, with two address spaces, address
1141          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1142          * use generations 1, 3, 5, ...
1143          */
1144         gen += KVM_ADDRESS_SPACE_NUM;
1145
1146         kvm_arch_memslots_updated(kvm, gen);
1147
1148         slots->generation = gen;
1149
1150         return old_memslots;
1151 }
1152
1153 /*
1154  * Note, at a minimum, the current number of used slots must be allocated, even
1155  * when deleting a memslot, as we need a complete duplicate of the memslots for
1156  * use when invalidating a memslot prior to deleting/moving the memslot.
1157  */
1158 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1159                                              enum kvm_mr_change change)
1160 {
1161         struct kvm_memslots *slots;
1162         size_t old_size, new_size;
1163
1164         old_size = sizeof(struct kvm_memslots) +
1165                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1166
1167         if (change == KVM_MR_CREATE)
1168                 new_size = old_size + sizeof(struct kvm_memory_slot);
1169         else
1170                 new_size = old_size;
1171
1172         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1173         if (likely(slots))
1174                 memcpy(slots, old, old_size);
1175
1176         return slots;
1177 }
1178
1179 static int kvm_set_memslot(struct kvm *kvm,
1180                            const struct kvm_userspace_memory_region *mem,
1181                            struct kvm_memory_slot *old,
1182                            struct kvm_memory_slot *new, int as_id,
1183                            enum kvm_mr_change change)
1184 {
1185         struct kvm_memory_slot *slot;
1186         struct kvm_memslots *slots;
1187         int r;
1188
1189         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1190         if (!slots)
1191                 return -ENOMEM;
1192
1193         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1194                 /*
1195                  * Note, the INVALID flag needs to be in the appropriate entry
1196                  * in the freshly allocated memslots, not in @old or @new.
1197                  */
1198                 slot = id_to_memslot(slots, old->id);
1199                 slot->flags |= KVM_MEMSLOT_INVALID;
1200
1201                 /*
1202                  * We can re-use the old memslots, the only difference from the
1203                  * newly installed memslots is the invalid flag, which will get
1204                  * dropped by update_memslots anyway.  We'll also revert to the
1205                  * old memslots if preparing the new memory region fails.
1206                  */
1207                 slots = install_new_memslots(kvm, as_id, slots);
1208
1209                 /* From this point no new shadow pages pointing to a deleted,
1210                  * or moved, memslot will be created.
1211                  *
1212                  * validation of sp->gfn happens in:
1213                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1214                  *      - kvm_is_visible_gfn (mmu_check_root)
1215                  */
1216                 kvm_arch_flush_shadow_memslot(kvm, slot);
1217         }
1218
1219         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1220         if (r)
1221                 goto out_slots;
1222
1223         update_memslots(slots, new, change);
1224         slots = install_new_memslots(kvm, as_id, slots);
1225
1226         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1227
1228         kvfree(slots);
1229         return 0;
1230
1231 out_slots:
1232         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1233                 slots = install_new_memslots(kvm, as_id, slots);
1234         kvfree(slots);
1235         return r;
1236 }
1237
1238 static int kvm_delete_memslot(struct kvm *kvm,
1239                               const struct kvm_userspace_memory_region *mem,
1240                               struct kvm_memory_slot *old, int as_id)
1241 {
1242         struct kvm_memory_slot new;
1243         int r;
1244
1245         if (!old->npages)
1246                 return -EINVAL;
1247
1248         memset(&new, 0, sizeof(new));
1249         new.id = old->id;
1250
1251         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1252         if (r)
1253                 return r;
1254
1255         kvm_free_memslot(kvm, old);
1256         return 0;
1257 }
1258
1259 /*
1260  * Allocate some memory and give it an address in the guest physical address
1261  * space.
1262  *
1263  * Discontiguous memory is allowed, mostly for framebuffers.
1264  *
1265  * Must be called holding kvm->slots_lock for write.
1266  */
1267 int __kvm_set_memory_region(struct kvm *kvm,
1268                             const struct kvm_userspace_memory_region *mem)
1269 {
1270         struct kvm_memory_slot old, new;
1271         struct kvm_memory_slot *tmp;
1272         enum kvm_mr_change change;
1273         int as_id, id;
1274         int r;
1275
1276         r = check_memory_region_flags(mem);
1277         if (r)
1278                 return r;
1279
1280         as_id = mem->slot >> 16;
1281         id = (u16)mem->slot;
1282
1283         /* General sanity checks */
1284         if (mem->memory_size & (PAGE_SIZE - 1))
1285                 return -EINVAL;
1286         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1287                 return -EINVAL;
1288         /* We can read the guest memory with __xxx_user() later on. */
1289         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1290              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1291                         mem->memory_size))
1292                 return -EINVAL;
1293         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1294                 return -EINVAL;
1295         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1296                 return -EINVAL;
1297
1298         /*
1299          * Make a full copy of the old memslot, the pointer will become stale
1300          * when the memslots are re-sorted by update_memslots(), and the old
1301          * memslot needs to be referenced after calling update_memslots(), e.g.
1302          * to free its resources and for arch specific behavior.
1303          */
1304         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1305         if (tmp) {
1306                 old = *tmp;
1307                 tmp = NULL;
1308         } else {
1309                 memset(&old, 0, sizeof(old));
1310                 old.id = id;
1311         }
1312
1313         if (!mem->memory_size)
1314                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1315
1316         new.id = id;
1317         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1318         new.npages = mem->memory_size >> PAGE_SHIFT;
1319         new.flags = mem->flags;
1320         new.userspace_addr = mem->userspace_addr;
1321
1322         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1323                 return -EINVAL;
1324
1325         if (!old.npages) {
1326                 change = KVM_MR_CREATE;
1327                 new.dirty_bitmap = NULL;
1328                 memset(&new.arch, 0, sizeof(new.arch));
1329         } else { /* Modify an existing slot. */
1330                 if ((new.userspace_addr != old.userspace_addr) ||
1331                     (new.npages != old.npages) ||
1332                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1333                         return -EINVAL;
1334
1335                 if (new.base_gfn != old.base_gfn)
1336                         change = KVM_MR_MOVE;
1337                 else if (new.flags != old.flags)
1338                         change = KVM_MR_FLAGS_ONLY;
1339                 else /* Nothing to change. */
1340                         return 0;
1341
1342                 /* Copy dirty_bitmap and arch from the current memslot. */
1343                 new.dirty_bitmap = old.dirty_bitmap;
1344                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1345         }
1346
1347         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1348                 /* Check for overlaps */
1349                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1350                         if (tmp->id == id)
1351                                 continue;
1352                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1353                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1354                                 return -EEXIST;
1355                 }
1356         }
1357
1358         /* Allocate/free page dirty bitmap as needed */
1359         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1360                 new.dirty_bitmap = NULL;
1361         else if (!new.dirty_bitmap) {
1362                 r = kvm_alloc_dirty_bitmap(&new);
1363                 if (r)
1364                         return r;
1365
1366                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1367                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1368         }
1369
1370         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1371         if (r)
1372                 goto out_bitmap;
1373
1374         if (old.dirty_bitmap && !new.dirty_bitmap)
1375                 kvm_destroy_dirty_bitmap(&old);
1376         return 0;
1377
1378 out_bitmap:
1379         if (new.dirty_bitmap && !old.dirty_bitmap)
1380                 kvm_destroy_dirty_bitmap(&new);
1381         return r;
1382 }
1383 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1384
1385 int kvm_set_memory_region(struct kvm *kvm,
1386                           const struct kvm_userspace_memory_region *mem)
1387 {
1388         int r;
1389
1390         mutex_lock(&kvm->slots_lock);
1391         r = __kvm_set_memory_region(kvm, mem);
1392         mutex_unlock(&kvm->slots_lock);
1393         return r;
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1396
1397 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1398                                           struct kvm_userspace_memory_region *mem)
1399 {
1400         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1401                 return -EINVAL;
1402
1403         return kvm_set_memory_region(kvm, mem);
1404 }
1405
1406 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1407 /**
1408  * kvm_get_dirty_log - get a snapshot of dirty pages
1409  * @kvm:        pointer to kvm instance
1410  * @log:        slot id and address to which we copy the log
1411  * @is_dirty:   set to '1' if any dirty pages were found
1412  * @memslot:    set to the associated memslot, always valid on success
1413  */
1414 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1415                       int *is_dirty, struct kvm_memory_slot **memslot)
1416 {
1417         struct kvm_memslots *slots;
1418         int i, as_id, id;
1419         unsigned long n;
1420         unsigned long any = 0;
1421
1422         *memslot = NULL;
1423         *is_dirty = 0;
1424
1425         as_id = log->slot >> 16;
1426         id = (u16)log->slot;
1427         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1428                 return -EINVAL;
1429
1430         slots = __kvm_memslots(kvm, as_id);
1431         *memslot = id_to_memslot(slots, id);
1432         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1433                 return -ENOENT;
1434
1435         kvm_arch_sync_dirty_log(kvm, *memslot);
1436
1437         n = kvm_dirty_bitmap_bytes(*memslot);
1438
1439         for (i = 0; !any && i < n/sizeof(long); ++i)
1440                 any = (*memslot)->dirty_bitmap[i];
1441
1442         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1443                 return -EFAULT;
1444
1445         if (any)
1446                 *is_dirty = 1;
1447         return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1450
1451 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1452 /**
1453  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1454  *      and reenable dirty page tracking for the corresponding pages.
1455  * @kvm:        pointer to kvm instance
1456  * @log:        slot id and address to which we copy the log
1457  *
1458  * We need to keep it in mind that VCPU threads can write to the bitmap
1459  * concurrently. So, to avoid losing track of dirty pages we keep the
1460  * following order:
1461  *
1462  *    1. Take a snapshot of the bit and clear it if needed.
1463  *    2. Write protect the corresponding page.
1464  *    3. Copy the snapshot to the userspace.
1465  *    4. Upon return caller flushes TLB's if needed.
1466  *
1467  * Between 2 and 4, the guest may write to the page using the remaining TLB
1468  * entry.  This is not a problem because the page is reported dirty using
1469  * the snapshot taken before and step 4 ensures that writes done after
1470  * exiting to userspace will be logged for the next call.
1471  *
1472  */
1473 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1474 {
1475         struct kvm_memslots *slots;
1476         struct kvm_memory_slot *memslot;
1477         int i, as_id, id;
1478         unsigned long n;
1479         unsigned long *dirty_bitmap;
1480         unsigned long *dirty_bitmap_buffer;
1481         bool flush;
1482
1483         as_id = log->slot >> 16;
1484         id = (u16)log->slot;
1485         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1486                 return -EINVAL;
1487
1488         slots = __kvm_memslots(kvm, as_id);
1489         memslot = id_to_memslot(slots, id);
1490         if (!memslot || !memslot->dirty_bitmap)
1491                 return -ENOENT;
1492
1493         dirty_bitmap = memslot->dirty_bitmap;
1494
1495         kvm_arch_sync_dirty_log(kvm, memslot);
1496
1497         n = kvm_dirty_bitmap_bytes(memslot);
1498         flush = false;
1499         if (kvm->manual_dirty_log_protect) {
1500                 /*
1501                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1502                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1503                  * is some code duplication between this function and
1504                  * kvm_get_dirty_log, but hopefully all architecture
1505                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1506                  * can be eliminated.
1507                  */
1508                 dirty_bitmap_buffer = dirty_bitmap;
1509         } else {
1510                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1511                 memset(dirty_bitmap_buffer, 0, n);
1512
1513                 spin_lock(&kvm->mmu_lock);
1514                 for (i = 0; i < n / sizeof(long); i++) {
1515                         unsigned long mask;
1516                         gfn_t offset;
1517
1518                         if (!dirty_bitmap[i])
1519                                 continue;
1520
1521                         flush = true;
1522                         mask = xchg(&dirty_bitmap[i], 0);
1523                         dirty_bitmap_buffer[i] = mask;
1524
1525                         offset = i * BITS_PER_LONG;
1526                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1527                                                                 offset, mask);
1528                 }
1529                 spin_unlock(&kvm->mmu_lock);
1530         }
1531
1532         if (flush)
1533                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1534
1535         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1536                 return -EFAULT;
1537         return 0;
1538 }
1539
1540
1541 /**
1542  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1543  * @kvm: kvm instance
1544  * @log: slot id and address to which we copy the log
1545  *
1546  * Steps 1-4 below provide general overview of dirty page logging. See
1547  * kvm_get_dirty_log_protect() function description for additional details.
1548  *
1549  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1550  * always flush the TLB (step 4) even if previous step failed  and the dirty
1551  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1552  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1553  * writes will be marked dirty for next log read.
1554  *
1555  *   1. Take a snapshot of the bit and clear it if needed.
1556  *   2. Write protect the corresponding page.
1557  *   3. Copy the snapshot to the userspace.
1558  *   4. Flush TLB's if needed.
1559  */
1560 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1561                                       struct kvm_dirty_log *log)
1562 {
1563         int r;
1564
1565         mutex_lock(&kvm->slots_lock);
1566
1567         r = kvm_get_dirty_log_protect(kvm, log);
1568
1569         mutex_unlock(&kvm->slots_lock);
1570         return r;
1571 }
1572
1573 /**
1574  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1575  *      and reenable dirty page tracking for the corresponding pages.
1576  * @kvm:        pointer to kvm instance
1577  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1578  */
1579 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1580                                        struct kvm_clear_dirty_log *log)
1581 {
1582         struct kvm_memslots *slots;
1583         struct kvm_memory_slot *memslot;
1584         int as_id, id;
1585         gfn_t offset;
1586         unsigned long i, n;
1587         unsigned long *dirty_bitmap;
1588         unsigned long *dirty_bitmap_buffer;
1589         bool flush;
1590
1591         as_id = log->slot >> 16;
1592         id = (u16)log->slot;
1593         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1594                 return -EINVAL;
1595
1596         if (log->first_page & 63)
1597                 return -EINVAL;
1598
1599         slots = __kvm_memslots(kvm, as_id);
1600         memslot = id_to_memslot(slots, id);
1601         if (!memslot || !memslot->dirty_bitmap)
1602                 return -ENOENT;
1603
1604         dirty_bitmap = memslot->dirty_bitmap;
1605
1606         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1607
1608         if (log->first_page > memslot->npages ||
1609             log->num_pages > memslot->npages - log->first_page ||
1610             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1611             return -EINVAL;
1612
1613         kvm_arch_sync_dirty_log(kvm, memslot);
1614
1615         flush = false;
1616         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1617         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1618                 return -EFAULT;
1619
1620         spin_lock(&kvm->mmu_lock);
1621         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1622                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1623              i++, offset += BITS_PER_LONG) {
1624                 unsigned long mask = *dirty_bitmap_buffer++;
1625                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1626                 if (!mask)
1627                         continue;
1628
1629                 mask &= atomic_long_fetch_andnot(mask, p);
1630
1631                 /*
1632                  * mask contains the bits that really have been cleared.  This
1633                  * never includes any bits beyond the length of the memslot (if
1634                  * the length is not aligned to 64 pages), therefore it is not
1635                  * a problem if userspace sets them in log->dirty_bitmap.
1636                 */
1637                 if (mask) {
1638                         flush = true;
1639                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1640                                                                 offset, mask);
1641                 }
1642         }
1643         spin_unlock(&kvm->mmu_lock);
1644
1645         if (flush)
1646                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1647
1648         return 0;
1649 }
1650
1651 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1652                                         struct kvm_clear_dirty_log *log)
1653 {
1654         int r;
1655
1656         mutex_lock(&kvm->slots_lock);
1657
1658         r = kvm_clear_dirty_log_protect(kvm, log);
1659
1660         mutex_unlock(&kvm->slots_lock);
1661         return r;
1662 }
1663 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1664
1665 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1666 {
1667         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1668 }
1669 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1670
1671 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1672 {
1673         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1674 }
1675 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1676
1677 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1678 {
1679         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1680
1681         return kvm_is_visible_memslot(memslot);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1684
1685 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1686 {
1687         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1688
1689         return kvm_is_visible_memslot(memslot);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1692
1693 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1694 {
1695         struct vm_area_struct *vma;
1696         unsigned long addr, size;
1697
1698         size = PAGE_SIZE;
1699
1700         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1701         if (kvm_is_error_hva(addr))
1702                 return PAGE_SIZE;
1703
1704         mmap_read_lock(current->mm);
1705         vma = find_vma(current->mm, addr);
1706         if (!vma)
1707                 goto out;
1708
1709         size = vma_kernel_pagesize(vma);
1710
1711 out:
1712         mmap_read_unlock(current->mm);
1713
1714         return size;
1715 }
1716
1717 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1718 {
1719         return slot->flags & KVM_MEM_READONLY;
1720 }
1721
1722 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1723                                        gfn_t *nr_pages, bool write)
1724 {
1725         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1726                 return KVM_HVA_ERR_BAD;
1727
1728         if (memslot_is_readonly(slot) && write)
1729                 return KVM_HVA_ERR_RO_BAD;
1730
1731         if (nr_pages)
1732                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1733
1734         return __gfn_to_hva_memslot(slot, gfn);
1735 }
1736
1737 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1738                                      gfn_t *nr_pages)
1739 {
1740         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1741 }
1742
1743 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1744                                         gfn_t gfn)
1745 {
1746         return gfn_to_hva_many(slot, gfn, NULL);
1747 }
1748 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1749
1750 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1751 {
1752         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1753 }
1754 EXPORT_SYMBOL_GPL(gfn_to_hva);
1755
1756 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1757 {
1758         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1761
1762 /*
1763  * Return the hva of a @gfn and the R/W attribute if possible.
1764  *
1765  * @slot: the kvm_memory_slot which contains @gfn
1766  * @gfn: the gfn to be translated
1767  * @writable: used to return the read/write attribute of the @slot if the hva
1768  * is valid and @writable is not NULL
1769  */
1770 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1771                                       gfn_t gfn, bool *writable)
1772 {
1773         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1774
1775         if (!kvm_is_error_hva(hva) && writable)
1776                 *writable = !memslot_is_readonly(slot);
1777
1778         return hva;
1779 }
1780
1781 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1782 {
1783         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784
1785         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1786 }
1787
1788 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1789 {
1790         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1791
1792         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1793 }
1794
1795 static inline int check_user_page_hwpoison(unsigned long addr)
1796 {
1797         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1798
1799         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1800         return rc == -EHWPOISON;
1801 }
1802
1803 /*
1804  * The fast path to get the writable pfn which will be stored in @pfn,
1805  * true indicates success, otherwise false is returned.  It's also the
1806  * only part that runs if we can in atomic context.
1807  */
1808 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1809                             bool *writable, kvm_pfn_t *pfn)
1810 {
1811         struct page *page[1];
1812
1813         /*
1814          * Fast pin a writable pfn only if it is a write fault request
1815          * or the caller allows to map a writable pfn for a read fault
1816          * request.
1817          */
1818         if (!(write_fault || writable))
1819                 return false;
1820
1821         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1822                 *pfn = page_to_pfn(page[0]);
1823
1824                 if (writable)
1825                         *writable = true;
1826                 return true;
1827         }
1828
1829         return false;
1830 }
1831
1832 /*
1833  * The slow path to get the pfn of the specified host virtual address,
1834  * 1 indicates success, -errno is returned if error is detected.
1835  */
1836 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1837                            bool *writable, kvm_pfn_t *pfn)
1838 {
1839         unsigned int flags = FOLL_HWPOISON;
1840         struct page *page;
1841         int npages = 0;
1842
1843         might_sleep();
1844
1845         if (writable)
1846                 *writable = write_fault;
1847
1848         if (write_fault)
1849                 flags |= FOLL_WRITE;
1850         if (async)
1851                 flags |= FOLL_NOWAIT;
1852
1853         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1854         if (npages != 1)
1855                 return npages;
1856
1857         /* map read fault as writable if possible */
1858         if (unlikely(!write_fault) && writable) {
1859                 struct page *wpage;
1860
1861                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1862                         *writable = true;
1863                         put_page(page);
1864                         page = wpage;
1865                 }
1866         }
1867         *pfn = page_to_pfn(page);
1868         return npages;
1869 }
1870
1871 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1872 {
1873         if (unlikely(!(vma->vm_flags & VM_READ)))
1874                 return false;
1875
1876         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1877                 return false;
1878
1879         return true;
1880 }
1881
1882 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1883                                unsigned long addr, bool *async,
1884                                bool write_fault, bool *writable,
1885                                kvm_pfn_t *p_pfn)
1886 {
1887         unsigned long pfn;
1888         int r;
1889
1890         r = follow_pfn(vma, addr, &pfn);
1891         if (r) {
1892                 /*
1893                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1894                  * not call the fault handler, so do it here.
1895                  */
1896                 bool unlocked = false;
1897                 r = fixup_user_fault(current->mm, addr,
1898                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1899                                      &unlocked);
1900                 if (unlocked)
1901                         return -EAGAIN;
1902                 if (r)
1903                         return r;
1904
1905                 r = follow_pfn(vma, addr, &pfn);
1906                 if (r)
1907                         return r;
1908
1909         }
1910
1911         if (writable)
1912                 *writable = true;
1913
1914         /*
1915          * Get a reference here because callers of *hva_to_pfn* and
1916          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1917          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1918          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1919          * simply do nothing for reserved pfns.
1920          *
1921          * Whoever called remap_pfn_range is also going to call e.g.
1922          * unmap_mapping_range before the underlying pages are freed,
1923          * causing a call to our MMU notifier.
1924          */ 
1925         kvm_get_pfn(pfn);
1926
1927         *p_pfn = pfn;
1928         return 0;
1929 }
1930
1931 /*
1932  * Pin guest page in memory and return its pfn.
1933  * @addr: host virtual address which maps memory to the guest
1934  * @atomic: whether this function can sleep
1935  * @async: whether this function need to wait IO complete if the
1936  *         host page is not in the memory
1937  * @write_fault: whether we should get a writable host page
1938  * @writable: whether it allows to map a writable host page for !@write_fault
1939  *
1940  * The function will map a writable host page for these two cases:
1941  * 1): @write_fault = true
1942  * 2): @write_fault = false && @writable, @writable will tell the caller
1943  *     whether the mapping is writable.
1944  */
1945 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1946                         bool write_fault, bool *writable)
1947 {
1948         struct vm_area_struct *vma;
1949         kvm_pfn_t pfn = 0;
1950         int npages, r;
1951
1952         /* we can do it either atomically or asynchronously, not both */
1953         BUG_ON(atomic && async);
1954
1955         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1956                 return pfn;
1957
1958         if (atomic)
1959                 return KVM_PFN_ERR_FAULT;
1960
1961         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1962         if (npages == 1)
1963                 return pfn;
1964
1965         mmap_read_lock(current->mm);
1966         if (npages == -EHWPOISON ||
1967               (!async && check_user_page_hwpoison(addr))) {
1968                 pfn = KVM_PFN_ERR_HWPOISON;
1969                 goto exit;
1970         }
1971
1972 retry:
1973         vma = find_vma_intersection(current->mm, addr, addr + 1);
1974
1975         if (vma == NULL)
1976                 pfn = KVM_PFN_ERR_FAULT;
1977         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1978                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1979                 if (r == -EAGAIN)
1980                         goto retry;
1981                 if (r < 0)
1982                         pfn = KVM_PFN_ERR_FAULT;
1983         } else {
1984                 if (async && vma_is_valid(vma, write_fault))
1985                         *async = true;
1986                 pfn = KVM_PFN_ERR_FAULT;
1987         }
1988 exit:
1989         mmap_read_unlock(current->mm);
1990         return pfn;
1991 }
1992
1993 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1994                                bool atomic, bool *async, bool write_fault,
1995                                bool *writable)
1996 {
1997         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1998
1999         if (addr == KVM_HVA_ERR_RO_BAD) {
2000                 if (writable)
2001                         *writable = false;
2002                 return KVM_PFN_ERR_RO_FAULT;
2003         }
2004
2005         if (kvm_is_error_hva(addr)) {
2006                 if (writable)
2007                         *writable = false;
2008                 return KVM_PFN_NOSLOT;
2009         }
2010
2011         /* Do not map writable pfn in the readonly memslot. */
2012         if (writable && memslot_is_readonly(slot)) {
2013                 *writable = false;
2014                 writable = NULL;
2015         }
2016
2017         return hva_to_pfn(addr, atomic, async, write_fault,
2018                           writable);
2019 }
2020 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2021
2022 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2023                       bool *writable)
2024 {
2025         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2026                                     write_fault, writable);
2027 }
2028 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2029
2030 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2031 {
2032         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2033 }
2034 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2035
2036 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2037 {
2038         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2039 }
2040 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2041
2042 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2043 {
2044         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2047
2048 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2049 {
2050         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2051 }
2052 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2053
2054 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2055 {
2056         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2059
2060 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2061                             struct page **pages, int nr_pages)
2062 {
2063         unsigned long addr;
2064         gfn_t entry = 0;
2065
2066         addr = gfn_to_hva_many(slot, gfn, &entry);
2067         if (kvm_is_error_hva(addr))
2068                 return -1;
2069
2070         if (entry < nr_pages)
2071                 return 0;
2072
2073         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2074 }
2075 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2076
2077 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2078 {
2079         if (is_error_noslot_pfn(pfn))
2080                 return KVM_ERR_PTR_BAD_PAGE;
2081
2082         if (kvm_is_reserved_pfn(pfn)) {
2083                 WARN_ON(1);
2084                 return KVM_ERR_PTR_BAD_PAGE;
2085         }
2086
2087         return pfn_to_page(pfn);
2088 }
2089
2090 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2091 {
2092         kvm_pfn_t pfn;
2093
2094         pfn = gfn_to_pfn(kvm, gfn);
2095
2096         return kvm_pfn_to_page(pfn);
2097 }
2098 EXPORT_SYMBOL_GPL(gfn_to_page);
2099
2100 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2101 {
2102         if (pfn == 0)
2103                 return;
2104
2105         if (cache)
2106                 cache->pfn = cache->gfn = 0;
2107
2108         if (dirty)
2109                 kvm_release_pfn_dirty(pfn);
2110         else
2111                 kvm_release_pfn_clean(pfn);
2112 }
2113
2114 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2115                                  struct gfn_to_pfn_cache *cache, u64 gen)
2116 {
2117         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2118
2119         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2120         cache->gfn = gfn;
2121         cache->dirty = false;
2122         cache->generation = gen;
2123 }
2124
2125 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2126                          struct kvm_host_map *map,
2127                          struct gfn_to_pfn_cache *cache,
2128                          bool atomic)
2129 {
2130         kvm_pfn_t pfn;
2131         void *hva = NULL;
2132         struct page *page = KVM_UNMAPPED_PAGE;
2133         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2134         u64 gen = slots->generation;
2135
2136         if (!map)
2137                 return -EINVAL;
2138
2139         if (cache) {
2140                 if (!cache->pfn || cache->gfn != gfn ||
2141                         cache->generation != gen) {
2142                         if (atomic)
2143                                 return -EAGAIN;
2144                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2145                 }
2146                 pfn = cache->pfn;
2147         } else {
2148                 if (atomic)
2149                         return -EAGAIN;
2150                 pfn = gfn_to_pfn_memslot(slot, gfn);
2151         }
2152         if (is_error_noslot_pfn(pfn))
2153                 return -EINVAL;
2154
2155         if (pfn_valid(pfn)) {
2156                 page = pfn_to_page(pfn);
2157                 if (atomic)
2158                         hva = kmap_atomic(page);
2159                 else
2160                         hva = kmap(page);
2161 #ifdef CONFIG_HAS_IOMEM
2162         } else if (!atomic) {
2163                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2164         } else {
2165                 return -EINVAL;
2166 #endif
2167         }
2168
2169         if (!hva)
2170                 return -EFAULT;
2171
2172         map->page = page;
2173         map->hva = hva;
2174         map->pfn = pfn;
2175         map->gfn = gfn;
2176
2177         return 0;
2178 }
2179
2180 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2181                 struct gfn_to_pfn_cache *cache, bool atomic)
2182 {
2183         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2184                         cache, atomic);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2187
2188 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2189 {
2190         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2191                 NULL, false);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2194
2195 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2196                         struct kvm_host_map *map,
2197                         struct gfn_to_pfn_cache *cache,
2198                         bool dirty, bool atomic)
2199 {
2200         if (!map)
2201                 return;
2202
2203         if (!map->hva)
2204                 return;
2205
2206         if (map->page != KVM_UNMAPPED_PAGE) {
2207                 if (atomic)
2208                         kunmap_atomic(map->hva);
2209                 else
2210                         kunmap(map->page);
2211         }
2212 #ifdef CONFIG_HAS_IOMEM
2213         else if (!atomic)
2214                 memunmap(map->hva);
2215         else
2216                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2217 #endif
2218
2219         if (dirty)
2220                 mark_page_dirty_in_slot(memslot, map->gfn);
2221
2222         if (cache)
2223                 cache->dirty |= dirty;
2224         else
2225                 kvm_release_pfn(map->pfn, dirty, NULL);
2226
2227         map->hva = NULL;
2228         map->page = NULL;
2229 }
2230
2231 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2232                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2233 {
2234         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2235                         cache, dirty, atomic);
2236         return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2239
2240 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2241 {
2242         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2243                         dirty, false);
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2246
2247 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2248 {
2249         kvm_pfn_t pfn;
2250
2251         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2252
2253         return kvm_pfn_to_page(pfn);
2254 }
2255 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2256
2257 void kvm_release_page_clean(struct page *page)
2258 {
2259         WARN_ON(is_error_page(page));
2260
2261         kvm_release_pfn_clean(page_to_pfn(page));
2262 }
2263 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2264
2265 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2266 {
2267         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2268                 put_page(pfn_to_page(pfn));
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2271
2272 void kvm_release_page_dirty(struct page *page)
2273 {
2274         WARN_ON(is_error_page(page));
2275
2276         kvm_release_pfn_dirty(page_to_pfn(page));
2277 }
2278 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2279
2280 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2281 {
2282         kvm_set_pfn_dirty(pfn);
2283         kvm_release_pfn_clean(pfn);
2284 }
2285 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2286
2287 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2288 {
2289         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2290                 SetPageDirty(pfn_to_page(pfn));
2291 }
2292 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2293
2294 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2295 {
2296         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2297                 mark_page_accessed(pfn_to_page(pfn));
2298 }
2299 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2300
2301 void kvm_get_pfn(kvm_pfn_t pfn)
2302 {
2303         if (!kvm_is_reserved_pfn(pfn))
2304                 get_page(pfn_to_page(pfn));
2305 }
2306 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2307
2308 static int next_segment(unsigned long len, int offset)
2309 {
2310         if (len > PAGE_SIZE - offset)
2311                 return PAGE_SIZE - offset;
2312         else
2313                 return len;
2314 }
2315
2316 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2317                                  void *data, int offset, int len)
2318 {
2319         int r;
2320         unsigned long addr;
2321
2322         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2323         if (kvm_is_error_hva(addr))
2324                 return -EFAULT;
2325         r = __copy_from_user(data, (void __user *)addr + offset, len);
2326         if (r)
2327                 return -EFAULT;
2328         return 0;
2329 }
2330
2331 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2332                         int len)
2333 {
2334         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2335
2336         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2339
2340 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2341                              int offset, int len)
2342 {
2343         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344
2345         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2346 }
2347 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2348
2349 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2350 {
2351         gfn_t gfn = gpa >> PAGE_SHIFT;
2352         int seg;
2353         int offset = offset_in_page(gpa);
2354         int ret;
2355
2356         while ((seg = next_segment(len, offset)) != 0) {
2357                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2358                 if (ret < 0)
2359                         return ret;
2360                 offset = 0;
2361                 len -= seg;
2362                 data += seg;
2363                 ++gfn;
2364         }
2365         return 0;
2366 }
2367 EXPORT_SYMBOL_GPL(kvm_read_guest);
2368
2369 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2370 {
2371         gfn_t gfn = gpa >> PAGE_SHIFT;
2372         int seg;
2373         int offset = offset_in_page(gpa);
2374         int ret;
2375
2376         while ((seg = next_segment(len, offset)) != 0) {
2377                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2378                 if (ret < 0)
2379                         return ret;
2380                 offset = 0;
2381                 len -= seg;
2382                 data += seg;
2383                 ++gfn;
2384         }
2385         return 0;
2386 }
2387 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2388
2389 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2390                                    void *data, int offset, unsigned long len)
2391 {
2392         int r;
2393         unsigned long addr;
2394
2395         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2396         if (kvm_is_error_hva(addr))
2397                 return -EFAULT;
2398         pagefault_disable();
2399         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2400         pagefault_enable();
2401         if (r)
2402                 return -EFAULT;
2403         return 0;
2404 }
2405
2406 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2407                                void *data, unsigned long len)
2408 {
2409         gfn_t gfn = gpa >> PAGE_SHIFT;
2410         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2411         int offset = offset_in_page(gpa);
2412
2413         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2414 }
2415 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2416
2417 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2418                                   const void *data, int offset, int len)
2419 {
2420         int r;
2421         unsigned long addr;
2422
2423         addr = gfn_to_hva_memslot(memslot, gfn);
2424         if (kvm_is_error_hva(addr))
2425                 return -EFAULT;
2426         r = __copy_to_user((void __user *)addr + offset, data, len);
2427         if (r)
2428                 return -EFAULT;
2429         mark_page_dirty_in_slot(memslot, gfn);
2430         return 0;
2431 }
2432
2433 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2434                          const void *data, int offset, int len)
2435 {
2436         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2437
2438         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2441
2442 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2443                               const void *data, int offset, int len)
2444 {
2445         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2446
2447         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2448 }
2449 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2450
2451 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2452                     unsigned long len)
2453 {
2454         gfn_t gfn = gpa >> PAGE_SHIFT;
2455         int seg;
2456         int offset = offset_in_page(gpa);
2457         int ret;
2458
2459         while ((seg = next_segment(len, offset)) != 0) {
2460                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2461                 if (ret < 0)
2462                         return ret;
2463                 offset = 0;
2464                 len -= seg;
2465                 data += seg;
2466                 ++gfn;
2467         }
2468         return 0;
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_write_guest);
2471
2472 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2473                          unsigned long len)
2474 {
2475         gfn_t gfn = gpa >> PAGE_SHIFT;
2476         int seg;
2477         int offset = offset_in_page(gpa);
2478         int ret;
2479
2480         while ((seg = next_segment(len, offset)) != 0) {
2481                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2482                 if (ret < 0)
2483                         return ret;
2484                 offset = 0;
2485                 len -= seg;
2486                 data += seg;
2487                 ++gfn;
2488         }
2489         return 0;
2490 }
2491 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2492
2493 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2494                                        struct gfn_to_hva_cache *ghc,
2495                                        gpa_t gpa, unsigned long len)
2496 {
2497         int offset = offset_in_page(gpa);
2498         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2499         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2500         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2501         gfn_t nr_pages_avail;
2502
2503         /* Update ghc->generation before performing any error checks. */
2504         ghc->generation = slots->generation;
2505
2506         if (start_gfn > end_gfn) {
2507                 ghc->hva = KVM_HVA_ERR_BAD;
2508                 return -EINVAL;
2509         }
2510
2511         /*
2512          * If the requested region crosses two memslots, we still
2513          * verify that the entire region is valid here.
2514          */
2515         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2516                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2517                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2518                                            &nr_pages_avail);
2519                 if (kvm_is_error_hva(ghc->hva))
2520                         return -EFAULT;
2521         }
2522
2523         /* Use the slow path for cross page reads and writes. */
2524         if (nr_pages_needed == 1)
2525                 ghc->hva += offset;
2526         else
2527                 ghc->memslot = NULL;
2528
2529         ghc->gpa = gpa;
2530         ghc->len = len;
2531         return 0;
2532 }
2533
2534 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2535                               gpa_t gpa, unsigned long len)
2536 {
2537         struct kvm_memslots *slots = kvm_memslots(kvm);
2538         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2539 }
2540 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2541
2542 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2543                                   void *data, unsigned int offset,
2544                                   unsigned long len)
2545 {
2546         struct kvm_memslots *slots = kvm_memslots(kvm);
2547         int r;
2548         gpa_t gpa = ghc->gpa + offset;
2549
2550         BUG_ON(len + offset > ghc->len);
2551
2552         if (slots->generation != ghc->generation) {
2553                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2554                         return -EFAULT;
2555         }
2556
2557         if (kvm_is_error_hva(ghc->hva))
2558                 return -EFAULT;
2559
2560         if (unlikely(!ghc->memslot))
2561                 return kvm_write_guest(kvm, gpa, data, len);
2562
2563         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2564         if (r)
2565                 return -EFAULT;
2566         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2567
2568         return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2571
2572 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2573                            void *data, unsigned long len)
2574 {
2575         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2576 }
2577 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2578
2579 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2580                                  void *data, unsigned int offset,
2581                                  unsigned long len)
2582 {
2583         struct kvm_memslots *slots = kvm_memslots(kvm);
2584         int r;
2585         gpa_t gpa = ghc->gpa + offset;
2586
2587         BUG_ON(len + offset > ghc->len);
2588
2589         if (slots->generation != ghc->generation) {
2590                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2591                         return -EFAULT;
2592         }
2593
2594         if (kvm_is_error_hva(ghc->hva))
2595                 return -EFAULT;
2596
2597         if (unlikely(!ghc->memslot))
2598                 return kvm_read_guest(kvm, gpa, data, len);
2599
2600         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2601         if (r)
2602                 return -EFAULT;
2603
2604         return 0;
2605 }
2606 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2607
2608 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2609                           void *data, unsigned long len)
2610 {
2611         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2612 }
2613 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2614
2615 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2616 {
2617         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2618
2619         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2620 }
2621 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2622
2623 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2624 {
2625         gfn_t gfn = gpa >> PAGE_SHIFT;
2626         int seg;
2627         int offset = offset_in_page(gpa);
2628         int ret;
2629
2630         while ((seg = next_segment(len, offset)) != 0) {
2631                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2632                 if (ret < 0)
2633                         return ret;
2634                 offset = 0;
2635                 len -= seg;
2636                 ++gfn;
2637         }
2638         return 0;
2639 }
2640 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2641
2642 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2643                                     gfn_t gfn)
2644 {
2645         if (memslot && memslot->dirty_bitmap) {
2646                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2647
2648                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2649         }
2650 }
2651
2652 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2653 {
2654         struct kvm_memory_slot *memslot;
2655
2656         memslot = gfn_to_memslot(kvm, gfn);
2657         mark_page_dirty_in_slot(memslot, gfn);
2658 }
2659 EXPORT_SYMBOL_GPL(mark_page_dirty);
2660
2661 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2662 {
2663         struct kvm_memory_slot *memslot;
2664
2665         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2666         mark_page_dirty_in_slot(memslot, gfn);
2667 }
2668 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2669
2670 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2671 {
2672         if (!vcpu->sigset_active)
2673                 return;
2674
2675         /*
2676          * This does a lockless modification of ->real_blocked, which is fine
2677          * because, only current can change ->real_blocked and all readers of
2678          * ->real_blocked don't care as long ->real_blocked is always a subset
2679          * of ->blocked.
2680          */
2681         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2682 }
2683
2684 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2685 {
2686         if (!vcpu->sigset_active)
2687                 return;
2688
2689         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2690         sigemptyset(&current->real_blocked);
2691 }
2692
2693 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2694 {
2695         unsigned int old, val, grow, grow_start;
2696
2697         old = val = vcpu->halt_poll_ns;
2698         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2699         grow = READ_ONCE(halt_poll_ns_grow);
2700         if (!grow)
2701                 goto out;
2702
2703         val *= grow;
2704         if (val < grow_start)
2705                 val = grow_start;
2706
2707         if (val > halt_poll_ns)
2708                 val = halt_poll_ns;
2709
2710         vcpu->halt_poll_ns = val;
2711 out:
2712         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2713 }
2714
2715 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2716 {
2717         unsigned int old, val, shrink;
2718
2719         old = val = vcpu->halt_poll_ns;
2720         shrink = READ_ONCE(halt_poll_ns_shrink);
2721         if (shrink == 0)
2722                 val = 0;
2723         else
2724                 val /= shrink;
2725
2726         vcpu->halt_poll_ns = val;
2727         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2728 }
2729
2730 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2731 {
2732         int ret = -EINTR;
2733         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2734
2735         if (kvm_arch_vcpu_runnable(vcpu)) {
2736                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2737                 goto out;
2738         }
2739         if (kvm_cpu_has_pending_timer(vcpu))
2740                 goto out;
2741         if (signal_pending(current))
2742                 goto out;
2743
2744         ret = 0;
2745 out:
2746         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2747         return ret;
2748 }
2749
2750 static inline void
2751 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2752 {
2753         if (waited)
2754                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2755         else
2756                 vcpu->stat.halt_poll_success_ns += poll_ns;
2757 }
2758
2759 /*
2760  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2761  */
2762 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2763 {
2764         ktime_t start, cur, poll_end;
2765         bool waited = false;
2766         u64 block_ns;
2767
2768         kvm_arch_vcpu_blocking(vcpu);
2769
2770         start = cur = poll_end = ktime_get();
2771         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2772                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2773
2774                 ++vcpu->stat.halt_attempted_poll;
2775                 do {
2776                         /*
2777                          * This sets KVM_REQ_UNHALT if an interrupt
2778                          * arrives.
2779                          */
2780                         if (kvm_vcpu_check_block(vcpu) < 0) {
2781                                 ++vcpu->stat.halt_successful_poll;
2782                                 if (!vcpu_valid_wakeup(vcpu))
2783                                         ++vcpu->stat.halt_poll_invalid;
2784                                 goto out;
2785                         }
2786                         poll_end = cur = ktime_get();
2787                 } while (single_task_running() && ktime_before(cur, stop));
2788         }
2789
2790         prepare_to_rcuwait(&vcpu->wait);
2791         for (;;) {
2792                 set_current_state(TASK_INTERRUPTIBLE);
2793
2794                 if (kvm_vcpu_check_block(vcpu) < 0)
2795                         break;
2796
2797                 waited = true;
2798                 schedule();
2799         }
2800         finish_rcuwait(&vcpu->wait);
2801         cur = ktime_get();
2802 out:
2803         kvm_arch_vcpu_unblocking(vcpu);
2804         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2805
2806         update_halt_poll_stats(
2807                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2808
2809         if (!kvm_arch_no_poll(vcpu)) {
2810                 if (!vcpu_valid_wakeup(vcpu)) {
2811                         shrink_halt_poll_ns(vcpu);
2812                 } else if (vcpu->kvm->max_halt_poll_ns) {
2813                         if (block_ns <= vcpu->halt_poll_ns)
2814                                 ;
2815                         /* we had a long block, shrink polling */
2816                         else if (vcpu->halt_poll_ns &&
2817                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2818                                 shrink_halt_poll_ns(vcpu);
2819                         /* we had a short halt and our poll time is too small */
2820                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2821                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2822                                 grow_halt_poll_ns(vcpu);
2823                 } else {
2824                         vcpu->halt_poll_ns = 0;
2825                 }
2826         }
2827
2828         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2829         kvm_arch_vcpu_block_finish(vcpu);
2830 }
2831 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2832
2833 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2834 {
2835         struct rcuwait *waitp;
2836
2837         waitp = kvm_arch_vcpu_get_wait(vcpu);
2838         if (rcuwait_wake_up(waitp)) {
2839                 WRITE_ONCE(vcpu->ready, true);
2840                 ++vcpu->stat.halt_wakeup;
2841                 return true;
2842         }
2843
2844         return false;
2845 }
2846 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2847
2848 #ifndef CONFIG_S390
2849 /*
2850  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2851  */
2852 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2853 {
2854         int me;
2855         int cpu = vcpu->cpu;
2856
2857         if (kvm_vcpu_wake_up(vcpu))
2858                 return;
2859
2860         me = get_cpu();
2861         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2862                 if (kvm_arch_vcpu_should_kick(vcpu))
2863                         smp_send_reschedule(cpu);
2864         put_cpu();
2865 }
2866 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2867 #endif /* !CONFIG_S390 */
2868
2869 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2870 {
2871         struct pid *pid;
2872         struct task_struct *task = NULL;
2873         int ret = 0;
2874
2875         rcu_read_lock();
2876         pid = rcu_dereference(target->pid);
2877         if (pid)
2878                 task = get_pid_task(pid, PIDTYPE_PID);
2879         rcu_read_unlock();
2880         if (!task)
2881                 return ret;
2882         ret = yield_to(task, 1);
2883         put_task_struct(task);
2884
2885         return ret;
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2888
2889 /*
2890  * Helper that checks whether a VCPU is eligible for directed yield.
2891  * Most eligible candidate to yield is decided by following heuristics:
2892  *
2893  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2894  *  (preempted lock holder), indicated by @in_spin_loop.
2895  *  Set at the beginning and cleared at the end of interception/PLE handler.
2896  *
2897  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2898  *  chance last time (mostly it has become eligible now since we have probably
2899  *  yielded to lockholder in last iteration. This is done by toggling
2900  *  @dy_eligible each time a VCPU checked for eligibility.)
2901  *
2902  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2903  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2904  *  burning. Giving priority for a potential lock-holder increases lock
2905  *  progress.
2906  *
2907  *  Since algorithm is based on heuristics, accessing another VCPU data without
2908  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2909  *  and continue with next VCPU and so on.
2910  */
2911 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2912 {
2913 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2914         bool eligible;
2915
2916         eligible = !vcpu->spin_loop.in_spin_loop ||
2917                     vcpu->spin_loop.dy_eligible;
2918
2919         if (vcpu->spin_loop.in_spin_loop)
2920                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2921
2922         return eligible;
2923 #else
2924         return true;
2925 #endif
2926 }
2927
2928 /*
2929  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2930  * a vcpu_load/vcpu_put pair.  However, for most architectures
2931  * kvm_arch_vcpu_runnable does not require vcpu_load.
2932  */
2933 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2934 {
2935         return kvm_arch_vcpu_runnable(vcpu);
2936 }
2937
2938 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2939 {
2940         if (kvm_arch_dy_runnable(vcpu))
2941                 return true;
2942
2943 #ifdef CONFIG_KVM_ASYNC_PF
2944         if (!list_empty_careful(&vcpu->async_pf.done))
2945                 return true;
2946 #endif
2947
2948         return false;
2949 }
2950
2951 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2952 {
2953         struct kvm *kvm = me->kvm;
2954         struct kvm_vcpu *vcpu;
2955         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2956         int yielded = 0;
2957         int try = 3;
2958         int pass;
2959         int i;
2960
2961         kvm_vcpu_set_in_spin_loop(me, true);
2962         /*
2963          * We boost the priority of a VCPU that is runnable but not
2964          * currently running, because it got preempted by something
2965          * else and called schedule in __vcpu_run.  Hopefully that
2966          * VCPU is holding the lock that we need and will release it.
2967          * We approximate round-robin by starting at the last boosted VCPU.
2968          */
2969         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2970                 kvm_for_each_vcpu(i, vcpu, kvm) {
2971                         if (!pass && i <= last_boosted_vcpu) {
2972                                 i = last_boosted_vcpu;
2973                                 continue;
2974                         } else if (pass && i > last_boosted_vcpu)
2975                                 break;
2976                         if (!READ_ONCE(vcpu->ready))
2977                                 continue;
2978                         if (vcpu == me)
2979                                 continue;
2980                         if (rcuwait_active(&vcpu->wait) &&
2981                             !vcpu_dy_runnable(vcpu))
2982                                 continue;
2983                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2984                                 !kvm_arch_vcpu_in_kernel(vcpu))
2985                                 continue;
2986                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2987                                 continue;
2988
2989                         yielded = kvm_vcpu_yield_to(vcpu);
2990                         if (yielded > 0) {
2991                                 kvm->last_boosted_vcpu = i;
2992                                 break;
2993                         } else if (yielded < 0) {
2994                                 try--;
2995                                 if (!try)
2996                                         break;
2997                         }
2998                 }
2999         }
3000         kvm_vcpu_set_in_spin_loop(me, false);
3001
3002         /* Ensure vcpu is not eligible during next spinloop */
3003         kvm_vcpu_set_dy_eligible(me, false);
3004 }
3005 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3006
3007 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3008 {
3009         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3010         struct page *page;
3011
3012         if (vmf->pgoff == 0)
3013                 page = virt_to_page(vcpu->run);
3014 #ifdef CONFIG_X86
3015         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3016                 page = virt_to_page(vcpu->arch.pio_data);
3017 #endif
3018 #ifdef CONFIG_KVM_MMIO
3019         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3020                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3021 #endif
3022         else
3023                 return kvm_arch_vcpu_fault(vcpu, vmf);
3024         get_page(page);
3025         vmf->page = page;
3026         return 0;
3027 }
3028
3029 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3030         .fault = kvm_vcpu_fault,
3031 };
3032
3033 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3034 {
3035         vma->vm_ops = &kvm_vcpu_vm_ops;
3036         return 0;
3037 }
3038
3039 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3040 {
3041         struct kvm_vcpu *vcpu = filp->private_data;
3042
3043         kvm_put_kvm(vcpu->kvm);
3044         return 0;
3045 }
3046
3047 static struct file_operations kvm_vcpu_fops = {
3048         .release        = kvm_vcpu_release,
3049         .unlocked_ioctl = kvm_vcpu_ioctl,
3050         .mmap           = kvm_vcpu_mmap,
3051         .llseek         = noop_llseek,
3052         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3053 };
3054
3055 /*
3056  * Allocates an inode for the vcpu.
3057  */
3058 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3059 {
3060         char name[8 + 1 + ITOA_MAX_LEN + 1];
3061
3062         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3063         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3064 }
3065
3066 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3067 {
3068 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3069         struct dentry *debugfs_dentry;
3070         char dir_name[ITOA_MAX_LEN * 2];
3071
3072         if (!debugfs_initialized())
3073                 return;
3074
3075         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3076         debugfs_dentry = debugfs_create_dir(dir_name,
3077                                             vcpu->kvm->debugfs_dentry);
3078
3079         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3080 #endif
3081 }
3082
3083 /*
3084  * Creates some virtual cpus.  Good luck creating more than one.
3085  */
3086 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3087 {
3088         int r;
3089         struct kvm_vcpu *vcpu;
3090         struct page *page;
3091
3092         if (id >= KVM_MAX_VCPU_ID)
3093                 return -EINVAL;
3094
3095         mutex_lock(&kvm->lock);
3096         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3097                 mutex_unlock(&kvm->lock);
3098                 return -EINVAL;
3099         }
3100
3101         kvm->created_vcpus++;
3102         mutex_unlock(&kvm->lock);
3103
3104         r = kvm_arch_vcpu_precreate(kvm, id);
3105         if (r)
3106                 goto vcpu_decrement;
3107
3108         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3109         if (!vcpu) {
3110                 r = -ENOMEM;
3111                 goto vcpu_decrement;
3112         }
3113
3114         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3115         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3116         if (!page) {
3117                 r = -ENOMEM;
3118                 goto vcpu_free;
3119         }
3120         vcpu->run = page_address(page);
3121
3122         kvm_vcpu_init(vcpu, kvm, id);
3123
3124         r = kvm_arch_vcpu_create(vcpu);
3125         if (r)
3126                 goto vcpu_free_run_page;
3127
3128         mutex_lock(&kvm->lock);
3129         if (kvm_get_vcpu_by_id(kvm, id)) {
3130                 r = -EEXIST;
3131                 goto unlock_vcpu_destroy;
3132         }
3133
3134         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3135         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3136
3137         /* Now it's all set up, let userspace reach it */
3138         kvm_get_kvm(kvm);
3139         r = create_vcpu_fd(vcpu);
3140         if (r < 0) {
3141                 kvm_put_kvm_no_destroy(kvm);
3142                 goto unlock_vcpu_destroy;
3143         }
3144
3145         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3146
3147         /*
3148          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3149          * before kvm->online_vcpu's incremented value.
3150          */
3151         smp_wmb();
3152         atomic_inc(&kvm->online_vcpus);
3153
3154         mutex_unlock(&kvm->lock);
3155         kvm_arch_vcpu_postcreate(vcpu);
3156         kvm_create_vcpu_debugfs(vcpu);
3157         return r;
3158
3159 unlock_vcpu_destroy:
3160         mutex_unlock(&kvm->lock);
3161         kvm_arch_vcpu_destroy(vcpu);
3162 vcpu_free_run_page:
3163         free_page((unsigned long)vcpu->run);
3164 vcpu_free:
3165         kmem_cache_free(kvm_vcpu_cache, vcpu);
3166 vcpu_decrement:
3167         mutex_lock(&kvm->lock);
3168         kvm->created_vcpus--;
3169         mutex_unlock(&kvm->lock);
3170         return r;
3171 }
3172
3173 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3174 {
3175         if (sigset) {
3176                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3177                 vcpu->sigset_active = 1;
3178                 vcpu->sigset = *sigset;
3179         } else
3180                 vcpu->sigset_active = 0;
3181         return 0;
3182 }
3183
3184 static long kvm_vcpu_ioctl(struct file *filp,
3185                            unsigned int ioctl, unsigned long arg)
3186 {
3187         struct kvm_vcpu *vcpu = filp->private_data;
3188         void __user *argp = (void __user *)arg;
3189         int r;
3190         struct kvm_fpu *fpu = NULL;
3191         struct kvm_sregs *kvm_sregs = NULL;
3192
3193         if (vcpu->kvm->mm != current->mm)
3194                 return -EIO;
3195
3196         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3197                 return -EINVAL;
3198
3199         /*
3200          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3201          * execution; mutex_lock() would break them.
3202          */
3203         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3204         if (r != -ENOIOCTLCMD)
3205                 return r;
3206
3207         if (mutex_lock_killable(&vcpu->mutex))
3208                 return -EINTR;
3209         switch (ioctl) {
3210         case KVM_RUN: {
3211                 struct pid *oldpid;
3212                 r = -EINVAL;
3213                 if (arg)
3214                         goto out;
3215                 oldpid = rcu_access_pointer(vcpu->pid);
3216                 if (unlikely(oldpid != task_pid(current))) {
3217                         /* The thread running this VCPU changed. */
3218                         struct pid *newpid;
3219
3220                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3221                         if (r)
3222                                 break;
3223
3224                         newpid = get_task_pid(current, PIDTYPE_PID);
3225                         rcu_assign_pointer(vcpu->pid, newpid);
3226                         if (oldpid)
3227                                 synchronize_rcu();
3228                         put_pid(oldpid);
3229                 }
3230                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3231                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3232                 break;
3233         }
3234         case KVM_GET_REGS: {
3235                 struct kvm_regs *kvm_regs;
3236
3237                 r = -ENOMEM;
3238                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3239                 if (!kvm_regs)
3240                         goto out;
3241                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3242                 if (r)
3243                         goto out_free1;
3244                 r = -EFAULT;
3245                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3246                         goto out_free1;
3247                 r = 0;
3248 out_free1:
3249                 kfree(kvm_regs);
3250                 break;
3251         }
3252         case KVM_SET_REGS: {
3253                 struct kvm_regs *kvm_regs;
3254
3255                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3256                 if (IS_ERR(kvm_regs)) {
3257                         r = PTR_ERR(kvm_regs);
3258                         goto out;
3259                 }
3260                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3261                 kfree(kvm_regs);
3262                 break;
3263         }
3264         case KVM_GET_SREGS: {
3265                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3266                                     GFP_KERNEL_ACCOUNT);
3267                 r = -ENOMEM;
3268                 if (!kvm_sregs)
3269                         goto out;
3270                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3271                 if (r)
3272                         goto out;
3273                 r = -EFAULT;
3274                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3275                         goto out;
3276                 r = 0;
3277                 break;
3278         }
3279         case KVM_SET_SREGS: {
3280                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3281                 if (IS_ERR(kvm_sregs)) {
3282                         r = PTR_ERR(kvm_sregs);
3283                         kvm_sregs = NULL;
3284                         goto out;
3285                 }
3286                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3287                 break;
3288         }
3289         case KVM_GET_MP_STATE: {
3290                 struct kvm_mp_state mp_state;
3291
3292                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3293                 if (r)
3294                         goto out;
3295                 r = -EFAULT;
3296                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3297                         goto out;
3298                 r = 0;
3299                 break;
3300         }
3301         case KVM_SET_MP_STATE: {
3302                 struct kvm_mp_state mp_state;
3303
3304                 r = -EFAULT;
3305                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3306                         goto out;
3307                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3308                 break;
3309         }
3310         case KVM_TRANSLATE: {
3311                 struct kvm_translation tr;
3312
3313                 r = -EFAULT;
3314                 if (copy_from_user(&tr, argp, sizeof(tr)))
3315                         goto out;
3316                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3317                 if (r)
3318                         goto out;
3319                 r = -EFAULT;
3320                 if (copy_to_user(argp, &tr, sizeof(tr)))
3321                         goto out;
3322                 r = 0;
3323                 break;
3324         }
3325         case KVM_SET_GUEST_DEBUG: {
3326                 struct kvm_guest_debug dbg;
3327
3328                 r = -EFAULT;
3329                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3330                         goto out;
3331                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3332                 break;
3333         }
3334         case KVM_SET_SIGNAL_MASK: {
3335                 struct kvm_signal_mask __user *sigmask_arg = argp;
3336                 struct kvm_signal_mask kvm_sigmask;
3337                 sigset_t sigset, *p;
3338
3339                 p = NULL;
3340                 if (argp) {
3341                         r = -EFAULT;
3342                         if (copy_from_user(&kvm_sigmask, argp,
3343                                            sizeof(kvm_sigmask)))
3344                                 goto out;
3345                         r = -EINVAL;
3346                         if (kvm_sigmask.len != sizeof(sigset))
3347                                 goto out;
3348                         r = -EFAULT;
3349                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3350                                            sizeof(sigset)))
3351                                 goto out;
3352                         p = &sigset;
3353                 }
3354                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3355                 break;
3356         }
3357         case KVM_GET_FPU: {
3358                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3359                 r = -ENOMEM;
3360                 if (!fpu)
3361                         goto out;
3362                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3363                 if (r)
3364                         goto out;
3365                 r = -EFAULT;
3366                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3367                         goto out;
3368                 r = 0;
3369                 break;
3370         }
3371         case KVM_SET_FPU: {
3372                 fpu = memdup_user(argp, sizeof(*fpu));
3373                 if (IS_ERR(fpu)) {
3374                         r = PTR_ERR(fpu);
3375                         fpu = NULL;
3376                         goto out;
3377                 }
3378                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3379                 break;
3380         }
3381         default:
3382                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3383         }
3384 out:
3385         mutex_unlock(&vcpu->mutex);
3386         kfree(fpu);
3387         kfree(kvm_sregs);
3388         return r;
3389 }
3390
3391 #ifdef CONFIG_KVM_COMPAT
3392 static long kvm_vcpu_compat_ioctl(struct file *filp,
3393                                   unsigned int ioctl, unsigned long arg)
3394 {
3395         struct kvm_vcpu *vcpu = filp->private_data;
3396         void __user *argp = compat_ptr(arg);
3397         int r;
3398
3399         if (vcpu->kvm->mm != current->mm)
3400                 return -EIO;
3401
3402         switch (ioctl) {
3403         case KVM_SET_SIGNAL_MASK: {
3404                 struct kvm_signal_mask __user *sigmask_arg = argp;
3405                 struct kvm_signal_mask kvm_sigmask;
3406                 sigset_t sigset;
3407
3408                 if (argp) {
3409                         r = -EFAULT;
3410                         if (copy_from_user(&kvm_sigmask, argp,
3411                                            sizeof(kvm_sigmask)))
3412                                 goto out;
3413                         r = -EINVAL;
3414                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3415                                 goto out;
3416                         r = -EFAULT;
3417                         if (get_compat_sigset(&sigset,
3418                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3419                                 goto out;
3420                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3421                 } else
3422                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3423                 break;
3424         }
3425         default:
3426                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3427         }
3428
3429 out:
3430         return r;
3431 }
3432 #endif
3433
3434 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3435 {
3436         struct kvm_device *dev = filp->private_data;
3437
3438         if (dev->ops->mmap)
3439                 return dev->ops->mmap(dev, vma);
3440
3441         return -ENODEV;
3442 }
3443
3444 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3445                                  int (*accessor)(struct kvm_device *dev,
3446                                                  struct kvm_device_attr *attr),
3447                                  unsigned long arg)
3448 {
3449         struct kvm_device_attr attr;
3450
3451         if (!accessor)
3452                 return -EPERM;
3453
3454         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3455                 return -EFAULT;
3456
3457         return accessor(dev, &attr);
3458 }
3459
3460 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3461                              unsigned long arg)
3462 {
3463         struct kvm_device *dev = filp->private_data;
3464
3465         if (dev->kvm->mm != current->mm)
3466                 return -EIO;
3467
3468         switch (ioctl) {
3469         case KVM_SET_DEVICE_ATTR:
3470                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3471         case KVM_GET_DEVICE_ATTR:
3472                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3473         case KVM_HAS_DEVICE_ATTR:
3474                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3475         default:
3476                 if (dev->ops->ioctl)
3477                         return dev->ops->ioctl(dev, ioctl, arg);
3478
3479                 return -ENOTTY;
3480         }
3481 }
3482
3483 static int kvm_device_release(struct inode *inode, struct file *filp)
3484 {
3485         struct kvm_device *dev = filp->private_data;
3486         struct kvm *kvm = dev->kvm;
3487
3488         if (dev->ops->release) {
3489                 mutex_lock(&kvm->lock);
3490                 list_del(&dev->vm_node);
3491                 dev->ops->release(dev);
3492                 mutex_unlock(&kvm->lock);
3493         }
3494
3495         kvm_put_kvm(kvm);
3496         return 0;
3497 }
3498
3499 static const struct file_operations kvm_device_fops = {
3500         .unlocked_ioctl = kvm_device_ioctl,
3501         .release = kvm_device_release,
3502         KVM_COMPAT(kvm_device_ioctl),
3503         .mmap = kvm_device_mmap,
3504 };
3505
3506 struct kvm_device *kvm_device_from_filp(struct file *filp)
3507 {
3508         if (filp->f_op != &kvm_device_fops)
3509                 return NULL;
3510
3511         return filp->private_data;
3512 }
3513
3514 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3515 #ifdef CONFIG_KVM_MPIC
3516         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3517         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3518 #endif
3519 };
3520
3521 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3522 {
3523         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3524                 return -ENOSPC;
3525
3526         if (kvm_device_ops_table[type] != NULL)
3527                 return -EEXIST;
3528
3529         kvm_device_ops_table[type] = ops;
3530         return 0;
3531 }
3532
3533 void kvm_unregister_device_ops(u32 type)
3534 {
3535         if (kvm_device_ops_table[type] != NULL)
3536                 kvm_device_ops_table[type] = NULL;
3537 }
3538
3539 static int kvm_ioctl_create_device(struct kvm *kvm,
3540                                    struct kvm_create_device *cd)
3541 {
3542         const struct kvm_device_ops *ops = NULL;
3543         struct kvm_device *dev;
3544         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3545         int type;
3546         int ret;
3547
3548         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3549                 return -ENODEV;
3550
3551         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3552         ops = kvm_device_ops_table[type];
3553         if (ops == NULL)
3554                 return -ENODEV;
3555
3556         if (test)
3557                 return 0;
3558
3559         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3560         if (!dev)
3561                 return -ENOMEM;
3562
3563         dev->ops = ops;
3564         dev->kvm = kvm;
3565
3566         mutex_lock(&kvm->lock);
3567         ret = ops->create(dev, type);
3568         if (ret < 0) {
3569                 mutex_unlock(&kvm->lock);
3570                 kfree(dev);
3571                 return ret;
3572         }
3573         list_add(&dev->vm_node, &kvm->devices);
3574         mutex_unlock(&kvm->lock);
3575
3576         if (ops->init)
3577                 ops->init(dev);
3578
3579         kvm_get_kvm(kvm);
3580         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3581         if (ret < 0) {
3582                 kvm_put_kvm_no_destroy(kvm);
3583                 mutex_lock(&kvm->lock);
3584                 list_del(&dev->vm_node);
3585                 mutex_unlock(&kvm->lock);
3586                 ops->destroy(dev);
3587                 return ret;
3588         }
3589
3590         cd->fd = ret;
3591         return 0;
3592 }
3593
3594 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3595 {
3596         switch (arg) {
3597         case KVM_CAP_USER_MEMORY:
3598         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3599         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3600         case KVM_CAP_INTERNAL_ERROR_DATA:
3601 #ifdef CONFIG_HAVE_KVM_MSI
3602         case KVM_CAP_SIGNAL_MSI:
3603 #endif
3604 #ifdef CONFIG_HAVE_KVM_IRQFD
3605         case KVM_CAP_IRQFD:
3606         case KVM_CAP_IRQFD_RESAMPLE:
3607 #endif
3608         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3609         case KVM_CAP_CHECK_EXTENSION_VM:
3610         case KVM_CAP_ENABLE_CAP_VM:
3611         case KVM_CAP_HALT_POLL:
3612                 return 1;
3613 #ifdef CONFIG_KVM_MMIO
3614         case KVM_CAP_COALESCED_MMIO:
3615                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3616         case KVM_CAP_COALESCED_PIO:
3617                 return 1;
3618 #endif
3619 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3620         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3621                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3622 #endif
3623 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3624         case KVM_CAP_IRQ_ROUTING:
3625                 return KVM_MAX_IRQ_ROUTES;
3626 #endif
3627 #if KVM_ADDRESS_SPACE_NUM > 1
3628         case KVM_CAP_MULTI_ADDRESS_SPACE:
3629                 return KVM_ADDRESS_SPACE_NUM;
3630 #endif
3631         case KVM_CAP_NR_MEMSLOTS:
3632                 return KVM_USER_MEM_SLOTS;
3633         default:
3634                 break;
3635         }
3636         return kvm_vm_ioctl_check_extension(kvm, arg);
3637 }
3638
3639 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3640                                                   struct kvm_enable_cap *cap)
3641 {
3642         return -EINVAL;
3643 }
3644
3645 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3646                                            struct kvm_enable_cap *cap)
3647 {
3648         switch (cap->cap) {
3649 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3650         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3651                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3652
3653                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3654                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3655
3656                 if (cap->flags || (cap->args[0] & ~allowed_options))
3657                         return -EINVAL;
3658                 kvm->manual_dirty_log_protect = cap->args[0];
3659                 return 0;
3660         }
3661 #endif
3662         case KVM_CAP_HALT_POLL: {
3663                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3664                         return -EINVAL;
3665
3666                 kvm->max_halt_poll_ns = cap->args[0];
3667                 return 0;
3668         }
3669         default:
3670                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3671         }
3672 }
3673
3674 static long kvm_vm_ioctl(struct file *filp,
3675                            unsigned int ioctl, unsigned long arg)
3676 {
3677         struct kvm *kvm = filp->private_data;
3678         void __user *argp = (void __user *)arg;
3679         int r;
3680
3681         if (kvm->mm != current->mm)
3682                 return -EIO;
3683         switch (ioctl) {
3684         case KVM_CREATE_VCPU:
3685                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3686                 break;
3687         case KVM_ENABLE_CAP: {
3688                 struct kvm_enable_cap cap;
3689
3690                 r = -EFAULT;
3691                 if (copy_from_user(&cap, argp, sizeof(cap)))
3692                         goto out;
3693                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3694                 break;
3695         }
3696         case KVM_SET_USER_MEMORY_REGION: {
3697                 struct kvm_userspace_memory_region kvm_userspace_mem;
3698
3699                 r = -EFAULT;
3700                 if (copy_from_user(&kvm_userspace_mem, argp,
3701                                                 sizeof(kvm_userspace_mem)))
3702                         goto out;
3703
3704                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3705                 break;
3706         }
3707         case KVM_GET_DIRTY_LOG: {
3708                 struct kvm_dirty_log log;
3709
3710                 r = -EFAULT;
3711                 if (copy_from_user(&log, argp, sizeof(log)))
3712                         goto out;
3713                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3714                 break;
3715         }
3716 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3717         case KVM_CLEAR_DIRTY_LOG: {
3718                 struct kvm_clear_dirty_log log;
3719
3720                 r = -EFAULT;
3721                 if (copy_from_user(&log, argp, sizeof(log)))
3722                         goto out;
3723                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3724                 break;
3725         }
3726 #endif
3727 #ifdef CONFIG_KVM_MMIO
3728         case KVM_REGISTER_COALESCED_MMIO: {
3729                 struct kvm_coalesced_mmio_zone zone;
3730
3731                 r = -EFAULT;
3732                 if (copy_from_user(&zone, argp, sizeof(zone)))
3733                         goto out;
3734                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3735                 break;
3736         }
3737         case KVM_UNREGISTER_COALESCED_MMIO: {
3738                 struct kvm_coalesced_mmio_zone zone;
3739
3740                 r = -EFAULT;
3741                 if (copy_from_user(&zone, argp, sizeof(zone)))
3742                         goto out;
3743                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3744                 break;
3745         }
3746 #endif
3747         case KVM_IRQFD: {
3748                 struct kvm_irqfd data;
3749
3750                 r = -EFAULT;
3751                 if (copy_from_user(&data, argp, sizeof(data)))
3752                         goto out;
3753                 r = kvm_irqfd(kvm, &data);
3754                 break;
3755         }
3756         case KVM_IOEVENTFD: {
3757                 struct kvm_ioeventfd data;
3758
3759                 r = -EFAULT;
3760                 if (copy_from_user(&data, argp, sizeof(data)))
3761                         goto out;
3762                 r = kvm_ioeventfd(kvm, &data);
3763                 break;
3764         }
3765 #ifdef CONFIG_HAVE_KVM_MSI
3766         case KVM_SIGNAL_MSI: {
3767                 struct kvm_msi msi;
3768
3769                 r = -EFAULT;
3770                 if (copy_from_user(&msi, argp, sizeof(msi)))
3771                         goto out;
3772                 r = kvm_send_userspace_msi(kvm, &msi);
3773                 break;
3774         }
3775 #endif
3776 #ifdef __KVM_HAVE_IRQ_LINE
3777         case KVM_IRQ_LINE_STATUS:
3778         case KVM_IRQ_LINE: {
3779                 struct kvm_irq_level irq_event;
3780
3781                 r = -EFAULT;
3782                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3783                         goto out;
3784
3785                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3786                                         ioctl == KVM_IRQ_LINE_STATUS);
3787                 if (r)
3788                         goto out;
3789
3790                 r = -EFAULT;
3791                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3792                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3793                                 goto out;
3794                 }
3795
3796                 r = 0;
3797                 break;
3798         }
3799 #endif
3800 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3801         case KVM_SET_GSI_ROUTING: {
3802                 struct kvm_irq_routing routing;
3803                 struct kvm_irq_routing __user *urouting;
3804                 struct kvm_irq_routing_entry *entries = NULL;
3805
3806                 r = -EFAULT;
3807                 if (copy_from_user(&routing, argp, sizeof(routing)))
3808                         goto out;
3809                 r = -EINVAL;
3810                 if (!kvm_arch_can_set_irq_routing(kvm))
3811                         goto out;
3812                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3813                         goto out;
3814                 if (routing.flags)
3815                         goto out;
3816                 if (routing.nr) {
3817                         urouting = argp;
3818                         entries = vmemdup_user(urouting->entries,
3819                                                array_size(sizeof(*entries),
3820                                                           routing.nr));
3821                         if (IS_ERR(entries)) {
3822                                 r = PTR_ERR(entries);
3823                                 goto out;
3824                         }
3825                 }
3826                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3827                                         routing.flags);
3828                 kvfree(entries);
3829                 break;
3830         }
3831 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3832         case KVM_CREATE_DEVICE: {
3833                 struct kvm_create_device cd;
3834
3835                 r = -EFAULT;
3836                 if (copy_from_user(&cd, argp, sizeof(cd)))
3837                         goto out;
3838
3839                 r = kvm_ioctl_create_device(kvm, &cd);
3840                 if (r)
3841                         goto out;
3842
3843                 r = -EFAULT;
3844                 if (copy_to_user(argp, &cd, sizeof(cd)))
3845                         goto out;
3846
3847                 r = 0;
3848                 break;
3849         }
3850         case KVM_CHECK_EXTENSION:
3851                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3852                 break;
3853         default:
3854                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3855         }
3856 out:
3857         return r;
3858 }
3859
3860 #ifdef CONFIG_KVM_COMPAT
3861 struct compat_kvm_dirty_log {
3862         __u32 slot;
3863         __u32 padding1;
3864         union {
3865                 compat_uptr_t dirty_bitmap; /* one bit per page */
3866                 __u64 padding2;
3867         };
3868 };
3869
3870 static long kvm_vm_compat_ioctl(struct file *filp,
3871                            unsigned int ioctl, unsigned long arg)
3872 {
3873         struct kvm *kvm = filp->private_data;
3874         int r;
3875
3876         if (kvm->mm != current->mm)
3877                 return -EIO;
3878         switch (ioctl) {
3879         case KVM_GET_DIRTY_LOG: {
3880                 struct compat_kvm_dirty_log compat_log;
3881                 struct kvm_dirty_log log;
3882
3883                 if (copy_from_user(&compat_log, (void __user *)arg,
3884                                    sizeof(compat_log)))
3885                         return -EFAULT;
3886                 log.slot         = compat_log.slot;
3887                 log.padding1     = compat_log.padding1;
3888                 log.padding2     = compat_log.padding2;
3889                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3890
3891                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3892                 break;
3893         }
3894         default:
3895                 r = kvm_vm_ioctl(filp, ioctl, arg);
3896         }
3897         return r;
3898 }
3899 #endif
3900
3901 static struct file_operations kvm_vm_fops = {
3902         .release        = kvm_vm_release,
3903         .unlocked_ioctl = kvm_vm_ioctl,
3904         .llseek         = noop_llseek,
3905         KVM_COMPAT(kvm_vm_compat_ioctl),
3906 };
3907
3908 static int kvm_dev_ioctl_create_vm(unsigned long type)
3909 {
3910         int r;
3911         struct kvm *kvm;
3912         struct file *file;
3913
3914         kvm = kvm_create_vm(type);
3915         if (IS_ERR(kvm))
3916                 return PTR_ERR(kvm);
3917 #ifdef CONFIG_KVM_MMIO
3918         r = kvm_coalesced_mmio_init(kvm);
3919         if (r < 0)
3920                 goto put_kvm;
3921 #endif
3922         r = get_unused_fd_flags(O_CLOEXEC);
3923         if (r < 0)
3924                 goto put_kvm;
3925
3926         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3927         if (IS_ERR(file)) {
3928                 put_unused_fd(r);
3929                 r = PTR_ERR(file);
3930                 goto put_kvm;
3931         }
3932
3933         /*
3934          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3935          * already set, with ->release() being kvm_vm_release().  In error
3936          * cases it will be called by the final fput(file) and will take
3937          * care of doing kvm_put_kvm(kvm).
3938          */
3939         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3940                 put_unused_fd(r);
3941                 fput(file);
3942                 return -ENOMEM;
3943         }
3944         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3945
3946         fd_install(r, file);
3947         return r;
3948
3949 put_kvm:
3950         kvm_put_kvm(kvm);
3951         return r;
3952 }
3953
3954 static long kvm_dev_ioctl(struct file *filp,
3955                           unsigned int ioctl, unsigned long arg)
3956 {
3957         long r = -EINVAL;
3958
3959         switch (ioctl) {
3960         case KVM_GET_API_VERSION:
3961                 if (arg)
3962                         goto out;
3963                 r = KVM_API_VERSION;
3964                 break;
3965         case KVM_CREATE_VM:
3966                 r = kvm_dev_ioctl_create_vm(arg);
3967                 break;
3968         case KVM_CHECK_EXTENSION:
3969                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3970                 break;
3971         case KVM_GET_VCPU_MMAP_SIZE:
3972                 if (arg)
3973                         goto out;
3974                 r = PAGE_SIZE;     /* struct kvm_run */
3975 #ifdef CONFIG_X86
3976                 r += PAGE_SIZE;    /* pio data page */
3977 #endif
3978 #ifdef CONFIG_KVM_MMIO
3979                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3980 #endif
3981                 break;
3982         case KVM_TRACE_ENABLE:
3983         case KVM_TRACE_PAUSE:
3984         case KVM_TRACE_DISABLE:
3985                 r = -EOPNOTSUPP;
3986                 break;
3987         default:
3988                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3989         }
3990 out:
3991         return r;
3992 }
3993
3994 static struct file_operations kvm_chardev_ops = {
3995         .unlocked_ioctl = kvm_dev_ioctl,
3996         .llseek         = noop_llseek,
3997         KVM_COMPAT(kvm_dev_ioctl),
3998 };
3999
4000 static struct miscdevice kvm_dev = {
4001         KVM_MINOR,
4002         "kvm",
4003         &kvm_chardev_ops,
4004 };
4005
4006 static void hardware_enable_nolock(void *junk)
4007 {
4008         int cpu = raw_smp_processor_id();
4009         int r;
4010
4011         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4012                 return;
4013
4014         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4015
4016         r = kvm_arch_hardware_enable();
4017
4018         if (r) {
4019                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4020                 atomic_inc(&hardware_enable_failed);
4021                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4022         }
4023 }
4024
4025 static int kvm_starting_cpu(unsigned int cpu)
4026 {
4027         raw_spin_lock(&kvm_count_lock);
4028         if (kvm_usage_count)
4029                 hardware_enable_nolock(NULL);
4030         raw_spin_unlock(&kvm_count_lock);
4031         return 0;
4032 }
4033
4034 static void hardware_disable_nolock(void *junk)
4035 {
4036         int cpu = raw_smp_processor_id();
4037
4038         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4039                 return;
4040         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4041         kvm_arch_hardware_disable();
4042 }
4043
4044 static int kvm_dying_cpu(unsigned int cpu)
4045 {
4046         raw_spin_lock(&kvm_count_lock);
4047         if (kvm_usage_count)
4048                 hardware_disable_nolock(NULL);
4049         raw_spin_unlock(&kvm_count_lock);
4050         return 0;
4051 }
4052
4053 static void hardware_disable_all_nolock(void)
4054 {
4055         BUG_ON(!kvm_usage_count);
4056
4057         kvm_usage_count--;
4058         if (!kvm_usage_count)
4059                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4060 }
4061
4062 static void hardware_disable_all(void)
4063 {
4064         raw_spin_lock(&kvm_count_lock);
4065         hardware_disable_all_nolock();
4066         raw_spin_unlock(&kvm_count_lock);
4067 }
4068
4069 static int hardware_enable_all(void)
4070 {
4071         int r = 0;
4072
4073         raw_spin_lock(&kvm_count_lock);
4074
4075         kvm_usage_count++;
4076         if (kvm_usage_count == 1) {
4077                 atomic_set(&hardware_enable_failed, 0);
4078                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4079
4080                 if (atomic_read(&hardware_enable_failed)) {
4081                         hardware_disable_all_nolock();
4082                         r = -EBUSY;
4083                 }
4084         }
4085
4086         raw_spin_unlock(&kvm_count_lock);
4087
4088         return r;
4089 }
4090
4091 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4092                       void *v)
4093 {
4094         /*
4095          * Some (well, at least mine) BIOSes hang on reboot if
4096          * in vmx root mode.
4097          *
4098          * And Intel TXT required VMX off for all cpu when system shutdown.
4099          */
4100         pr_info("kvm: exiting hardware virtualization\n");
4101         kvm_rebooting = true;
4102         on_each_cpu(hardware_disable_nolock, NULL, 1);
4103         return NOTIFY_OK;
4104 }
4105
4106 static struct notifier_block kvm_reboot_notifier = {
4107         .notifier_call = kvm_reboot,
4108         .priority = 0,
4109 };
4110
4111 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4112 {
4113         int i;
4114
4115         for (i = 0; i < bus->dev_count; i++) {
4116                 struct kvm_io_device *pos = bus->range[i].dev;
4117
4118                 kvm_iodevice_destructor(pos);
4119         }
4120         kfree(bus);
4121 }
4122
4123 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4124                                  const struct kvm_io_range *r2)
4125 {
4126         gpa_t addr1 = r1->addr;
4127         gpa_t addr2 = r2->addr;
4128
4129         if (addr1 < addr2)
4130                 return -1;
4131
4132         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4133          * accept any overlapping write.  Any order is acceptable for
4134          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4135          * we process all of them.
4136          */
4137         if (r2->len) {
4138                 addr1 += r1->len;
4139                 addr2 += r2->len;
4140         }
4141
4142         if (addr1 > addr2)
4143                 return 1;
4144
4145         return 0;
4146 }
4147
4148 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4149 {
4150         return kvm_io_bus_cmp(p1, p2);
4151 }
4152
4153 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4154                              gpa_t addr, int len)
4155 {
4156         struct kvm_io_range *range, key;
4157         int off;
4158
4159         key = (struct kvm_io_range) {
4160                 .addr = addr,
4161                 .len = len,
4162         };
4163
4164         range = bsearch(&key, bus->range, bus->dev_count,
4165                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4166         if (range == NULL)
4167                 return -ENOENT;
4168
4169         off = range - bus->range;
4170
4171         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4172                 off--;
4173
4174         return off;
4175 }
4176
4177 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4178                               struct kvm_io_range *range, const void *val)
4179 {
4180         int idx;
4181
4182         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4183         if (idx < 0)
4184                 return -EOPNOTSUPP;
4185
4186         while (idx < bus->dev_count &&
4187                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4188                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4189                                         range->len, val))
4190                         return idx;
4191                 idx++;
4192         }
4193
4194         return -EOPNOTSUPP;
4195 }
4196
4197 /* kvm_io_bus_write - called under kvm->slots_lock */
4198 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4199                      int len, const void *val)
4200 {
4201         struct kvm_io_bus *bus;
4202         struct kvm_io_range range;
4203         int r;
4204
4205         range = (struct kvm_io_range) {
4206                 .addr = addr,
4207                 .len = len,
4208         };
4209
4210         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4211         if (!bus)
4212                 return -ENOMEM;
4213         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4214         return r < 0 ? r : 0;
4215 }
4216 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4217
4218 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4219 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4220                             gpa_t addr, int len, const void *val, long cookie)
4221 {
4222         struct kvm_io_bus *bus;
4223         struct kvm_io_range range;
4224
4225         range = (struct kvm_io_range) {
4226                 .addr = addr,
4227                 .len = len,
4228         };
4229
4230         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4231         if (!bus)
4232                 return -ENOMEM;
4233
4234         /* First try the device referenced by cookie. */
4235         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4236             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4237                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4238                                         val))
4239                         return cookie;
4240
4241         /*
4242          * cookie contained garbage; fall back to search and return the
4243          * correct cookie value.
4244          */
4245         return __kvm_io_bus_write(vcpu, bus, &range, val);
4246 }
4247
4248 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4249                              struct kvm_io_range *range, void *val)
4250 {
4251         int idx;
4252
4253         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4254         if (idx < 0)
4255                 return -EOPNOTSUPP;
4256
4257         while (idx < bus->dev_count &&
4258                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4259                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4260                                        range->len, val))
4261                         return idx;
4262                 idx++;
4263         }
4264
4265         return -EOPNOTSUPP;
4266 }
4267
4268 /* kvm_io_bus_read - called under kvm->slots_lock */
4269 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4270                     int len, void *val)
4271 {
4272         struct kvm_io_bus *bus;
4273         struct kvm_io_range range;
4274         int r;
4275
4276         range = (struct kvm_io_range) {
4277                 .addr = addr,
4278                 .len = len,
4279         };
4280
4281         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4282         if (!bus)
4283                 return -ENOMEM;
4284         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4285         return r < 0 ? r : 0;
4286 }
4287
4288 /* Caller must hold slots_lock. */
4289 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4290                             int len, struct kvm_io_device *dev)
4291 {
4292         int i;
4293         struct kvm_io_bus *new_bus, *bus;
4294         struct kvm_io_range range;
4295
4296         bus = kvm_get_bus(kvm, bus_idx);
4297         if (!bus)
4298                 return -ENOMEM;
4299
4300         /* exclude ioeventfd which is limited by maximum fd */
4301         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4302                 return -ENOSPC;
4303
4304         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4305                           GFP_KERNEL_ACCOUNT);
4306         if (!new_bus)
4307                 return -ENOMEM;
4308
4309         range = (struct kvm_io_range) {
4310                 .addr = addr,
4311                 .len = len,
4312                 .dev = dev,
4313         };
4314
4315         for (i = 0; i < bus->dev_count; i++)
4316                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4317                         break;
4318
4319         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4320         new_bus->dev_count++;
4321         new_bus->range[i] = range;
4322         memcpy(new_bus->range + i + 1, bus->range + i,
4323                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4324         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4325         synchronize_srcu_expedited(&kvm->srcu);
4326         kfree(bus);
4327
4328         return 0;
4329 }
4330
4331 /* Caller must hold slots_lock. */
4332 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4333                                struct kvm_io_device *dev)
4334 {
4335         int i;
4336         struct kvm_io_bus *new_bus, *bus;
4337
4338         bus = kvm_get_bus(kvm, bus_idx);
4339         if (!bus)
4340                 return;
4341
4342         for (i = 0; i < bus->dev_count; i++)
4343                 if (bus->range[i].dev == dev) {
4344                         break;
4345                 }
4346
4347         if (i == bus->dev_count)
4348                 return;
4349
4350         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4351                           GFP_KERNEL_ACCOUNT);
4352         if (!new_bus)  {
4353                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4354                 goto broken;
4355         }
4356
4357         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4358         new_bus->dev_count--;
4359         memcpy(new_bus->range + i, bus->range + i + 1,
4360                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4361
4362 broken:
4363         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4364         synchronize_srcu_expedited(&kvm->srcu);
4365         kfree(bus);
4366         return;
4367 }
4368
4369 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4370                                          gpa_t addr)
4371 {
4372         struct kvm_io_bus *bus;
4373         int dev_idx, srcu_idx;
4374         struct kvm_io_device *iodev = NULL;
4375
4376         srcu_idx = srcu_read_lock(&kvm->srcu);
4377
4378         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4379         if (!bus)
4380                 goto out_unlock;
4381
4382         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4383         if (dev_idx < 0)
4384                 goto out_unlock;
4385
4386         iodev = bus->range[dev_idx].dev;
4387
4388 out_unlock:
4389         srcu_read_unlock(&kvm->srcu, srcu_idx);
4390
4391         return iodev;
4392 }
4393 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4394
4395 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4396                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4397                            const char *fmt)
4398 {
4399         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4400                                           inode->i_private;
4401
4402         /* The debugfs files are a reference to the kvm struct which
4403          * is still valid when kvm_destroy_vm is called.
4404          * To avoid the race between open and the removal of the debugfs
4405          * directory we test against the users count.
4406          */
4407         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4408                 return -ENOENT;
4409
4410         if (simple_attr_open(inode, file, get,
4411                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4412                     ? set : NULL,
4413                     fmt)) {
4414                 kvm_put_kvm(stat_data->kvm);
4415                 return -ENOMEM;
4416         }
4417
4418         return 0;
4419 }
4420
4421 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4422 {
4423         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4424                                           inode->i_private;
4425
4426         simple_attr_release(inode, file);
4427         kvm_put_kvm(stat_data->kvm);
4428
4429         return 0;
4430 }
4431
4432 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4433 {
4434         *val = *(ulong *)((void *)kvm + offset);
4435
4436         return 0;
4437 }
4438
4439 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4440 {
4441         *(ulong *)((void *)kvm + offset) = 0;
4442
4443         return 0;
4444 }
4445
4446 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4447 {
4448         int i;
4449         struct kvm_vcpu *vcpu;
4450
4451         *val = 0;
4452
4453         kvm_for_each_vcpu(i, vcpu, kvm)
4454                 *val += *(u64 *)((void *)vcpu + offset);
4455
4456         return 0;
4457 }
4458
4459 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4460 {
4461         int i;
4462         struct kvm_vcpu *vcpu;
4463
4464         kvm_for_each_vcpu(i, vcpu, kvm)
4465                 *(u64 *)((void *)vcpu + offset) = 0;
4466
4467         return 0;
4468 }
4469
4470 static int kvm_stat_data_get(void *data, u64 *val)
4471 {
4472         int r = -EFAULT;
4473         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4474
4475         switch (stat_data->dbgfs_item->kind) {
4476         case KVM_STAT_VM:
4477                 r = kvm_get_stat_per_vm(stat_data->kvm,
4478                                         stat_data->dbgfs_item->offset, val);
4479                 break;
4480         case KVM_STAT_VCPU:
4481                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4482                                           stat_data->dbgfs_item->offset, val);
4483                 break;
4484         }
4485
4486         return r;
4487 }
4488
4489 static int kvm_stat_data_clear(void *data, u64 val)
4490 {
4491         int r = -EFAULT;
4492         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4493
4494         if (val)
4495                 return -EINVAL;
4496
4497         switch (stat_data->dbgfs_item->kind) {
4498         case KVM_STAT_VM:
4499                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4500                                           stat_data->dbgfs_item->offset);
4501                 break;
4502         case KVM_STAT_VCPU:
4503                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4504                                             stat_data->dbgfs_item->offset);
4505                 break;
4506         }
4507
4508         return r;
4509 }
4510
4511 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4512 {
4513         __simple_attr_check_format("%llu\n", 0ull);
4514         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4515                                 kvm_stat_data_clear, "%llu\n");
4516 }
4517
4518 static const struct file_operations stat_fops_per_vm = {
4519         .owner = THIS_MODULE,
4520         .open = kvm_stat_data_open,
4521         .release = kvm_debugfs_release,
4522         .read = simple_attr_read,
4523         .write = simple_attr_write,
4524         .llseek = no_llseek,
4525 };
4526
4527 static int vm_stat_get(void *_offset, u64 *val)
4528 {
4529         unsigned offset = (long)_offset;
4530         struct kvm *kvm;
4531         u64 tmp_val;
4532
4533         *val = 0;
4534         mutex_lock(&kvm_lock);
4535         list_for_each_entry(kvm, &vm_list, vm_list) {
4536                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4537                 *val += tmp_val;
4538         }
4539         mutex_unlock(&kvm_lock);
4540         return 0;
4541 }
4542
4543 static int vm_stat_clear(void *_offset, u64 val)
4544 {
4545         unsigned offset = (long)_offset;
4546         struct kvm *kvm;
4547
4548         if (val)
4549                 return -EINVAL;
4550
4551         mutex_lock(&kvm_lock);
4552         list_for_each_entry(kvm, &vm_list, vm_list) {
4553                 kvm_clear_stat_per_vm(kvm, offset);
4554         }
4555         mutex_unlock(&kvm_lock);
4556
4557         return 0;
4558 }
4559
4560 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4561
4562 static int vcpu_stat_get(void *_offset, u64 *val)
4563 {
4564         unsigned offset = (long)_offset;
4565         struct kvm *kvm;
4566         u64 tmp_val;
4567
4568         *val = 0;
4569         mutex_lock(&kvm_lock);
4570         list_for_each_entry(kvm, &vm_list, vm_list) {
4571                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4572                 *val += tmp_val;
4573         }
4574         mutex_unlock(&kvm_lock);
4575         return 0;
4576 }
4577
4578 static int vcpu_stat_clear(void *_offset, u64 val)
4579 {
4580         unsigned offset = (long)_offset;
4581         struct kvm *kvm;
4582
4583         if (val)
4584                 return -EINVAL;
4585
4586         mutex_lock(&kvm_lock);
4587         list_for_each_entry(kvm, &vm_list, vm_list) {
4588                 kvm_clear_stat_per_vcpu(kvm, offset);
4589         }
4590         mutex_unlock(&kvm_lock);
4591
4592         return 0;
4593 }
4594
4595 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4596                         "%llu\n");
4597
4598 static const struct file_operations *stat_fops[] = {
4599         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4600         [KVM_STAT_VM]   = &vm_stat_fops,
4601 };
4602
4603 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4604 {
4605         struct kobj_uevent_env *env;
4606         unsigned long long created, active;
4607
4608         if (!kvm_dev.this_device || !kvm)
4609                 return;
4610
4611         mutex_lock(&kvm_lock);
4612         if (type == KVM_EVENT_CREATE_VM) {
4613                 kvm_createvm_count++;
4614                 kvm_active_vms++;
4615         } else if (type == KVM_EVENT_DESTROY_VM) {
4616                 kvm_active_vms--;
4617         }
4618         created = kvm_createvm_count;
4619         active = kvm_active_vms;
4620         mutex_unlock(&kvm_lock);
4621
4622         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4623         if (!env)
4624                 return;
4625
4626         add_uevent_var(env, "CREATED=%llu", created);
4627         add_uevent_var(env, "COUNT=%llu", active);
4628
4629         if (type == KVM_EVENT_CREATE_VM) {
4630                 add_uevent_var(env, "EVENT=create");
4631                 kvm->userspace_pid = task_pid_nr(current);
4632         } else if (type == KVM_EVENT_DESTROY_VM) {
4633                 add_uevent_var(env, "EVENT=destroy");
4634         }
4635         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4636
4637         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4638                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4639
4640                 if (p) {
4641                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4642                         if (!IS_ERR(tmp))
4643                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4644                         kfree(p);
4645                 }
4646         }
4647         /* no need for checks, since we are adding at most only 5 keys */
4648         env->envp[env->envp_idx++] = NULL;
4649         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4650         kfree(env);
4651 }
4652
4653 static void kvm_init_debug(void)
4654 {
4655         struct kvm_stats_debugfs_item *p;
4656
4657         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4658
4659         kvm_debugfs_num_entries = 0;
4660         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4661                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4662                                     kvm_debugfs_dir, (void *)(long)p->offset,
4663                                     stat_fops[p->kind]);
4664         }
4665 }
4666
4667 static int kvm_suspend(void)
4668 {
4669         if (kvm_usage_count)
4670                 hardware_disable_nolock(NULL);
4671         return 0;
4672 }
4673
4674 static void kvm_resume(void)
4675 {
4676         if (kvm_usage_count) {
4677 #ifdef CONFIG_LOCKDEP
4678                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4679 #endif
4680                 hardware_enable_nolock(NULL);
4681         }
4682 }
4683
4684 static struct syscore_ops kvm_syscore_ops = {
4685         .suspend = kvm_suspend,
4686         .resume = kvm_resume,
4687 };
4688
4689 static inline
4690 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4691 {
4692         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4693 }
4694
4695 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4696 {
4697         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4698
4699         WRITE_ONCE(vcpu->preempted, false);
4700         WRITE_ONCE(vcpu->ready, false);
4701
4702         __this_cpu_write(kvm_running_vcpu, vcpu);
4703         kvm_arch_sched_in(vcpu, cpu);
4704         kvm_arch_vcpu_load(vcpu, cpu);
4705 }
4706
4707 static void kvm_sched_out(struct preempt_notifier *pn,
4708                           struct task_struct *next)
4709 {
4710         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4711
4712         if (current->state == TASK_RUNNING) {
4713                 WRITE_ONCE(vcpu->preempted, true);
4714                 WRITE_ONCE(vcpu->ready, true);
4715         }
4716         kvm_arch_vcpu_put(vcpu);
4717         __this_cpu_write(kvm_running_vcpu, NULL);
4718 }
4719
4720 /**
4721  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4722  *
4723  * We can disable preemption locally around accessing the per-CPU variable,
4724  * and use the resolved vcpu pointer after enabling preemption again,
4725  * because even if the current thread is migrated to another CPU, reading
4726  * the per-CPU value later will give us the same value as we update the
4727  * per-CPU variable in the preempt notifier handlers.
4728  */
4729 struct kvm_vcpu *kvm_get_running_vcpu(void)
4730 {
4731         struct kvm_vcpu *vcpu;
4732
4733         preempt_disable();
4734         vcpu = __this_cpu_read(kvm_running_vcpu);
4735         preempt_enable();
4736
4737         return vcpu;
4738 }
4739 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4740
4741 /**
4742  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4743  */
4744 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4745 {
4746         return &kvm_running_vcpu;
4747 }
4748
4749 struct kvm_cpu_compat_check {
4750         void *opaque;
4751         int *ret;
4752 };
4753
4754 static void check_processor_compat(void *data)
4755 {
4756         struct kvm_cpu_compat_check *c = data;
4757
4758         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4759 }
4760
4761 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4762                   struct module *module)
4763 {
4764         struct kvm_cpu_compat_check c;
4765         int r;
4766         int cpu;
4767
4768         r = kvm_arch_init(opaque);
4769         if (r)
4770                 goto out_fail;
4771
4772         /*
4773          * kvm_arch_init makes sure there's at most one caller
4774          * for architectures that support multiple implementations,
4775          * like intel and amd on x86.
4776          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4777          * conflicts in case kvm is already setup for another implementation.
4778          */
4779         r = kvm_irqfd_init();
4780         if (r)
4781                 goto out_irqfd;
4782
4783         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4784                 r = -ENOMEM;
4785                 goto out_free_0;
4786         }
4787
4788         r = kvm_arch_hardware_setup(opaque);
4789         if (r < 0)
4790                 goto out_free_1;
4791
4792         c.ret = &r;
4793         c.opaque = opaque;
4794         for_each_online_cpu(cpu) {
4795                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4796                 if (r < 0)
4797                         goto out_free_2;
4798         }
4799
4800         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4801                                       kvm_starting_cpu, kvm_dying_cpu);
4802         if (r)
4803                 goto out_free_2;
4804         register_reboot_notifier(&kvm_reboot_notifier);
4805
4806         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4807         if (!vcpu_align)
4808                 vcpu_align = __alignof__(struct kvm_vcpu);
4809         kvm_vcpu_cache =
4810                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4811                                            SLAB_ACCOUNT,
4812                                            offsetof(struct kvm_vcpu, arch),
4813                                            sizeof_field(struct kvm_vcpu, arch),
4814                                            NULL);
4815         if (!kvm_vcpu_cache) {
4816                 r = -ENOMEM;
4817                 goto out_free_3;
4818         }
4819
4820         r = kvm_async_pf_init();
4821         if (r)
4822                 goto out_free;
4823
4824         kvm_chardev_ops.owner = module;
4825         kvm_vm_fops.owner = module;
4826         kvm_vcpu_fops.owner = module;
4827
4828         r = misc_register(&kvm_dev);
4829         if (r) {
4830                 pr_err("kvm: misc device register failed\n");
4831                 goto out_unreg;
4832         }
4833
4834         register_syscore_ops(&kvm_syscore_ops);
4835
4836         kvm_preempt_ops.sched_in = kvm_sched_in;
4837         kvm_preempt_ops.sched_out = kvm_sched_out;
4838
4839         kvm_init_debug();
4840
4841         r = kvm_vfio_ops_init();
4842         WARN_ON(r);
4843
4844         return 0;
4845
4846 out_unreg:
4847         kvm_async_pf_deinit();
4848 out_free:
4849         kmem_cache_destroy(kvm_vcpu_cache);
4850 out_free_3:
4851         unregister_reboot_notifier(&kvm_reboot_notifier);
4852         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4853 out_free_2:
4854         kvm_arch_hardware_unsetup();
4855 out_free_1:
4856         free_cpumask_var(cpus_hardware_enabled);
4857 out_free_0:
4858         kvm_irqfd_exit();
4859 out_irqfd:
4860         kvm_arch_exit();
4861 out_fail:
4862         return r;
4863 }
4864 EXPORT_SYMBOL_GPL(kvm_init);
4865
4866 void kvm_exit(void)
4867 {
4868         debugfs_remove_recursive(kvm_debugfs_dir);
4869         misc_deregister(&kvm_dev);
4870         kmem_cache_destroy(kvm_vcpu_cache);
4871         kvm_async_pf_deinit();
4872         unregister_syscore_ops(&kvm_syscore_ops);
4873         unregister_reboot_notifier(&kvm_reboot_notifier);
4874         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4875         on_each_cpu(hardware_disable_nolock, NULL, 1);
4876         kvm_arch_hardware_unsetup();
4877         kvm_arch_exit();
4878         kvm_irqfd_exit();
4879         free_cpumask_var(cpus_hardware_enabled);
4880         kvm_vfio_ops_exit();
4881 }
4882 EXPORT_SYMBOL_GPL(kvm_exit);
4883
4884 struct kvm_vm_worker_thread_context {
4885         struct kvm *kvm;
4886         struct task_struct *parent;
4887         struct completion init_done;
4888         kvm_vm_thread_fn_t thread_fn;
4889         uintptr_t data;
4890         int err;
4891 };
4892
4893 static int kvm_vm_worker_thread(void *context)
4894 {
4895         /*
4896          * The init_context is allocated on the stack of the parent thread, so
4897          * we have to locally copy anything that is needed beyond initialization
4898          */
4899         struct kvm_vm_worker_thread_context *init_context = context;
4900         struct kvm *kvm = init_context->kvm;
4901         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4902         uintptr_t data = init_context->data;
4903         int err;
4904
4905         err = kthread_park(current);
4906         /* kthread_park(current) is never supposed to return an error */
4907         WARN_ON(err != 0);
4908         if (err)
4909                 goto init_complete;
4910
4911         err = cgroup_attach_task_all(init_context->parent, current);
4912         if (err) {
4913                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4914                         __func__, err);
4915                 goto init_complete;
4916         }
4917
4918         set_user_nice(current, task_nice(init_context->parent));
4919
4920 init_complete:
4921         init_context->err = err;
4922         complete(&init_context->init_done);
4923         init_context = NULL;
4924
4925         if (err)
4926                 return err;
4927
4928         /* Wait to be woken up by the spawner before proceeding. */
4929         kthread_parkme();
4930
4931         if (!kthread_should_stop())
4932                 err = thread_fn(kvm, data);
4933
4934         return err;
4935 }
4936
4937 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4938                                 uintptr_t data, const char *name,
4939                                 struct task_struct **thread_ptr)
4940 {
4941         struct kvm_vm_worker_thread_context init_context = {};
4942         struct task_struct *thread;
4943
4944         *thread_ptr = NULL;
4945         init_context.kvm = kvm;
4946         init_context.parent = current;
4947         init_context.thread_fn = thread_fn;
4948         init_context.data = data;
4949         init_completion(&init_context.init_done);
4950
4951         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4952                              "%s-%d", name, task_pid_nr(current));
4953         if (IS_ERR(thread))
4954                 return PTR_ERR(thread);
4955
4956         /* kthread_run is never supposed to return NULL */
4957         WARN_ON(thread == NULL);
4958
4959         wait_for_completion(&init_context.init_done);
4960
4961         if (!init_context.err)
4962                 *thread_ptr = thread;
4963
4964         return init_context.err;
4965 }