ceph: defer stopping mdsc delayed_work
[platform/kernel/linux-rpi.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100  * Ordering of locks:
101  *
102  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static struct file_operations kvm_chardev_ops;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158 {
159 }
160
161 bool kvm_is_zone_device_page(struct page *page)
162 {
163         /*
164          * The metadata used by is_zone_device_page() to determine whether or
165          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166          * the device has been pinned, e.g. by get_user_pages().  WARN if the
167          * page_count() is zero to help detect bad usage of this helper.
168          */
169         if (WARN_ON_ONCE(!page_count(page)))
170                 return false;
171
172         return is_zone_device_page(page);
173 }
174
175 /*
176  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
178  * is likely incomplete, it has been compiled purely through people wanting to
179  * back guest with a certain type of memory and encountering issues.
180  */
181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
182 {
183         struct page *page;
184
185         if (!pfn_valid(pfn))
186                 return NULL;
187
188         page = pfn_to_page(pfn);
189         if (!PageReserved(page))
190                 return page;
191
192         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193         if (is_zero_pfn(pfn))
194                 return page;
195
196         /*
197          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198          * perspective they are "normal" pages, albeit with slightly different
199          * usage rules.
200          */
201         if (kvm_is_zone_device_page(page))
202                 return page;
203
204         return NULL;
205 }
206
207 /*
208  * Switches to specified vcpu, until a matching vcpu_put()
209  */
210 void vcpu_load(struct kvm_vcpu *vcpu)
211 {
212         int cpu = get_cpu();
213
214         __this_cpu_write(kvm_running_vcpu, vcpu);
215         preempt_notifier_register(&vcpu->preempt_notifier);
216         kvm_arch_vcpu_load(vcpu, cpu);
217         put_cpu();
218 }
219 EXPORT_SYMBOL_GPL(vcpu_load);
220
221 void vcpu_put(struct kvm_vcpu *vcpu)
222 {
223         preempt_disable();
224         kvm_arch_vcpu_put(vcpu);
225         preempt_notifier_unregister(&vcpu->preempt_notifier);
226         __this_cpu_write(kvm_running_vcpu, NULL);
227         preempt_enable();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_put);
230
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233 {
234         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235
236         /*
237          * We need to wait for the VCPU to reenable interrupts and get out of
238          * READING_SHADOW_PAGE_TABLES mode.
239          */
240         if (req & KVM_REQUEST_WAIT)
241                 return mode != OUTSIDE_GUEST_MODE;
242
243         /*
244          * Need to kick a running VCPU, but otherwise there is nothing to do.
245          */
246         return mode == IN_GUEST_MODE;
247 }
248
249 static void ack_kick(void *_completed)
250 {
251 }
252
253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
254 {
255         if (cpumask_empty(cpus))
256                 return false;
257
258         smp_call_function_many(cpus, ack_kick, NULL, wait);
259         return true;
260 }
261
262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263                                   struct cpumask *tmp, int current_cpu)
264 {
265         int cpu;
266
267         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268                 __kvm_make_request(req, vcpu);
269
270         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271                 return;
272
273         /*
274          * Note, the vCPU could get migrated to a different pCPU at any point
275          * after kvm_request_needs_ipi(), which could result in sending an IPI
276          * to the previous pCPU.  But, that's OK because the purpose of the IPI
277          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279          * after this point is also OK, as the requirement is only that KVM wait
280          * for vCPUs that were reading SPTEs _before_ any changes were
281          * finalized. See kvm_vcpu_kick() for more details on handling requests.
282          */
283         if (kvm_request_needs_ipi(vcpu, req)) {
284                 cpu = READ_ONCE(vcpu->cpu);
285                 if (cpu != -1 && cpu != current_cpu)
286                         __cpumask_set_cpu(cpu, tmp);
287         }
288 }
289
290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291                                  unsigned long *vcpu_bitmap)
292 {
293         struct kvm_vcpu *vcpu;
294         struct cpumask *cpus;
295         int i, me;
296         bool called;
297
298         me = get_cpu();
299
300         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301         cpumask_clear(cpus);
302
303         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304                 vcpu = kvm_get_vcpu(kvm, i);
305                 if (!vcpu)
306                         continue;
307                 kvm_make_vcpu_request(vcpu, req, cpus, me);
308         }
309
310         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
311         put_cpu();
312
313         return called;
314 }
315
316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317                                       struct kvm_vcpu *except)
318 {
319         struct kvm_vcpu *vcpu;
320         struct cpumask *cpus;
321         unsigned long i;
322         bool called;
323         int me;
324
325         me = get_cpu();
326
327         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328         cpumask_clear(cpus);
329
330         kvm_for_each_vcpu(i, vcpu, kvm) {
331                 if (vcpu == except)
332                         continue;
333                 kvm_make_vcpu_request(vcpu, req, cpus, me);
334         }
335
336         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
337         put_cpu();
338
339         return called;
340 }
341
342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
343 {
344         return kvm_make_all_cpus_request_except(kvm, req, NULL);
345 }
346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
347
348 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
349 void kvm_flush_remote_tlbs(struct kvm *kvm)
350 {
351         ++kvm->stat.generic.remote_tlb_flush_requests;
352
353         /*
354          * We want to publish modifications to the page tables before reading
355          * mode. Pairs with a memory barrier in arch-specific code.
356          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
357          * and smp_mb in walk_shadow_page_lockless_begin/end.
358          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
359          *
360          * There is already an smp_mb__after_atomic() before
361          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
362          * barrier here.
363          */
364         if (!kvm_arch_flush_remote_tlb(kvm)
365             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
366                 ++kvm->stat.generic.remote_tlb_flush;
367 }
368 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
369 #endif
370
371 static void kvm_flush_shadow_all(struct kvm *kvm)
372 {
373         kvm_arch_flush_shadow_all(kvm);
374         kvm_arch_guest_memory_reclaimed(kvm);
375 }
376
377 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
378 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
379                                                gfp_t gfp_flags)
380 {
381         gfp_flags |= mc->gfp_zero;
382
383         if (mc->kmem_cache)
384                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
385         else
386                 return (void *)__get_free_page(gfp_flags);
387 }
388
389 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
390 {
391         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
392         void *obj;
393
394         if (mc->nobjs >= min)
395                 return 0;
396
397         if (unlikely(!mc->objects)) {
398                 if (WARN_ON_ONCE(!capacity))
399                         return -EIO;
400
401                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
402                 if (!mc->objects)
403                         return -ENOMEM;
404
405                 mc->capacity = capacity;
406         }
407
408         /* It is illegal to request a different capacity across topups. */
409         if (WARN_ON_ONCE(mc->capacity != capacity))
410                 return -EIO;
411
412         while (mc->nobjs < mc->capacity) {
413                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
414                 if (!obj)
415                         return mc->nobjs >= min ? 0 : -ENOMEM;
416                 mc->objects[mc->nobjs++] = obj;
417         }
418         return 0;
419 }
420
421 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
422 {
423         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
424 }
425
426 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
427 {
428         return mc->nobjs;
429 }
430
431 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
432 {
433         while (mc->nobjs) {
434                 if (mc->kmem_cache)
435                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
436                 else
437                         free_page((unsigned long)mc->objects[--mc->nobjs]);
438         }
439
440         kvfree(mc->objects);
441
442         mc->objects = NULL;
443         mc->capacity = 0;
444 }
445
446 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
447 {
448         void *p;
449
450         if (WARN_ON(!mc->nobjs))
451                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
452         else
453                 p = mc->objects[--mc->nobjs];
454         BUG_ON(!p);
455         return p;
456 }
457 #endif
458
459 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
460 {
461         mutex_init(&vcpu->mutex);
462         vcpu->cpu = -1;
463         vcpu->kvm = kvm;
464         vcpu->vcpu_id = id;
465         vcpu->pid = NULL;
466 #ifndef __KVM_HAVE_ARCH_WQP
467         rcuwait_init(&vcpu->wait);
468 #endif
469         kvm_async_pf_vcpu_init(vcpu);
470
471         kvm_vcpu_set_in_spin_loop(vcpu, false);
472         kvm_vcpu_set_dy_eligible(vcpu, false);
473         vcpu->preempted = false;
474         vcpu->ready = false;
475         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
476         vcpu->last_used_slot = NULL;
477
478         /* Fill the stats id string for the vcpu */
479         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
480                  task_pid_nr(current), id);
481 }
482
483 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
484 {
485         kvm_arch_vcpu_destroy(vcpu);
486         kvm_dirty_ring_free(&vcpu->dirty_ring);
487
488         /*
489          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
490          * the vcpu->pid pointer, and at destruction time all file descriptors
491          * are already gone.
492          */
493         put_pid(rcu_dereference_protected(vcpu->pid, 1));
494
495         free_page((unsigned long)vcpu->run);
496         kmem_cache_free(kvm_vcpu_cache, vcpu);
497 }
498
499 void kvm_destroy_vcpus(struct kvm *kvm)
500 {
501         unsigned long i;
502         struct kvm_vcpu *vcpu;
503
504         kvm_for_each_vcpu(i, vcpu, kvm) {
505                 kvm_vcpu_destroy(vcpu);
506                 xa_erase(&kvm->vcpu_array, i);
507         }
508
509         atomic_set(&kvm->online_vcpus, 0);
510 }
511 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
512
513 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
514 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
515 {
516         return container_of(mn, struct kvm, mmu_notifier);
517 }
518
519 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
520
521 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
522                              unsigned long end);
523
524 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
525
526 struct kvm_hva_range {
527         unsigned long start;
528         unsigned long end;
529         pte_t pte;
530         hva_handler_t handler;
531         on_lock_fn_t on_lock;
532         on_unlock_fn_t on_unlock;
533         bool flush_on_ret;
534         bool may_block;
535 };
536
537 /*
538  * Use a dedicated stub instead of NULL to indicate that there is no callback
539  * function/handler.  The compiler technically can't guarantee that a real
540  * function will have a non-zero address, and so it will generate code to
541  * check for !NULL, whereas comparing against a stub will be elided at compile
542  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
543  */
544 static void kvm_null_fn(void)
545 {
546
547 }
548 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
549
550 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
551 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
552         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
553              node;                                                           \
554              node = interval_tree_iter_next(node, start, last))      \
555
556 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
557                                                   const struct kvm_hva_range *range)
558 {
559         bool ret = false, locked = false;
560         struct kvm_gfn_range gfn_range;
561         struct kvm_memory_slot *slot;
562         struct kvm_memslots *slots;
563         int i, idx;
564
565         if (WARN_ON_ONCE(range->end <= range->start))
566                 return 0;
567
568         /* A null handler is allowed if and only if on_lock() is provided. */
569         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
570                          IS_KVM_NULL_FN(range->handler)))
571                 return 0;
572
573         idx = srcu_read_lock(&kvm->srcu);
574
575         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
576                 struct interval_tree_node *node;
577
578                 slots = __kvm_memslots(kvm, i);
579                 kvm_for_each_memslot_in_hva_range(node, slots,
580                                                   range->start, range->end - 1) {
581                         unsigned long hva_start, hva_end;
582
583                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
584                         hva_start = max(range->start, slot->userspace_addr);
585                         hva_end = min(range->end, slot->userspace_addr +
586                                                   (slot->npages << PAGE_SHIFT));
587
588                         /*
589                          * To optimize for the likely case where the address
590                          * range is covered by zero or one memslots, don't
591                          * bother making these conditional (to avoid writes on
592                          * the second or later invocation of the handler).
593                          */
594                         gfn_range.pte = range->pte;
595                         gfn_range.may_block = range->may_block;
596
597                         /*
598                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
599                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
600                          */
601                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
602                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
603                         gfn_range.slot = slot;
604
605                         if (!locked) {
606                                 locked = true;
607                                 KVM_MMU_LOCK(kvm);
608                                 if (!IS_KVM_NULL_FN(range->on_lock))
609                                         range->on_lock(kvm, range->start, range->end);
610                                 if (IS_KVM_NULL_FN(range->handler))
611                                         break;
612                         }
613                         ret |= range->handler(kvm, &gfn_range);
614                 }
615         }
616
617         if (range->flush_on_ret && ret)
618                 kvm_flush_remote_tlbs(kvm);
619
620         if (locked) {
621                 KVM_MMU_UNLOCK(kvm);
622                 if (!IS_KVM_NULL_FN(range->on_unlock))
623                         range->on_unlock(kvm);
624         }
625
626         srcu_read_unlock(&kvm->srcu, idx);
627
628         /* The notifiers are averse to booleans. :-( */
629         return (int)ret;
630 }
631
632 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
633                                                 unsigned long start,
634                                                 unsigned long end,
635                                                 pte_t pte,
636                                                 hva_handler_t handler)
637 {
638         struct kvm *kvm = mmu_notifier_to_kvm(mn);
639         const struct kvm_hva_range range = {
640                 .start          = start,
641                 .end            = end,
642                 .pte            = pte,
643                 .handler        = handler,
644                 .on_lock        = (void *)kvm_null_fn,
645                 .on_unlock      = (void *)kvm_null_fn,
646                 .flush_on_ret   = true,
647                 .may_block      = false,
648         };
649
650         return __kvm_handle_hva_range(kvm, &range);
651 }
652
653 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
654                                                          unsigned long start,
655                                                          unsigned long end,
656                                                          hva_handler_t handler)
657 {
658         struct kvm *kvm = mmu_notifier_to_kvm(mn);
659         const struct kvm_hva_range range = {
660                 .start          = start,
661                 .end            = end,
662                 .pte            = __pte(0),
663                 .handler        = handler,
664                 .on_lock        = (void *)kvm_null_fn,
665                 .on_unlock      = (void *)kvm_null_fn,
666                 .flush_on_ret   = false,
667                 .may_block      = false,
668         };
669
670         return __kvm_handle_hva_range(kvm, &range);
671 }
672
673 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
674 {
675         /*
676          * Skipping invalid memslots is correct if and only change_pte() is
677          * surrounded by invalidate_range_{start,end}(), which is currently
678          * guaranteed by the primary MMU.  If that ever changes, KVM needs to
679          * unmap the memslot instead of skipping the memslot to ensure that KVM
680          * doesn't hold references to the old PFN.
681          */
682         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
683
684         if (range->slot->flags & KVM_MEMSLOT_INVALID)
685                 return false;
686
687         return kvm_set_spte_gfn(kvm, range);
688 }
689
690 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
691                                         struct mm_struct *mm,
692                                         unsigned long address,
693                                         pte_t pte)
694 {
695         struct kvm *kvm = mmu_notifier_to_kvm(mn);
696
697         trace_kvm_set_spte_hva(address);
698
699         /*
700          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
701          * If mmu_invalidate_in_progress is zero, then no in-progress
702          * invalidations, including this one, found a relevant memslot at
703          * start(); rechecking memslots here is unnecessary.  Note, a false
704          * positive (count elevated by a different invalidation) is sub-optimal
705          * but functionally ok.
706          */
707         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
708         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
709                 return;
710
711         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
712 }
713
714 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
715                               unsigned long end)
716 {
717         /*
718          * The count increase must become visible at unlock time as no
719          * spte can be established without taking the mmu_lock and
720          * count is also read inside the mmu_lock critical section.
721          */
722         kvm->mmu_invalidate_in_progress++;
723         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
724                 kvm->mmu_invalidate_range_start = start;
725                 kvm->mmu_invalidate_range_end = end;
726         } else {
727                 /*
728                  * Fully tracking multiple concurrent ranges has diminishing
729                  * returns. Keep things simple and just find the minimal range
730                  * which includes the current and new ranges. As there won't be
731                  * enough information to subtract a range after its invalidate
732                  * completes, any ranges invalidated concurrently will
733                  * accumulate and persist until all outstanding invalidates
734                  * complete.
735                  */
736                 kvm->mmu_invalidate_range_start =
737                         min(kvm->mmu_invalidate_range_start, start);
738                 kvm->mmu_invalidate_range_end =
739                         max(kvm->mmu_invalidate_range_end, end);
740         }
741 }
742
743 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
744                                         const struct mmu_notifier_range *range)
745 {
746         struct kvm *kvm = mmu_notifier_to_kvm(mn);
747         const struct kvm_hva_range hva_range = {
748                 .start          = range->start,
749                 .end            = range->end,
750                 .pte            = __pte(0),
751                 .handler        = kvm_unmap_gfn_range,
752                 .on_lock        = kvm_mmu_invalidate_begin,
753                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
754                 .flush_on_ret   = true,
755                 .may_block      = mmu_notifier_range_blockable(range),
756         };
757
758         trace_kvm_unmap_hva_range(range->start, range->end);
759
760         /*
761          * Prevent memslot modification between range_start() and range_end()
762          * so that conditionally locking provides the same result in both
763          * functions.  Without that guarantee, the mmu_invalidate_in_progress
764          * adjustments will be imbalanced.
765          *
766          * Pairs with the decrement in range_end().
767          */
768         spin_lock(&kvm->mn_invalidate_lock);
769         kvm->mn_active_invalidate_count++;
770         spin_unlock(&kvm->mn_invalidate_lock);
771
772         /*
773          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
774          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
775          * each cache's lock.  There are relatively few caches in existence at
776          * any given time, and the caches themselves can check for hva overlap,
777          * i.e. don't need to rely on memslot overlap checks for performance.
778          * Because this runs without holding mmu_lock, the pfn caches must use
779          * mn_active_invalidate_count (see above) instead of
780          * mmu_invalidate_in_progress.
781          */
782         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
783                                           hva_range.may_block);
784
785         __kvm_handle_hva_range(kvm, &hva_range);
786
787         return 0;
788 }
789
790 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
791                             unsigned long end)
792 {
793         /*
794          * This sequence increase will notify the kvm page fault that
795          * the page that is going to be mapped in the spte could have
796          * been freed.
797          */
798         kvm->mmu_invalidate_seq++;
799         smp_wmb();
800         /*
801          * The above sequence increase must be visible before the
802          * below count decrease, which is ensured by the smp_wmb above
803          * in conjunction with the smp_rmb in mmu_invalidate_retry().
804          */
805         kvm->mmu_invalidate_in_progress--;
806 }
807
808 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
809                                         const struct mmu_notifier_range *range)
810 {
811         struct kvm *kvm = mmu_notifier_to_kvm(mn);
812         const struct kvm_hva_range hva_range = {
813                 .start          = range->start,
814                 .end            = range->end,
815                 .pte            = __pte(0),
816                 .handler        = (void *)kvm_null_fn,
817                 .on_lock        = kvm_mmu_invalidate_end,
818                 .on_unlock      = (void *)kvm_null_fn,
819                 .flush_on_ret   = false,
820                 .may_block      = mmu_notifier_range_blockable(range),
821         };
822         bool wake;
823
824         __kvm_handle_hva_range(kvm, &hva_range);
825
826         /* Pairs with the increment in range_start(). */
827         spin_lock(&kvm->mn_invalidate_lock);
828         wake = (--kvm->mn_active_invalidate_count == 0);
829         spin_unlock(&kvm->mn_invalidate_lock);
830
831         /*
832          * There can only be one waiter, since the wait happens under
833          * slots_lock.
834          */
835         if (wake)
836                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
837
838         BUG_ON(kvm->mmu_invalidate_in_progress < 0);
839 }
840
841 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
842                                               struct mm_struct *mm,
843                                               unsigned long start,
844                                               unsigned long end)
845 {
846         trace_kvm_age_hva(start, end);
847
848         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
849 }
850
851 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
852                                         struct mm_struct *mm,
853                                         unsigned long start,
854                                         unsigned long end)
855 {
856         trace_kvm_age_hva(start, end);
857
858         /*
859          * Even though we do not flush TLB, this will still adversely
860          * affect performance on pre-Haswell Intel EPT, where there is
861          * no EPT Access Bit to clear so that we have to tear down EPT
862          * tables instead. If we find this unacceptable, we can always
863          * add a parameter to kvm_age_hva so that it effectively doesn't
864          * do anything on clear_young.
865          *
866          * Also note that currently we never issue secondary TLB flushes
867          * from clear_young, leaving this job up to the regular system
868          * cadence. If we find this inaccurate, we might come up with a
869          * more sophisticated heuristic later.
870          */
871         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
872 }
873
874 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
875                                        struct mm_struct *mm,
876                                        unsigned long address)
877 {
878         trace_kvm_test_age_hva(address);
879
880         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
881                                              kvm_test_age_gfn);
882 }
883
884 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
885                                      struct mm_struct *mm)
886 {
887         struct kvm *kvm = mmu_notifier_to_kvm(mn);
888         int idx;
889
890         idx = srcu_read_lock(&kvm->srcu);
891         kvm_flush_shadow_all(kvm);
892         srcu_read_unlock(&kvm->srcu, idx);
893 }
894
895 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
896         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
897         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
898         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
899         .clear_young            = kvm_mmu_notifier_clear_young,
900         .test_young             = kvm_mmu_notifier_test_young,
901         .change_pte             = kvm_mmu_notifier_change_pte,
902         .release                = kvm_mmu_notifier_release,
903 };
904
905 static int kvm_init_mmu_notifier(struct kvm *kvm)
906 {
907         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
908         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
909 }
910
911 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
912
913 static int kvm_init_mmu_notifier(struct kvm *kvm)
914 {
915         return 0;
916 }
917
918 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
919
920 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
921 static int kvm_pm_notifier_call(struct notifier_block *bl,
922                                 unsigned long state,
923                                 void *unused)
924 {
925         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
926
927         return kvm_arch_pm_notifier(kvm, state);
928 }
929
930 static void kvm_init_pm_notifier(struct kvm *kvm)
931 {
932         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
933         /* Suspend KVM before we suspend ftrace, RCU, etc. */
934         kvm->pm_notifier.priority = INT_MAX;
935         register_pm_notifier(&kvm->pm_notifier);
936 }
937
938 static void kvm_destroy_pm_notifier(struct kvm *kvm)
939 {
940         unregister_pm_notifier(&kvm->pm_notifier);
941 }
942 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
943 static void kvm_init_pm_notifier(struct kvm *kvm)
944 {
945 }
946
947 static void kvm_destroy_pm_notifier(struct kvm *kvm)
948 {
949 }
950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
951
952 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
953 {
954         if (!memslot->dirty_bitmap)
955                 return;
956
957         kvfree(memslot->dirty_bitmap);
958         memslot->dirty_bitmap = NULL;
959 }
960
961 /* This does not remove the slot from struct kvm_memslots data structures */
962 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
963 {
964         kvm_destroy_dirty_bitmap(slot);
965
966         kvm_arch_free_memslot(kvm, slot);
967
968         kfree(slot);
969 }
970
971 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
972 {
973         struct hlist_node *idnode;
974         struct kvm_memory_slot *memslot;
975         int bkt;
976
977         /*
978          * The same memslot objects live in both active and inactive sets,
979          * arbitrarily free using index '1' so the second invocation of this
980          * function isn't operating over a structure with dangling pointers
981          * (even though this function isn't actually touching them).
982          */
983         if (!slots->node_idx)
984                 return;
985
986         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
987                 kvm_free_memslot(kvm, memslot);
988 }
989
990 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
991 {
992         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
993         case KVM_STATS_TYPE_INSTANT:
994                 return 0444;
995         case KVM_STATS_TYPE_CUMULATIVE:
996         case KVM_STATS_TYPE_PEAK:
997         default:
998                 return 0644;
999         }
1000 }
1001
1002
1003 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1004 {
1005         int i;
1006         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1007                                       kvm_vcpu_stats_header.num_desc;
1008
1009         if (IS_ERR(kvm->debugfs_dentry))
1010                 return;
1011
1012         debugfs_remove_recursive(kvm->debugfs_dentry);
1013
1014         if (kvm->debugfs_stat_data) {
1015                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1016                         kfree(kvm->debugfs_stat_data[i]);
1017                 kfree(kvm->debugfs_stat_data);
1018         }
1019 }
1020
1021 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1022 {
1023         static DEFINE_MUTEX(kvm_debugfs_lock);
1024         struct dentry *dent;
1025         char dir_name[ITOA_MAX_LEN * 2];
1026         struct kvm_stat_data *stat_data;
1027         const struct _kvm_stats_desc *pdesc;
1028         int i, ret = -ENOMEM;
1029         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1030                                       kvm_vcpu_stats_header.num_desc;
1031
1032         if (!debugfs_initialized())
1033                 return 0;
1034
1035         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1036         mutex_lock(&kvm_debugfs_lock);
1037         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1038         if (dent) {
1039                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1040                 dput(dent);
1041                 mutex_unlock(&kvm_debugfs_lock);
1042                 return 0;
1043         }
1044         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1045         mutex_unlock(&kvm_debugfs_lock);
1046         if (IS_ERR(dent))
1047                 return 0;
1048
1049         kvm->debugfs_dentry = dent;
1050         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1051                                          sizeof(*kvm->debugfs_stat_data),
1052                                          GFP_KERNEL_ACCOUNT);
1053         if (!kvm->debugfs_stat_data)
1054                 goto out_err;
1055
1056         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1057                 pdesc = &kvm_vm_stats_desc[i];
1058                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1059                 if (!stat_data)
1060                         goto out_err;
1061
1062                 stat_data->kvm = kvm;
1063                 stat_data->desc = pdesc;
1064                 stat_data->kind = KVM_STAT_VM;
1065                 kvm->debugfs_stat_data[i] = stat_data;
1066                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1067                                     kvm->debugfs_dentry, stat_data,
1068                                     &stat_fops_per_vm);
1069         }
1070
1071         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1072                 pdesc = &kvm_vcpu_stats_desc[i];
1073                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1074                 if (!stat_data)
1075                         goto out_err;
1076
1077                 stat_data->kvm = kvm;
1078                 stat_data->desc = pdesc;
1079                 stat_data->kind = KVM_STAT_VCPU;
1080                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1081                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1082                                     kvm->debugfs_dentry, stat_data,
1083                                     &stat_fops_per_vm);
1084         }
1085
1086         ret = kvm_arch_create_vm_debugfs(kvm);
1087         if (ret)
1088                 goto out_err;
1089
1090         return 0;
1091 out_err:
1092         kvm_destroy_vm_debugfs(kvm);
1093         return ret;
1094 }
1095
1096 /*
1097  * Called after the VM is otherwise initialized, but just before adding it to
1098  * the vm_list.
1099  */
1100 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1101 {
1102         return 0;
1103 }
1104
1105 /*
1106  * Called just after removing the VM from the vm_list, but before doing any
1107  * other destruction.
1108  */
1109 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1110 {
1111 }
1112
1113 /*
1114  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1115  * be setup already, so we can create arch-specific debugfs entries under it.
1116  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1117  * a per-arch destroy interface is not needed.
1118  */
1119 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1120 {
1121         return 0;
1122 }
1123
1124 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1125 {
1126         struct kvm *kvm = kvm_arch_alloc_vm();
1127         struct kvm_memslots *slots;
1128         int r = -ENOMEM;
1129         int i, j;
1130
1131         if (!kvm)
1132                 return ERR_PTR(-ENOMEM);
1133
1134         /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1135         __module_get(kvm_chardev_ops.owner);
1136
1137         KVM_MMU_LOCK_INIT(kvm);
1138         mmgrab(current->mm);
1139         kvm->mm = current->mm;
1140         kvm_eventfd_init(kvm);
1141         mutex_init(&kvm->lock);
1142         mutex_init(&kvm->irq_lock);
1143         mutex_init(&kvm->slots_lock);
1144         mutex_init(&kvm->slots_arch_lock);
1145         spin_lock_init(&kvm->mn_invalidate_lock);
1146         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1147         xa_init(&kvm->vcpu_array);
1148
1149         INIT_LIST_HEAD(&kvm->gpc_list);
1150         spin_lock_init(&kvm->gpc_lock);
1151
1152         INIT_LIST_HEAD(&kvm->devices);
1153         kvm->max_vcpus = KVM_MAX_VCPUS;
1154
1155         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1156
1157         /*
1158          * Force subsequent debugfs file creations to fail if the VM directory
1159          * is not created (by kvm_create_vm_debugfs()).
1160          */
1161         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1162
1163         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1164                  task_pid_nr(current));
1165
1166         if (init_srcu_struct(&kvm->srcu))
1167                 goto out_err_no_srcu;
1168         if (init_srcu_struct(&kvm->irq_srcu))
1169                 goto out_err_no_irq_srcu;
1170
1171         refcount_set(&kvm->users_count, 1);
1172         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1173                 for (j = 0; j < 2; j++) {
1174                         slots = &kvm->__memslots[i][j];
1175
1176                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1177                         slots->hva_tree = RB_ROOT_CACHED;
1178                         slots->gfn_tree = RB_ROOT;
1179                         hash_init(slots->id_hash);
1180                         slots->node_idx = j;
1181
1182                         /* Generations must be different for each address space. */
1183                         slots->generation = i;
1184                 }
1185
1186                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1187         }
1188
1189         for (i = 0; i < KVM_NR_BUSES; i++) {
1190                 rcu_assign_pointer(kvm->buses[i],
1191                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1192                 if (!kvm->buses[i])
1193                         goto out_err_no_arch_destroy_vm;
1194         }
1195
1196         r = kvm_arch_init_vm(kvm, type);
1197         if (r)
1198                 goto out_err_no_arch_destroy_vm;
1199
1200         r = hardware_enable_all();
1201         if (r)
1202                 goto out_err_no_disable;
1203
1204 #ifdef CONFIG_HAVE_KVM_IRQFD
1205         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1206 #endif
1207
1208         r = kvm_init_mmu_notifier(kvm);
1209         if (r)
1210                 goto out_err_no_mmu_notifier;
1211
1212         r = kvm_coalesced_mmio_init(kvm);
1213         if (r < 0)
1214                 goto out_no_coalesced_mmio;
1215
1216         r = kvm_create_vm_debugfs(kvm, fdname);
1217         if (r)
1218                 goto out_err_no_debugfs;
1219
1220         r = kvm_arch_post_init_vm(kvm);
1221         if (r)
1222                 goto out_err;
1223
1224         mutex_lock(&kvm_lock);
1225         list_add(&kvm->vm_list, &vm_list);
1226         mutex_unlock(&kvm_lock);
1227
1228         preempt_notifier_inc();
1229         kvm_init_pm_notifier(kvm);
1230
1231         return kvm;
1232
1233 out_err:
1234         kvm_destroy_vm_debugfs(kvm);
1235 out_err_no_debugfs:
1236         kvm_coalesced_mmio_free(kvm);
1237 out_no_coalesced_mmio:
1238 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1239         if (kvm->mmu_notifier.ops)
1240                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1241 #endif
1242 out_err_no_mmu_notifier:
1243         hardware_disable_all();
1244 out_err_no_disable:
1245         kvm_arch_destroy_vm(kvm);
1246 out_err_no_arch_destroy_vm:
1247         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1248         for (i = 0; i < KVM_NR_BUSES; i++)
1249                 kfree(kvm_get_bus(kvm, i));
1250         cleanup_srcu_struct(&kvm->irq_srcu);
1251 out_err_no_irq_srcu:
1252         cleanup_srcu_struct(&kvm->srcu);
1253 out_err_no_srcu:
1254         kvm_arch_free_vm(kvm);
1255         mmdrop(current->mm);
1256         module_put(kvm_chardev_ops.owner);
1257         return ERR_PTR(r);
1258 }
1259
1260 static void kvm_destroy_devices(struct kvm *kvm)
1261 {
1262         struct kvm_device *dev, *tmp;
1263
1264         /*
1265          * We do not need to take the kvm->lock here, because nobody else
1266          * has a reference to the struct kvm at this point and therefore
1267          * cannot access the devices list anyhow.
1268          */
1269         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1270                 list_del(&dev->vm_node);
1271                 dev->ops->destroy(dev);
1272         }
1273 }
1274
1275 static void kvm_destroy_vm(struct kvm *kvm)
1276 {
1277         int i;
1278         struct mm_struct *mm = kvm->mm;
1279
1280         kvm_destroy_pm_notifier(kvm);
1281         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1282         kvm_destroy_vm_debugfs(kvm);
1283         kvm_arch_sync_events(kvm);
1284         mutex_lock(&kvm_lock);
1285         list_del(&kvm->vm_list);
1286         mutex_unlock(&kvm_lock);
1287         kvm_arch_pre_destroy_vm(kvm);
1288
1289         kvm_free_irq_routing(kvm);
1290         for (i = 0; i < KVM_NR_BUSES; i++) {
1291                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1292
1293                 if (bus)
1294                         kvm_io_bus_destroy(bus);
1295                 kvm->buses[i] = NULL;
1296         }
1297         kvm_coalesced_mmio_free(kvm);
1298 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1299         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1300         /*
1301          * At this point, pending calls to invalidate_range_start()
1302          * have completed but no more MMU notifiers will run, so
1303          * mn_active_invalidate_count may remain unbalanced.
1304          * No threads can be waiting in kvm_swap_active_memslots() as the
1305          * last reference on KVM has been dropped, but freeing
1306          * memslots would deadlock without this manual intervention.
1307          */
1308         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1309         kvm->mn_active_invalidate_count = 0;
1310 #else
1311         kvm_flush_shadow_all(kvm);
1312 #endif
1313         kvm_arch_destroy_vm(kvm);
1314         kvm_destroy_devices(kvm);
1315         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1316                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1317                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1318         }
1319         cleanup_srcu_struct(&kvm->irq_srcu);
1320         cleanup_srcu_struct(&kvm->srcu);
1321         kvm_arch_free_vm(kvm);
1322         preempt_notifier_dec();
1323         hardware_disable_all();
1324         mmdrop(mm);
1325         module_put(kvm_chardev_ops.owner);
1326 }
1327
1328 void kvm_get_kvm(struct kvm *kvm)
1329 {
1330         refcount_inc(&kvm->users_count);
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1333
1334 /*
1335  * Make sure the vm is not during destruction, which is a safe version of
1336  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1337  */
1338 bool kvm_get_kvm_safe(struct kvm *kvm)
1339 {
1340         return refcount_inc_not_zero(&kvm->users_count);
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1343
1344 void kvm_put_kvm(struct kvm *kvm)
1345 {
1346         if (refcount_dec_and_test(&kvm->users_count))
1347                 kvm_destroy_vm(kvm);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1350
1351 /*
1352  * Used to put a reference that was taken on behalf of an object associated
1353  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1354  * of the new file descriptor fails and the reference cannot be transferred to
1355  * its final owner.  In such cases, the caller is still actively using @kvm and
1356  * will fail miserably if the refcount unexpectedly hits zero.
1357  */
1358 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1359 {
1360         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1363
1364 static int kvm_vm_release(struct inode *inode, struct file *filp)
1365 {
1366         struct kvm *kvm = filp->private_data;
1367
1368         kvm_irqfd_release(kvm);
1369
1370         kvm_put_kvm(kvm);
1371         return 0;
1372 }
1373
1374 /*
1375  * Allocation size is twice as large as the actual dirty bitmap size.
1376  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1377  */
1378 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1379 {
1380         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1381
1382         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1383         if (!memslot->dirty_bitmap)
1384                 return -ENOMEM;
1385
1386         return 0;
1387 }
1388
1389 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1390 {
1391         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1392         int node_idx_inactive = active->node_idx ^ 1;
1393
1394         return &kvm->__memslots[as_id][node_idx_inactive];
1395 }
1396
1397 /*
1398  * Helper to get the address space ID when one of memslot pointers may be NULL.
1399  * This also serves as a sanity that at least one of the pointers is non-NULL,
1400  * and that their address space IDs don't diverge.
1401  */
1402 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1403                                   struct kvm_memory_slot *b)
1404 {
1405         if (WARN_ON_ONCE(!a && !b))
1406                 return 0;
1407
1408         if (!a)
1409                 return b->as_id;
1410         if (!b)
1411                 return a->as_id;
1412
1413         WARN_ON_ONCE(a->as_id != b->as_id);
1414         return a->as_id;
1415 }
1416
1417 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1418                                 struct kvm_memory_slot *slot)
1419 {
1420         struct rb_root *gfn_tree = &slots->gfn_tree;
1421         struct rb_node **node, *parent;
1422         int idx = slots->node_idx;
1423
1424         parent = NULL;
1425         for (node = &gfn_tree->rb_node; *node; ) {
1426                 struct kvm_memory_slot *tmp;
1427
1428                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1429                 parent = *node;
1430                 if (slot->base_gfn < tmp->base_gfn)
1431                         node = &(*node)->rb_left;
1432                 else if (slot->base_gfn > tmp->base_gfn)
1433                         node = &(*node)->rb_right;
1434                 else
1435                         BUG();
1436         }
1437
1438         rb_link_node(&slot->gfn_node[idx], parent, node);
1439         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1440 }
1441
1442 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1443                                struct kvm_memory_slot *slot)
1444 {
1445         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1446 }
1447
1448 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1449                                  struct kvm_memory_slot *old,
1450                                  struct kvm_memory_slot *new)
1451 {
1452         int idx = slots->node_idx;
1453
1454         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1455
1456         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1457                         &slots->gfn_tree);
1458 }
1459
1460 /*
1461  * Replace @old with @new in the inactive memslots.
1462  *
1463  * With NULL @old this simply adds @new.
1464  * With NULL @new this simply removes @old.
1465  *
1466  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1467  * appropriately.
1468  */
1469 static void kvm_replace_memslot(struct kvm *kvm,
1470                                 struct kvm_memory_slot *old,
1471                                 struct kvm_memory_slot *new)
1472 {
1473         int as_id = kvm_memslots_get_as_id(old, new);
1474         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1475         int idx = slots->node_idx;
1476
1477         if (old) {
1478                 hash_del(&old->id_node[idx]);
1479                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1480
1481                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1482                         atomic_long_set(&slots->last_used_slot, (long)new);
1483
1484                 if (!new) {
1485                         kvm_erase_gfn_node(slots, old);
1486                         return;
1487                 }
1488         }
1489
1490         /*
1491          * Initialize @new's hva range.  Do this even when replacing an @old
1492          * slot, kvm_copy_memslot() deliberately does not touch node data.
1493          */
1494         new->hva_node[idx].start = new->userspace_addr;
1495         new->hva_node[idx].last = new->userspace_addr +
1496                                   (new->npages << PAGE_SHIFT) - 1;
1497
1498         /*
1499          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1500          * hva_node needs to be swapped with remove+insert even though hva can't
1501          * change when replacing an existing slot.
1502          */
1503         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1504         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1505
1506         /*
1507          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1508          * switch the node in the gfn tree instead of removing the old and
1509          * inserting the new as two separate operations. Replacement is a
1510          * single O(1) operation versus two O(log(n)) operations for
1511          * remove+insert.
1512          */
1513         if (old && old->base_gfn == new->base_gfn) {
1514                 kvm_replace_gfn_node(slots, old, new);
1515         } else {
1516                 if (old)
1517                         kvm_erase_gfn_node(slots, old);
1518                 kvm_insert_gfn_node(slots, new);
1519         }
1520 }
1521
1522 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1523 {
1524         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1525
1526 #ifdef __KVM_HAVE_READONLY_MEM
1527         valid_flags |= KVM_MEM_READONLY;
1528 #endif
1529
1530         if (mem->flags & ~valid_flags)
1531                 return -EINVAL;
1532
1533         return 0;
1534 }
1535
1536 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1537 {
1538         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1539
1540         /* Grab the generation from the activate memslots. */
1541         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1542
1543         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1544         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1545
1546         /*
1547          * Do not store the new memslots while there are invalidations in
1548          * progress, otherwise the locking in invalidate_range_start and
1549          * invalidate_range_end will be unbalanced.
1550          */
1551         spin_lock(&kvm->mn_invalidate_lock);
1552         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1553         while (kvm->mn_active_invalidate_count) {
1554                 set_current_state(TASK_UNINTERRUPTIBLE);
1555                 spin_unlock(&kvm->mn_invalidate_lock);
1556                 schedule();
1557                 spin_lock(&kvm->mn_invalidate_lock);
1558         }
1559         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1560         rcu_assign_pointer(kvm->memslots[as_id], slots);
1561         spin_unlock(&kvm->mn_invalidate_lock);
1562
1563         /*
1564          * Acquired in kvm_set_memslot. Must be released before synchronize
1565          * SRCU below in order to avoid deadlock with another thread
1566          * acquiring the slots_arch_lock in an srcu critical section.
1567          */
1568         mutex_unlock(&kvm->slots_arch_lock);
1569
1570         synchronize_srcu_expedited(&kvm->srcu);
1571
1572         /*
1573          * Increment the new memslot generation a second time, dropping the
1574          * update in-progress flag and incrementing the generation based on
1575          * the number of address spaces.  This provides a unique and easily
1576          * identifiable generation number while the memslots are in flux.
1577          */
1578         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1579
1580         /*
1581          * Generations must be unique even across address spaces.  We do not need
1582          * a global counter for that, instead the generation space is evenly split
1583          * across address spaces.  For example, with two address spaces, address
1584          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1585          * use generations 1, 3, 5, ...
1586          */
1587         gen += KVM_ADDRESS_SPACE_NUM;
1588
1589         kvm_arch_memslots_updated(kvm, gen);
1590
1591         slots->generation = gen;
1592 }
1593
1594 static int kvm_prepare_memory_region(struct kvm *kvm,
1595                                      const struct kvm_memory_slot *old,
1596                                      struct kvm_memory_slot *new,
1597                                      enum kvm_mr_change change)
1598 {
1599         int r;
1600
1601         /*
1602          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1603          * will be freed on "commit".  If logging is enabled in both old and
1604          * new, reuse the existing bitmap.  If logging is enabled only in the
1605          * new and KVM isn't using a ring buffer, allocate and initialize a
1606          * new bitmap.
1607          */
1608         if (change != KVM_MR_DELETE) {
1609                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1610                         new->dirty_bitmap = NULL;
1611                 else if (old && old->dirty_bitmap)
1612                         new->dirty_bitmap = old->dirty_bitmap;
1613                 else if (kvm_use_dirty_bitmap(kvm)) {
1614                         r = kvm_alloc_dirty_bitmap(new);
1615                         if (r)
1616                                 return r;
1617
1618                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1619                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1620                 }
1621         }
1622
1623         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1624
1625         /* Free the bitmap on failure if it was allocated above. */
1626         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1627                 kvm_destroy_dirty_bitmap(new);
1628
1629         return r;
1630 }
1631
1632 static void kvm_commit_memory_region(struct kvm *kvm,
1633                                      struct kvm_memory_slot *old,
1634                                      const struct kvm_memory_slot *new,
1635                                      enum kvm_mr_change change)
1636 {
1637         int old_flags = old ? old->flags : 0;
1638         int new_flags = new ? new->flags : 0;
1639         /*
1640          * Update the total number of memslot pages before calling the arch
1641          * hook so that architectures can consume the result directly.
1642          */
1643         if (change == KVM_MR_DELETE)
1644                 kvm->nr_memslot_pages -= old->npages;
1645         else if (change == KVM_MR_CREATE)
1646                 kvm->nr_memslot_pages += new->npages;
1647
1648         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1649                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1650                 atomic_set(&kvm->nr_memslots_dirty_logging,
1651                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1652         }
1653
1654         kvm_arch_commit_memory_region(kvm, old, new, change);
1655
1656         switch (change) {
1657         case KVM_MR_CREATE:
1658                 /* Nothing more to do. */
1659                 break;
1660         case KVM_MR_DELETE:
1661                 /* Free the old memslot and all its metadata. */
1662                 kvm_free_memslot(kvm, old);
1663                 break;
1664         case KVM_MR_MOVE:
1665         case KVM_MR_FLAGS_ONLY:
1666                 /*
1667                  * Free the dirty bitmap as needed; the below check encompasses
1668                  * both the flags and whether a ring buffer is being used)
1669                  */
1670                 if (old->dirty_bitmap && !new->dirty_bitmap)
1671                         kvm_destroy_dirty_bitmap(old);
1672
1673                 /*
1674                  * The final quirk.  Free the detached, old slot, but only its
1675                  * memory, not any metadata.  Metadata, including arch specific
1676                  * data, may be reused by @new.
1677                  */
1678                 kfree(old);
1679                 break;
1680         default:
1681                 BUG();
1682         }
1683 }
1684
1685 /*
1686  * Activate @new, which must be installed in the inactive slots by the caller,
1687  * by swapping the active slots and then propagating @new to @old once @old is
1688  * unreachable and can be safely modified.
1689  *
1690  * With NULL @old this simply adds @new to @active (while swapping the sets).
1691  * With NULL @new this simply removes @old from @active and frees it
1692  * (while also swapping the sets).
1693  */
1694 static void kvm_activate_memslot(struct kvm *kvm,
1695                                  struct kvm_memory_slot *old,
1696                                  struct kvm_memory_slot *new)
1697 {
1698         int as_id = kvm_memslots_get_as_id(old, new);
1699
1700         kvm_swap_active_memslots(kvm, as_id);
1701
1702         /* Propagate the new memslot to the now inactive memslots. */
1703         kvm_replace_memslot(kvm, old, new);
1704 }
1705
1706 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1707                              const struct kvm_memory_slot *src)
1708 {
1709         dest->base_gfn = src->base_gfn;
1710         dest->npages = src->npages;
1711         dest->dirty_bitmap = src->dirty_bitmap;
1712         dest->arch = src->arch;
1713         dest->userspace_addr = src->userspace_addr;
1714         dest->flags = src->flags;
1715         dest->id = src->id;
1716         dest->as_id = src->as_id;
1717 }
1718
1719 static void kvm_invalidate_memslot(struct kvm *kvm,
1720                                    struct kvm_memory_slot *old,
1721                                    struct kvm_memory_slot *invalid_slot)
1722 {
1723         /*
1724          * Mark the current slot INVALID.  As with all memslot modifications,
1725          * this must be done on an unreachable slot to avoid modifying the
1726          * current slot in the active tree.
1727          */
1728         kvm_copy_memslot(invalid_slot, old);
1729         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1730         kvm_replace_memslot(kvm, old, invalid_slot);
1731
1732         /*
1733          * Activate the slot that is now marked INVALID, but don't propagate
1734          * the slot to the now inactive slots. The slot is either going to be
1735          * deleted or recreated as a new slot.
1736          */
1737         kvm_swap_active_memslots(kvm, old->as_id);
1738
1739         /*
1740          * From this point no new shadow pages pointing to a deleted, or moved,
1741          * memslot will be created.  Validation of sp->gfn happens in:
1742          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1743          *      - kvm_is_visible_gfn (mmu_check_root)
1744          */
1745         kvm_arch_flush_shadow_memslot(kvm, old);
1746         kvm_arch_guest_memory_reclaimed(kvm);
1747
1748         /* Was released by kvm_swap_active_memslots(), reacquire. */
1749         mutex_lock(&kvm->slots_arch_lock);
1750
1751         /*
1752          * Copy the arch-specific field of the newly-installed slot back to the
1753          * old slot as the arch data could have changed between releasing
1754          * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1755          * above.  Writers are required to retrieve memslots *after* acquiring
1756          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1757          */
1758         old->arch = invalid_slot->arch;
1759 }
1760
1761 static void kvm_create_memslot(struct kvm *kvm,
1762                                struct kvm_memory_slot *new)
1763 {
1764         /* Add the new memslot to the inactive set and activate. */
1765         kvm_replace_memslot(kvm, NULL, new);
1766         kvm_activate_memslot(kvm, NULL, new);
1767 }
1768
1769 static void kvm_delete_memslot(struct kvm *kvm,
1770                                struct kvm_memory_slot *old,
1771                                struct kvm_memory_slot *invalid_slot)
1772 {
1773         /*
1774          * Remove the old memslot (in the inactive memslots) by passing NULL as
1775          * the "new" slot, and for the invalid version in the active slots.
1776          */
1777         kvm_replace_memslot(kvm, old, NULL);
1778         kvm_activate_memslot(kvm, invalid_slot, NULL);
1779 }
1780
1781 static void kvm_move_memslot(struct kvm *kvm,
1782                              struct kvm_memory_slot *old,
1783                              struct kvm_memory_slot *new,
1784                              struct kvm_memory_slot *invalid_slot)
1785 {
1786         /*
1787          * Replace the old memslot in the inactive slots, and then swap slots
1788          * and replace the current INVALID with the new as well.
1789          */
1790         kvm_replace_memslot(kvm, old, new);
1791         kvm_activate_memslot(kvm, invalid_slot, new);
1792 }
1793
1794 static void kvm_update_flags_memslot(struct kvm *kvm,
1795                                      struct kvm_memory_slot *old,
1796                                      struct kvm_memory_slot *new)
1797 {
1798         /*
1799          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1800          * an intermediate step. Instead, the old memslot is simply replaced
1801          * with a new, updated copy in both memslot sets.
1802          */
1803         kvm_replace_memslot(kvm, old, new);
1804         kvm_activate_memslot(kvm, old, new);
1805 }
1806
1807 static int kvm_set_memslot(struct kvm *kvm,
1808                            struct kvm_memory_slot *old,
1809                            struct kvm_memory_slot *new,
1810                            enum kvm_mr_change change)
1811 {
1812         struct kvm_memory_slot *invalid_slot;
1813         int r;
1814
1815         /*
1816          * Released in kvm_swap_active_memslots().
1817          *
1818          * Must be held from before the current memslots are copied until after
1819          * the new memslots are installed with rcu_assign_pointer, then
1820          * released before the synchronize srcu in kvm_swap_active_memslots().
1821          *
1822          * When modifying memslots outside of the slots_lock, must be held
1823          * before reading the pointer to the current memslots until after all
1824          * changes to those memslots are complete.
1825          *
1826          * These rules ensure that installing new memslots does not lose
1827          * changes made to the previous memslots.
1828          */
1829         mutex_lock(&kvm->slots_arch_lock);
1830
1831         /*
1832          * Invalidate the old slot if it's being deleted or moved.  This is
1833          * done prior to actually deleting/moving the memslot to allow vCPUs to
1834          * continue running by ensuring there are no mappings or shadow pages
1835          * for the memslot when it is deleted/moved.  Without pre-invalidation
1836          * (and without a lock), a window would exist between effecting the
1837          * delete/move and committing the changes in arch code where KVM or a
1838          * guest could access a non-existent memslot.
1839          *
1840          * Modifications are done on a temporary, unreachable slot.  The old
1841          * slot needs to be preserved in case a later step fails and the
1842          * invalidation needs to be reverted.
1843          */
1844         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1845                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1846                 if (!invalid_slot) {
1847                         mutex_unlock(&kvm->slots_arch_lock);
1848                         return -ENOMEM;
1849                 }
1850                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1851         }
1852
1853         r = kvm_prepare_memory_region(kvm, old, new, change);
1854         if (r) {
1855                 /*
1856                  * For DELETE/MOVE, revert the above INVALID change.  No
1857                  * modifications required since the original slot was preserved
1858                  * in the inactive slots.  Changing the active memslots also
1859                  * release slots_arch_lock.
1860                  */
1861                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1862                         kvm_activate_memslot(kvm, invalid_slot, old);
1863                         kfree(invalid_slot);
1864                 } else {
1865                         mutex_unlock(&kvm->slots_arch_lock);
1866                 }
1867                 return r;
1868         }
1869
1870         /*
1871          * For DELETE and MOVE, the working slot is now active as the INVALID
1872          * version of the old slot.  MOVE is particularly special as it reuses
1873          * the old slot and returns a copy of the old slot (in working_slot).
1874          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1875          * old slot is detached but otherwise preserved.
1876          */
1877         if (change == KVM_MR_CREATE)
1878                 kvm_create_memslot(kvm, new);
1879         else if (change == KVM_MR_DELETE)
1880                 kvm_delete_memslot(kvm, old, invalid_slot);
1881         else if (change == KVM_MR_MOVE)
1882                 kvm_move_memslot(kvm, old, new, invalid_slot);
1883         else if (change == KVM_MR_FLAGS_ONLY)
1884                 kvm_update_flags_memslot(kvm, old, new);
1885         else
1886                 BUG();
1887
1888         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1889         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1890                 kfree(invalid_slot);
1891
1892         /*
1893          * No need to refresh new->arch, changes after dropping slots_arch_lock
1894          * will directly hit the final, active memslot.  Architectures are
1895          * responsible for knowing that new->arch may be stale.
1896          */
1897         kvm_commit_memory_region(kvm, old, new, change);
1898
1899         return 0;
1900 }
1901
1902 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1903                                       gfn_t start, gfn_t end)
1904 {
1905         struct kvm_memslot_iter iter;
1906
1907         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1908                 if (iter.slot->id != id)
1909                         return true;
1910         }
1911
1912         return false;
1913 }
1914
1915 /*
1916  * Allocate some memory and give it an address in the guest physical address
1917  * space.
1918  *
1919  * Discontiguous memory is allowed, mostly for framebuffers.
1920  *
1921  * Must be called holding kvm->slots_lock for write.
1922  */
1923 int __kvm_set_memory_region(struct kvm *kvm,
1924                             const struct kvm_userspace_memory_region *mem)
1925 {
1926         struct kvm_memory_slot *old, *new;
1927         struct kvm_memslots *slots;
1928         enum kvm_mr_change change;
1929         unsigned long npages;
1930         gfn_t base_gfn;
1931         int as_id, id;
1932         int r;
1933
1934         r = check_memory_region_flags(mem);
1935         if (r)
1936                 return r;
1937
1938         as_id = mem->slot >> 16;
1939         id = (u16)mem->slot;
1940
1941         /* General sanity checks */
1942         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1943             (mem->memory_size != (unsigned long)mem->memory_size))
1944                 return -EINVAL;
1945         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1946                 return -EINVAL;
1947         /* We can read the guest memory with __xxx_user() later on. */
1948         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1949             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1950              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1951                         mem->memory_size))
1952                 return -EINVAL;
1953         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1954                 return -EINVAL;
1955         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1956                 return -EINVAL;
1957         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1958                 return -EINVAL;
1959
1960         slots = __kvm_memslots(kvm, as_id);
1961
1962         /*
1963          * Note, the old memslot (and the pointer itself!) may be invalidated
1964          * and/or destroyed by kvm_set_memslot().
1965          */
1966         old = id_to_memslot(slots, id);
1967
1968         if (!mem->memory_size) {
1969                 if (!old || !old->npages)
1970                         return -EINVAL;
1971
1972                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1973                         return -EIO;
1974
1975                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1976         }
1977
1978         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1979         npages = (mem->memory_size >> PAGE_SHIFT);
1980
1981         if (!old || !old->npages) {
1982                 change = KVM_MR_CREATE;
1983
1984                 /*
1985                  * To simplify KVM internals, the total number of pages across
1986                  * all memslots must fit in an unsigned long.
1987                  */
1988                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1989                         return -EINVAL;
1990         } else { /* Modify an existing slot. */
1991                 if ((mem->userspace_addr != old->userspace_addr) ||
1992                     (npages != old->npages) ||
1993                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1994                         return -EINVAL;
1995
1996                 if (base_gfn != old->base_gfn)
1997                         change = KVM_MR_MOVE;
1998                 else if (mem->flags != old->flags)
1999                         change = KVM_MR_FLAGS_ONLY;
2000                 else /* Nothing to change. */
2001                         return 0;
2002         }
2003
2004         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2005             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2006                 return -EEXIST;
2007
2008         /* Allocate a slot that will persist in the memslot. */
2009         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2010         if (!new)
2011                 return -ENOMEM;
2012
2013         new->as_id = as_id;
2014         new->id = id;
2015         new->base_gfn = base_gfn;
2016         new->npages = npages;
2017         new->flags = mem->flags;
2018         new->userspace_addr = mem->userspace_addr;
2019
2020         r = kvm_set_memslot(kvm, old, new, change);
2021         if (r)
2022                 kfree(new);
2023         return r;
2024 }
2025 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2026
2027 int kvm_set_memory_region(struct kvm *kvm,
2028                           const struct kvm_userspace_memory_region *mem)
2029 {
2030         int r;
2031
2032         mutex_lock(&kvm->slots_lock);
2033         r = __kvm_set_memory_region(kvm, mem);
2034         mutex_unlock(&kvm->slots_lock);
2035         return r;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2038
2039 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2040                                           struct kvm_userspace_memory_region *mem)
2041 {
2042         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2043                 return -EINVAL;
2044
2045         return kvm_set_memory_region(kvm, mem);
2046 }
2047
2048 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2049 /**
2050  * kvm_get_dirty_log - get a snapshot of dirty pages
2051  * @kvm:        pointer to kvm instance
2052  * @log:        slot id and address to which we copy the log
2053  * @is_dirty:   set to '1' if any dirty pages were found
2054  * @memslot:    set to the associated memslot, always valid on success
2055  */
2056 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2057                       int *is_dirty, struct kvm_memory_slot **memslot)
2058 {
2059         struct kvm_memslots *slots;
2060         int i, as_id, id;
2061         unsigned long n;
2062         unsigned long any = 0;
2063
2064         /* Dirty ring tracking may be exclusive to dirty log tracking */
2065         if (!kvm_use_dirty_bitmap(kvm))
2066                 return -ENXIO;
2067
2068         *memslot = NULL;
2069         *is_dirty = 0;
2070
2071         as_id = log->slot >> 16;
2072         id = (u16)log->slot;
2073         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2074                 return -EINVAL;
2075
2076         slots = __kvm_memslots(kvm, as_id);
2077         *memslot = id_to_memslot(slots, id);
2078         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2079                 return -ENOENT;
2080
2081         kvm_arch_sync_dirty_log(kvm, *memslot);
2082
2083         n = kvm_dirty_bitmap_bytes(*memslot);
2084
2085         for (i = 0; !any && i < n/sizeof(long); ++i)
2086                 any = (*memslot)->dirty_bitmap[i];
2087
2088         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2089                 return -EFAULT;
2090
2091         if (any)
2092                 *is_dirty = 1;
2093         return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2096
2097 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2098 /**
2099  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2100  *      and reenable dirty page tracking for the corresponding pages.
2101  * @kvm:        pointer to kvm instance
2102  * @log:        slot id and address to which we copy the log
2103  *
2104  * We need to keep it in mind that VCPU threads can write to the bitmap
2105  * concurrently. So, to avoid losing track of dirty pages we keep the
2106  * following order:
2107  *
2108  *    1. Take a snapshot of the bit and clear it if needed.
2109  *    2. Write protect the corresponding page.
2110  *    3. Copy the snapshot to the userspace.
2111  *    4. Upon return caller flushes TLB's if needed.
2112  *
2113  * Between 2 and 4, the guest may write to the page using the remaining TLB
2114  * entry.  This is not a problem because the page is reported dirty using
2115  * the snapshot taken before and step 4 ensures that writes done after
2116  * exiting to userspace will be logged for the next call.
2117  *
2118  */
2119 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2120 {
2121         struct kvm_memslots *slots;
2122         struct kvm_memory_slot *memslot;
2123         int i, as_id, id;
2124         unsigned long n;
2125         unsigned long *dirty_bitmap;
2126         unsigned long *dirty_bitmap_buffer;
2127         bool flush;
2128
2129         /* Dirty ring tracking may be exclusive to dirty log tracking */
2130         if (!kvm_use_dirty_bitmap(kvm))
2131                 return -ENXIO;
2132
2133         as_id = log->slot >> 16;
2134         id = (u16)log->slot;
2135         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2136                 return -EINVAL;
2137
2138         slots = __kvm_memslots(kvm, as_id);
2139         memslot = id_to_memslot(slots, id);
2140         if (!memslot || !memslot->dirty_bitmap)
2141                 return -ENOENT;
2142
2143         dirty_bitmap = memslot->dirty_bitmap;
2144
2145         kvm_arch_sync_dirty_log(kvm, memslot);
2146
2147         n = kvm_dirty_bitmap_bytes(memslot);
2148         flush = false;
2149         if (kvm->manual_dirty_log_protect) {
2150                 /*
2151                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2152                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2153                  * is some code duplication between this function and
2154                  * kvm_get_dirty_log, but hopefully all architecture
2155                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2156                  * can be eliminated.
2157                  */
2158                 dirty_bitmap_buffer = dirty_bitmap;
2159         } else {
2160                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2161                 memset(dirty_bitmap_buffer, 0, n);
2162
2163                 KVM_MMU_LOCK(kvm);
2164                 for (i = 0; i < n / sizeof(long); i++) {
2165                         unsigned long mask;
2166                         gfn_t offset;
2167
2168                         if (!dirty_bitmap[i])
2169                                 continue;
2170
2171                         flush = true;
2172                         mask = xchg(&dirty_bitmap[i], 0);
2173                         dirty_bitmap_buffer[i] = mask;
2174
2175                         offset = i * BITS_PER_LONG;
2176                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2177                                                                 offset, mask);
2178                 }
2179                 KVM_MMU_UNLOCK(kvm);
2180         }
2181
2182         if (flush)
2183                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2184
2185         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2186                 return -EFAULT;
2187         return 0;
2188 }
2189
2190
2191 /**
2192  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2193  * @kvm: kvm instance
2194  * @log: slot id and address to which we copy the log
2195  *
2196  * Steps 1-4 below provide general overview of dirty page logging. See
2197  * kvm_get_dirty_log_protect() function description for additional details.
2198  *
2199  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2200  * always flush the TLB (step 4) even if previous step failed  and the dirty
2201  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2202  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2203  * writes will be marked dirty for next log read.
2204  *
2205  *   1. Take a snapshot of the bit and clear it if needed.
2206  *   2. Write protect the corresponding page.
2207  *   3. Copy the snapshot to the userspace.
2208  *   4. Flush TLB's if needed.
2209  */
2210 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2211                                       struct kvm_dirty_log *log)
2212 {
2213         int r;
2214
2215         mutex_lock(&kvm->slots_lock);
2216
2217         r = kvm_get_dirty_log_protect(kvm, log);
2218
2219         mutex_unlock(&kvm->slots_lock);
2220         return r;
2221 }
2222
2223 /**
2224  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2225  *      and reenable dirty page tracking for the corresponding pages.
2226  * @kvm:        pointer to kvm instance
2227  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2228  */
2229 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2230                                        struct kvm_clear_dirty_log *log)
2231 {
2232         struct kvm_memslots *slots;
2233         struct kvm_memory_slot *memslot;
2234         int as_id, id;
2235         gfn_t offset;
2236         unsigned long i, n;
2237         unsigned long *dirty_bitmap;
2238         unsigned long *dirty_bitmap_buffer;
2239         bool flush;
2240
2241         /* Dirty ring tracking may be exclusive to dirty log tracking */
2242         if (!kvm_use_dirty_bitmap(kvm))
2243                 return -ENXIO;
2244
2245         as_id = log->slot >> 16;
2246         id = (u16)log->slot;
2247         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2248                 return -EINVAL;
2249
2250         if (log->first_page & 63)
2251                 return -EINVAL;
2252
2253         slots = __kvm_memslots(kvm, as_id);
2254         memslot = id_to_memslot(slots, id);
2255         if (!memslot || !memslot->dirty_bitmap)
2256                 return -ENOENT;
2257
2258         dirty_bitmap = memslot->dirty_bitmap;
2259
2260         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2261
2262         if (log->first_page > memslot->npages ||
2263             log->num_pages > memslot->npages - log->first_page ||
2264             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2265             return -EINVAL;
2266
2267         kvm_arch_sync_dirty_log(kvm, memslot);
2268
2269         flush = false;
2270         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2271         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2272                 return -EFAULT;
2273
2274         KVM_MMU_LOCK(kvm);
2275         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2276                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2277              i++, offset += BITS_PER_LONG) {
2278                 unsigned long mask = *dirty_bitmap_buffer++;
2279                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2280                 if (!mask)
2281                         continue;
2282
2283                 mask &= atomic_long_fetch_andnot(mask, p);
2284
2285                 /*
2286                  * mask contains the bits that really have been cleared.  This
2287                  * never includes any bits beyond the length of the memslot (if
2288                  * the length is not aligned to 64 pages), therefore it is not
2289                  * a problem if userspace sets them in log->dirty_bitmap.
2290                 */
2291                 if (mask) {
2292                         flush = true;
2293                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2294                                                                 offset, mask);
2295                 }
2296         }
2297         KVM_MMU_UNLOCK(kvm);
2298
2299         if (flush)
2300                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2301
2302         return 0;
2303 }
2304
2305 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2306                                         struct kvm_clear_dirty_log *log)
2307 {
2308         int r;
2309
2310         mutex_lock(&kvm->slots_lock);
2311
2312         r = kvm_clear_dirty_log_protect(kvm, log);
2313
2314         mutex_unlock(&kvm->slots_lock);
2315         return r;
2316 }
2317 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2318
2319 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2320 {
2321         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2322 }
2323 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2324
2325 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2326 {
2327         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2328         u64 gen = slots->generation;
2329         struct kvm_memory_slot *slot;
2330
2331         /*
2332          * This also protects against using a memslot from a different address space,
2333          * since different address spaces have different generation numbers.
2334          */
2335         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2336                 vcpu->last_used_slot = NULL;
2337                 vcpu->last_used_slot_gen = gen;
2338         }
2339
2340         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2341         if (slot)
2342                 return slot;
2343
2344         /*
2345          * Fall back to searching all memslots. We purposely use
2346          * search_memslots() instead of __gfn_to_memslot() to avoid
2347          * thrashing the VM-wide last_used_slot in kvm_memslots.
2348          */
2349         slot = search_memslots(slots, gfn, false);
2350         if (slot) {
2351                 vcpu->last_used_slot = slot;
2352                 return slot;
2353         }
2354
2355         return NULL;
2356 }
2357
2358 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2359 {
2360         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2361
2362         return kvm_is_visible_memslot(memslot);
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2365
2366 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2367 {
2368         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2369
2370         return kvm_is_visible_memslot(memslot);
2371 }
2372 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2373
2374 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2375 {
2376         struct vm_area_struct *vma;
2377         unsigned long addr, size;
2378
2379         size = PAGE_SIZE;
2380
2381         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2382         if (kvm_is_error_hva(addr))
2383                 return PAGE_SIZE;
2384
2385         mmap_read_lock(current->mm);
2386         vma = find_vma(current->mm, addr);
2387         if (!vma)
2388                 goto out;
2389
2390         size = vma_kernel_pagesize(vma);
2391
2392 out:
2393         mmap_read_unlock(current->mm);
2394
2395         return size;
2396 }
2397
2398 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2399 {
2400         return slot->flags & KVM_MEM_READONLY;
2401 }
2402
2403 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2404                                        gfn_t *nr_pages, bool write)
2405 {
2406         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2407                 return KVM_HVA_ERR_BAD;
2408
2409         if (memslot_is_readonly(slot) && write)
2410                 return KVM_HVA_ERR_RO_BAD;
2411
2412         if (nr_pages)
2413                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2414
2415         return __gfn_to_hva_memslot(slot, gfn);
2416 }
2417
2418 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2419                                      gfn_t *nr_pages)
2420 {
2421         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2422 }
2423
2424 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2425                                         gfn_t gfn)
2426 {
2427         return gfn_to_hva_many(slot, gfn, NULL);
2428 }
2429 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2430
2431 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2432 {
2433         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2434 }
2435 EXPORT_SYMBOL_GPL(gfn_to_hva);
2436
2437 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2438 {
2439         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2440 }
2441 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2442
2443 /*
2444  * Return the hva of a @gfn and the R/W attribute if possible.
2445  *
2446  * @slot: the kvm_memory_slot which contains @gfn
2447  * @gfn: the gfn to be translated
2448  * @writable: used to return the read/write attribute of the @slot if the hva
2449  * is valid and @writable is not NULL
2450  */
2451 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2452                                       gfn_t gfn, bool *writable)
2453 {
2454         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2455
2456         if (!kvm_is_error_hva(hva) && writable)
2457                 *writable = !memslot_is_readonly(slot);
2458
2459         return hva;
2460 }
2461
2462 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2463 {
2464         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2465
2466         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2467 }
2468
2469 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2470 {
2471         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2472
2473         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2474 }
2475
2476 static inline int check_user_page_hwpoison(unsigned long addr)
2477 {
2478         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2479
2480         rc = get_user_pages(addr, 1, flags, NULL);
2481         return rc == -EHWPOISON;
2482 }
2483
2484 /*
2485  * The fast path to get the writable pfn which will be stored in @pfn,
2486  * true indicates success, otherwise false is returned.  It's also the
2487  * only part that runs if we can in atomic context.
2488  */
2489 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2490                             bool *writable, kvm_pfn_t *pfn)
2491 {
2492         struct page *page[1];
2493
2494         /*
2495          * Fast pin a writable pfn only if it is a write fault request
2496          * or the caller allows to map a writable pfn for a read fault
2497          * request.
2498          */
2499         if (!(write_fault || writable))
2500                 return false;
2501
2502         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2503                 *pfn = page_to_pfn(page[0]);
2504
2505                 if (writable)
2506                         *writable = true;
2507                 return true;
2508         }
2509
2510         return false;
2511 }
2512
2513 /*
2514  * The slow path to get the pfn of the specified host virtual address,
2515  * 1 indicates success, -errno is returned if error is detected.
2516  */
2517 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2518                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2519 {
2520         unsigned int flags = FOLL_HWPOISON;
2521         struct page *page;
2522         int npages;
2523
2524         might_sleep();
2525
2526         if (writable)
2527                 *writable = write_fault;
2528
2529         if (write_fault)
2530                 flags |= FOLL_WRITE;
2531         if (async)
2532                 flags |= FOLL_NOWAIT;
2533         if (interruptible)
2534                 flags |= FOLL_INTERRUPTIBLE;
2535
2536         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2537         if (npages != 1)
2538                 return npages;
2539
2540         /* map read fault as writable if possible */
2541         if (unlikely(!write_fault) && writable) {
2542                 struct page *wpage;
2543
2544                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2545                         *writable = true;
2546                         put_page(page);
2547                         page = wpage;
2548                 }
2549         }
2550         *pfn = page_to_pfn(page);
2551         return npages;
2552 }
2553
2554 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2555 {
2556         if (unlikely(!(vma->vm_flags & VM_READ)))
2557                 return false;
2558
2559         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2560                 return false;
2561
2562         return true;
2563 }
2564
2565 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2566 {
2567         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2568
2569         if (!page)
2570                 return 1;
2571
2572         return get_page_unless_zero(page);
2573 }
2574
2575 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2576                                unsigned long addr, bool write_fault,
2577                                bool *writable, kvm_pfn_t *p_pfn)
2578 {
2579         kvm_pfn_t pfn;
2580         pte_t *ptep;
2581         pte_t pte;
2582         spinlock_t *ptl;
2583         int r;
2584
2585         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2586         if (r) {
2587                 /*
2588                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2589                  * not call the fault handler, so do it here.
2590                  */
2591                 bool unlocked = false;
2592                 r = fixup_user_fault(current->mm, addr,
2593                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2594                                      &unlocked);
2595                 if (unlocked)
2596                         return -EAGAIN;
2597                 if (r)
2598                         return r;
2599
2600                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2601                 if (r)
2602                         return r;
2603         }
2604
2605         pte = ptep_get(ptep);
2606
2607         if (write_fault && !pte_write(pte)) {
2608                 pfn = KVM_PFN_ERR_RO_FAULT;
2609                 goto out;
2610         }
2611
2612         if (writable)
2613                 *writable = pte_write(pte);
2614         pfn = pte_pfn(pte);
2615
2616         /*
2617          * Get a reference here because callers of *hva_to_pfn* and
2618          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2619          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2620          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2621          * simply do nothing for reserved pfns.
2622          *
2623          * Whoever called remap_pfn_range is also going to call e.g.
2624          * unmap_mapping_range before the underlying pages are freed,
2625          * causing a call to our MMU notifier.
2626          *
2627          * Certain IO or PFNMAP mappings can be backed with valid
2628          * struct pages, but be allocated without refcounting e.g.,
2629          * tail pages of non-compound higher order allocations, which
2630          * would then underflow the refcount when the caller does the
2631          * required put_page. Don't allow those pages here.
2632          */
2633         if (!kvm_try_get_pfn(pfn))
2634                 r = -EFAULT;
2635
2636 out:
2637         pte_unmap_unlock(ptep, ptl);
2638         *p_pfn = pfn;
2639
2640         return r;
2641 }
2642
2643 /*
2644  * Pin guest page in memory and return its pfn.
2645  * @addr: host virtual address which maps memory to the guest
2646  * @atomic: whether this function can sleep
2647  * @interruptible: whether the process can be interrupted by non-fatal signals
2648  * @async: whether this function need to wait IO complete if the
2649  *         host page is not in the memory
2650  * @write_fault: whether we should get a writable host page
2651  * @writable: whether it allows to map a writable host page for !@write_fault
2652  *
2653  * The function will map a writable host page for these two cases:
2654  * 1): @write_fault = true
2655  * 2): @write_fault = false && @writable, @writable will tell the caller
2656  *     whether the mapping is writable.
2657  */
2658 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2659                      bool *async, bool write_fault, bool *writable)
2660 {
2661         struct vm_area_struct *vma;
2662         kvm_pfn_t pfn;
2663         int npages, r;
2664
2665         /* we can do it either atomically or asynchronously, not both */
2666         BUG_ON(atomic && async);
2667
2668         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2669                 return pfn;
2670
2671         if (atomic)
2672                 return KVM_PFN_ERR_FAULT;
2673
2674         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2675                                  writable, &pfn);
2676         if (npages == 1)
2677                 return pfn;
2678         if (npages == -EINTR)
2679                 return KVM_PFN_ERR_SIGPENDING;
2680
2681         mmap_read_lock(current->mm);
2682         if (npages == -EHWPOISON ||
2683               (!async && check_user_page_hwpoison(addr))) {
2684                 pfn = KVM_PFN_ERR_HWPOISON;
2685                 goto exit;
2686         }
2687
2688 retry:
2689         vma = vma_lookup(current->mm, addr);
2690
2691         if (vma == NULL)
2692                 pfn = KVM_PFN_ERR_FAULT;
2693         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2694                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2695                 if (r == -EAGAIN)
2696                         goto retry;
2697                 if (r < 0)
2698                         pfn = KVM_PFN_ERR_FAULT;
2699         } else {
2700                 if (async && vma_is_valid(vma, write_fault))
2701                         *async = true;
2702                 pfn = KVM_PFN_ERR_FAULT;
2703         }
2704 exit:
2705         mmap_read_unlock(current->mm);
2706         return pfn;
2707 }
2708
2709 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2710                                bool atomic, bool interruptible, bool *async,
2711                                bool write_fault, bool *writable, hva_t *hva)
2712 {
2713         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2714
2715         if (hva)
2716                 *hva = addr;
2717
2718         if (addr == KVM_HVA_ERR_RO_BAD) {
2719                 if (writable)
2720                         *writable = false;
2721                 return KVM_PFN_ERR_RO_FAULT;
2722         }
2723
2724         if (kvm_is_error_hva(addr)) {
2725                 if (writable)
2726                         *writable = false;
2727                 return KVM_PFN_NOSLOT;
2728         }
2729
2730         /* Do not map writable pfn in the readonly memslot. */
2731         if (writable && memslot_is_readonly(slot)) {
2732                 *writable = false;
2733                 writable = NULL;
2734         }
2735
2736         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2737                           writable);
2738 }
2739 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2740
2741 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2742                       bool *writable)
2743 {
2744         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2745                                     NULL, write_fault, writable, NULL);
2746 }
2747 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2748
2749 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2750 {
2751         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2752                                     NULL, NULL);
2753 }
2754 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2755
2756 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2757 {
2758         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2759                                     NULL, NULL);
2760 }
2761 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2762
2763 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2764 {
2765         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2766 }
2767 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2768
2769 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2770 {
2771         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2772 }
2773 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2774
2775 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2776 {
2777         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2778 }
2779 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2780
2781 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2782                             struct page **pages, int nr_pages)
2783 {
2784         unsigned long addr;
2785         gfn_t entry = 0;
2786
2787         addr = gfn_to_hva_many(slot, gfn, &entry);
2788         if (kvm_is_error_hva(addr))
2789                 return -1;
2790
2791         if (entry < nr_pages)
2792                 return 0;
2793
2794         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2795 }
2796 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2797
2798 /*
2799  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2800  * backed by 'struct page'.  A valid example is if the backing memslot is
2801  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2802  * been elevated by gfn_to_pfn().
2803  */
2804 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2805 {
2806         struct page *page;
2807         kvm_pfn_t pfn;
2808
2809         pfn = gfn_to_pfn(kvm, gfn);
2810
2811         if (is_error_noslot_pfn(pfn))
2812                 return KVM_ERR_PTR_BAD_PAGE;
2813
2814         page = kvm_pfn_to_refcounted_page(pfn);
2815         if (!page)
2816                 return KVM_ERR_PTR_BAD_PAGE;
2817
2818         return page;
2819 }
2820 EXPORT_SYMBOL_GPL(gfn_to_page);
2821
2822 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2823 {
2824         if (dirty)
2825                 kvm_release_pfn_dirty(pfn);
2826         else
2827                 kvm_release_pfn_clean(pfn);
2828 }
2829
2830 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2831 {
2832         kvm_pfn_t pfn;
2833         void *hva = NULL;
2834         struct page *page = KVM_UNMAPPED_PAGE;
2835
2836         if (!map)
2837                 return -EINVAL;
2838
2839         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2840         if (is_error_noslot_pfn(pfn))
2841                 return -EINVAL;
2842
2843         if (pfn_valid(pfn)) {
2844                 page = pfn_to_page(pfn);
2845                 hva = kmap(page);
2846 #ifdef CONFIG_HAS_IOMEM
2847         } else {
2848                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2849 #endif
2850         }
2851
2852         if (!hva)
2853                 return -EFAULT;
2854
2855         map->page = page;
2856         map->hva = hva;
2857         map->pfn = pfn;
2858         map->gfn = gfn;
2859
2860         return 0;
2861 }
2862 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2863
2864 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2865 {
2866         if (!map)
2867                 return;
2868
2869         if (!map->hva)
2870                 return;
2871
2872         if (map->page != KVM_UNMAPPED_PAGE)
2873                 kunmap(map->page);
2874 #ifdef CONFIG_HAS_IOMEM
2875         else
2876                 memunmap(map->hva);
2877 #endif
2878
2879         if (dirty)
2880                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2881
2882         kvm_release_pfn(map->pfn, dirty);
2883
2884         map->hva = NULL;
2885         map->page = NULL;
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2888
2889 static bool kvm_is_ad_tracked_page(struct page *page)
2890 {
2891         /*
2892          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2893          * touched (e.g. set dirty) except by its owner".
2894          */
2895         return !PageReserved(page);
2896 }
2897
2898 static void kvm_set_page_dirty(struct page *page)
2899 {
2900         if (kvm_is_ad_tracked_page(page))
2901                 SetPageDirty(page);
2902 }
2903
2904 static void kvm_set_page_accessed(struct page *page)
2905 {
2906         if (kvm_is_ad_tracked_page(page))
2907                 mark_page_accessed(page);
2908 }
2909
2910 void kvm_release_page_clean(struct page *page)
2911 {
2912         WARN_ON(is_error_page(page));
2913
2914         kvm_set_page_accessed(page);
2915         put_page(page);
2916 }
2917 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2918
2919 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2920 {
2921         struct page *page;
2922
2923         if (is_error_noslot_pfn(pfn))
2924                 return;
2925
2926         page = kvm_pfn_to_refcounted_page(pfn);
2927         if (!page)
2928                 return;
2929
2930         kvm_release_page_clean(page);
2931 }
2932 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2933
2934 void kvm_release_page_dirty(struct page *page)
2935 {
2936         WARN_ON(is_error_page(page));
2937
2938         kvm_set_page_dirty(page);
2939         kvm_release_page_clean(page);
2940 }
2941 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2942
2943 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2944 {
2945         struct page *page;
2946
2947         if (is_error_noslot_pfn(pfn))
2948                 return;
2949
2950         page = kvm_pfn_to_refcounted_page(pfn);
2951         if (!page)
2952                 return;
2953
2954         kvm_release_page_dirty(page);
2955 }
2956 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2957
2958 /*
2959  * Note, checking for an error/noslot pfn is the caller's responsibility when
2960  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2961  * "set" helpers are not to be used when the pfn might point at garbage.
2962  */
2963 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2964 {
2965         if (WARN_ON(is_error_noslot_pfn(pfn)))
2966                 return;
2967
2968         if (pfn_valid(pfn))
2969                 kvm_set_page_dirty(pfn_to_page(pfn));
2970 }
2971 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2972
2973 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2974 {
2975         if (WARN_ON(is_error_noslot_pfn(pfn)))
2976                 return;
2977
2978         if (pfn_valid(pfn))
2979                 kvm_set_page_accessed(pfn_to_page(pfn));
2980 }
2981 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2982
2983 static int next_segment(unsigned long len, int offset)
2984 {
2985         if (len > PAGE_SIZE - offset)
2986                 return PAGE_SIZE - offset;
2987         else
2988                 return len;
2989 }
2990
2991 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2992                                  void *data, int offset, int len)
2993 {
2994         int r;
2995         unsigned long addr;
2996
2997         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2998         if (kvm_is_error_hva(addr))
2999                 return -EFAULT;
3000         r = __copy_from_user(data, (void __user *)addr + offset, len);
3001         if (r)
3002                 return -EFAULT;
3003         return 0;
3004 }
3005
3006 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3007                         int len)
3008 {
3009         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3010
3011         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3012 }
3013 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3014
3015 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3016                              int offset, int len)
3017 {
3018         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3019
3020         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3021 }
3022 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3023
3024 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3025 {
3026         gfn_t gfn = gpa >> PAGE_SHIFT;
3027         int seg;
3028         int offset = offset_in_page(gpa);
3029         int ret;
3030
3031         while ((seg = next_segment(len, offset)) != 0) {
3032                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3033                 if (ret < 0)
3034                         return ret;
3035                 offset = 0;
3036                 len -= seg;
3037                 data += seg;
3038                 ++gfn;
3039         }
3040         return 0;
3041 }
3042 EXPORT_SYMBOL_GPL(kvm_read_guest);
3043
3044 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3045 {
3046         gfn_t gfn = gpa >> PAGE_SHIFT;
3047         int seg;
3048         int offset = offset_in_page(gpa);
3049         int ret;
3050
3051         while ((seg = next_segment(len, offset)) != 0) {
3052                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3053                 if (ret < 0)
3054                         return ret;
3055                 offset = 0;
3056                 len -= seg;
3057                 data += seg;
3058                 ++gfn;
3059         }
3060         return 0;
3061 }
3062 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3063
3064 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3065                                    void *data, int offset, unsigned long len)
3066 {
3067         int r;
3068         unsigned long addr;
3069
3070         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3071         if (kvm_is_error_hva(addr))
3072                 return -EFAULT;
3073         pagefault_disable();
3074         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3075         pagefault_enable();
3076         if (r)
3077                 return -EFAULT;
3078         return 0;
3079 }
3080
3081 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3082                                void *data, unsigned long len)
3083 {
3084         gfn_t gfn = gpa >> PAGE_SHIFT;
3085         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3086         int offset = offset_in_page(gpa);
3087
3088         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3089 }
3090 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3091
3092 static int __kvm_write_guest_page(struct kvm *kvm,
3093                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3094                                   const void *data, int offset, int len)
3095 {
3096         int r;
3097         unsigned long addr;
3098
3099         addr = gfn_to_hva_memslot(memslot, gfn);
3100         if (kvm_is_error_hva(addr))
3101                 return -EFAULT;
3102         r = __copy_to_user((void __user *)addr + offset, data, len);
3103         if (r)
3104                 return -EFAULT;
3105         mark_page_dirty_in_slot(kvm, memslot, gfn);
3106         return 0;
3107 }
3108
3109 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3110                          const void *data, int offset, int len)
3111 {
3112         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3113
3114         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3115 }
3116 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3117
3118 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3119                               const void *data, int offset, int len)
3120 {
3121         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3122
3123         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3124 }
3125 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3126
3127 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3128                     unsigned long len)
3129 {
3130         gfn_t gfn = gpa >> PAGE_SHIFT;
3131         int seg;
3132         int offset = offset_in_page(gpa);
3133         int ret;
3134
3135         while ((seg = next_segment(len, offset)) != 0) {
3136                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3137                 if (ret < 0)
3138                         return ret;
3139                 offset = 0;
3140                 len -= seg;
3141                 data += seg;
3142                 ++gfn;
3143         }
3144         return 0;
3145 }
3146 EXPORT_SYMBOL_GPL(kvm_write_guest);
3147
3148 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3149                          unsigned long len)
3150 {
3151         gfn_t gfn = gpa >> PAGE_SHIFT;
3152         int seg;
3153         int offset = offset_in_page(gpa);
3154         int ret;
3155
3156         while ((seg = next_segment(len, offset)) != 0) {
3157                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3158                 if (ret < 0)
3159                         return ret;
3160                 offset = 0;
3161                 len -= seg;
3162                 data += seg;
3163                 ++gfn;
3164         }
3165         return 0;
3166 }
3167 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3168
3169 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3170                                        struct gfn_to_hva_cache *ghc,
3171                                        gpa_t gpa, unsigned long len)
3172 {
3173         int offset = offset_in_page(gpa);
3174         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3175         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3176         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3177         gfn_t nr_pages_avail;
3178
3179         /* Update ghc->generation before performing any error checks. */
3180         ghc->generation = slots->generation;
3181
3182         if (start_gfn > end_gfn) {
3183                 ghc->hva = KVM_HVA_ERR_BAD;
3184                 return -EINVAL;
3185         }
3186
3187         /*
3188          * If the requested region crosses two memslots, we still
3189          * verify that the entire region is valid here.
3190          */
3191         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3192                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3193                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3194                                            &nr_pages_avail);
3195                 if (kvm_is_error_hva(ghc->hva))
3196                         return -EFAULT;
3197         }
3198
3199         /* Use the slow path for cross page reads and writes. */
3200         if (nr_pages_needed == 1)
3201                 ghc->hva += offset;
3202         else
3203                 ghc->memslot = NULL;
3204
3205         ghc->gpa = gpa;
3206         ghc->len = len;
3207         return 0;
3208 }
3209
3210 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3211                               gpa_t gpa, unsigned long len)
3212 {
3213         struct kvm_memslots *slots = kvm_memslots(kvm);
3214         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3215 }
3216 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3217
3218 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3219                                   void *data, unsigned int offset,
3220                                   unsigned long len)
3221 {
3222         struct kvm_memslots *slots = kvm_memslots(kvm);
3223         int r;
3224         gpa_t gpa = ghc->gpa + offset;
3225
3226         if (WARN_ON_ONCE(len + offset > ghc->len))
3227                 return -EINVAL;
3228
3229         if (slots->generation != ghc->generation) {
3230                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3231                         return -EFAULT;
3232         }
3233
3234         if (kvm_is_error_hva(ghc->hva))
3235                 return -EFAULT;
3236
3237         if (unlikely(!ghc->memslot))
3238                 return kvm_write_guest(kvm, gpa, data, len);
3239
3240         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3241         if (r)
3242                 return -EFAULT;
3243         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3244
3245         return 0;
3246 }
3247 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3248
3249 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3250                            void *data, unsigned long len)
3251 {
3252         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3253 }
3254 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3255
3256 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3257                                  void *data, unsigned int offset,
3258                                  unsigned long len)
3259 {
3260         struct kvm_memslots *slots = kvm_memslots(kvm);
3261         int r;
3262         gpa_t gpa = ghc->gpa + offset;
3263
3264         if (WARN_ON_ONCE(len + offset > ghc->len))
3265                 return -EINVAL;
3266
3267         if (slots->generation != ghc->generation) {
3268                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3269                         return -EFAULT;
3270         }
3271
3272         if (kvm_is_error_hva(ghc->hva))
3273                 return -EFAULT;
3274
3275         if (unlikely(!ghc->memslot))
3276                 return kvm_read_guest(kvm, gpa, data, len);
3277
3278         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3279         if (r)
3280                 return -EFAULT;
3281
3282         return 0;
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3285
3286 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3287                           void *data, unsigned long len)
3288 {
3289         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3290 }
3291 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3292
3293 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3294 {
3295         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3296         gfn_t gfn = gpa >> PAGE_SHIFT;
3297         int seg;
3298         int offset = offset_in_page(gpa);
3299         int ret;
3300
3301         while ((seg = next_segment(len, offset)) != 0) {
3302                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3303                 if (ret < 0)
3304                         return ret;
3305                 offset = 0;
3306                 len -= seg;
3307                 ++gfn;
3308         }
3309         return 0;
3310 }
3311 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3312
3313 void mark_page_dirty_in_slot(struct kvm *kvm,
3314                              const struct kvm_memory_slot *memslot,
3315                              gfn_t gfn)
3316 {
3317         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3318
3319 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3320         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3321                 return;
3322
3323         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3324 #endif
3325
3326         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3327                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3328                 u32 slot = (memslot->as_id << 16) | memslot->id;
3329
3330                 if (kvm->dirty_ring_size && vcpu)
3331                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3332                 else if (memslot->dirty_bitmap)
3333                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3334         }
3335 }
3336 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3337
3338 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3339 {
3340         struct kvm_memory_slot *memslot;
3341
3342         memslot = gfn_to_memslot(kvm, gfn);
3343         mark_page_dirty_in_slot(kvm, memslot, gfn);
3344 }
3345 EXPORT_SYMBOL_GPL(mark_page_dirty);
3346
3347 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3348 {
3349         struct kvm_memory_slot *memslot;
3350
3351         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3352         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3353 }
3354 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3355
3356 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3357 {
3358         if (!vcpu->sigset_active)
3359                 return;
3360
3361         /*
3362          * This does a lockless modification of ->real_blocked, which is fine
3363          * because, only current can change ->real_blocked and all readers of
3364          * ->real_blocked don't care as long ->real_blocked is always a subset
3365          * of ->blocked.
3366          */
3367         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3368 }
3369
3370 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3371 {
3372         if (!vcpu->sigset_active)
3373                 return;
3374
3375         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3376         sigemptyset(&current->real_blocked);
3377 }
3378
3379 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3380 {
3381         unsigned int old, val, grow, grow_start;
3382
3383         old = val = vcpu->halt_poll_ns;
3384         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3385         grow = READ_ONCE(halt_poll_ns_grow);
3386         if (!grow)
3387                 goto out;
3388
3389         val *= grow;
3390         if (val < grow_start)
3391                 val = grow_start;
3392
3393         vcpu->halt_poll_ns = val;
3394 out:
3395         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3396 }
3397
3398 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3399 {
3400         unsigned int old, val, shrink, grow_start;
3401
3402         old = val = vcpu->halt_poll_ns;
3403         shrink = READ_ONCE(halt_poll_ns_shrink);
3404         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3405         if (shrink == 0)
3406                 val = 0;
3407         else
3408                 val /= shrink;
3409
3410         if (val < grow_start)
3411                 val = 0;
3412
3413         vcpu->halt_poll_ns = val;
3414         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3415 }
3416
3417 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3418 {
3419         int ret = -EINTR;
3420         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3421
3422         if (kvm_arch_vcpu_runnable(vcpu))
3423                 goto out;
3424         if (kvm_cpu_has_pending_timer(vcpu))
3425                 goto out;
3426         if (signal_pending(current))
3427                 goto out;
3428         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3429                 goto out;
3430
3431         ret = 0;
3432 out:
3433         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3434         return ret;
3435 }
3436
3437 /*
3438  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3439  * pending.  This is mostly used when halting a vCPU, but may also be used
3440  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3441  */
3442 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3443 {
3444         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3445         bool waited = false;
3446
3447         vcpu->stat.generic.blocking = 1;
3448
3449         preempt_disable();
3450         kvm_arch_vcpu_blocking(vcpu);
3451         prepare_to_rcuwait(wait);
3452         preempt_enable();
3453
3454         for (;;) {
3455                 set_current_state(TASK_INTERRUPTIBLE);
3456
3457                 if (kvm_vcpu_check_block(vcpu) < 0)
3458                         break;
3459
3460                 waited = true;
3461                 schedule();
3462         }
3463
3464         preempt_disable();
3465         finish_rcuwait(wait);
3466         kvm_arch_vcpu_unblocking(vcpu);
3467         preempt_enable();
3468
3469         vcpu->stat.generic.blocking = 0;
3470
3471         return waited;
3472 }
3473
3474 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3475                                           ktime_t end, bool success)
3476 {
3477         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3478         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3479
3480         ++vcpu->stat.generic.halt_attempted_poll;
3481
3482         if (success) {
3483                 ++vcpu->stat.generic.halt_successful_poll;
3484
3485                 if (!vcpu_valid_wakeup(vcpu))
3486                         ++vcpu->stat.generic.halt_poll_invalid;
3487
3488                 stats->halt_poll_success_ns += poll_ns;
3489                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3490         } else {
3491                 stats->halt_poll_fail_ns += poll_ns;
3492                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3493         }
3494 }
3495
3496 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3497 {
3498         struct kvm *kvm = vcpu->kvm;
3499
3500         if (kvm->override_halt_poll_ns) {
3501                 /*
3502                  * Ensure kvm->max_halt_poll_ns is not read before
3503                  * kvm->override_halt_poll_ns.
3504                  *
3505                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3506                  */
3507                 smp_rmb();
3508                 return READ_ONCE(kvm->max_halt_poll_ns);
3509         }
3510
3511         return READ_ONCE(halt_poll_ns);
3512 }
3513
3514 /*
3515  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3516  * polling is enabled, busy wait for a short time before blocking to avoid the
3517  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3518  * is halted.
3519  */
3520 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3521 {
3522         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3523         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3524         ktime_t start, cur, poll_end;
3525         bool waited = false;
3526         bool do_halt_poll;
3527         u64 halt_ns;
3528
3529         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3530                 vcpu->halt_poll_ns = max_halt_poll_ns;
3531
3532         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3533
3534         start = cur = poll_end = ktime_get();
3535         if (do_halt_poll) {
3536                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3537
3538                 do {
3539                         if (kvm_vcpu_check_block(vcpu) < 0)
3540                                 goto out;
3541                         cpu_relax();
3542                         poll_end = cur = ktime_get();
3543                 } while (kvm_vcpu_can_poll(cur, stop));
3544         }
3545
3546         waited = kvm_vcpu_block(vcpu);
3547
3548         cur = ktime_get();
3549         if (waited) {
3550                 vcpu->stat.generic.halt_wait_ns +=
3551                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3552                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3553                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3554         }
3555 out:
3556         /* The total time the vCPU was "halted", including polling time. */
3557         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3558
3559         /*
3560          * Note, halt-polling is considered successful so long as the vCPU was
3561          * never actually scheduled out, i.e. even if the wake event arrived
3562          * after of the halt-polling loop itself, but before the full wait.
3563          */
3564         if (do_halt_poll)
3565                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3566
3567         if (halt_poll_allowed) {
3568                 /* Recompute the max halt poll time in case it changed. */
3569                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3570
3571                 if (!vcpu_valid_wakeup(vcpu)) {
3572                         shrink_halt_poll_ns(vcpu);
3573                 } else if (max_halt_poll_ns) {
3574                         if (halt_ns <= vcpu->halt_poll_ns)
3575                                 ;
3576                         /* we had a long block, shrink polling */
3577                         else if (vcpu->halt_poll_ns &&
3578                                  halt_ns > max_halt_poll_ns)
3579                                 shrink_halt_poll_ns(vcpu);
3580                         /* we had a short halt and our poll time is too small */
3581                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3582                                  halt_ns < max_halt_poll_ns)
3583                                 grow_halt_poll_ns(vcpu);
3584                 } else {
3585                         vcpu->halt_poll_ns = 0;
3586                 }
3587         }
3588
3589         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3590 }
3591 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3592
3593 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3594 {
3595         if (__kvm_vcpu_wake_up(vcpu)) {
3596                 WRITE_ONCE(vcpu->ready, true);
3597                 ++vcpu->stat.generic.halt_wakeup;
3598                 return true;
3599         }
3600
3601         return false;
3602 }
3603 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3604
3605 #ifndef CONFIG_S390
3606 /*
3607  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3608  */
3609 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3610 {
3611         int me, cpu;
3612
3613         if (kvm_vcpu_wake_up(vcpu))
3614                 return;
3615
3616         me = get_cpu();
3617         /*
3618          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3619          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3620          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3621          * within the vCPU thread itself.
3622          */
3623         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3624                 if (vcpu->mode == IN_GUEST_MODE)
3625                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3626                 goto out;
3627         }
3628
3629         /*
3630          * Note, the vCPU could get migrated to a different pCPU at any point
3631          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3632          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3633          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3634          * vCPU also requires it to leave IN_GUEST_MODE.
3635          */
3636         if (kvm_arch_vcpu_should_kick(vcpu)) {
3637                 cpu = READ_ONCE(vcpu->cpu);
3638                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3639                         smp_send_reschedule(cpu);
3640         }
3641 out:
3642         put_cpu();
3643 }
3644 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3645 #endif /* !CONFIG_S390 */
3646
3647 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3648 {
3649         struct pid *pid;
3650         struct task_struct *task = NULL;
3651         int ret = 0;
3652
3653         rcu_read_lock();
3654         pid = rcu_dereference(target->pid);
3655         if (pid)
3656                 task = get_pid_task(pid, PIDTYPE_PID);
3657         rcu_read_unlock();
3658         if (!task)
3659                 return ret;
3660         ret = yield_to(task, 1);
3661         put_task_struct(task);
3662
3663         return ret;
3664 }
3665 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3666
3667 /*
3668  * Helper that checks whether a VCPU is eligible for directed yield.
3669  * Most eligible candidate to yield is decided by following heuristics:
3670  *
3671  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3672  *  (preempted lock holder), indicated by @in_spin_loop.
3673  *  Set at the beginning and cleared at the end of interception/PLE handler.
3674  *
3675  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3676  *  chance last time (mostly it has become eligible now since we have probably
3677  *  yielded to lockholder in last iteration. This is done by toggling
3678  *  @dy_eligible each time a VCPU checked for eligibility.)
3679  *
3680  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3681  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3682  *  burning. Giving priority for a potential lock-holder increases lock
3683  *  progress.
3684  *
3685  *  Since algorithm is based on heuristics, accessing another VCPU data without
3686  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3687  *  and continue with next VCPU and so on.
3688  */
3689 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3690 {
3691 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3692         bool eligible;
3693
3694         eligible = !vcpu->spin_loop.in_spin_loop ||
3695                     vcpu->spin_loop.dy_eligible;
3696
3697         if (vcpu->spin_loop.in_spin_loop)
3698                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3699
3700         return eligible;
3701 #else
3702         return true;
3703 #endif
3704 }
3705
3706 /*
3707  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3708  * a vcpu_load/vcpu_put pair.  However, for most architectures
3709  * kvm_arch_vcpu_runnable does not require vcpu_load.
3710  */
3711 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3712 {
3713         return kvm_arch_vcpu_runnable(vcpu);
3714 }
3715
3716 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3717 {
3718         if (kvm_arch_dy_runnable(vcpu))
3719                 return true;
3720
3721 #ifdef CONFIG_KVM_ASYNC_PF
3722         if (!list_empty_careful(&vcpu->async_pf.done))
3723                 return true;
3724 #endif
3725
3726         return false;
3727 }
3728
3729 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3730 {
3731         return false;
3732 }
3733
3734 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3735 {
3736         struct kvm *kvm = me->kvm;
3737         struct kvm_vcpu *vcpu;
3738         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3739         unsigned long i;
3740         int yielded = 0;
3741         int try = 3;
3742         int pass;
3743
3744         kvm_vcpu_set_in_spin_loop(me, true);
3745         /*
3746          * We boost the priority of a VCPU that is runnable but not
3747          * currently running, because it got preempted by something
3748          * else and called schedule in __vcpu_run.  Hopefully that
3749          * VCPU is holding the lock that we need and will release it.
3750          * We approximate round-robin by starting at the last boosted VCPU.
3751          */
3752         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3753                 kvm_for_each_vcpu(i, vcpu, kvm) {
3754                         if (!pass && i <= last_boosted_vcpu) {
3755                                 i = last_boosted_vcpu;
3756                                 continue;
3757                         } else if (pass && i > last_boosted_vcpu)
3758                                 break;
3759                         if (!READ_ONCE(vcpu->ready))
3760                                 continue;
3761                         if (vcpu == me)
3762                                 continue;
3763                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3764                                 continue;
3765                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3766                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3767                             !kvm_arch_vcpu_in_kernel(vcpu))
3768                                 continue;
3769                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3770                                 continue;
3771
3772                         yielded = kvm_vcpu_yield_to(vcpu);
3773                         if (yielded > 0) {
3774                                 kvm->last_boosted_vcpu = i;
3775                                 break;
3776                         } else if (yielded < 0) {
3777                                 try--;
3778                                 if (!try)
3779                                         break;
3780                         }
3781                 }
3782         }
3783         kvm_vcpu_set_in_spin_loop(me, false);
3784
3785         /* Ensure vcpu is not eligible during next spinloop */
3786         kvm_vcpu_set_dy_eligible(me, false);
3787 }
3788 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3789
3790 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3791 {
3792 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3793         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3794             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3795              kvm->dirty_ring_size / PAGE_SIZE);
3796 #else
3797         return false;
3798 #endif
3799 }
3800
3801 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3802 {
3803         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3804         struct page *page;
3805
3806         if (vmf->pgoff == 0)
3807                 page = virt_to_page(vcpu->run);
3808 #ifdef CONFIG_X86
3809         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3810                 page = virt_to_page(vcpu->arch.pio_data);
3811 #endif
3812 #ifdef CONFIG_KVM_MMIO
3813         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3814                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3815 #endif
3816         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3817                 page = kvm_dirty_ring_get_page(
3818                     &vcpu->dirty_ring,
3819                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3820         else
3821                 return kvm_arch_vcpu_fault(vcpu, vmf);
3822         get_page(page);
3823         vmf->page = page;
3824         return 0;
3825 }
3826
3827 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3828         .fault = kvm_vcpu_fault,
3829 };
3830
3831 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3832 {
3833         struct kvm_vcpu *vcpu = file->private_data;
3834         unsigned long pages = vma_pages(vma);
3835
3836         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3837              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3838             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3839                 return -EINVAL;
3840
3841         vma->vm_ops = &kvm_vcpu_vm_ops;
3842         return 0;
3843 }
3844
3845 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3846 {
3847         struct kvm_vcpu *vcpu = filp->private_data;
3848
3849         kvm_put_kvm(vcpu->kvm);
3850         return 0;
3851 }
3852
3853 static const struct file_operations kvm_vcpu_fops = {
3854         .release        = kvm_vcpu_release,
3855         .unlocked_ioctl = kvm_vcpu_ioctl,
3856         .mmap           = kvm_vcpu_mmap,
3857         .llseek         = noop_llseek,
3858         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3859 };
3860
3861 /*
3862  * Allocates an inode for the vcpu.
3863  */
3864 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3865 {
3866         char name[8 + 1 + ITOA_MAX_LEN + 1];
3867
3868         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3869         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3870 }
3871
3872 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3873 static int vcpu_get_pid(void *data, u64 *val)
3874 {
3875         struct kvm_vcpu *vcpu = data;
3876
3877         rcu_read_lock();
3878         *val = pid_nr(rcu_dereference(vcpu->pid));
3879         rcu_read_unlock();
3880         return 0;
3881 }
3882
3883 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3884
3885 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3886 {
3887         struct dentry *debugfs_dentry;
3888         char dir_name[ITOA_MAX_LEN * 2];
3889
3890         if (!debugfs_initialized())
3891                 return;
3892
3893         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3894         debugfs_dentry = debugfs_create_dir(dir_name,
3895                                             vcpu->kvm->debugfs_dentry);
3896         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3897                             &vcpu_get_pid_fops);
3898
3899         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3900 }
3901 #endif
3902
3903 /*
3904  * Creates some virtual cpus.  Good luck creating more than one.
3905  */
3906 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3907 {
3908         int r;
3909         struct kvm_vcpu *vcpu;
3910         struct page *page;
3911
3912         if (id >= KVM_MAX_VCPU_IDS)
3913                 return -EINVAL;
3914
3915         mutex_lock(&kvm->lock);
3916         if (kvm->created_vcpus >= kvm->max_vcpus) {
3917                 mutex_unlock(&kvm->lock);
3918                 return -EINVAL;
3919         }
3920
3921         r = kvm_arch_vcpu_precreate(kvm, id);
3922         if (r) {
3923                 mutex_unlock(&kvm->lock);
3924                 return r;
3925         }
3926
3927         kvm->created_vcpus++;
3928         mutex_unlock(&kvm->lock);
3929
3930         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3931         if (!vcpu) {
3932                 r = -ENOMEM;
3933                 goto vcpu_decrement;
3934         }
3935
3936         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3937         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3938         if (!page) {
3939                 r = -ENOMEM;
3940                 goto vcpu_free;
3941         }
3942         vcpu->run = page_address(page);
3943
3944         kvm_vcpu_init(vcpu, kvm, id);
3945
3946         r = kvm_arch_vcpu_create(vcpu);
3947         if (r)
3948                 goto vcpu_free_run_page;
3949
3950         if (kvm->dirty_ring_size) {
3951                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3952                                          id, kvm->dirty_ring_size);
3953                 if (r)
3954                         goto arch_vcpu_destroy;
3955         }
3956
3957         mutex_lock(&kvm->lock);
3958
3959 #ifdef CONFIG_LOCKDEP
3960         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3961         mutex_lock(&vcpu->mutex);
3962         mutex_unlock(&vcpu->mutex);
3963 #endif
3964
3965         if (kvm_get_vcpu_by_id(kvm, id)) {
3966                 r = -EEXIST;
3967                 goto unlock_vcpu_destroy;
3968         }
3969
3970         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3971         r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3972         if (r)
3973                 goto unlock_vcpu_destroy;
3974
3975         /* Now it's all set up, let userspace reach it */
3976         kvm_get_kvm(kvm);
3977         r = create_vcpu_fd(vcpu);
3978         if (r < 0)
3979                 goto kvm_put_xa_release;
3980
3981         if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3982                 r = -EINVAL;
3983                 goto kvm_put_xa_release;
3984         }
3985
3986         /*
3987          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3988          * pointer before kvm->online_vcpu's incremented value.
3989          */
3990         smp_wmb();
3991         atomic_inc(&kvm->online_vcpus);
3992
3993         mutex_unlock(&kvm->lock);
3994         kvm_arch_vcpu_postcreate(vcpu);
3995         kvm_create_vcpu_debugfs(vcpu);
3996         return r;
3997
3998 kvm_put_xa_release:
3999         kvm_put_kvm_no_destroy(kvm);
4000         xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4001 unlock_vcpu_destroy:
4002         mutex_unlock(&kvm->lock);
4003         kvm_dirty_ring_free(&vcpu->dirty_ring);
4004 arch_vcpu_destroy:
4005         kvm_arch_vcpu_destroy(vcpu);
4006 vcpu_free_run_page:
4007         free_page((unsigned long)vcpu->run);
4008 vcpu_free:
4009         kmem_cache_free(kvm_vcpu_cache, vcpu);
4010 vcpu_decrement:
4011         mutex_lock(&kvm->lock);
4012         kvm->created_vcpus--;
4013         mutex_unlock(&kvm->lock);
4014         return r;
4015 }
4016
4017 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4018 {
4019         if (sigset) {
4020                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4021                 vcpu->sigset_active = 1;
4022                 vcpu->sigset = *sigset;
4023         } else
4024                 vcpu->sigset_active = 0;
4025         return 0;
4026 }
4027
4028 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4029                               size_t size, loff_t *offset)
4030 {
4031         struct kvm_vcpu *vcpu = file->private_data;
4032
4033         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4034                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4035                         sizeof(vcpu->stat), user_buffer, size, offset);
4036 }
4037
4038 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4039 {
4040         struct kvm_vcpu *vcpu = file->private_data;
4041
4042         kvm_put_kvm(vcpu->kvm);
4043         return 0;
4044 }
4045
4046 static const struct file_operations kvm_vcpu_stats_fops = {
4047         .read = kvm_vcpu_stats_read,
4048         .release = kvm_vcpu_stats_release,
4049         .llseek = noop_llseek,
4050 };
4051
4052 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4053 {
4054         int fd;
4055         struct file *file;
4056         char name[15 + ITOA_MAX_LEN + 1];
4057
4058         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4059
4060         fd = get_unused_fd_flags(O_CLOEXEC);
4061         if (fd < 0)
4062                 return fd;
4063
4064         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4065         if (IS_ERR(file)) {
4066                 put_unused_fd(fd);
4067                 return PTR_ERR(file);
4068         }
4069
4070         kvm_get_kvm(vcpu->kvm);
4071
4072         file->f_mode |= FMODE_PREAD;
4073         fd_install(fd, file);
4074
4075         return fd;
4076 }
4077
4078 static long kvm_vcpu_ioctl(struct file *filp,
4079                            unsigned int ioctl, unsigned long arg)
4080 {
4081         struct kvm_vcpu *vcpu = filp->private_data;
4082         void __user *argp = (void __user *)arg;
4083         int r;
4084         struct kvm_fpu *fpu = NULL;
4085         struct kvm_sregs *kvm_sregs = NULL;
4086
4087         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4088                 return -EIO;
4089
4090         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4091                 return -EINVAL;
4092
4093         /*
4094          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4095          * execution; mutex_lock() would break them.
4096          */
4097         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4098         if (r != -ENOIOCTLCMD)
4099                 return r;
4100
4101         if (mutex_lock_killable(&vcpu->mutex))
4102                 return -EINTR;
4103         switch (ioctl) {
4104         case KVM_RUN: {
4105                 struct pid *oldpid;
4106                 r = -EINVAL;
4107                 if (arg)
4108                         goto out;
4109                 oldpid = rcu_access_pointer(vcpu->pid);
4110                 if (unlikely(oldpid != task_pid(current))) {
4111                         /* The thread running this VCPU changed. */
4112                         struct pid *newpid;
4113
4114                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4115                         if (r)
4116                                 break;
4117
4118                         newpid = get_task_pid(current, PIDTYPE_PID);
4119                         rcu_assign_pointer(vcpu->pid, newpid);
4120                         if (oldpid)
4121                                 synchronize_rcu();
4122                         put_pid(oldpid);
4123                 }
4124                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4125                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4126                 break;
4127         }
4128         case KVM_GET_REGS: {
4129                 struct kvm_regs *kvm_regs;
4130
4131                 r = -ENOMEM;
4132                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4133                 if (!kvm_regs)
4134                         goto out;
4135                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4136                 if (r)
4137                         goto out_free1;
4138                 r = -EFAULT;
4139                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4140                         goto out_free1;
4141                 r = 0;
4142 out_free1:
4143                 kfree(kvm_regs);
4144                 break;
4145         }
4146         case KVM_SET_REGS: {
4147                 struct kvm_regs *kvm_regs;
4148
4149                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4150                 if (IS_ERR(kvm_regs)) {
4151                         r = PTR_ERR(kvm_regs);
4152                         goto out;
4153                 }
4154                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4155                 kfree(kvm_regs);
4156                 break;
4157         }
4158         case KVM_GET_SREGS: {
4159                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4160                                     GFP_KERNEL_ACCOUNT);
4161                 r = -ENOMEM;
4162                 if (!kvm_sregs)
4163                         goto out;
4164                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4165                 if (r)
4166                         goto out;
4167                 r = -EFAULT;
4168                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4169                         goto out;
4170                 r = 0;
4171                 break;
4172         }
4173         case KVM_SET_SREGS: {
4174                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4175                 if (IS_ERR(kvm_sregs)) {
4176                         r = PTR_ERR(kvm_sregs);
4177                         kvm_sregs = NULL;
4178                         goto out;
4179                 }
4180                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4181                 break;
4182         }
4183         case KVM_GET_MP_STATE: {
4184                 struct kvm_mp_state mp_state;
4185
4186                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4187                 if (r)
4188                         goto out;
4189                 r = -EFAULT;
4190                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4191                         goto out;
4192                 r = 0;
4193                 break;
4194         }
4195         case KVM_SET_MP_STATE: {
4196                 struct kvm_mp_state mp_state;
4197
4198                 r = -EFAULT;
4199                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4200                         goto out;
4201                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4202                 break;
4203         }
4204         case KVM_TRANSLATE: {
4205                 struct kvm_translation tr;
4206
4207                 r = -EFAULT;
4208                 if (copy_from_user(&tr, argp, sizeof(tr)))
4209                         goto out;
4210                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4211                 if (r)
4212                         goto out;
4213                 r = -EFAULT;
4214                 if (copy_to_user(argp, &tr, sizeof(tr)))
4215                         goto out;
4216                 r = 0;
4217                 break;
4218         }
4219         case KVM_SET_GUEST_DEBUG: {
4220                 struct kvm_guest_debug dbg;
4221
4222                 r = -EFAULT;
4223                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4224                         goto out;
4225                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4226                 break;
4227         }
4228         case KVM_SET_SIGNAL_MASK: {
4229                 struct kvm_signal_mask __user *sigmask_arg = argp;
4230                 struct kvm_signal_mask kvm_sigmask;
4231                 sigset_t sigset, *p;
4232
4233                 p = NULL;
4234                 if (argp) {
4235                         r = -EFAULT;
4236                         if (copy_from_user(&kvm_sigmask, argp,
4237                                            sizeof(kvm_sigmask)))
4238                                 goto out;
4239                         r = -EINVAL;
4240                         if (kvm_sigmask.len != sizeof(sigset))
4241                                 goto out;
4242                         r = -EFAULT;
4243                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4244                                            sizeof(sigset)))
4245                                 goto out;
4246                         p = &sigset;
4247                 }
4248                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4249                 break;
4250         }
4251         case KVM_GET_FPU: {
4252                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4253                 r = -ENOMEM;
4254                 if (!fpu)
4255                         goto out;
4256                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4257                 if (r)
4258                         goto out;
4259                 r = -EFAULT;
4260                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4261                         goto out;
4262                 r = 0;
4263                 break;
4264         }
4265         case KVM_SET_FPU: {
4266                 fpu = memdup_user(argp, sizeof(*fpu));
4267                 if (IS_ERR(fpu)) {
4268                         r = PTR_ERR(fpu);
4269                         fpu = NULL;
4270                         goto out;
4271                 }
4272                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4273                 break;
4274         }
4275         case KVM_GET_STATS_FD: {
4276                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4277                 break;
4278         }
4279         default:
4280                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4281         }
4282 out:
4283         mutex_unlock(&vcpu->mutex);
4284         kfree(fpu);
4285         kfree(kvm_sregs);
4286         return r;
4287 }
4288
4289 #ifdef CONFIG_KVM_COMPAT
4290 static long kvm_vcpu_compat_ioctl(struct file *filp,
4291                                   unsigned int ioctl, unsigned long arg)
4292 {
4293         struct kvm_vcpu *vcpu = filp->private_data;
4294         void __user *argp = compat_ptr(arg);
4295         int r;
4296
4297         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4298                 return -EIO;
4299
4300         switch (ioctl) {
4301         case KVM_SET_SIGNAL_MASK: {
4302                 struct kvm_signal_mask __user *sigmask_arg = argp;
4303                 struct kvm_signal_mask kvm_sigmask;
4304                 sigset_t sigset;
4305
4306                 if (argp) {
4307                         r = -EFAULT;
4308                         if (copy_from_user(&kvm_sigmask, argp,
4309                                            sizeof(kvm_sigmask)))
4310                                 goto out;
4311                         r = -EINVAL;
4312                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4313                                 goto out;
4314                         r = -EFAULT;
4315                         if (get_compat_sigset(&sigset,
4316                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4317                                 goto out;
4318                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4319                 } else
4320                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4321                 break;
4322         }
4323         default:
4324                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4325         }
4326
4327 out:
4328         return r;
4329 }
4330 #endif
4331
4332 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4333 {
4334         struct kvm_device *dev = filp->private_data;
4335
4336         if (dev->ops->mmap)
4337                 return dev->ops->mmap(dev, vma);
4338
4339         return -ENODEV;
4340 }
4341
4342 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4343                                  int (*accessor)(struct kvm_device *dev,
4344                                                  struct kvm_device_attr *attr),
4345                                  unsigned long arg)
4346 {
4347         struct kvm_device_attr attr;
4348
4349         if (!accessor)
4350                 return -EPERM;
4351
4352         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4353                 return -EFAULT;
4354
4355         return accessor(dev, &attr);
4356 }
4357
4358 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4359                              unsigned long arg)
4360 {
4361         struct kvm_device *dev = filp->private_data;
4362
4363         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4364                 return -EIO;
4365
4366         switch (ioctl) {
4367         case KVM_SET_DEVICE_ATTR:
4368                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4369         case KVM_GET_DEVICE_ATTR:
4370                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4371         case KVM_HAS_DEVICE_ATTR:
4372                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4373         default:
4374                 if (dev->ops->ioctl)
4375                         return dev->ops->ioctl(dev, ioctl, arg);
4376
4377                 return -ENOTTY;
4378         }
4379 }
4380
4381 static int kvm_device_release(struct inode *inode, struct file *filp)
4382 {
4383         struct kvm_device *dev = filp->private_data;
4384         struct kvm *kvm = dev->kvm;
4385
4386         if (dev->ops->release) {
4387                 mutex_lock(&kvm->lock);
4388                 list_del(&dev->vm_node);
4389                 dev->ops->release(dev);
4390                 mutex_unlock(&kvm->lock);
4391         }
4392
4393         kvm_put_kvm(kvm);
4394         return 0;
4395 }
4396
4397 static const struct file_operations kvm_device_fops = {
4398         .unlocked_ioctl = kvm_device_ioctl,
4399         .release = kvm_device_release,
4400         KVM_COMPAT(kvm_device_ioctl),
4401         .mmap = kvm_device_mmap,
4402 };
4403
4404 struct kvm_device *kvm_device_from_filp(struct file *filp)
4405 {
4406         if (filp->f_op != &kvm_device_fops)
4407                 return NULL;
4408
4409         return filp->private_data;
4410 }
4411
4412 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4413 #ifdef CONFIG_KVM_MPIC
4414         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4415         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4416 #endif
4417 };
4418
4419 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4420 {
4421         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4422                 return -ENOSPC;
4423
4424         if (kvm_device_ops_table[type] != NULL)
4425                 return -EEXIST;
4426
4427         kvm_device_ops_table[type] = ops;
4428         return 0;
4429 }
4430
4431 void kvm_unregister_device_ops(u32 type)
4432 {
4433         if (kvm_device_ops_table[type] != NULL)
4434                 kvm_device_ops_table[type] = NULL;
4435 }
4436
4437 static int kvm_ioctl_create_device(struct kvm *kvm,
4438                                    struct kvm_create_device *cd)
4439 {
4440         const struct kvm_device_ops *ops;
4441         struct kvm_device *dev;
4442         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4443         int type;
4444         int ret;
4445
4446         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4447                 return -ENODEV;
4448
4449         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4450         ops = kvm_device_ops_table[type];
4451         if (ops == NULL)
4452                 return -ENODEV;
4453
4454         if (test)
4455                 return 0;
4456
4457         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4458         if (!dev)
4459                 return -ENOMEM;
4460
4461         dev->ops = ops;
4462         dev->kvm = kvm;
4463
4464         mutex_lock(&kvm->lock);
4465         ret = ops->create(dev, type);
4466         if (ret < 0) {
4467                 mutex_unlock(&kvm->lock);
4468                 kfree(dev);
4469                 return ret;
4470         }
4471         list_add(&dev->vm_node, &kvm->devices);
4472         mutex_unlock(&kvm->lock);
4473
4474         if (ops->init)
4475                 ops->init(dev);
4476
4477         kvm_get_kvm(kvm);
4478         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4479         if (ret < 0) {
4480                 kvm_put_kvm_no_destroy(kvm);
4481                 mutex_lock(&kvm->lock);
4482                 list_del(&dev->vm_node);
4483                 if (ops->release)
4484                         ops->release(dev);
4485                 mutex_unlock(&kvm->lock);
4486                 if (ops->destroy)
4487                         ops->destroy(dev);
4488                 return ret;
4489         }
4490
4491         cd->fd = ret;
4492         return 0;
4493 }
4494
4495 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4496 {
4497         switch (arg) {
4498         case KVM_CAP_USER_MEMORY:
4499         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4500         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4501         case KVM_CAP_INTERNAL_ERROR_DATA:
4502 #ifdef CONFIG_HAVE_KVM_MSI
4503         case KVM_CAP_SIGNAL_MSI:
4504 #endif
4505 #ifdef CONFIG_HAVE_KVM_IRQFD
4506         case KVM_CAP_IRQFD:
4507 #endif
4508         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4509         case KVM_CAP_CHECK_EXTENSION_VM:
4510         case KVM_CAP_ENABLE_CAP_VM:
4511         case KVM_CAP_HALT_POLL:
4512                 return 1;
4513 #ifdef CONFIG_KVM_MMIO
4514         case KVM_CAP_COALESCED_MMIO:
4515                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4516         case KVM_CAP_COALESCED_PIO:
4517                 return 1;
4518 #endif
4519 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4520         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4521                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4522 #endif
4523 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4524         case KVM_CAP_IRQ_ROUTING:
4525                 return KVM_MAX_IRQ_ROUTES;
4526 #endif
4527 #if KVM_ADDRESS_SPACE_NUM > 1
4528         case KVM_CAP_MULTI_ADDRESS_SPACE:
4529                 return KVM_ADDRESS_SPACE_NUM;
4530 #endif
4531         case KVM_CAP_NR_MEMSLOTS:
4532                 return KVM_USER_MEM_SLOTS;
4533         case KVM_CAP_DIRTY_LOG_RING:
4534 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4535                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4536 #else
4537                 return 0;
4538 #endif
4539         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4540 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4541                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4542 #else
4543                 return 0;
4544 #endif
4545 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4546         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4547 #endif
4548         case KVM_CAP_BINARY_STATS_FD:
4549         case KVM_CAP_SYSTEM_EVENT_DATA:
4550                 return 1;
4551         default:
4552                 break;
4553         }
4554         return kvm_vm_ioctl_check_extension(kvm, arg);
4555 }
4556
4557 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4558 {
4559         int r;
4560
4561         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4562                 return -EINVAL;
4563
4564         /* the size should be power of 2 */
4565         if (!size || (size & (size - 1)))
4566                 return -EINVAL;
4567
4568         /* Should be bigger to keep the reserved entries, or a page */
4569         if (size < kvm_dirty_ring_get_rsvd_entries() *
4570             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4571                 return -EINVAL;
4572
4573         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4574             sizeof(struct kvm_dirty_gfn))
4575                 return -E2BIG;
4576
4577         /* We only allow it to set once */
4578         if (kvm->dirty_ring_size)
4579                 return -EINVAL;
4580
4581         mutex_lock(&kvm->lock);
4582
4583         if (kvm->created_vcpus) {
4584                 /* We don't allow to change this value after vcpu created */
4585                 r = -EINVAL;
4586         } else {
4587                 kvm->dirty_ring_size = size;
4588                 r = 0;
4589         }
4590
4591         mutex_unlock(&kvm->lock);
4592         return r;
4593 }
4594
4595 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4596 {
4597         unsigned long i;
4598         struct kvm_vcpu *vcpu;
4599         int cleared = 0;
4600
4601         if (!kvm->dirty_ring_size)
4602                 return -EINVAL;
4603
4604         mutex_lock(&kvm->slots_lock);
4605
4606         kvm_for_each_vcpu(i, vcpu, kvm)
4607                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4608
4609         mutex_unlock(&kvm->slots_lock);
4610
4611         if (cleared)
4612                 kvm_flush_remote_tlbs(kvm);
4613
4614         return cleared;
4615 }
4616
4617 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4618                                                   struct kvm_enable_cap *cap)
4619 {
4620         return -EINVAL;
4621 }
4622
4623 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4624 {
4625         int i;
4626
4627         lockdep_assert_held(&kvm->slots_lock);
4628
4629         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4630                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4631                         return false;
4632         }
4633
4634         return true;
4635 }
4636 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4637
4638 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4639                                            struct kvm_enable_cap *cap)
4640 {
4641         switch (cap->cap) {
4642 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4643         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4644                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4645
4646                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4647                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4648
4649                 if (cap->flags || (cap->args[0] & ~allowed_options))
4650                         return -EINVAL;
4651                 kvm->manual_dirty_log_protect = cap->args[0];
4652                 return 0;
4653         }
4654 #endif
4655         case KVM_CAP_HALT_POLL: {
4656                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4657                         return -EINVAL;
4658
4659                 kvm->max_halt_poll_ns = cap->args[0];
4660
4661                 /*
4662                  * Ensure kvm->override_halt_poll_ns does not become visible
4663                  * before kvm->max_halt_poll_ns.
4664                  *
4665                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4666                  */
4667                 smp_wmb();
4668                 kvm->override_halt_poll_ns = true;
4669
4670                 return 0;
4671         }
4672         case KVM_CAP_DIRTY_LOG_RING:
4673         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4674                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4675                         return -EINVAL;
4676
4677                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4678         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4679                 int r = -EINVAL;
4680
4681                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4682                     !kvm->dirty_ring_size || cap->flags)
4683                         return r;
4684
4685                 mutex_lock(&kvm->slots_lock);
4686
4687                 /*
4688                  * For simplicity, allow enabling ring+bitmap if and only if
4689                  * there are no memslots, e.g. to ensure all memslots allocate
4690                  * a bitmap after the capability is enabled.
4691                  */
4692                 if (kvm_are_all_memslots_empty(kvm)) {
4693                         kvm->dirty_ring_with_bitmap = true;
4694                         r = 0;
4695                 }
4696
4697                 mutex_unlock(&kvm->slots_lock);
4698
4699                 return r;
4700         }
4701         default:
4702                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4703         }
4704 }
4705
4706 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4707                               size_t size, loff_t *offset)
4708 {
4709         struct kvm *kvm = file->private_data;
4710
4711         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4712                                 &kvm_vm_stats_desc[0], &kvm->stat,
4713                                 sizeof(kvm->stat), user_buffer, size, offset);
4714 }
4715
4716 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4717 {
4718         struct kvm *kvm = file->private_data;
4719
4720         kvm_put_kvm(kvm);
4721         return 0;
4722 }
4723
4724 static const struct file_operations kvm_vm_stats_fops = {
4725         .read = kvm_vm_stats_read,
4726         .release = kvm_vm_stats_release,
4727         .llseek = noop_llseek,
4728 };
4729
4730 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4731 {
4732         int fd;
4733         struct file *file;
4734
4735         fd = get_unused_fd_flags(O_CLOEXEC);
4736         if (fd < 0)
4737                 return fd;
4738
4739         file = anon_inode_getfile("kvm-vm-stats",
4740                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4741         if (IS_ERR(file)) {
4742                 put_unused_fd(fd);
4743                 return PTR_ERR(file);
4744         }
4745
4746         kvm_get_kvm(kvm);
4747
4748         file->f_mode |= FMODE_PREAD;
4749         fd_install(fd, file);
4750
4751         return fd;
4752 }
4753
4754 static long kvm_vm_ioctl(struct file *filp,
4755                            unsigned int ioctl, unsigned long arg)
4756 {
4757         struct kvm *kvm = filp->private_data;
4758         void __user *argp = (void __user *)arg;
4759         int r;
4760
4761         if (kvm->mm != current->mm || kvm->vm_dead)
4762                 return -EIO;
4763         switch (ioctl) {
4764         case KVM_CREATE_VCPU:
4765                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4766                 break;
4767         case KVM_ENABLE_CAP: {
4768                 struct kvm_enable_cap cap;
4769
4770                 r = -EFAULT;
4771                 if (copy_from_user(&cap, argp, sizeof(cap)))
4772                         goto out;
4773                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4774                 break;
4775         }
4776         case KVM_SET_USER_MEMORY_REGION: {
4777                 struct kvm_userspace_memory_region kvm_userspace_mem;
4778
4779                 r = -EFAULT;
4780                 if (copy_from_user(&kvm_userspace_mem, argp,
4781                                                 sizeof(kvm_userspace_mem)))
4782                         goto out;
4783
4784                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4785                 break;
4786         }
4787         case KVM_GET_DIRTY_LOG: {
4788                 struct kvm_dirty_log log;
4789
4790                 r = -EFAULT;
4791                 if (copy_from_user(&log, argp, sizeof(log)))
4792                         goto out;
4793                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4794                 break;
4795         }
4796 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4797         case KVM_CLEAR_DIRTY_LOG: {
4798                 struct kvm_clear_dirty_log log;
4799
4800                 r = -EFAULT;
4801                 if (copy_from_user(&log, argp, sizeof(log)))
4802                         goto out;
4803                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4804                 break;
4805         }
4806 #endif
4807 #ifdef CONFIG_KVM_MMIO
4808         case KVM_REGISTER_COALESCED_MMIO: {
4809                 struct kvm_coalesced_mmio_zone zone;
4810
4811                 r = -EFAULT;
4812                 if (copy_from_user(&zone, argp, sizeof(zone)))
4813                         goto out;
4814                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4815                 break;
4816         }
4817         case KVM_UNREGISTER_COALESCED_MMIO: {
4818                 struct kvm_coalesced_mmio_zone zone;
4819
4820                 r = -EFAULT;
4821                 if (copy_from_user(&zone, argp, sizeof(zone)))
4822                         goto out;
4823                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4824                 break;
4825         }
4826 #endif
4827         case KVM_IRQFD: {
4828                 struct kvm_irqfd data;
4829
4830                 r = -EFAULT;
4831                 if (copy_from_user(&data, argp, sizeof(data)))
4832                         goto out;
4833                 r = kvm_irqfd(kvm, &data);
4834                 break;
4835         }
4836         case KVM_IOEVENTFD: {
4837                 struct kvm_ioeventfd data;
4838
4839                 r = -EFAULT;
4840                 if (copy_from_user(&data, argp, sizeof(data)))
4841                         goto out;
4842                 r = kvm_ioeventfd(kvm, &data);
4843                 break;
4844         }
4845 #ifdef CONFIG_HAVE_KVM_MSI
4846         case KVM_SIGNAL_MSI: {
4847                 struct kvm_msi msi;
4848
4849                 r = -EFAULT;
4850                 if (copy_from_user(&msi, argp, sizeof(msi)))
4851                         goto out;
4852                 r = kvm_send_userspace_msi(kvm, &msi);
4853                 break;
4854         }
4855 #endif
4856 #ifdef __KVM_HAVE_IRQ_LINE
4857         case KVM_IRQ_LINE_STATUS:
4858         case KVM_IRQ_LINE: {
4859                 struct kvm_irq_level irq_event;
4860
4861                 r = -EFAULT;
4862                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4863                         goto out;
4864
4865                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4866                                         ioctl == KVM_IRQ_LINE_STATUS);
4867                 if (r)
4868                         goto out;
4869
4870                 r = -EFAULT;
4871                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4872                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4873                                 goto out;
4874                 }
4875
4876                 r = 0;
4877                 break;
4878         }
4879 #endif
4880 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4881         case KVM_SET_GSI_ROUTING: {
4882                 struct kvm_irq_routing routing;
4883                 struct kvm_irq_routing __user *urouting;
4884                 struct kvm_irq_routing_entry *entries = NULL;
4885
4886                 r = -EFAULT;
4887                 if (copy_from_user(&routing, argp, sizeof(routing)))
4888                         goto out;
4889                 r = -EINVAL;
4890                 if (!kvm_arch_can_set_irq_routing(kvm))
4891                         goto out;
4892                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4893                         goto out;
4894                 if (routing.flags)
4895                         goto out;
4896                 if (routing.nr) {
4897                         urouting = argp;
4898                         entries = vmemdup_user(urouting->entries,
4899                                                array_size(sizeof(*entries),
4900                                                           routing.nr));
4901                         if (IS_ERR(entries)) {
4902                                 r = PTR_ERR(entries);
4903                                 goto out;
4904                         }
4905                 }
4906                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4907                                         routing.flags);
4908                 kvfree(entries);
4909                 break;
4910         }
4911 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4912         case KVM_CREATE_DEVICE: {
4913                 struct kvm_create_device cd;
4914
4915                 r = -EFAULT;
4916                 if (copy_from_user(&cd, argp, sizeof(cd)))
4917                         goto out;
4918
4919                 r = kvm_ioctl_create_device(kvm, &cd);
4920                 if (r)
4921                         goto out;
4922
4923                 r = -EFAULT;
4924                 if (copy_to_user(argp, &cd, sizeof(cd)))
4925                         goto out;
4926
4927                 r = 0;
4928                 break;
4929         }
4930         case KVM_CHECK_EXTENSION:
4931                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4932                 break;
4933         case KVM_RESET_DIRTY_RINGS:
4934                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4935                 break;
4936         case KVM_GET_STATS_FD:
4937                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4938                 break;
4939         default:
4940                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4941         }
4942 out:
4943         return r;
4944 }
4945
4946 #ifdef CONFIG_KVM_COMPAT
4947 struct compat_kvm_dirty_log {
4948         __u32 slot;
4949         __u32 padding1;
4950         union {
4951                 compat_uptr_t dirty_bitmap; /* one bit per page */
4952                 __u64 padding2;
4953         };
4954 };
4955
4956 struct compat_kvm_clear_dirty_log {
4957         __u32 slot;
4958         __u32 num_pages;
4959         __u64 first_page;
4960         union {
4961                 compat_uptr_t dirty_bitmap; /* one bit per page */
4962                 __u64 padding2;
4963         };
4964 };
4965
4966 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4967                                      unsigned long arg)
4968 {
4969         return -ENOTTY;
4970 }
4971
4972 static long kvm_vm_compat_ioctl(struct file *filp,
4973                            unsigned int ioctl, unsigned long arg)
4974 {
4975         struct kvm *kvm = filp->private_data;
4976         int r;
4977
4978         if (kvm->mm != current->mm || kvm->vm_dead)
4979                 return -EIO;
4980
4981         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4982         if (r != -ENOTTY)
4983                 return r;
4984
4985         switch (ioctl) {
4986 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4987         case KVM_CLEAR_DIRTY_LOG: {
4988                 struct compat_kvm_clear_dirty_log compat_log;
4989                 struct kvm_clear_dirty_log log;
4990
4991                 if (copy_from_user(&compat_log, (void __user *)arg,
4992                                    sizeof(compat_log)))
4993                         return -EFAULT;
4994                 log.slot         = compat_log.slot;
4995                 log.num_pages    = compat_log.num_pages;
4996                 log.first_page   = compat_log.first_page;
4997                 log.padding2     = compat_log.padding2;
4998                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4999
5000                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5001                 break;
5002         }
5003 #endif
5004         case KVM_GET_DIRTY_LOG: {
5005                 struct compat_kvm_dirty_log compat_log;
5006                 struct kvm_dirty_log log;
5007
5008                 if (copy_from_user(&compat_log, (void __user *)arg,
5009                                    sizeof(compat_log)))
5010                         return -EFAULT;
5011                 log.slot         = compat_log.slot;
5012                 log.padding1     = compat_log.padding1;
5013                 log.padding2     = compat_log.padding2;
5014                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5015
5016                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5017                 break;
5018         }
5019         default:
5020                 r = kvm_vm_ioctl(filp, ioctl, arg);
5021         }
5022         return r;
5023 }
5024 #endif
5025
5026 static const struct file_operations kvm_vm_fops = {
5027         .release        = kvm_vm_release,
5028         .unlocked_ioctl = kvm_vm_ioctl,
5029         .llseek         = noop_llseek,
5030         KVM_COMPAT(kvm_vm_compat_ioctl),
5031 };
5032
5033 bool file_is_kvm(struct file *file)
5034 {
5035         return file && file->f_op == &kvm_vm_fops;
5036 }
5037 EXPORT_SYMBOL_GPL(file_is_kvm);
5038
5039 static int kvm_dev_ioctl_create_vm(unsigned long type)
5040 {
5041         char fdname[ITOA_MAX_LEN + 1];
5042         int r, fd;
5043         struct kvm *kvm;
5044         struct file *file;
5045
5046         fd = get_unused_fd_flags(O_CLOEXEC);
5047         if (fd < 0)
5048                 return fd;
5049
5050         snprintf(fdname, sizeof(fdname), "%d", fd);
5051
5052         kvm = kvm_create_vm(type, fdname);
5053         if (IS_ERR(kvm)) {
5054                 r = PTR_ERR(kvm);
5055                 goto put_fd;
5056         }
5057
5058         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5059         if (IS_ERR(file)) {
5060                 r = PTR_ERR(file);
5061                 goto put_kvm;
5062         }
5063
5064         /*
5065          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5066          * already set, with ->release() being kvm_vm_release().  In error
5067          * cases it will be called by the final fput(file) and will take
5068          * care of doing kvm_put_kvm(kvm).
5069          */
5070         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5071
5072         fd_install(fd, file);
5073         return fd;
5074
5075 put_kvm:
5076         kvm_put_kvm(kvm);
5077 put_fd:
5078         put_unused_fd(fd);
5079         return r;
5080 }
5081
5082 static long kvm_dev_ioctl(struct file *filp,
5083                           unsigned int ioctl, unsigned long arg)
5084 {
5085         int r = -EINVAL;
5086
5087         switch (ioctl) {
5088         case KVM_GET_API_VERSION:
5089                 if (arg)
5090                         goto out;
5091                 r = KVM_API_VERSION;
5092                 break;
5093         case KVM_CREATE_VM:
5094                 r = kvm_dev_ioctl_create_vm(arg);
5095                 break;
5096         case KVM_CHECK_EXTENSION:
5097                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5098                 break;
5099         case KVM_GET_VCPU_MMAP_SIZE:
5100                 if (arg)
5101                         goto out;
5102                 r = PAGE_SIZE;     /* struct kvm_run */
5103 #ifdef CONFIG_X86
5104                 r += PAGE_SIZE;    /* pio data page */
5105 #endif
5106 #ifdef CONFIG_KVM_MMIO
5107                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5108 #endif
5109                 break;
5110         case KVM_TRACE_ENABLE:
5111         case KVM_TRACE_PAUSE:
5112         case KVM_TRACE_DISABLE:
5113                 r = -EOPNOTSUPP;
5114                 break;
5115         default:
5116                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5117         }
5118 out:
5119         return r;
5120 }
5121
5122 static struct file_operations kvm_chardev_ops = {
5123         .unlocked_ioctl = kvm_dev_ioctl,
5124         .llseek         = noop_llseek,
5125         KVM_COMPAT(kvm_dev_ioctl),
5126 };
5127
5128 static struct miscdevice kvm_dev = {
5129         KVM_MINOR,
5130         "kvm",
5131         &kvm_chardev_ops,
5132 };
5133
5134 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5135 __visible bool kvm_rebooting;
5136 EXPORT_SYMBOL_GPL(kvm_rebooting);
5137
5138 static DEFINE_PER_CPU(bool, hardware_enabled);
5139 static int kvm_usage_count;
5140
5141 static int __hardware_enable_nolock(void)
5142 {
5143         if (__this_cpu_read(hardware_enabled))
5144                 return 0;
5145
5146         if (kvm_arch_hardware_enable()) {
5147                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5148                         raw_smp_processor_id());
5149                 return -EIO;
5150         }
5151
5152         __this_cpu_write(hardware_enabled, true);
5153         return 0;
5154 }
5155
5156 static void hardware_enable_nolock(void *failed)
5157 {
5158         if (__hardware_enable_nolock())
5159                 atomic_inc(failed);
5160 }
5161
5162 static int kvm_online_cpu(unsigned int cpu)
5163 {
5164         int ret = 0;
5165
5166         /*
5167          * Abort the CPU online process if hardware virtualization cannot
5168          * be enabled. Otherwise running VMs would encounter unrecoverable
5169          * errors when scheduled to this CPU.
5170          */
5171         mutex_lock(&kvm_lock);
5172         if (kvm_usage_count)
5173                 ret = __hardware_enable_nolock();
5174         mutex_unlock(&kvm_lock);
5175         return ret;
5176 }
5177
5178 static void hardware_disable_nolock(void *junk)
5179 {
5180         /*
5181          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5182          * hardware, not just CPUs that successfully enabled hardware!
5183          */
5184         if (!__this_cpu_read(hardware_enabled))
5185                 return;
5186
5187         kvm_arch_hardware_disable();
5188
5189         __this_cpu_write(hardware_enabled, false);
5190 }
5191
5192 static int kvm_offline_cpu(unsigned int cpu)
5193 {
5194         mutex_lock(&kvm_lock);
5195         if (kvm_usage_count)
5196                 hardware_disable_nolock(NULL);
5197         mutex_unlock(&kvm_lock);
5198         return 0;
5199 }
5200
5201 static void hardware_disable_all_nolock(void)
5202 {
5203         BUG_ON(!kvm_usage_count);
5204
5205         kvm_usage_count--;
5206         if (!kvm_usage_count)
5207                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5208 }
5209
5210 static void hardware_disable_all(void)
5211 {
5212         cpus_read_lock();
5213         mutex_lock(&kvm_lock);
5214         hardware_disable_all_nolock();
5215         mutex_unlock(&kvm_lock);
5216         cpus_read_unlock();
5217 }
5218
5219 static int hardware_enable_all(void)
5220 {
5221         atomic_t failed = ATOMIC_INIT(0);
5222         int r;
5223
5224         /*
5225          * Do not enable hardware virtualization if the system is going down.
5226          * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5227          * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5228          * after kvm_reboot() is called.  Note, this relies on system_state
5229          * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5230          * hook instead of registering a dedicated reboot notifier (the latter
5231          * runs before system_state is updated).
5232          */
5233         if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5234             system_state == SYSTEM_RESTART)
5235                 return -EBUSY;
5236
5237         /*
5238          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5239          * is called, and so on_each_cpu() between them includes the CPU that
5240          * is being onlined.  As a result, hardware_enable_nolock() may get
5241          * invoked before kvm_online_cpu(), which also enables hardware if the
5242          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5243          * enable hardware multiple times.
5244          */
5245         cpus_read_lock();
5246         mutex_lock(&kvm_lock);
5247
5248         r = 0;
5249
5250         kvm_usage_count++;
5251         if (kvm_usage_count == 1) {
5252                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5253
5254                 if (atomic_read(&failed)) {
5255                         hardware_disable_all_nolock();
5256                         r = -EBUSY;
5257                 }
5258         }
5259
5260         mutex_unlock(&kvm_lock);
5261         cpus_read_unlock();
5262
5263         return r;
5264 }
5265
5266 static void kvm_shutdown(void)
5267 {
5268         /*
5269          * Disable hardware virtualization and set kvm_rebooting to indicate
5270          * that KVM has asynchronously disabled hardware virtualization, i.e.
5271          * that relevant errors and exceptions aren't entirely unexpected.
5272          * Some flavors of hardware virtualization need to be disabled before
5273          * transferring control to firmware (to perform shutdown/reboot), e.g.
5274          * on x86, virtualization can block INIT interrupts, which are used by
5275          * firmware to pull APs back under firmware control.  Note, this path
5276          * is used for both shutdown and reboot scenarios, i.e. neither name is
5277          * 100% comprehensive.
5278          */
5279         pr_info("kvm: exiting hardware virtualization\n");
5280         kvm_rebooting = true;
5281         on_each_cpu(hardware_disable_nolock, NULL, 1);
5282 }
5283
5284 static int kvm_suspend(void)
5285 {
5286         /*
5287          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5288          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5289          * is stable.  Assert that kvm_lock is not held to ensure the system
5290          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5291          * can be preempted, but the task cannot be frozen until it has dropped
5292          * all locks (userspace tasks are frozen via a fake signal).
5293          */
5294         lockdep_assert_not_held(&kvm_lock);
5295         lockdep_assert_irqs_disabled();
5296
5297         if (kvm_usage_count)
5298                 hardware_disable_nolock(NULL);
5299         return 0;
5300 }
5301
5302 static void kvm_resume(void)
5303 {
5304         lockdep_assert_not_held(&kvm_lock);
5305         lockdep_assert_irqs_disabled();
5306
5307         if (kvm_usage_count)
5308                 WARN_ON_ONCE(__hardware_enable_nolock());
5309 }
5310
5311 static struct syscore_ops kvm_syscore_ops = {
5312         .suspend = kvm_suspend,
5313         .resume = kvm_resume,
5314         .shutdown = kvm_shutdown,
5315 };
5316 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5317 static int hardware_enable_all(void)
5318 {
5319         return 0;
5320 }
5321
5322 static void hardware_disable_all(void)
5323 {
5324
5325 }
5326 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5327
5328 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5329 {
5330         if (dev->ops->destructor)
5331                 dev->ops->destructor(dev);
5332 }
5333
5334 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5335 {
5336         int i;
5337
5338         for (i = 0; i < bus->dev_count; i++) {
5339                 struct kvm_io_device *pos = bus->range[i].dev;
5340
5341                 kvm_iodevice_destructor(pos);
5342         }
5343         kfree(bus);
5344 }
5345
5346 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5347                                  const struct kvm_io_range *r2)
5348 {
5349         gpa_t addr1 = r1->addr;
5350         gpa_t addr2 = r2->addr;
5351
5352         if (addr1 < addr2)
5353                 return -1;
5354
5355         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5356          * accept any overlapping write.  Any order is acceptable for
5357          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5358          * we process all of them.
5359          */
5360         if (r2->len) {
5361                 addr1 += r1->len;
5362                 addr2 += r2->len;
5363         }
5364
5365         if (addr1 > addr2)
5366                 return 1;
5367
5368         return 0;
5369 }
5370
5371 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5372 {
5373         return kvm_io_bus_cmp(p1, p2);
5374 }
5375
5376 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5377                              gpa_t addr, int len)
5378 {
5379         struct kvm_io_range *range, key;
5380         int off;
5381
5382         key = (struct kvm_io_range) {
5383                 .addr = addr,
5384                 .len = len,
5385         };
5386
5387         range = bsearch(&key, bus->range, bus->dev_count,
5388                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5389         if (range == NULL)
5390                 return -ENOENT;
5391
5392         off = range - bus->range;
5393
5394         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5395                 off--;
5396
5397         return off;
5398 }
5399
5400 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5401                               struct kvm_io_range *range, const void *val)
5402 {
5403         int idx;
5404
5405         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5406         if (idx < 0)
5407                 return -EOPNOTSUPP;
5408
5409         while (idx < bus->dev_count &&
5410                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5411                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5412                                         range->len, val))
5413                         return idx;
5414                 idx++;
5415         }
5416
5417         return -EOPNOTSUPP;
5418 }
5419
5420 /* kvm_io_bus_write - called under kvm->slots_lock */
5421 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5422                      int len, const void *val)
5423 {
5424         struct kvm_io_bus *bus;
5425         struct kvm_io_range range;
5426         int r;
5427
5428         range = (struct kvm_io_range) {
5429                 .addr = addr,
5430                 .len = len,
5431         };
5432
5433         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5434         if (!bus)
5435                 return -ENOMEM;
5436         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5437         return r < 0 ? r : 0;
5438 }
5439 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5440
5441 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5442 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5443                             gpa_t addr, int len, const void *val, long cookie)
5444 {
5445         struct kvm_io_bus *bus;
5446         struct kvm_io_range range;
5447
5448         range = (struct kvm_io_range) {
5449                 .addr = addr,
5450                 .len = len,
5451         };
5452
5453         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5454         if (!bus)
5455                 return -ENOMEM;
5456
5457         /* First try the device referenced by cookie. */
5458         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5459             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5460                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5461                                         val))
5462                         return cookie;
5463
5464         /*
5465          * cookie contained garbage; fall back to search and return the
5466          * correct cookie value.
5467          */
5468         return __kvm_io_bus_write(vcpu, bus, &range, val);
5469 }
5470
5471 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5472                              struct kvm_io_range *range, void *val)
5473 {
5474         int idx;
5475
5476         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5477         if (idx < 0)
5478                 return -EOPNOTSUPP;
5479
5480         while (idx < bus->dev_count &&
5481                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5482                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5483                                        range->len, val))
5484                         return idx;
5485                 idx++;
5486         }
5487
5488         return -EOPNOTSUPP;
5489 }
5490
5491 /* kvm_io_bus_read - called under kvm->slots_lock */
5492 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5493                     int len, void *val)
5494 {
5495         struct kvm_io_bus *bus;
5496         struct kvm_io_range range;
5497         int r;
5498
5499         range = (struct kvm_io_range) {
5500                 .addr = addr,
5501                 .len = len,
5502         };
5503
5504         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5505         if (!bus)
5506                 return -ENOMEM;
5507         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5508         return r < 0 ? r : 0;
5509 }
5510
5511 /* Caller must hold slots_lock. */
5512 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5513                             int len, struct kvm_io_device *dev)
5514 {
5515         int i;
5516         struct kvm_io_bus *new_bus, *bus;
5517         struct kvm_io_range range;
5518
5519         bus = kvm_get_bus(kvm, bus_idx);
5520         if (!bus)
5521                 return -ENOMEM;
5522
5523         /* exclude ioeventfd which is limited by maximum fd */
5524         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5525                 return -ENOSPC;
5526
5527         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5528                           GFP_KERNEL_ACCOUNT);
5529         if (!new_bus)
5530                 return -ENOMEM;
5531
5532         range = (struct kvm_io_range) {
5533                 .addr = addr,
5534                 .len = len,
5535                 .dev = dev,
5536         };
5537
5538         for (i = 0; i < bus->dev_count; i++)
5539                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5540                         break;
5541
5542         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5543         new_bus->dev_count++;
5544         new_bus->range[i] = range;
5545         memcpy(new_bus->range + i + 1, bus->range + i,
5546                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5547         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5548         synchronize_srcu_expedited(&kvm->srcu);
5549         kfree(bus);
5550
5551         return 0;
5552 }
5553
5554 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5555                               struct kvm_io_device *dev)
5556 {
5557         int i;
5558         struct kvm_io_bus *new_bus, *bus;
5559
5560         lockdep_assert_held(&kvm->slots_lock);
5561
5562         bus = kvm_get_bus(kvm, bus_idx);
5563         if (!bus)
5564                 return 0;
5565
5566         for (i = 0; i < bus->dev_count; i++) {
5567                 if (bus->range[i].dev == dev) {
5568                         break;
5569                 }
5570         }
5571
5572         if (i == bus->dev_count)
5573                 return 0;
5574
5575         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5576                           GFP_KERNEL_ACCOUNT);
5577         if (new_bus) {
5578                 memcpy(new_bus, bus, struct_size(bus, range, i));
5579                 new_bus->dev_count--;
5580                 memcpy(new_bus->range + i, bus->range + i + 1,
5581                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5582         }
5583
5584         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5585         synchronize_srcu_expedited(&kvm->srcu);
5586
5587         /*
5588          * If NULL bus is installed, destroy the old bus, including all the
5589          * attached devices. Otherwise, destroy the caller's device only.
5590          */
5591         if (!new_bus) {
5592                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5593                 kvm_io_bus_destroy(bus);
5594                 return -ENOMEM;
5595         }
5596
5597         kvm_iodevice_destructor(dev);
5598         kfree(bus);
5599         return 0;
5600 }
5601
5602 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5603                                          gpa_t addr)
5604 {
5605         struct kvm_io_bus *bus;
5606         int dev_idx, srcu_idx;
5607         struct kvm_io_device *iodev = NULL;
5608
5609         srcu_idx = srcu_read_lock(&kvm->srcu);
5610
5611         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5612         if (!bus)
5613                 goto out_unlock;
5614
5615         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5616         if (dev_idx < 0)
5617                 goto out_unlock;
5618
5619         iodev = bus->range[dev_idx].dev;
5620
5621 out_unlock:
5622         srcu_read_unlock(&kvm->srcu, srcu_idx);
5623
5624         return iodev;
5625 }
5626 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5627
5628 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5629                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5630                            const char *fmt)
5631 {
5632         int ret;
5633         struct kvm_stat_data *stat_data = inode->i_private;
5634
5635         /*
5636          * The debugfs files are a reference to the kvm struct which
5637         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5638         * avoids the race between open and the removal of the debugfs directory.
5639          */
5640         if (!kvm_get_kvm_safe(stat_data->kvm))
5641                 return -ENOENT;
5642
5643         ret = simple_attr_open(inode, file, get,
5644                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
5645                                ? set : NULL, fmt);
5646         if (ret)
5647                 kvm_put_kvm(stat_data->kvm);
5648
5649         return ret;
5650 }
5651
5652 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5653 {
5654         struct kvm_stat_data *stat_data = inode->i_private;
5655
5656         simple_attr_release(inode, file);
5657         kvm_put_kvm(stat_data->kvm);
5658
5659         return 0;
5660 }
5661
5662 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5663 {
5664         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5665
5666         return 0;
5667 }
5668
5669 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5670 {
5671         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5672
5673         return 0;
5674 }
5675
5676 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5677 {
5678         unsigned long i;
5679         struct kvm_vcpu *vcpu;
5680
5681         *val = 0;
5682
5683         kvm_for_each_vcpu(i, vcpu, kvm)
5684                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5685
5686         return 0;
5687 }
5688
5689 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5690 {
5691         unsigned long i;
5692         struct kvm_vcpu *vcpu;
5693
5694         kvm_for_each_vcpu(i, vcpu, kvm)
5695                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5696
5697         return 0;
5698 }
5699
5700 static int kvm_stat_data_get(void *data, u64 *val)
5701 {
5702         int r = -EFAULT;
5703         struct kvm_stat_data *stat_data = data;
5704
5705         switch (stat_data->kind) {
5706         case KVM_STAT_VM:
5707                 r = kvm_get_stat_per_vm(stat_data->kvm,
5708                                         stat_data->desc->desc.offset, val);
5709                 break;
5710         case KVM_STAT_VCPU:
5711                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5712                                           stat_data->desc->desc.offset, val);
5713                 break;
5714         }
5715
5716         return r;
5717 }
5718
5719 static int kvm_stat_data_clear(void *data, u64 val)
5720 {
5721         int r = -EFAULT;
5722         struct kvm_stat_data *stat_data = data;
5723
5724         if (val)
5725                 return -EINVAL;
5726
5727         switch (stat_data->kind) {
5728         case KVM_STAT_VM:
5729                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5730                                           stat_data->desc->desc.offset);
5731                 break;
5732         case KVM_STAT_VCPU:
5733                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5734                                             stat_data->desc->desc.offset);
5735                 break;
5736         }
5737
5738         return r;
5739 }
5740
5741 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5742 {
5743         __simple_attr_check_format("%llu\n", 0ull);
5744         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5745                                 kvm_stat_data_clear, "%llu\n");
5746 }
5747
5748 static const struct file_operations stat_fops_per_vm = {
5749         .owner = THIS_MODULE,
5750         .open = kvm_stat_data_open,
5751         .release = kvm_debugfs_release,
5752         .read = simple_attr_read,
5753         .write = simple_attr_write,
5754         .llseek = no_llseek,
5755 };
5756
5757 static int vm_stat_get(void *_offset, u64 *val)
5758 {
5759         unsigned offset = (long)_offset;
5760         struct kvm *kvm;
5761         u64 tmp_val;
5762
5763         *val = 0;
5764         mutex_lock(&kvm_lock);
5765         list_for_each_entry(kvm, &vm_list, vm_list) {
5766                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5767                 *val += tmp_val;
5768         }
5769         mutex_unlock(&kvm_lock);
5770         return 0;
5771 }
5772
5773 static int vm_stat_clear(void *_offset, u64 val)
5774 {
5775         unsigned offset = (long)_offset;
5776         struct kvm *kvm;
5777
5778         if (val)
5779                 return -EINVAL;
5780
5781         mutex_lock(&kvm_lock);
5782         list_for_each_entry(kvm, &vm_list, vm_list) {
5783                 kvm_clear_stat_per_vm(kvm, offset);
5784         }
5785         mutex_unlock(&kvm_lock);
5786
5787         return 0;
5788 }
5789
5790 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5791 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5792
5793 static int vcpu_stat_get(void *_offset, u64 *val)
5794 {
5795         unsigned offset = (long)_offset;
5796         struct kvm *kvm;
5797         u64 tmp_val;
5798
5799         *val = 0;
5800         mutex_lock(&kvm_lock);
5801         list_for_each_entry(kvm, &vm_list, vm_list) {
5802                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5803                 *val += tmp_val;
5804         }
5805         mutex_unlock(&kvm_lock);
5806         return 0;
5807 }
5808
5809 static int vcpu_stat_clear(void *_offset, u64 val)
5810 {
5811         unsigned offset = (long)_offset;
5812         struct kvm *kvm;
5813
5814         if (val)
5815                 return -EINVAL;
5816
5817         mutex_lock(&kvm_lock);
5818         list_for_each_entry(kvm, &vm_list, vm_list) {
5819                 kvm_clear_stat_per_vcpu(kvm, offset);
5820         }
5821         mutex_unlock(&kvm_lock);
5822
5823         return 0;
5824 }
5825
5826 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5827                         "%llu\n");
5828 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5829
5830 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5831 {
5832         struct kobj_uevent_env *env;
5833         unsigned long long created, active;
5834
5835         if (!kvm_dev.this_device || !kvm)
5836                 return;
5837
5838         mutex_lock(&kvm_lock);
5839         if (type == KVM_EVENT_CREATE_VM) {
5840                 kvm_createvm_count++;
5841                 kvm_active_vms++;
5842         } else if (type == KVM_EVENT_DESTROY_VM) {
5843                 kvm_active_vms--;
5844         }
5845         created = kvm_createvm_count;
5846         active = kvm_active_vms;
5847         mutex_unlock(&kvm_lock);
5848
5849         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5850         if (!env)
5851                 return;
5852
5853         add_uevent_var(env, "CREATED=%llu", created);
5854         add_uevent_var(env, "COUNT=%llu", active);
5855
5856         if (type == KVM_EVENT_CREATE_VM) {
5857                 add_uevent_var(env, "EVENT=create");
5858                 kvm->userspace_pid = task_pid_nr(current);
5859         } else if (type == KVM_EVENT_DESTROY_VM) {
5860                 add_uevent_var(env, "EVENT=destroy");
5861         }
5862         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5863
5864         if (!IS_ERR(kvm->debugfs_dentry)) {
5865                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5866
5867                 if (p) {
5868                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5869                         if (!IS_ERR(tmp))
5870                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5871                         kfree(p);
5872                 }
5873         }
5874         /* no need for checks, since we are adding at most only 5 keys */
5875         env->envp[env->envp_idx++] = NULL;
5876         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5877         kfree(env);
5878 }
5879
5880 static void kvm_init_debug(void)
5881 {
5882         const struct file_operations *fops;
5883         const struct _kvm_stats_desc *pdesc;
5884         int i;
5885
5886         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5887
5888         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5889                 pdesc = &kvm_vm_stats_desc[i];
5890                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5891                         fops = &vm_stat_fops;
5892                 else
5893                         fops = &vm_stat_readonly_fops;
5894                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5895                                 kvm_debugfs_dir,
5896                                 (void *)(long)pdesc->desc.offset, fops);
5897         }
5898
5899         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5900                 pdesc = &kvm_vcpu_stats_desc[i];
5901                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5902                         fops = &vcpu_stat_fops;
5903                 else
5904                         fops = &vcpu_stat_readonly_fops;
5905                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5906                                 kvm_debugfs_dir,
5907                                 (void *)(long)pdesc->desc.offset, fops);
5908         }
5909 }
5910
5911 static inline
5912 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5913 {
5914         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5915 }
5916
5917 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5918 {
5919         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5920
5921         WRITE_ONCE(vcpu->preempted, false);
5922         WRITE_ONCE(vcpu->ready, false);
5923
5924         __this_cpu_write(kvm_running_vcpu, vcpu);
5925         kvm_arch_sched_in(vcpu, cpu);
5926         kvm_arch_vcpu_load(vcpu, cpu);
5927 }
5928
5929 static void kvm_sched_out(struct preempt_notifier *pn,
5930                           struct task_struct *next)
5931 {
5932         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5933
5934         if (current->on_rq) {
5935                 WRITE_ONCE(vcpu->preempted, true);
5936                 WRITE_ONCE(vcpu->ready, true);
5937         }
5938         kvm_arch_vcpu_put(vcpu);
5939         __this_cpu_write(kvm_running_vcpu, NULL);
5940 }
5941
5942 /**
5943  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5944  *
5945  * We can disable preemption locally around accessing the per-CPU variable,
5946  * and use the resolved vcpu pointer after enabling preemption again,
5947  * because even if the current thread is migrated to another CPU, reading
5948  * the per-CPU value later will give us the same value as we update the
5949  * per-CPU variable in the preempt notifier handlers.
5950  */
5951 struct kvm_vcpu *kvm_get_running_vcpu(void)
5952 {
5953         struct kvm_vcpu *vcpu;
5954
5955         preempt_disable();
5956         vcpu = __this_cpu_read(kvm_running_vcpu);
5957         preempt_enable();
5958
5959         return vcpu;
5960 }
5961 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5962
5963 /**
5964  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5965  */
5966 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5967 {
5968         return &kvm_running_vcpu;
5969 }
5970
5971 #ifdef CONFIG_GUEST_PERF_EVENTS
5972 static unsigned int kvm_guest_state(void)
5973 {
5974         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5975         unsigned int state;
5976
5977         if (!kvm_arch_pmi_in_guest(vcpu))
5978                 return 0;
5979
5980         state = PERF_GUEST_ACTIVE;
5981         if (!kvm_arch_vcpu_in_kernel(vcpu))
5982                 state |= PERF_GUEST_USER;
5983
5984         return state;
5985 }
5986
5987 static unsigned long kvm_guest_get_ip(void)
5988 {
5989         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5990
5991         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5992         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5993                 return 0;
5994
5995         return kvm_arch_vcpu_get_ip(vcpu);
5996 }
5997
5998 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5999         .state                  = kvm_guest_state,
6000         .get_ip                 = kvm_guest_get_ip,
6001         .handle_intel_pt_intr   = NULL,
6002 };
6003
6004 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6005 {
6006         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6007         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6008 }
6009 void kvm_unregister_perf_callbacks(void)
6010 {
6011         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6012 }
6013 #endif
6014
6015 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6016 {
6017         int r;
6018         int cpu;
6019
6020 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6021         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6022                                       kvm_online_cpu, kvm_offline_cpu);
6023         if (r)
6024                 return r;
6025
6026         register_syscore_ops(&kvm_syscore_ops);
6027 #endif
6028
6029         /* A kmem cache lets us meet the alignment requirements of fx_save. */
6030         if (!vcpu_align)
6031                 vcpu_align = __alignof__(struct kvm_vcpu);
6032         kvm_vcpu_cache =
6033                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6034                                            SLAB_ACCOUNT,
6035                                            offsetof(struct kvm_vcpu, arch),
6036                                            offsetofend(struct kvm_vcpu, stats_id)
6037                                            - offsetof(struct kvm_vcpu, arch),
6038                                            NULL);
6039         if (!kvm_vcpu_cache) {
6040                 r = -ENOMEM;
6041                 goto err_vcpu_cache;
6042         }
6043
6044         for_each_possible_cpu(cpu) {
6045                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6046                                             GFP_KERNEL, cpu_to_node(cpu))) {
6047                         r = -ENOMEM;
6048                         goto err_cpu_kick_mask;
6049                 }
6050         }
6051
6052         r = kvm_irqfd_init();
6053         if (r)
6054                 goto err_irqfd;
6055
6056         r = kvm_async_pf_init();
6057         if (r)
6058                 goto err_async_pf;
6059
6060         kvm_chardev_ops.owner = module;
6061
6062         kvm_preempt_ops.sched_in = kvm_sched_in;
6063         kvm_preempt_ops.sched_out = kvm_sched_out;
6064
6065         kvm_init_debug();
6066
6067         r = kvm_vfio_ops_init();
6068         if (WARN_ON_ONCE(r))
6069                 goto err_vfio;
6070
6071         /*
6072          * Registration _must_ be the very last thing done, as this exposes
6073          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6074          */
6075         r = misc_register(&kvm_dev);
6076         if (r) {
6077                 pr_err("kvm: misc device register failed\n");
6078                 goto err_register;
6079         }
6080
6081         return 0;
6082
6083 err_register:
6084         kvm_vfio_ops_exit();
6085 err_vfio:
6086         kvm_async_pf_deinit();
6087 err_async_pf:
6088         kvm_irqfd_exit();
6089 err_irqfd:
6090 err_cpu_kick_mask:
6091         for_each_possible_cpu(cpu)
6092                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6093         kmem_cache_destroy(kvm_vcpu_cache);
6094 err_vcpu_cache:
6095 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6096         unregister_syscore_ops(&kvm_syscore_ops);
6097         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6098 #endif
6099         return r;
6100 }
6101 EXPORT_SYMBOL_GPL(kvm_init);
6102
6103 void kvm_exit(void)
6104 {
6105         int cpu;
6106
6107         /*
6108          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6109          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6110          * to KVM while the module is being stopped.
6111          */
6112         misc_deregister(&kvm_dev);
6113
6114         debugfs_remove_recursive(kvm_debugfs_dir);
6115         for_each_possible_cpu(cpu)
6116                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6117         kmem_cache_destroy(kvm_vcpu_cache);
6118         kvm_vfio_ops_exit();
6119         kvm_async_pf_deinit();
6120 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6121         unregister_syscore_ops(&kvm_syscore_ops);
6122         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6123 #endif
6124         kvm_irqfd_exit();
6125 }
6126 EXPORT_SYMBOL_GPL(kvm_exit);
6127
6128 struct kvm_vm_worker_thread_context {
6129         struct kvm *kvm;
6130         struct task_struct *parent;
6131         struct completion init_done;
6132         kvm_vm_thread_fn_t thread_fn;
6133         uintptr_t data;
6134         int err;
6135 };
6136
6137 static int kvm_vm_worker_thread(void *context)
6138 {
6139         /*
6140          * The init_context is allocated on the stack of the parent thread, so
6141          * we have to locally copy anything that is needed beyond initialization
6142          */
6143         struct kvm_vm_worker_thread_context *init_context = context;
6144         struct task_struct *parent;
6145         struct kvm *kvm = init_context->kvm;
6146         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6147         uintptr_t data = init_context->data;
6148         int err;
6149
6150         err = kthread_park(current);
6151         /* kthread_park(current) is never supposed to return an error */
6152         WARN_ON(err != 0);
6153         if (err)
6154                 goto init_complete;
6155
6156         err = cgroup_attach_task_all(init_context->parent, current);
6157         if (err) {
6158                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6159                         __func__, err);
6160                 goto init_complete;
6161         }
6162
6163         set_user_nice(current, task_nice(init_context->parent));
6164
6165 init_complete:
6166         init_context->err = err;
6167         complete(&init_context->init_done);
6168         init_context = NULL;
6169
6170         if (err)
6171                 goto out;
6172
6173         /* Wait to be woken up by the spawner before proceeding. */
6174         kthread_parkme();
6175
6176         if (!kthread_should_stop())
6177                 err = thread_fn(kvm, data);
6178
6179 out:
6180         /*
6181          * Move kthread back to its original cgroup to prevent it lingering in
6182          * the cgroup of the VM process, after the latter finishes its
6183          * execution.
6184          *
6185          * kthread_stop() waits on the 'exited' completion condition which is
6186          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6187          * kthread is removed from the cgroup in the cgroup_exit() which is
6188          * called after the exit_mm(). This causes the kthread_stop() to return
6189          * before the kthread actually quits the cgroup.
6190          */
6191         rcu_read_lock();
6192         parent = rcu_dereference(current->real_parent);
6193         get_task_struct(parent);
6194         rcu_read_unlock();
6195         cgroup_attach_task_all(parent, current);
6196         put_task_struct(parent);
6197
6198         return err;
6199 }
6200
6201 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6202                                 uintptr_t data, const char *name,
6203                                 struct task_struct **thread_ptr)
6204 {
6205         struct kvm_vm_worker_thread_context init_context = {};
6206         struct task_struct *thread;
6207
6208         *thread_ptr = NULL;
6209         init_context.kvm = kvm;
6210         init_context.parent = current;
6211         init_context.thread_fn = thread_fn;
6212         init_context.data = data;
6213         init_completion(&init_context.init_done);
6214
6215         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6216                              "%s-%d", name, task_pid_nr(current));
6217         if (IS_ERR(thread))
6218                 return PTR_ERR(thread);
6219
6220         /* kthread_run is never supposed to return NULL */
6221         WARN_ON(thread == NULL);
6222
6223         wait_for_completion(&init_context.init_done);
6224
6225         if (!init_context.err)
6226                 *thread_ptr = thread;
6227
6228         return init_context.err;
6229 }