Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159
160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161                                                    unsigned long start, unsigned long end)
162 {
163 }
164
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167         /*
168          * The metadata used by is_zone_device_page() to determine whether or
169          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170          * the device has been pinned, e.g. by get_user_pages().  WARN if the
171          * page_count() is zero to help detect bad usage of this helper.
172          */
173         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174                 return false;
175
176         return is_zone_device_page(pfn_to_page(pfn));
177 }
178
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181         /*
182          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183          * perspective they are "normal" pages, albeit with slightly different
184          * usage rules.
185          */
186         if (pfn_valid(pfn))
187                 return PageReserved(pfn_to_page(pfn)) &&
188                        !is_zero_pfn(pfn) &&
189                        !kvm_is_zone_device_pfn(pfn);
190
191         return true;
192 }
193
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199         int cpu = get_cpu();
200
201         __this_cpu_write(kvm_running_vcpu, vcpu);
202         preempt_notifier_register(&vcpu->preempt_notifier);
203         kvm_arch_vcpu_load(vcpu, cpu);
204         put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210         preempt_disable();
211         kvm_arch_vcpu_put(vcpu);
212         preempt_notifier_unregister(&vcpu->preempt_notifier);
213         __this_cpu_write(kvm_running_vcpu, NULL);
214         preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222
223         /*
224          * We need to wait for the VCPU to reenable interrupts and get out of
225          * READING_SHADOW_PAGE_TABLES mode.
226          */
227         if (req & KVM_REQUEST_WAIT)
228                 return mode != OUTSIDE_GUEST_MODE;
229
230         /*
231          * Need to kick a running VCPU, but otherwise there is nothing to do.
232          */
233         return mode == IN_GUEST_MODE;
234 }
235
236 static void ack_flush(void *_completed)
237 {
238 }
239
240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
241 {
242         if (cpumask_empty(cpus))
243                 return false;
244
245         smp_call_function_many(cpus, ack_flush, NULL, wait);
246         return true;
247 }
248
249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
250                                   unsigned int req, struct cpumask *tmp,
251                                   int current_cpu)
252 {
253         int cpu;
254
255         kvm_make_request(req, vcpu);
256
257         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258                 return;
259
260         /*
261          * Note, the vCPU could get migrated to a different pCPU at any point
262          * after kvm_request_needs_ipi(), which could result in sending an IPI
263          * to the previous pCPU.  But, that's OK because the purpose of the IPI
264          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266          * after this point is also OK, as the requirement is only that KVM wait
267          * for vCPUs that were reading SPTEs _before_ any changes were
268          * finalized. See kvm_vcpu_kick() for more details on handling requests.
269          */
270         if (kvm_request_needs_ipi(vcpu, req)) {
271                 cpu = READ_ONCE(vcpu->cpu);
272                 if (cpu != -1 && cpu != current_cpu)
273                         __cpumask_set_cpu(cpu, tmp);
274         }
275 }
276
277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
278                                  unsigned long *vcpu_bitmap)
279 {
280         struct kvm_vcpu *vcpu;
281         struct cpumask *cpus;
282         int i, me;
283         bool called;
284
285         me = get_cpu();
286
287         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288         cpumask_clear(cpus);
289
290         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291                 vcpu = kvm_get_vcpu(kvm, i);
292                 if (!vcpu)
293                         continue;
294                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
295         }
296
297         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
298         put_cpu();
299
300         return called;
301 }
302
303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304                                       struct kvm_vcpu *except)
305 {
306         struct kvm_vcpu *vcpu;
307         struct cpumask *cpus;
308         unsigned long i;
309         bool called;
310         int me;
311
312         me = get_cpu();
313
314         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
315         cpumask_clear(cpus);
316
317         kvm_for_each_vcpu(i, vcpu, kvm) {
318                 if (vcpu == except)
319                         continue;
320                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
321         }
322
323         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
324         put_cpu();
325
326         return called;
327 }
328
329 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
330 {
331         return kvm_make_all_cpus_request_except(kvm, req, NULL);
332 }
333 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
334
335 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
336 void kvm_flush_remote_tlbs(struct kvm *kvm)
337 {
338         ++kvm->stat.generic.remote_tlb_flush_requests;
339
340         /*
341          * We want to publish modifications to the page tables before reading
342          * mode. Pairs with a memory barrier in arch-specific code.
343          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
344          * and smp_mb in walk_shadow_page_lockless_begin/end.
345          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
346          *
347          * There is already an smp_mb__after_atomic() before
348          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
349          * barrier here.
350          */
351         if (!kvm_arch_flush_remote_tlb(kvm)
352             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
353                 ++kvm->stat.generic.remote_tlb_flush;
354 }
355 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
356 #endif
357
358 void kvm_reload_remote_mmus(struct kvm *kvm)
359 {
360         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
361 }
362
363 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
364 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
365                                                gfp_t gfp_flags)
366 {
367         gfp_flags |= mc->gfp_zero;
368
369         if (mc->kmem_cache)
370                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
371         else
372                 return (void *)__get_free_page(gfp_flags);
373 }
374
375 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
376 {
377         void *obj;
378
379         if (mc->nobjs >= min)
380                 return 0;
381         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
382                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
383                 if (!obj)
384                         return mc->nobjs >= min ? 0 : -ENOMEM;
385                 mc->objects[mc->nobjs++] = obj;
386         }
387         return 0;
388 }
389
390 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
391 {
392         return mc->nobjs;
393 }
394
395 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
396 {
397         while (mc->nobjs) {
398                 if (mc->kmem_cache)
399                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
400                 else
401                         free_page((unsigned long)mc->objects[--mc->nobjs]);
402         }
403 }
404
405 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
406 {
407         void *p;
408
409         if (WARN_ON(!mc->nobjs))
410                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
411         else
412                 p = mc->objects[--mc->nobjs];
413         BUG_ON(!p);
414         return p;
415 }
416 #endif
417
418 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
419 {
420         mutex_init(&vcpu->mutex);
421         vcpu->cpu = -1;
422         vcpu->kvm = kvm;
423         vcpu->vcpu_id = id;
424         vcpu->pid = NULL;
425 #ifndef __KVM_HAVE_ARCH_WQP
426         rcuwait_init(&vcpu->wait);
427 #endif
428         kvm_async_pf_vcpu_init(vcpu);
429
430         vcpu->pre_pcpu = -1;
431         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
432
433         kvm_vcpu_set_in_spin_loop(vcpu, false);
434         kvm_vcpu_set_dy_eligible(vcpu, false);
435         vcpu->preempted = false;
436         vcpu->ready = false;
437         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
438         vcpu->last_used_slot = NULL;
439 }
440
441 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
442 {
443         kvm_dirty_ring_free(&vcpu->dirty_ring);
444         kvm_arch_vcpu_destroy(vcpu);
445
446         /*
447          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
448          * the vcpu->pid pointer, and at destruction time all file descriptors
449          * are already gone.
450          */
451         put_pid(rcu_dereference_protected(vcpu->pid, 1));
452
453         free_page((unsigned long)vcpu->run);
454         kmem_cache_free(kvm_vcpu_cache, vcpu);
455 }
456
457 void kvm_destroy_vcpus(struct kvm *kvm)
458 {
459         unsigned long i;
460         struct kvm_vcpu *vcpu;
461
462         kvm_for_each_vcpu(i, vcpu, kvm) {
463                 kvm_vcpu_destroy(vcpu);
464                 xa_erase(&kvm->vcpu_array, i);
465         }
466
467         atomic_set(&kvm->online_vcpus, 0);
468 }
469 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
470
471 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
472 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
473 {
474         return container_of(mn, struct kvm, mmu_notifier);
475 }
476
477 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
478                                               struct mm_struct *mm,
479                                               unsigned long start, unsigned long end)
480 {
481         struct kvm *kvm = mmu_notifier_to_kvm(mn);
482         int idx;
483
484         idx = srcu_read_lock(&kvm->srcu);
485         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
486         srcu_read_unlock(&kvm->srcu, idx);
487 }
488
489 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
490
491 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
492                              unsigned long end);
493
494 struct kvm_hva_range {
495         unsigned long start;
496         unsigned long end;
497         pte_t pte;
498         hva_handler_t handler;
499         on_lock_fn_t on_lock;
500         bool flush_on_ret;
501         bool may_block;
502 };
503
504 /*
505  * Use a dedicated stub instead of NULL to indicate that there is no callback
506  * function/handler.  The compiler technically can't guarantee that a real
507  * function will have a non-zero address, and so it will generate code to
508  * check for !NULL, whereas comparing against a stub will be elided at compile
509  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
510  */
511 static void kvm_null_fn(void)
512 {
513
514 }
515 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
516
517 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
518 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
519         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
520              node;                                                           \
521              node = interval_tree_iter_next(node, start, last))      \
522
523 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
524                                                   const struct kvm_hva_range *range)
525 {
526         bool ret = false, locked = false;
527         struct kvm_gfn_range gfn_range;
528         struct kvm_memory_slot *slot;
529         struct kvm_memslots *slots;
530         int i, idx;
531
532         if (WARN_ON_ONCE(range->end <= range->start))
533                 return 0;
534
535         /* A null handler is allowed if and only if on_lock() is provided. */
536         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
537                          IS_KVM_NULL_FN(range->handler)))
538                 return 0;
539
540         idx = srcu_read_lock(&kvm->srcu);
541
542         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
543                 struct interval_tree_node *node;
544
545                 slots = __kvm_memslots(kvm, i);
546                 kvm_for_each_memslot_in_hva_range(node, slots,
547                                                   range->start, range->end - 1) {
548                         unsigned long hva_start, hva_end;
549
550                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
551                         hva_start = max(range->start, slot->userspace_addr);
552                         hva_end = min(range->end, slot->userspace_addr +
553                                                   (slot->npages << PAGE_SHIFT));
554
555                         /*
556                          * To optimize for the likely case where the address
557                          * range is covered by zero or one memslots, don't
558                          * bother making these conditional (to avoid writes on
559                          * the second or later invocation of the handler).
560                          */
561                         gfn_range.pte = range->pte;
562                         gfn_range.may_block = range->may_block;
563
564                         /*
565                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
566                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
567                          */
568                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
569                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
570                         gfn_range.slot = slot;
571
572                         if (!locked) {
573                                 locked = true;
574                                 KVM_MMU_LOCK(kvm);
575                                 if (!IS_KVM_NULL_FN(range->on_lock))
576                                         range->on_lock(kvm, range->start, range->end);
577                                 if (IS_KVM_NULL_FN(range->handler))
578                                         break;
579                         }
580                         ret |= range->handler(kvm, &gfn_range);
581                 }
582         }
583
584         if (range->flush_on_ret && ret)
585                 kvm_flush_remote_tlbs(kvm);
586
587         if (locked)
588                 KVM_MMU_UNLOCK(kvm);
589
590         srcu_read_unlock(&kvm->srcu, idx);
591
592         /* The notifiers are averse to booleans. :-( */
593         return (int)ret;
594 }
595
596 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
597                                                 unsigned long start,
598                                                 unsigned long end,
599                                                 pte_t pte,
600                                                 hva_handler_t handler)
601 {
602         struct kvm *kvm = mmu_notifier_to_kvm(mn);
603         const struct kvm_hva_range range = {
604                 .start          = start,
605                 .end            = end,
606                 .pte            = pte,
607                 .handler        = handler,
608                 .on_lock        = (void *)kvm_null_fn,
609                 .flush_on_ret   = true,
610                 .may_block      = false,
611         };
612
613         return __kvm_handle_hva_range(kvm, &range);
614 }
615
616 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
617                                                          unsigned long start,
618                                                          unsigned long end,
619                                                          hva_handler_t handler)
620 {
621         struct kvm *kvm = mmu_notifier_to_kvm(mn);
622         const struct kvm_hva_range range = {
623                 .start          = start,
624                 .end            = end,
625                 .pte            = __pte(0),
626                 .handler        = handler,
627                 .on_lock        = (void *)kvm_null_fn,
628                 .flush_on_ret   = false,
629                 .may_block      = false,
630         };
631
632         return __kvm_handle_hva_range(kvm, &range);
633 }
634 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
635                                         struct mm_struct *mm,
636                                         unsigned long address,
637                                         pte_t pte)
638 {
639         struct kvm *kvm = mmu_notifier_to_kvm(mn);
640
641         trace_kvm_set_spte_hva(address);
642
643         /*
644          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
645          * If mmu_notifier_count is zero, then no in-progress invalidations,
646          * including this one, found a relevant memslot at start(); rechecking
647          * memslots here is unnecessary.  Note, a false positive (count elevated
648          * by a different invalidation) is sub-optimal but functionally ok.
649          */
650         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
651         if (!READ_ONCE(kvm->mmu_notifier_count))
652                 return;
653
654         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
655 }
656
657 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
658                                    unsigned long end)
659 {
660         /*
661          * The count increase must become visible at unlock time as no
662          * spte can be established without taking the mmu_lock and
663          * count is also read inside the mmu_lock critical section.
664          */
665         kvm->mmu_notifier_count++;
666         if (likely(kvm->mmu_notifier_count == 1)) {
667                 kvm->mmu_notifier_range_start = start;
668                 kvm->mmu_notifier_range_end = end;
669         } else {
670                 /*
671                  * Fully tracking multiple concurrent ranges has dimishing
672                  * returns. Keep things simple and just find the minimal range
673                  * which includes the current and new ranges. As there won't be
674                  * enough information to subtract a range after its invalidate
675                  * completes, any ranges invalidated concurrently will
676                  * accumulate and persist until all outstanding invalidates
677                  * complete.
678                  */
679                 kvm->mmu_notifier_range_start =
680                         min(kvm->mmu_notifier_range_start, start);
681                 kvm->mmu_notifier_range_end =
682                         max(kvm->mmu_notifier_range_end, end);
683         }
684 }
685
686 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
687                                         const struct mmu_notifier_range *range)
688 {
689         struct kvm *kvm = mmu_notifier_to_kvm(mn);
690         const struct kvm_hva_range hva_range = {
691                 .start          = range->start,
692                 .end            = range->end,
693                 .pte            = __pte(0),
694                 .handler        = kvm_unmap_gfn_range,
695                 .on_lock        = kvm_inc_notifier_count,
696                 .flush_on_ret   = true,
697                 .may_block      = mmu_notifier_range_blockable(range),
698         };
699
700         trace_kvm_unmap_hva_range(range->start, range->end);
701
702         /*
703          * Prevent memslot modification between range_start() and range_end()
704          * so that conditionally locking provides the same result in both
705          * functions.  Without that guarantee, the mmu_notifier_count
706          * adjustments will be imbalanced.
707          *
708          * Pairs with the decrement in range_end().
709          */
710         spin_lock(&kvm->mn_invalidate_lock);
711         kvm->mn_active_invalidate_count++;
712         spin_unlock(&kvm->mn_invalidate_lock);
713
714         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
715                                           hva_range.may_block);
716
717         __kvm_handle_hva_range(kvm, &hva_range);
718
719         return 0;
720 }
721
722 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
723                                    unsigned long end)
724 {
725         /*
726          * This sequence increase will notify the kvm page fault that
727          * the page that is going to be mapped in the spte could have
728          * been freed.
729          */
730         kvm->mmu_notifier_seq++;
731         smp_wmb();
732         /*
733          * The above sequence increase must be visible before the
734          * below count decrease, which is ensured by the smp_wmb above
735          * in conjunction with the smp_rmb in mmu_notifier_retry().
736          */
737         kvm->mmu_notifier_count--;
738 }
739
740 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
741                                         const struct mmu_notifier_range *range)
742 {
743         struct kvm *kvm = mmu_notifier_to_kvm(mn);
744         const struct kvm_hva_range hva_range = {
745                 .start          = range->start,
746                 .end            = range->end,
747                 .pte            = __pte(0),
748                 .handler        = (void *)kvm_null_fn,
749                 .on_lock        = kvm_dec_notifier_count,
750                 .flush_on_ret   = false,
751                 .may_block      = mmu_notifier_range_blockable(range),
752         };
753         bool wake;
754
755         __kvm_handle_hva_range(kvm, &hva_range);
756
757         /* Pairs with the increment in range_start(). */
758         spin_lock(&kvm->mn_invalidate_lock);
759         wake = (--kvm->mn_active_invalidate_count == 0);
760         spin_unlock(&kvm->mn_invalidate_lock);
761
762         /*
763          * There can only be one waiter, since the wait happens under
764          * slots_lock.
765          */
766         if (wake)
767                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
768
769         BUG_ON(kvm->mmu_notifier_count < 0);
770 }
771
772 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
773                                               struct mm_struct *mm,
774                                               unsigned long start,
775                                               unsigned long end)
776 {
777         trace_kvm_age_hva(start, end);
778
779         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
780 }
781
782 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
783                                         struct mm_struct *mm,
784                                         unsigned long start,
785                                         unsigned long end)
786 {
787         trace_kvm_age_hva(start, end);
788
789         /*
790          * Even though we do not flush TLB, this will still adversely
791          * affect performance on pre-Haswell Intel EPT, where there is
792          * no EPT Access Bit to clear so that we have to tear down EPT
793          * tables instead. If we find this unacceptable, we can always
794          * add a parameter to kvm_age_hva so that it effectively doesn't
795          * do anything on clear_young.
796          *
797          * Also note that currently we never issue secondary TLB flushes
798          * from clear_young, leaving this job up to the regular system
799          * cadence. If we find this inaccurate, we might come up with a
800          * more sophisticated heuristic later.
801          */
802         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
803 }
804
805 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
806                                        struct mm_struct *mm,
807                                        unsigned long address)
808 {
809         trace_kvm_test_age_hva(address);
810
811         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
812                                              kvm_test_age_gfn);
813 }
814
815 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
816                                      struct mm_struct *mm)
817 {
818         struct kvm *kvm = mmu_notifier_to_kvm(mn);
819         int idx;
820
821         idx = srcu_read_lock(&kvm->srcu);
822         kvm_arch_flush_shadow_all(kvm);
823         srcu_read_unlock(&kvm->srcu, idx);
824 }
825
826 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
827         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
828         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
829         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
830         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
831         .clear_young            = kvm_mmu_notifier_clear_young,
832         .test_young             = kvm_mmu_notifier_test_young,
833         .change_pte             = kvm_mmu_notifier_change_pte,
834         .release                = kvm_mmu_notifier_release,
835 };
836
837 static int kvm_init_mmu_notifier(struct kvm *kvm)
838 {
839         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
840         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
841 }
842
843 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
844
845 static int kvm_init_mmu_notifier(struct kvm *kvm)
846 {
847         return 0;
848 }
849
850 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
851
852 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
853 static int kvm_pm_notifier_call(struct notifier_block *bl,
854                                 unsigned long state,
855                                 void *unused)
856 {
857         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
858
859         return kvm_arch_pm_notifier(kvm, state);
860 }
861
862 static void kvm_init_pm_notifier(struct kvm *kvm)
863 {
864         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
865         /* Suspend KVM before we suspend ftrace, RCU, etc. */
866         kvm->pm_notifier.priority = INT_MAX;
867         register_pm_notifier(&kvm->pm_notifier);
868 }
869
870 static void kvm_destroy_pm_notifier(struct kvm *kvm)
871 {
872         unregister_pm_notifier(&kvm->pm_notifier);
873 }
874 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
875 static void kvm_init_pm_notifier(struct kvm *kvm)
876 {
877 }
878
879 static void kvm_destroy_pm_notifier(struct kvm *kvm)
880 {
881 }
882 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
883
884 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
885 {
886         if (!memslot->dirty_bitmap)
887                 return;
888
889         kvfree(memslot->dirty_bitmap);
890         memslot->dirty_bitmap = NULL;
891 }
892
893 /* This does not remove the slot from struct kvm_memslots data structures */
894 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
895 {
896         kvm_destroy_dirty_bitmap(slot);
897
898         kvm_arch_free_memslot(kvm, slot);
899
900         kfree(slot);
901 }
902
903 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
904 {
905         struct hlist_node *idnode;
906         struct kvm_memory_slot *memslot;
907         int bkt;
908
909         /*
910          * The same memslot objects live in both active and inactive sets,
911          * arbitrarily free using index '1' so the second invocation of this
912          * function isn't operating over a structure with dangling pointers
913          * (even though this function isn't actually touching them).
914          */
915         if (!slots->node_idx)
916                 return;
917
918         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
919                 kvm_free_memslot(kvm, memslot);
920 }
921
922 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
923 {
924         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
925         case KVM_STATS_TYPE_INSTANT:
926                 return 0444;
927         case KVM_STATS_TYPE_CUMULATIVE:
928         case KVM_STATS_TYPE_PEAK:
929         default:
930                 return 0644;
931         }
932 }
933
934
935 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
936 {
937         int i;
938         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
939                                       kvm_vcpu_stats_header.num_desc;
940
941         if (!kvm->debugfs_dentry)
942                 return;
943
944         debugfs_remove_recursive(kvm->debugfs_dentry);
945
946         if (kvm->debugfs_stat_data) {
947                 for (i = 0; i < kvm_debugfs_num_entries; i++)
948                         kfree(kvm->debugfs_stat_data[i]);
949                 kfree(kvm->debugfs_stat_data);
950         }
951 }
952
953 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
954 {
955         static DEFINE_MUTEX(kvm_debugfs_lock);
956         struct dentry *dent;
957         char dir_name[ITOA_MAX_LEN * 2];
958         struct kvm_stat_data *stat_data;
959         const struct _kvm_stats_desc *pdesc;
960         int i, ret;
961         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
962                                       kvm_vcpu_stats_header.num_desc;
963
964         if (!debugfs_initialized())
965                 return 0;
966
967         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
968         mutex_lock(&kvm_debugfs_lock);
969         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
970         if (dent) {
971                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
972                 dput(dent);
973                 mutex_unlock(&kvm_debugfs_lock);
974                 return 0;
975         }
976         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
977         mutex_unlock(&kvm_debugfs_lock);
978         if (IS_ERR(dent))
979                 return 0;
980
981         kvm->debugfs_dentry = dent;
982         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
983                                          sizeof(*kvm->debugfs_stat_data),
984                                          GFP_KERNEL_ACCOUNT);
985         if (!kvm->debugfs_stat_data)
986                 return -ENOMEM;
987
988         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
989                 pdesc = &kvm_vm_stats_desc[i];
990                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
991                 if (!stat_data)
992                         return -ENOMEM;
993
994                 stat_data->kvm = kvm;
995                 stat_data->desc = pdesc;
996                 stat_data->kind = KVM_STAT_VM;
997                 kvm->debugfs_stat_data[i] = stat_data;
998                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
999                                     kvm->debugfs_dentry, stat_data,
1000                                     &stat_fops_per_vm);
1001         }
1002
1003         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1004                 pdesc = &kvm_vcpu_stats_desc[i];
1005                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1006                 if (!stat_data)
1007                         return -ENOMEM;
1008
1009                 stat_data->kvm = kvm;
1010                 stat_data->desc = pdesc;
1011                 stat_data->kind = KVM_STAT_VCPU;
1012                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1013                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1014                                     kvm->debugfs_dentry, stat_data,
1015                                     &stat_fops_per_vm);
1016         }
1017
1018         ret = kvm_arch_create_vm_debugfs(kvm);
1019         if (ret) {
1020                 kvm_destroy_vm_debugfs(kvm);
1021                 return i;
1022         }
1023
1024         return 0;
1025 }
1026
1027 /*
1028  * Called after the VM is otherwise initialized, but just before adding it to
1029  * the vm_list.
1030  */
1031 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1032 {
1033         return 0;
1034 }
1035
1036 /*
1037  * Called just after removing the VM from the vm_list, but before doing any
1038  * other destruction.
1039  */
1040 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1041 {
1042 }
1043
1044 /*
1045  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1046  * be setup already, so we can create arch-specific debugfs entries under it.
1047  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1048  * a per-arch destroy interface is not needed.
1049  */
1050 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1051 {
1052         return 0;
1053 }
1054
1055 static struct kvm *kvm_create_vm(unsigned long type)
1056 {
1057         struct kvm *kvm = kvm_arch_alloc_vm();
1058         struct kvm_memslots *slots;
1059         int r = -ENOMEM;
1060         int i, j;
1061
1062         if (!kvm)
1063                 return ERR_PTR(-ENOMEM);
1064
1065         KVM_MMU_LOCK_INIT(kvm);
1066         mmgrab(current->mm);
1067         kvm->mm = current->mm;
1068         kvm_eventfd_init(kvm);
1069         mutex_init(&kvm->lock);
1070         mutex_init(&kvm->irq_lock);
1071         mutex_init(&kvm->slots_lock);
1072         mutex_init(&kvm->slots_arch_lock);
1073         spin_lock_init(&kvm->mn_invalidate_lock);
1074         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1075         xa_init(&kvm->vcpu_array);
1076
1077         INIT_LIST_HEAD(&kvm->gpc_list);
1078         spin_lock_init(&kvm->gpc_lock);
1079
1080         INIT_LIST_HEAD(&kvm->devices);
1081
1082         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1083
1084         if (init_srcu_struct(&kvm->srcu))
1085                 goto out_err_no_srcu;
1086         if (init_srcu_struct(&kvm->irq_srcu))
1087                 goto out_err_no_irq_srcu;
1088
1089         refcount_set(&kvm->users_count, 1);
1090         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1091                 for (j = 0; j < 2; j++) {
1092                         slots = &kvm->__memslots[i][j];
1093
1094                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1095                         slots->hva_tree = RB_ROOT_CACHED;
1096                         slots->gfn_tree = RB_ROOT;
1097                         hash_init(slots->id_hash);
1098                         slots->node_idx = j;
1099
1100                         /* Generations must be different for each address space. */
1101                         slots->generation = i;
1102                 }
1103
1104                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1105         }
1106
1107         for (i = 0; i < KVM_NR_BUSES; i++) {
1108                 rcu_assign_pointer(kvm->buses[i],
1109                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1110                 if (!kvm->buses[i])
1111                         goto out_err_no_arch_destroy_vm;
1112         }
1113
1114         kvm->max_halt_poll_ns = halt_poll_ns;
1115
1116         r = kvm_arch_init_vm(kvm, type);
1117         if (r)
1118                 goto out_err_no_arch_destroy_vm;
1119
1120         r = hardware_enable_all();
1121         if (r)
1122                 goto out_err_no_disable;
1123
1124 #ifdef CONFIG_HAVE_KVM_IRQFD
1125         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1126 #endif
1127
1128         r = kvm_init_mmu_notifier(kvm);
1129         if (r)
1130                 goto out_err_no_mmu_notifier;
1131
1132         r = kvm_arch_post_init_vm(kvm);
1133         if (r)
1134                 goto out_err;
1135
1136         mutex_lock(&kvm_lock);
1137         list_add(&kvm->vm_list, &vm_list);
1138         mutex_unlock(&kvm_lock);
1139
1140         preempt_notifier_inc();
1141         kvm_init_pm_notifier(kvm);
1142
1143         return kvm;
1144
1145 out_err:
1146 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1147         if (kvm->mmu_notifier.ops)
1148                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1149 #endif
1150 out_err_no_mmu_notifier:
1151         hardware_disable_all();
1152 out_err_no_disable:
1153         kvm_arch_destroy_vm(kvm);
1154 out_err_no_arch_destroy_vm:
1155         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1156         for (i = 0; i < KVM_NR_BUSES; i++)
1157                 kfree(kvm_get_bus(kvm, i));
1158         cleanup_srcu_struct(&kvm->irq_srcu);
1159 out_err_no_irq_srcu:
1160         cleanup_srcu_struct(&kvm->srcu);
1161 out_err_no_srcu:
1162         kvm_arch_free_vm(kvm);
1163         mmdrop(current->mm);
1164         return ERR_PTR(r);
1165 }
1166
1167 static void kvm_destroy_devices(struct kvm *kvm)
1168 {
1169         struct kvm_device *dev, *tmp;
1170
1171         /*
1172          * We do not need to take the kvm->lock here, because nobody else
1173          * has a reference to the struct kvm at this point and therefore
1174          * cannot access the devices list anyhow.
1175          */
1176         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1177                 list_del(&dev->vm_node);
1178                 dev->ops->destroy(dev);
1179         }
1180 }
1181
1182 static void kvm_destroy_vm(struct kvm *kvm)
1183 {
1184         int i;
1185         struct mm_struct *mm = kvm->mm;
1186
1187         kvm_destroy_pm_notifier(kvm);
1188         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1189         kvm_destroy_vm_debugfs(kvm);
1190         kvm_arch_sync_events(kvm);
1191         mutex_lock(&kvm_lock);
1192         list_del(&kvm->vm_list);
1193         mutex_unlock(&kvm_lock);
1194         kvm_arch_pre_destroy_vm(kvm);
1195
1196         kvm_free_irq_routing(kvm);
1197         for (i = 0; i < KVM_NR_BUSES; i++) {
1198                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1199
1200                 if (bus)
1201                         kvm_io_bus_destroy(bus);
1202                 kvm->buses[i] = NULL;
1203         }
1204         kvm_coalesced_mmio_free(kvm);
1205 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1206         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1207         /*
1208          * At this point, pending calls to invalidate_range_start()
1209          * have completed but no more MMU notifiers will run, so
1210          * mn_active_invalidate_count may remain unbalanced.
1211          * No threads can be waiting in install_new_memslots as the
1212          * last reference on KVM has been dropped, but freeing
1213          * memslots would deadlock without this manual intervention.
1214          */
1215         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1216         kvm->mn_active_invalidate_count = 0;
1217 #else
1218         kvm_arch_flush_shadow_all(kvm);
1219 #endif
1220         kvm_arch_destroy_vm(kvm);
1221         kvm_destroy_devices(kvm);
1222         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1223                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1224                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1225         }
1226         cleanup_srcu_struct(&kvm->irq_srcu);
1227         cleanup_srcu_struct(&kvm->srcu);
1228         kvm_arch_free_vm(kvm);
1229         preempt_notifier_dec();
1230         hardware_disable_all();
1231         mmdrop(mm);
1232 }
1233
1234 void kvm_get_kvm(struct kvm *kvm)
1235 {
1236         refcount_inc(&kvm->users_count);
1237 }
1238 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1239
1240 /*
1241  * Make sure the vm is not during destruction, which is a safe version of
1242  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1243  */
1244 bool kvm_get_kvm_safe(struct kvm *kvm)
1245 {
1246         return refcount_inc_not_zero(&kvm->users_count);
1247 }
1248 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1249
1250 void kvm_put_kvm(struct kvm *kvm)
1251 {
1252         if (refcount_dec_and_test(&kvm->users_count))
1253                 kvm_destroy_vm(kvm);
1254 }
1255 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1256
1257 /*
1258  * Used to put a reference that was taken on behalf of an object associated
1259  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1260  * of the new file descriptor fails and the reference cannot be transferred to
1261  * its final owner.  In such cases, the caller is still actively using @kvm and
1262  * will fail miserably if the refcount unexpectedly hits zero.
1263  */
1264 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1265 {
1266         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1269
1270 static int kvm_vm_release(struct inode *inode, struct file *filp)
1271 {
1272         struct kvm *kvm = filp->private_data;
1273
1274         kvm_irqfd_release(kvm);
1275
1276         kvm_put_kvm(kvm);
1277         return 0;
1278 }
1279
1280 /*
1281  * Allocation size is twice as large as the actual dirty bitmap size.
1282  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1283  */
1284 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1285 {
1286         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1287
1288         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1289         if (!memslot->dirty_bitmap)
1290                 return -ENOMEM;
1291
1292         return 0;
1293 }
1294
1295 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1296 {
1297         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1298         int node_idx_inactive = active->node_idx ^ 1;
1299
1300         return &kvm->__memslots[as_id][node_idx_inactive];
1301 }
1302
1303 /*
1304  * Helper to get the address space ID when one of memslot pointers may be NULL.
1305  * This also serves as a sanity that at least one of the pointers is non-NULL,
1306  * and that their address space IDs don't diverge.
1307  */
1308 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1309                                   struct kvm_memory_slot *b)
1310 {
1311         if (WARN_ON_ONCE(!a && !b))
1312                 return 0;
1313
1314         if (!a)
1315                 return b->as_id;
1316         if (!b)
1317                 return a->as_id;
1318
1319         WARN_ON_ONCE(a->as_id != b->as_id);
1320         return a->as_id;
1321 }
1322
1323 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1324                                 struct kvm_memory_slot *slot)
1325 {
1326         struct rb_root *gfn_tree = &slots->gfn_tree;
1327         struct rb_node **node, *parent;
1328         int idx = slots->node_idx;
1329
1330         parent = NULL;
1331         for (node = &gfn_tree->rb_node; *node; ) {
1332                 struct kvm_memory_slot *tmp;
1333
1334                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1335                 parent = *node;
1336                 if (slot->base_gfn < tmp->base_gfn)
1337                         node = &(*node)->rb_left;
1338                 else if (slot->base_gfn > tmp->base_gfn)
1339                         node = &(*node)->rb_right;
1340                 else
1341                         BUG();
1342         }
1343
1344         rb_link_node(&slot->gfn_node[idx], parent, node);
1345         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1346 }
1347
1348 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1349                                struct kvm_memory_slot *slot)
1350 {
1351         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1352 }
1353
1354 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1355                                  struct kvm_memory_slot *old,
1356                                  struct kvm_memory_slot *new)
1357 {
1358         int idx = slots->node_idx;
1359
1360         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1361
1362         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1363                         &slots->gfn_tree);
1364 }
1365
1366 /*
1367  * Replace @old with @new in the inactive memslots.
1368  *
1369  * With NULL @old this simply adds @new.
1370  * With NULL @new this simply removes @old.
1371  *
1372  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1373  * appropriately.
1374  */
1375 static void kvm_replace_memslot(struct kvm *kvm,
1376                                 struct kvm_memory_slot *old,
1377                                 struct kvm_memory_slot *new)
1378 {
1379         int as_id = kvm_memslots_get_as_id(old, new);
1380         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1381         int idx = slots->node_idx;
1382
1383         if (old) {
1384                 hash_del(&old->id_node[idx]);
1385                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1386
1387                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1388                         atomic_long_set(&slots->last_used_slot, (long)new);
1389
1390                 if (!new) {
1391                         kvm_erase_gfn_node(slots, old);
1392                         return;
1393                 }
1394         }
1395
1396         /*
1397          * Initialize @new's hva range.  Do this even when replacing an @old
1398          * slot, kvm_copy_memslot() deliberately does not touch node data.
1399          */
1400         new->hva_node[idx].start = new->userspace_addr;
1401         new->hva_node[idx].last = new->userspace_addr +
1402                                   (new->npages << PAGE_SHIFT) - 1;
1403
1404         /*
1405          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1406          * hva_node needs to be swapped with remove+insert even though hva can't
1407          * change when replacing an existing slot.
1408          */
1409         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1410         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1411
1412         /*
1413          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1414          * switch the node in the gfn tree instead of removing the old and
1415          * inserting the new as two separate operations. Replacement is a
1416          * single O(1) operation versus two O(log(n)) operations for
1417          * remove+insert.
1418          */
1419         if (old && old->base_gfn == new->base_gfn) {
1420                 kvm_replace_gfn_node(slots, old, new);
1421         } else {
1422                 if (old)
1423                         kvm_erase_gfn_node(slots, old);
1424                 kvm_insert_gfn_node(slots, new);
1425         }
1426 }
1427
1428 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1429 {
1430         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1431
1432 #ifdef __KVM_HAVE_READONLY_MEM
1433         valid_flags |= KVM_MEM_READONLY;
1434 #endif
1435
1436         if (mem->flags & ~valid_flags)
1437                 return -EINVAL;
1438
1439         return 0;
1440 }
1441
1442 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1443 {
1444         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1445
1446         /* Grab the generation from the activate memslots. */
1447         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1448
1449         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1450         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1451
1452         /*
1453          * Do not store the new memslots while there are invalidations in
1454          * progress, otherwise the locking in invalidate_range_start and
1455          * invalidate_range_end will be unbalanced.
1456          */
1457         spin_lock(&kvm->mn_invalidate_lock);
1458         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1459         while (kvm->mn_active_invalidate_count) {
1460                 set_current_state(TASK_UNINTERRUPTIBLE);
1461                 spin_unlock(&kvm->mn_invalidate_lock);
1462                 schedule();
1463                 spin_lock(&kvm->mn_invalidate_lock);
1464         }
1465         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1466         rcu_assign_pointer(kvm->memslots[as_id], slots);
1467         spin_unlock(&kvm->mn_invalidate_lock);
1468
1469         /*
1470          * Acquired in kvm_set_memslot. Must be released before synchronize
1471          * SRCU below in order to avoid deadlock with another thread
1472          * acquiring the slots_arch_lock in an srcu critical section.
1473          */
1474         mutex_unlock(&kvm->slots_arch_lock);
1475
1476         synchronize_srcu_expedited(&kvm->srcu);
1477
1478         /*
1479          * Increment the new memslot generation a second time, dropping the
1480          * update in-progress flag and incrementing the generation based on
1481          * the number of address spaces.  This provides a unique and easily
1482          * identifiable generation number while the memslots are in flux.
1483          */
1484         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1485
1486         /*
1487          * Generations must be unique even across address spaces.  We do not need
1488          * a global counter for that, instead the generation space is evenly split
1489          * across address spaces.  For example, with two address spaces, address
1490          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1491          * use generations 1, 3, 5, ...
1492          */
1493         gen += KVM_ADDRESS_SPACE_NUM;
1494
1495         kvm_arch_memslots_updated(kvm, gen);
1496
1497         slots->generation = gen;
1498 }
1499
1500 static int kvm_prepare_memory_region(struct kvm *kvm,
1501                                      const struct kvm_memory_slot *old,
1502                                      struct kvm_memory_slot *new,
1503                                      enum kvm_mr_change change)
1504 {
1505         int r;
1506
1507         /*
1508          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1509          * will be freed on "commit".  If logging is enabled in both old and
1510          * new, reuse the existing bitmap.  If logging is enabled only in the
1511          * new and KVM isn't using a ring buffer, allocate and initialize a
1512          * new bitmap.
1513          */
1514         if (change != KVM_MR_DELETE) {
1515                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1516                         new->dirty_bitmap = NULL;
1517                 else if (old && old->dirty_bitmap)
1518                         new->dirty_bitmap = old->dirty_bitmap;
1519                 else if (!kvm->dirty_ring_size) {
1520                         r = kvm_alloc_dirty_bitmap(new);
1521                         if (r)
1522                                 return r;
1523
1524                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1525                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1526                 }
1527         }
1528
1529         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1530
1531         /* Free the bitmap on failure if it was allocated above. */
1532         if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap)
1533                 kvm_destroy_dirty_bitmap(new);
1534
1535         return r;
1536 }
1537
1538 static void kvm_commit_memory_region(struct kvm *kvm,
1539                                      struct kvm_memory_slot *old,
1540                                      const struct kvm_memory_slot *new,
1541                                      enum kvm_mr_change change)
1542 {
1543         /*
1544          * Update the total number of memslot pages before calling the arch
1545          * hook so that architectures can consume the result directly.
1546          */
1547         if (change == KVM_MR_DELETE)
1548                 kvm->nr_memslot_pages -= old->npages;
1549         else if (change == KVM_MR_CREATE)
1550                 kvm->nr_memslot_pages += new->npages;
1551
1552         kvm_arch_commit_memory_region(kvm, old, new, change);
1553
1554         switch (change) {
1555         case KVM_MR_CREATE:
1556                 /* Nothing more to do. */
1557                 break;
1558         case KVM_MR_DELETE:
1559                 /* Free the old memslot and all its metadata. */
1560                 kvm_free_memslot(kvm, old);
1561                 break;
1562         case KVM_MR_MOVE:
1563         case KVM_MR_FLAGS_ONLY:
1564                 /*
1565                  * Free the dirty bitmap as needed; the below check encompasses
1566                  * both the flags and whether a ring buffer is being used)
1567                  */
1568                 if (old->dirty_bitmap && !new->dirty_bitmap)
1569                         kvm_destroy_dirty_bitmap(old);
1570
1571                 /*
1572                  * The final quirk.  Free the detached, old slot, but only its
1573                  * memory, not any metadata.  Metadata, including arch specific
1574                  * data, may be reused by @new.
1575                  */
1576                 kfree(old);
1577                 break;
1578         default:
1579                 BUG();
1580         }
1581 }
1582
1583 /*
1584  * Activate @new, which must be installed in the inactive slots by the caller,
1585  * by swapping the active slots and then propagating @new to @old once @old is
1586  * unreachable and can be safely modified.
1587  *
1588  * With NULL @old this simply adds @new to @active (while swapping the sets).
1589  * With NULL @new this simply removes @old from @active and frees it
1590  * (while also swapping the sets).
1591  */
1592 static void kvm_activate_memslot(struct kvm *kvm,
1593                                  struct kvm_memory_slot *old,
1594                                  struct kvm_memory_slot *new)
1595 {
1596         int as_id = kvm_memslots_get_as_id(old, new);
1597
1598         kvm_swap_active_memslots(kvm, as_id);
1599
1600         /* Propagate the new memslot to the now inactive memslots. */
1601         kvm_replace_memslot(kvm, old, new);
1602 }
1603
1604 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1605                              const struct kvm_memory_slot *src)
1606 {
1607         dest->base_gfn = src->base_gfn;
1608         dest->npages = src->npages;
1609         dest->dirty_bitmap = src->dirty_bitmap;
1610         dest->arch = src->arch;
1611         dest->userspace_addr = src->userspace_addr;
1612         dest->flags = src->flags;
1613         dest->id = src->id;
1614         dest->as_id = src->as_id;
1615 }
1616
1617 static void kvm_invalidate_memslot(struct kvm *kvm,
1618                                    struct kvm_memory_slot *old,
1619                                    struct kvm_memory_slot *invalid_slot)
1620 {
1621         /*
1622          * Mark the current slot INVALID.  As with all memslot modifications,
1623          * this must be done on an unreachable slot to avoid modifying the
1624          * current slot in the active tree.
1625          */
1626         kvm_copy_memslot(invalid_slot, old);
1627         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1628         kvm_replace_memslot(kvm, old, invalid_slot);
1629
1630         /*
1631          * Activate the slot that is now marked INVALID, but don't propagate
1632          * the slot to the now inactive slots. The slot is either going to be
1633          * deleted or recreated as a new slot.
1634          */
1635         kvm_swap_active_memslots(kvm, old->as_id);
1636
1637         /*
1638          * From this point no new shadow pages pointing to a deleted, or moved,
1639          * memslot will be created.  Validation of sp->gfn happens in:
1640          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1641          *      - kvm_is_visible_gfn (mmu_check_root)
1642          */
1643         kvm_arch_flush_shadow_memslot(kvm, old);
1644
1645         /* Was released by kvm_swap_active_memslots, reacquire. */
1646         mutex_lock(&kvm->slots_arch_lock);
1647
1648         /*
1649          * Copy the arch-specific field of the newly-installed slot back to the
1650          * old slot as the arch data could have changed between releasing
1651          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1652          * above.  Writers are required to retrieve memslots *after* acquiring
1653          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1654          */
1655         old->arch = invalid_slot->arch;
1656 }
1657
1658 static void kvm_create_memslot(struct kvm *kvm,
1659                                struct kvm_memory_slot *new)
1660 {
1661         /* Add the new memslot to the inactive set and activate. */
1662         kvm_replace_memslot(kvm, NULL, new);
1663         kvm_activate_memslot(kvm, NULL, new);
1664 }
1665
1666 static void kvm_delete_memslot(struct kvm *kvm,
1667                                struct kvm_memory_slot *old,
1668                                struct kvm_memory_slot *invalid_slot)
1669 {
1670         /*
1671          * Remove the old memslot (in the inactive memslots) by passing NULL as
1672          * the "new" slot, and for the invalid version in the active slots.
1673          */
1674         kvm_replace_memslot(kvm, old, NULL);
1675         kvm_activate_memslot(kvm, invalid_slot, NULL);
1676 }
1677
1678 static void kvm_move_memslot(struct kvm *kvm,
1679                              struct kvm_memory_slot *old,
1680                              struct kvm_memory_slot *new,
1681                              struct kvm_memory_slot *invalid_slot)
1682 {
1683         /*
1684          * Replace the old memslot in the inactive slots, and then swap slots
1685          * and replace the current INVALID with the new as well.
1686          */
1687         kvm_replace_memslot(kvm, old, new);
1688         kvm_activate_memslot(kvm, invalid_slot, new);
1689 }
1690
1691 static void kvm_update_flags_memslot(struct kvm *kvm,
1692                                      struct kvm_memory_slot *old,
1693                                      struct kvm_memory_slot *new)
1694 {
1695         /*
1696          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1697          * an intermediate step. Instead, the old memslot is simply replaced
1698          * with a new, updated copy in both memslot sets.
1699          */
1700         kvm_replace_memslot(kvm, old, new);
1701         kvm_activate_memslot(kvm, old, new);
1702 }
1703
1704 static int kvm_set_memslot(struct kvm *kvm,
1705                            struct kvm_memory_slot *old,
1706                            struct kvm_memory_slot *new,
1707                            enum kvm_mr_change change)
1708 {
1709         struct kvm_memory_slot *invalid_slot;
1710         int r;
1711
1712         /*
1713          * Released in kvm_swap_active_memslots.
1714          *
1715          * Must be held from before the current memslots are copied until
1716          * after the new memslots are installed with rcu_assign_pointer,
1717          * then released before the synchronize srcu in kvm_swap_active_memslots.
1718          *
1719          * When modifying memslots outside of the slots_lock, must be held
1720          * before reading the pointer to the current memslots until after all
1721          * changes to those memslots are complete.
1722          *
1723          * These rules ensure that installing new memslots does not lose
1724          * changes made to the previous memslots.
1725          */
1726         mutex_lock(&kvm->slots_arch_lock);
1727
1728         /*
1729          * Invalidate the old slot if it's being deleted or moved.  This is
1730          * done prior to actually deleting/moving the memslot to allow vCPUs to
1731          * continue running by ensuring there are no mappings or shadow pages
1732          * for the memslot when it is deleted/moved.  Without pre-invalidation
1733          * (and without a lock), a window would exist between effecting the
1734          * delete/move and committing the changes in arch code where KVM or a
1735          * guest could access a non-existent memslot.
1736          *
1737          * Modifications are done on a temporary, unreachable slot.  The old
1738          * slot needs to be preserved in case a later step fails and the
1739          * invalidation needs to be reverted.
1740          */
1741         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1742                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1743                 if (!invalid_slot) {
1744                         mutex_unlock(&kvm->slots_arch_lock);
1745                         return -ENOMEM;
1746                 }
1747                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1748         }
1749
1750         r = kvm_prepare_memory_region(kvm, old, new, change);
1751         if (r) {
1752                 /*
1753                  * For DELETE/MOVE, revert the above INVALID change.  No
1754                  * modifications required since the original slot was preserved
1755                  * in the inactive slots.  Changing the active memslots also
1756                  * release slots_arch_lock.
1757                  */
1758                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1759                         kvm_activate_memslot(kvm, invalid_slot, old);
1760                         kfree(invalid_slot);
1761                 } else {
1762                         mutex_unlock(&kvm->slots_arch_lock);
1763                 }
1764                 return r;
1765         }
1766
1767         /*
1768          * For DELETE and MOVE, the working slot is now active as the INVALID
1769          * version of the old slot.  MOVE is particularly special as it reuses
1770          * the old slot and returns a copy of the old slot (in working_slot).
1771          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1772          * old slot is detached but otherwise preserved.
1773          */
1774         if (change == KVM_MR_CREATE)
1775                 kvm_create_memslot(kvm, new);
1776         else if (change == KVM_MR_DELETE)
1777                 kvm_delete_memslot(kvm, old, invalid_slot);
1778         else if (change == KVM_MR_MOVE)
1779                 kvm_move_memslot(kvm, old, new, invalid_slot);
1780         else if (change == KVM_MR_FLAGS_ONLY)
1781                 kvm_update_flags_memslot(kvm, old, new);
1782         else
1783                 BUG();
1784
1785         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1786         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1787                 kfree(invalid_slot);
1788
1789         /*
1790          * No need to refresh new->arch, changes after dropping slots_arch_lock
1791          * will directly hit the final, active memsot.  Architectures are
1792          * responsible for knowing that new->arch may be stale.
1793          */
1794         kvm_commit_memory_region(kvm, old, new, change);
1795
1796         return 0;
1797 }
1798
1799 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1800                                       gfn_t start, gfn_t end)
1801 {
1802         struct kvm_memslot_iter iter;
1803
1804         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1805                 if (iter.slot->id != id)
1806                         return true;
1807         }
1808
1809         return false;
1810 }
1811
1812 /*
1813  * Allocate some memory and give it an address in the guest physical address
1814  * space.
1815  *
1816  * Discontiguous memory is allowed, mostly for framebuffers.
1817  *
1818  * Must be called holding kvm->slots_lock for write.
1819  */
1820 int __kvm_set_memory_region(struct kvm *kvm,
1821                             const struct kvm_userspace_memory_region *mem)
1822 {
1823         struct kvm_memory_slot *old, *new;
1824         struct kvm_memslots *slots;
1825         enum kvm_mr_change change;
1826         unsigned long npages;
1827         gfn_t base_gfn;
1828         int as_id, id;
1829         int r;
1830
1831         r = check_memory_region_flags(mem);
1832         if (r)
1833                 return r;
1834
1835         as_id = mem->slot >> 16;
1836         id = (u16)mem->slot;
1837
1838         /* General sanity checks */
1839         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1840             (mem->memory_size != (unsigned long)mem->memory_size))
1841                 return -EINVAL;
1842         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1843                 return -EINVAL;
1844         /* We can read the guest memory with __xxx_user() later on. */
1845         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1846             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1847              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1848                         mem->memory_size))
1849                 return -EINVAL;
1850         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1851                 return -EINVAL;
1852         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1853                 return -EINVAL;
1854         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1855                 return -EINVAL;
1856
1857         slots = __kvm_memslots(kvm, as_id);
1858
1859         /*
1860          * Note, the old memslot (and the pointer itself!) may be invalidated
1861          * and/or destroyed by kvm_set_memslot().
1862          */
1863         old = id_to_memslot(slots, id);
1864
1865         if (!mem->memory_size) {
1866                 if (!old || !old->npages)
1867                         return -EINVAL;
1868
1869                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1870                         return -EIO;
1871
1872                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1873         }
1874
1875         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1876         npages = (mem->memory_size >> PAGE_SHIFT);
1877
1878         if (!old || !old->npages) {
1879                 change = KVM_MR_CREATE;
1880
1881                 /*
1882                  * To simplify KVM internals, the total number of pages across
1883                  * all memslots must fit in an unsigned long.
1884                  */
1885                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1886                         return -EINVAL;
1887         } else { /* Modify an existing slot. */
1888                 if ((mem->userspace_addr != old->userspace_addr) ||
1889                     (npages != old->npages) ||
1890                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1891                         return -EINVAL;
1892
1893                 if (base_gfn != old->base_gfn)
1894                         change = KVM_MR_MOVE;
1895                 else if (mem->flags != old->flags)
1896                         change = KVM_MR_FLAGS_ONLY;
1897                 else /* Nothing to change. */
1898                         return 0;
1899         }
1900
1901         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1902             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1903                 return -EEXIST;
1904
1905         /* Allocate a slot that will persist in the memslot. */
1906         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1907         if (!new)
1908                 return -ENOMEM;
1909
1910         new->as_id = as_id;
1911         new->id = id;
1912         new->base_gfn = base_gfn;
1913         new->npages = npages;
1914         new->flags = mem->flags;
1915         new->userspace_addr = mem->userspace_addr;
1916
1917         r = kvm_set_memslot(kvm, old, new, change);
1918         if (r)
1919                 kfree(new);
1920         return r;
1921 }
1922 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1923
1924 int kvm_set_memory_region(struct kvm *kvm,
1925                           const struct kvm_userspace_memory_region *mem)
1926 {
1927         int r;
1928
1929         mutex_lock(&kvm->slots_lock);
1930         r = __kvm_set_memory_region(kvm, mem);
1931         mutex_unlock(&kvm->slots_lock);
1932         return r;
1933 }
1934 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1935
1936 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1937                                           struct kvm_userspace_memory_region *mem)
1938 {
1939         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1940                 return -EINVAL;
1941
1942         return kvm_set_memory_region(kvm, mem);
1943 }
1944
1945 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1946 /**
1947  * kvm_get_dirty_log - get a snapshot of dirty pages
1948  * @kvm:        pointer to kvm instance
1949  * @log:        slot id and address to which we copy the log
1950  * @is_dirty:   set to '1' if any dirty pages were found
1951  * @memslot:    set to the associated memslot, always valid on success
1952  */
1953 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1954                       int *is_dirty, struct kvm_memory_slot **memslot)
1955 {
1956         struct kvm_memslots *slots;
1957         int i, as_id, id;
1958         unsigned long n;
1959         unsigned long any = 0;
1960
1961         /* Dirty ring tracking is exclusive to dirty log tracking */
1962         if (kvm->dirty_ring_size)
1963                 return -ENXIO;
1964
1965         *memslot = NULL;
1966         *is_dirty = 0;
1967
1968         as_id = log->slot >> 16;
1969         id = (u16)log->slot;
1970         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1971                 return -EINVAL;
1972
1973         slots = __kvm_memslots(kvm, as_id);
1974         *memslot = id_to_memslot(slots, id);
1975         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1976                 return -ENOENT;
1977
1978         kvm_arch_sync_dirty_log(kvm, *memslot);
1979
1980         n = kvm_dirty_bitmap_bytes(*memslot);
1981
1982         for (i = 0; !any && i < n/sizeof(long); ++i)
1983                 any = (*memslot)->dirty_bitmap[i];
1984
1985         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1986                 return -EFAULT;
1987
1988         if (any)
1989                 *is_dirty = 1;
1990         return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1993
1994 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1995 /**
1996  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1997  *      and reenable dirty page tracking for the corresponding pages.
1998  * @kvm:        pointer to kvm instance
1999  * @log:        slot id and address to which we copy the log
2000  *
2001  * We need to keep it in mind that VCPU threads can write to the bitmap
2002  * concurrently. So, to avoid losing track of dirty pages we keep the
2003  * following order:
2004  *
2005  *    1. Take a snapshot of the bit and clear it if needed.
2006  *    2. Write protect the corresponding page.
2007  *    3. Copy the snapshot to the userspace.
2008  *    4. Upon return caller flushes TLB's if needed.
2009  *
2010  * Between 2 and 4, the guest may write to the page using the remaining TLB
2011  * entry.  This is not a problem because the page is reported dirty using
2012  * the snapshot taken before and step 4 ensures that writes done after
2013  * exiting to userspace will be logged for the next call.
2014  *
2015  */
2016 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2017 {
2018         struct kvm_memslots *slots;
2019         struct kvm_memory_slot *memslot;
2020         int i, as_id, id;
2021         unsigned long n;
2022         unsigned long *dirty_bitmap;
2023         unsigned long *dirty_bitmap_buffer;
2024         bool flush;
2025
2026         /* Dirty ring tracking is exclusive to dirty log tracking */
2027         if (kvm->dirty_ring_size)
2028                 return -ENXIO;
2029
2030         as_id = log->slot >> 16;
2031         id = (u16)log->slot;
2032         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2033                 return -EINVAL;
2034
2035         slots = __kvm_memslots(kvm, as_id);
2036         memslot = id_to_memslot(slots, id);
2037         if (!memslot || !memslot->dirty_bitmap)
2038                 return -ENOENT;
2039
2040         dirty_bitmap = memslot->dirty_bitmap;
2041
2042         kvm_arch_sync_dirty_log(kvm, memslot);
2043
2044         n = kvm_dirty_bitmap_bytes(memslot);
2045         flush = false;
2046         if (kvm->manual_dirty_log_protect) {
2047                 /*
2048                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2049                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2050                  * is some code duplication between this function and
2051                  * kvm_get_dirty_log, but hopefully all architecture
2052                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2053                  * can be eliminated.
2054                  */
2055                 dirty_bitmap_buffer = dirty_bitmap;
2056         } else {
2057                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2058                 memset(dirty_bitmap_buffer, 0, n);
2059
2060                 KVM_MMU_LOCK(kvm);
2061                 for (i = 0; i < n / sizeof(long); i++) {
2062                         unsigned long mask;
2063                         gfn_t offset;
2064
2065                         if (!dirty_bitmap[i])
2066                                 continue;
2067
2068                         flush = true;
2069                         mask = xchg(&dirty_bitmap[i], 0);
2070                         dirty_bitmap_buffer[i] = mask;
2071
2072                         offset = i * BITS_PER_LONG;
2073                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2074                                                                 offset, mask);
2075                 }
2076                 KVM_MMU_UNLOCK(kvm);
2077         }
2078
2079         if (flush)
2080                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2081
2082         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2083                 return -EFAULT;
2084         return 0;
2085 }
2086
2087
2088 /**
2089  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2090  * @kvm: kvm instance
2091  * @log: slot id and address to which we copy the log
2092  *
2093  * Steps 1-4 below provide general overview of dirty page logging. See
2094  * kvm_get_dirty_log_protect() function description for additional details.
2095  *
2096  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2097  * always flush the TLB (step 4) even if previous step failed  and the dirty
2098  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2099  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2100  * writes will be marked dirty for next log read.
2101  *
2102  *   1. Take a snapshot of the bit and clear it if needed.
2103  *   2. Write protect the corresponding page.
2104  *   3. Copy the snapshot to the userspace.
2105  *   4. Flush TLB's if needed.
2106  */
2107 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2108                                       struct kvm_dirty_log *log)
2109 {
2110         int r;
2111
2112         mutex_lock(&kvm->slots_lock);
2113
2114         r = kvm_get_dirty_log_protect(kvm, log);
2115
2116         mutex_unlock(&kvm->slots_lock);
2117         return r;
2118 }
2119
2120 /**
2121  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2122  *      and reenable dirty page tracking for the corresponding pages.
2123  * @kvm:        pointer to kvm instance
2124  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2125  */
2126 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2127                                        struct kvm_clear_dirty_log *log)
2128 {
2129         struct kvm_memslots *slots;
2130         struct kvm_memory_slot *memslot;
2131         int as_id, id;
2132         gfn_t offset;
2133         unsigned long i, n;
2134         unsigned long *dirty_bitmap;
2135         unsigned long *dirty_bitmap_buffer;
2136         bool flush;
2137
2138         /* Dirty ring tracking is exclusive to dirty log tracking */
2139         if (kvm->dirty_ring_size)
2140                 return -ENXIO;
2141
2142         as_id = log->slot >> 16;
2143         id = (u16)log->slot;
2144         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2145                 return -EINVAL;
2146
2147         if (log->first_page & 63)
2148                 return -EINVAL;
2149
2150         slots = __kvm_memslots(kvm, as_id);
2151         memslot = id_to_memslot(slots, id);
2152         if (!memslot || !memslot->dirty_bitmap)
2153                 return -ENOENT;
2154
2155         dirty_bitmap = memslot->dirty_bitmap;
2156
2157         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2158
2159         if (log->first_page > memslot->npages ||
2160             log->num_pages > memslot->npages - log->first_page ||
2161             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2162             return -EINVAL;
2163
2164         kvm_arch_sync_dirty_log(kvm, memslot);
2165
2166         flush = false;
2167         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2168         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2169                 return -EFAULT;
2170
2171         KVM_MMU_LOCK(kvm);
2172         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2173                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2174              i++, offset += BITS_PER_LONG) {
2175                 unsigned long mask = *dirty_bitmap_buffer++;
2176                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2177                 if (!mask)
2178                         continue;
2179
2180                 mask &= atomic_long_fetch_andnot(mask, p);
2181
2182                 /*
2183                  * mask contains the bits that really have been cleared.  This
2184                  * never includes any bits beyond the length of the memslot (if
2185                  * the length is not aligned to 64 pages), therefore it is not
2186                  * a problem if userspace sets them in log->dirty_bitmap.
2187                 */
2188                 if (mask) {
2189                         flush = true;
2190                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2191                                                                 offset, mask);
2192                 }
2193         }
2194         KVM_MMU_UNLOCK(kvm);
2195
2196         if (flush)
2197                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2198
2199         return 0;
2200 }
2201
2202 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2203                                         struct kvm_clear_dirty_log *log)
2204 {
2205         int r;
2206
2207         mutex_lock(&kvm->slots_lock);
2208
2209         r = kvm_clear_dirty_log_protect(kvm, log);
2210
2211         mutex_unlock(&kvm->slots_lock);
2212         return r;
2213 }
2214 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2215
2216 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2217 {
2218         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2219 }
2220 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2221
2222 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2223 {
2224         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2225         u64 gen = slots->generation;
2226         struct kvm_memory_slot *slot;
2227
2228         /*
2229          * This also protects against using a memslot from a different address space,
2230          * since different address spaces have different generation numbers.
2231          */
2232         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2233                 vcpu->last_used_slot = NULL;
2234                 vcpu->last_used_slot_gen = gen;
2235         }
2236
2237         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2238         if (slot)
2239                 return slot;
2240
2241         /*
2242          * Fall back to searching all memslots. We purposely use
2243          * search_memslots() instead of __gfn_to_memslot() to avoid
2244          * thrashing the VM-wide last_used_slot in kvm_memslots.
2245          */
2246         slot = search_memslots(slots, gfn, false);
2247         if (slot) {
2248                 vcpu->last_used_slot = slot;
2249                 return slot;
2250         }
2251
2252         return NULL;
2253 }
2254 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2255
2256 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2257 {
2258         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2259
2260         return kvm_is_visible_memslot(memslot);
2261 }
2262 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2263
2264 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2265 {
2266         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2267
2268         return kvm_is_visible_memslot(memslot);
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2271
2272 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2273 {
2274         struct vm_area_struct *vma;
2275         unsigned long addr, size;
2276
2277         size = PAGE_SIZE;
2278
2279         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2280         if (kvm_is_error_hva(addr))
2281                 return PAGE_SIZE;
2282
2283         mmap_read_lock(current->mm);
2284         vma = find_vma(current->mm, addr);
2285         if (!vma)
2286                 goto out;
2287
2288         size = vma_kernel_pagesize(vma);
2289
2290 out:
2291         mmap_read_unlock(current->mm);
2292
2293         return size;
2294 }
2295
2296 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2297 {
2298         return slot->flags & KVM_MEM_READONLY;
2299 }
2300
2301 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2302                                        gfn_t *nr_pages, bool write)
2303 {
2304         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2305                 return KVM_HVA_ERR_BAD;
2306
2307         if (memslot_is_readonly(slot) && write)
2308                 return KVM_HVA_ERR_RO_BAD;
2309
2310         if (nr_pages)
2311                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2312
2313         return __gfn_to_hva_memslot(slot, gfn);
2314 }
2315
2316 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2317                                      gfn_t *nr_pages)
2318 {
2319         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2320 }
2321
2322 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2323                                         gfn_t gfn)
2324 {
2325         return gfn_to_hva_many(slot, gfn, NULL);
2326 }
2327 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2328
2329 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2330 {
2331         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2332 }
2333 EXPORT_SYMBOL_GPL(gfn_to_hva);
2334
2335 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2336 {
2337         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2338 }
2339 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2340
2341 /*
2342  * Return the hva of a @gfn and the R/W attribute if possible.
2343  *
2344  * @slot: the kvm_memory_slot which contains @gfn
2345  * @gfn: the gfn to be translated
2346  * @writable: used to return the read/write attribute of the @slot if the hva
2347  * is valid and @writable is not NULL
2348  */
2349 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2350                                       gfn_t gfn, bool *writable)
2351 {
2352         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2353
2354         if (!kvm_is_error_hva(hva) && writable)
2355                 *writable = !memslot_is_readonly(slot);
2356
2357         return hva;
2358 }
2359
2360 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2361 {
2362         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2363
2364         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2365 }
2366
2367 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2368 {
2369         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2370
2371         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2372 }
2373
2374 static inline int check_user_page_hwpoison(unsigned long addr)
2375 {
2376         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2377
2378         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2379         return rc == -EHWPOISON;
2380 }
2381
2382 /*
2383  * The fast path to get the writable pfn which will be stored in @pfn,
2384  * true indicates success, otherwise false is returned.  It's also the
2385  * only part that runs if we can in atomic context.
2386  */
2387 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2388                             bool *writable, kvm_pfn_t *pfn)
2389 {
2390         struct page *page[1];
2391
2392         /*
2393          * Fast pin a writable pfn only if it is a write fault request
2394          * or the caller allows to map a writable pfn for a read fault
2395          * request.
2396          */
2397         if (!(write_fault || writable))
2398                 return false;
2399
2400         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2401                 *pfn = page_to_pfn(page[0]);
2402
2403                 if (writable)
2404                         *writable = true;
2405                 return true;
2406         }
2407
2408         return false;
2409 }
2410
2411 /*
2412  * The slow path to get the pfn of the specified host virtual address,
2413  * 1 indicates success, -errno is returned if error is detected.
2414  */
2415 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2416                            bool *writable, kvm_pfn_t *pfn)
2417 {
2418         unsigned int flags = FOLL_HWPOISON;
2419         struct page *page;
2420         int npages = 0;
2421
2422         might_sleep();
2423
2424         if (writable)
2425                 *writable = write_fault;
2426
2427         if (write_fault)
2428                 flags |= FOLL_WRITE;
2429         if (async)
2430                 flags |= FOLL_NOWAIT;
2431
2432         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2433         if (npages != 1)
2434                 return npages;
2435
2436         /* map read fault as writable if possible */
2437         if (unlikely(!write_fault) && writable) {
2438                 struct page *wpage;
2439
2440                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2441                         *writable = true;
2442                         put_page(page);
2443                         page = wpage;
2444                 }
2445         }
2446         *pfn = page_to_pfn(page);
2447         return npages;
2448 }
2449
2450 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2451 {
2452         if (unlikely(!(vma->vm_flags & VM_READ)))
2453                 return false;
2454
2455         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2456                 return false;
2457
2458         return true;
2459 }
2460
2461 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2462 {
2463         if (kvm_is_reserved_pfn(pfn))
2464                 return 1;
2465         return get_page_unless_zero(pfn_to_page(pfn));
2466 }
2467
2468 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2469                                unsigned long addr, bool *async,
2470                                bool write_fault, bool *writable,
2471                                kvm_pfn_t *p_pfn)
2472 {
2473         kvm_pfn_t pfn;
2474         pte_t *ptep;
2475         spinlock_t *ptl;
2476         int r;
2477
2478         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2479         if (r) {
2480                 /*
2481                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2482                  * not call the fault handler, so do it here.
2483                  */
2484                 bool unlocked = false;
2485                 r = fixup_user_fault(current->mm, addr,
2486                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2487                                      &unlocked);
2488                 if (unlocked)
2489                         return -EAGAIN;
2490                 if (r)
2491                         return r;
2492
2493                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2494                 if (r)
2495                         return r;
2496         }
2497
2498         if (write_fault && !pte_write(*ptep)) {
2499                 pfn = KVM_PFN_ERR_RO_FAULT;
2500                 goto out;
2501         }
2502
2503         if (writable)
2504                 *writable = pte_write(*ptep);
2505         pfn = pte_pfn(*ptep);
2506
2507         /*
2508          * Get a reference here because callers of *hva_to_pfn* and
2509          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2510          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2511          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2512          * simply do nothing for reserved pfns.
2513          *
2514          * Whoever called remap_pfn_range is also going to call e.g.
2515          * unmap_mapping_range before the underlying pages are freed,
2516          * causing a call to our MMU notifier.
2517          *
2518          * Certain IO or PFNMAP mappings can be backed with valid
2519          * struct pages, but be allocated without refcounting e.g.,
2520          * tail pages of non-compound higher order allocations, which
2521          * would then underflow the refcount when the caller does the
2522          * required put_page. Don't allow those pages here.
2523          */ 
2524         if (!kvm_try_get_pfn(pfn))
2525                 r = -EFAULT;
2526
2527 out:
2528         pte_unmap_unlock(ptep, ptl);
2529         *p_pfn = pfn;
2530
2531         return r;
2532 }
2533
2534 /*
2535  * Pin guest page in memory and return its pfn.
2536  * @addr: host virtual address which maps memory to the guest
2537  * @atomic: whether this function can sleep
2538  * @async: whether this function need to wait IO complete if the
2539  *         host page is not in the memory
2540  * @write_fault: whether we should get a writable host page
2541  * @writable: whether it allows to map a writable host page for !@write_fault
2542  *
2543  * The function will map a writable host page for these two cases:
2544  * 1): @write_fault = true
2545  * 2): @write_fault = false && @writable, @writable will tell the caller
2546  *     whether the mapping is writable.
2547  */
2548 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2549                      bool write_fault, bool *writable)
2550 {
2551         struct vm_area_struct *vma;
2552         kvm_pfn_t pfn = 0;
2553         int npages, r;
2554
2555         /* we can do it either atomically or asynchronously, not both */
2556         BUG_ON(atomic && async);
2557
2558         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2559                 return pfn;
2560
2561         if (atomic)
2562                 return KVM_PFN_ERR_FAULT;
2563
2564         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2565         if (npages == 1)
2566                 return pfn;
2567
2568         mmap_read_lock(current->mm);
2569         if (npages == -EHWPOISON ||
2570               (!async && check_user_page_hwpoison(addr))) {
2571                 pfn = KVM_PFN_ERR_HWPOISON;
2572                 goto exit;
2573         }
2574
2575 retry:
2576         vma = vma_lookup(current->mm, addr);
2577
2578         if (vma == NULL)
2579                 pfn = KVM_PFN_ERR_FAULT;
2580         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2581                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2582                 if (r == -EAGAIN)
2583                         goto retry;
2584                 if (r < 0)
2585                         pfn = KVM_PFN_ERR_FAULT;
2586         } else {
2587                 if (async && vma_is_valid(vma, write_fault))
2588                         *async = true;
2589                 pfn = KVM_PFN_ERR_FAULT;
2590         }
2591 exit:
2592         mmap_read_unlock(current->mm);
2593         return pfn;
2594 }
2595
2596 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2597                                bool atomic, bool *async, bool write_fault,
2598                                bool *writable, hva_t *hva)
2599 {
2600         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2601
2602         if (hva)
2603                 *hva = addr;
2604
2605         if (addr == KVM_HVA_ERR_RO_BAD) {
2606                 if (writable)
2607                         *writable = false;
2608                 return KVM_PFN_ERR_RO_FAULT;
2609         }
2610
2611         if (kvm_is_error_hva(addr)) {
2612                 if (writable)
2613                         *writable = false;
2614                 return KVM_PFN_NOSLOT;
2615         }
2616
2617         /* Do not map writable pfn in the readonly memslot. */
2618         if (writable && memslot_is_readonly(slot)) {
2619                 *writable = false;
2620                 writable = NULL;
2621         }
2622
2623         return hva_to_pfn(addr, atomic, async, write_fault,
2624                           writable);
2625 }
2626 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2627
2628 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2629                       bool *writable)
2630 {
2631         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2632                                     write_fault, writable, NULL);
2633 }
2634 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2635
2636 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2637 {
2638         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2639 }
2640 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2641
2642 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2643 {
2644         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2645 }
2646 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2647
2648 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2649 {
2650         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2651 }
2652 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2653
2654 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2655 {
2656         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2657 }
2658 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2659
2660 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2661 {
2662         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2663 }
2664 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2665
2666 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2667                             struct page **pages, int nr_pages)
2668 {
2669         unsigned long addr;
2670         gfn_t entry = 0;
2671
2672         addr = gfn_to_hva_many(slot, gfn, &entry);
2673         if (kvm_is_error_hva(addr))
2674                 return -1;
2675
2676         if (entry < nr_pages)
2677                 return 0;
2678
2679         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2680 }
2681 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2682
2683 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2684 {
2685         if (is_error_noslot_pfn(pfn))
2686                 return KVM_ERR_PTR_BAD_PAGE;
2687
2688         if (kvm_is_reserved_pfn(pfn)) {
2689                 WARN_ON(1);
2690                 return KVM_ERR_PTR_BAD_PAGE;
2691         }
2692
2693         return pfn_to_page(pfn);
2694 }
2695
2696 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2697 {
2698         kvm_pfn_t pfn;
2699
2700         pfn = gfn_to_pfn(kvm, gfn);
2701
2702         return kvm_pfn_to_page(pfn);
2703 }
2704 EXPORT_SYMBOL_GPL(gfn_to_page);
2705
2706 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2707 {
2708         if (pfn == 0)
2709                 return;
2710
2711         if (dirty)
2712                 kvm_release_pfn_dirty(pfn);
2713         else
2714                 kvm_release_pfn_clean(pfn);
2715 }
2716
2717 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2718 {
2719         kvm_pfn_t pfn;
2720         void *hva = NULL;
2721         struct page *page = KVM_UNMAPPED_PAGE;
2722
2723         if (!map)
2724                 return -EINVAL;
2725
2726         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2727         if (is_error_noslot_pfn(pfn))
2728                 return -EINVAL;
2729
2730         if (pfn_valid(pfn)) {
2731                 page = pfn_to_page(pfn);
2732                 hva = kmap(page);
2733 #ifdef CONFIG_HAS_IOMEM
2734         } else {
2735                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2736 #endif
2737         }
2738
2739         if (!hva)
2740                 return -EFAULT;
2741
2742         map->page = page;
2743         map->hva = hva;
2744         map->pfn = pfn;
2745         map->gfn = gfn;
2746
2747         return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2750
2751 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2752 {
2753         if (!map)
2754                 return;
2755
2756         if (!map->hva)
2757                 return;
2758
2759         if (map->page != KVM_UNMAPPED_PAGE)
2760                 kunmap(map->page);
2761 #ifdef CONFIG_HAS_IOMEM
2762         else
2763                 memunmap(map->hva);
2764 #endif
2765
2766         if (dirty)
2767                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2768
2769         kvm_release_pfn(map->pfn, dirty);
2770
2771         map->hva = NULL;
2772         map->page = NULL;
2773 }
2774 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2775
2776 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2777 {
2778         kvm_pfn_t pfn;
2779
2780         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2781
2782         return kvm_pfn_to_page(pfn);
2783 }
2784 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2785
2786 void kvm_release_page_clean(struct page *page)
2787 {
2788         WARN_ON(is_error_page(page));
2789
2790         kvm_release_pfn_clean(page_to_pfn(page));
2791 }
2792 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2793
2794 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2795 {
2796         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2797                 put_page(pfn_to_page(pfn));
2798 }
2799 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2800
2801 void kvm_release_page_dirty(struct page *page)
2802 {
2803         WARN_ON(is_error_page(page));
2804
2805         kvm_release_pfn_dirty(page_to_pfn(page));
2806 }
2807 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2808
2809 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2810 {
2811         kvm_set_pfn_dirty(pfn);
2812         kvm_release_pfn_clean(pfn);
2813 }
2814 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2815
2816 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2817 {
2818         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2819                 SetPageDirty(pfn_to_page(pfn));
2820 }
2821 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2822
2823 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2824 {
2825         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2826                 mark_page_accessed(pfn_to_page(pfn));
2827 }
2828 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2829
2830 static int next_segment(unsigned long len, int offset)
2831 {
2832         if (len > PAGE_SIZE - offset)
2833                 return PAGE_SIZE - offset;
2834         else
2835                 return len;
2836 }
2837
2838 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2839                                  void *data, int offset, int len)
2840 {
2841         int r;
2842         unsigned long addr;
2843
2844         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2845         if (kvm_is_error_hva(addr))
2846                 return -EFAULT;
2847         r = __copy_from_user(data, (void __user *)addr + offset, len);
2848         if (r)
2849                 return -EFAULT;
2850         return 0;
2851 }
2852
2853 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2854                         int len)
2855 {
2856         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2857
2858         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2859 }
2860 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2861
2862 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2863                              int offset, int len)
2864 {
2865         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2866
2867         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2868 }
2869 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2870
2871 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2872 {
2873         gfn_t gfn = gpa >> PAGE_SHIFT;
2874         int seg;
2875         int offset = offset_in_page(gpa);
2876         int ret;
2877
2878         while ((seg = next_segment(len, offset)) != 0) {
2879                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2880                 if (ret < 0)
2881                         return ret;
2882                 offset = 0;
2883                 len -= seg;
2884                 data += seg;
2885                 ++gfn;
2886         }
2887         return 0;
2888 }
2889 EXPORT_SYMBOL_GPL(kvm_read_guest);
2890
2891 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2892 {
2893         gfn_t gfn = gpa >> PAGE_SHIFT;
2894         int seg;
2895         int offset = offset_in_page(gpa);
2896         int ret;
2897
2898         while ((seg = next_segment(len, offset)) != 0) {
2899                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2900                 if (ret < 0)
2901                         return ret;
2902                 offset = 0;
2903                 len -= seg;
2904                 data += seg;
2905                 ++gfn;
2906         }
2907         return 0;
2908 }
2909 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2910
2911 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2912                                    void *data, int offset, unsigned long len)
2913 {
2914         int r;
2915         unsigned long addr;
2916
2917         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2918         if (kvm_is_error_hva(addr))
2919                 return -EFAULT;
2920         pagefault_disable();
2921         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2922         pagefault_enable();
2923         if (r)
2924                 return -EFAULT;
2925         return 0;
2926 }
2927
2928 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2929                                void *data, unsigned long len)
2930 {
2931         gfn_t gfn = gpa >> PAGE_SHIFT;
2932         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2933         int offset = offset_in_page(gpa);
2934
2935         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2936 }
2937 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2938
2939 static int __kvm_write_guest_page(struct kvm *kvm,
2940                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2941                                   const void *data, int offset, int len)
2942 {
2943         int r;
2944         unsigned long addr;
2945
2946         addr = gfn_to_hva_memslot(memslot, gfn);
2947         if (kvm_is_error_hva(addr))
2948                 return -EFAULT;
2949         r = __copy_to_user((void __user *)addr + offset, data, len);
2950         if (r)
2951                 return -EFAULT;
2952         mark_page_dirty_in_slot(kvm, memslot, gfn);
2953         return 0;
2954 }
2955
2956 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2957                          const void *data, int offset, int len)
2958 {
2959         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2960
2961         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2962 }
2963 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2964
2965 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2966                               const void *data, int offset, int len)
2967 {
2968         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2969
2970         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2971 }
2972 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2973
2974 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2975                     unsigned long len)
2976 {
2977         gfn_t gfn = gpa >> PAGE_SHIFT;
2978         int seg;
2979         int offset = offset_in_page(gpa);
2980         int ret;
2981
2982         while ((seg = next_segment(len, offset)) != 0) {
2983                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2984                 if (ret < 0)
2985                         return ret;
2986                 offset = 0;
2987                 len -= seg;
2988                 data += seg;
2989                 ++gfn;
2990         }
2991         return 0;
2992 }
2993 EXPORT_SYMBOL_GPL(kvm_write_guest);
2994
2995 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2996                          unsigned long len)
2997 {
2998         gfn_t gfn = gpa >> PAGE_SHIFT;
2999         int seg;
3000         int offset = offset_in_page(gpa);
3001         int ret;
3002
3003         while ((seg = next_segment(len, offset)) != 0) {
3004                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3005                 if (ret < 0)
3006                         return ret;
3007                 offset = 0;
3008                 len -= seg;
3009                 data += seg;
3010                 ++gfn;
3011         }
3012         return 0;
3013 }
3014 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3015
3016 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3017                                        struct gfn_to_hva_cache *ghc,
3018                                        gpa_t gpa, unsigned long len)
3019 {
3020         int offset = offset_in_page(gpa);
3021         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3022         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3023         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3024         gfn_t nr_pages_avail;
3025
3026         /* Update ghc->generation before performing any error checks. */
3027         ghc->generation = slots->generation;
3028
3029         if (start_gfn > end_gfn) {
3030                 ghc->hva = KVM_HVA_ERR_BAD;
3031                 return -EINVAL;
3032         }
3033
3034         /*
3035          * If the requested region crosses two memslots, we still
3036          * verify that the entire region is valid here.
3037          */
3038         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3039                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3040                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3041                                            &nr_pages_avail);
3042                 if (kvm_is_error_hva(ghc->hva))
3043                         return -EFAULT;
3044         }
3045
3046         /* Use the slow path for cross page reads and writes. */
3047         if (nr_pages_needed == 1)
3048                 ghc->hva += offset;
3049         else
3050                 ghc->memslot = NULL;
3051
3052         ghc->gpa = gpa;
3053         ghc->len = len;
3054         return 0;
3055 }
3056
3057 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3058                               gpa_t gpa, unsigned long len)
3059 {
3060         struct kvm_memslots *slots = kvm_memslots(kvm);
3061         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3062 }
3063 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3064
3065 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3066                                   void *data, unsigned int offset,
3067                                   unsigned long len)
3068 {
3069         struct kvm_memslots *slots = kvm_memslots(kvm);
3070         int r;
3071         gpa_t gpa = ghc->gpa + offset;
3072
3073         if (WARN_ON_ONCE(len + offset > ghc->len))
3074                 return -EINVAL;
3075
3076         if (slots->generation != ghc->generation) {
3077                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3078                         return -EFAULT;
3079         }
3080
3081         if (kvm_is_error_hva(ghc->hva))
3082                 return -EFAULT;
3083
3084         if (unlikely(!ghc->memslot))
3085                 return kvm_write_guest(kvm, gpa, data, len);
3086
3087         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3088         if (r)
3089                 return -EFAULT;
3090         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3091
3092         return 0;
3093 }
3094 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3095
3096 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3097                            void *data, unsigned long len)
3098 {
3099         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3100 }
3101 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3102
3103 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3104                                  void *data, unsigned int offset,
3105                                  unsigned long len)
3106 {
3107         struct kvm_memslots *slots = kvm_memslots(kvm);
3108         int r;
3109         gpa_t gpa = ghc->gpa + offset;
3110
3111         if (WARN_ON_ONCE(len + offset > ghc->len))
3112                 return -EINVAL;
3113
3114         if (slots->generation != ghc->generation) {
3115                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3116                         return -EFAULT;
3117         }
3118
3119         if (kvm_is_error_hva(ghc->hva))
3120                 return -EFAULT;
3121
3122         if (unlikely(!ghc->memslot))
3123                 return kvm_read_guest(kvm, gpa, data, len);
3124
3125         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3126         if (r)
3127                 return -EFAULT;
3128
3129         return 0;
3130 }
3131 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3132
3133 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3134                           void *data, unsigned long len)
3135 {
3136         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3137 }
3138 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3139
3140 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3141 {
3142         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3143         gfn_t gfn = gpa >> PAGE_SHIFT;
3144         int seg;
3145         int offset = offset_in_page(gpa);
3146         int ret;
3147
3148         while ((seg = next_segment(len, offset)) != 0) {
3149                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3150                 if (ret < 0)
3151                         return ret;
3152                 offset = 0;
3153                 len -= seg;
3154                 ++gfn;
3155         }
3156         return 0;
3157 }
3158 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3159
3160 void mark_page_dirty_in_slot(struct kvm *kvm,
3161                              const struct kvm_memory_slot *memslot,
3162                              gfn_t gfn)
3163 {
3164         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3165
3166         if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3167                 return;
3168
3169         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3170                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3171                 u32 slot = (memslot->as_id << 16) | memslot->id;
3172
3173                 if (kvm->dirty_ring_size)
3174                         kvm_dirty_ring_push(&vcpu->dirty_ring,
3175                                             slot, rel_gfn);
3176                 else
3177                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3178         }
3179 }
3180 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3181
3182 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3183 {
3184         struct kvm_memory_slot *memslot;
3185
3186         memslot = gfn_to_memslot(kvm, gfn);
3187         mark_page_dirty_in_slot(kvm, memslot, gfn);
3188 }
3189 EXPORT_SYMBOL_GPL(mark_page_dirty);
3190
3191 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3192 {
3193         struct kvm_memory_slot *memslot;
3194
3195         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3196         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3197 }
3198 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3199
3200 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3201 {
3202         if (!vcpu->sigset_active)
3203                 return;
3204
3205         /*
3206          * This does a lockless modification of ->real_blocked, which is fine
3207          * because, only current can change ->real_blocked and all readers of
3208          * ->real_blocked don't care as long ->real_blocked is always a subset
3209          * of ->blocked.
3210          */
3211         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3212 }
3213
3214 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3215 {
3216         if (!vcpu->sigset_active)
3217                 return;
3218
3219         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3220         sigemptyset(&current->real_blocked);
3221 }
3222
3223 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3224 {
3225         unsigned int old, val, grow, grow_start;
3226
3227         old = val = vcpu->halt_poll_ns;
3228         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3229         grow = READ_ONCE(halt_poll_ns_grow);
3230         if (!grow)
3231                 goto out;
3232
3233         val *= grow;
3234         if (val < grow_start)
3235                 val = grow_start;
3236
3237         if (val > vcpu->kvm->max_halt_poll_ns)
3238                 val = vcpu->kvm->max_halt_poll_ns;
3239
3240         vcpu->halt_poll_ns = val;
3241 out:
3242         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3243 }
3244
3245 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3246 {
3247         unsigned int old, val, shrink, grow_start;
3248
3249         old = val = vcpu->halt_poll_ns;
3250         shrink = READ_ONCE(halt_poll_ns_shrink);
3251         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3252         if (shrink == 0)
3253                 val = 0;
3254         else
3255                 val /= shrink;
3256
3257         if (val < grow_start)
3258                 val = 0;
3259
3260         vcpu->halt_poll_ns = val;
3261         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3262 }
3263
3264 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3265 {
3266         int ret = -EINTR;
3267         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3268
3269         if (kvm_arch_vcpu_runnable(vcpu)) {
3270                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3271                 goto out;
3272         }
3273         if (kvm_cpu_has_pending_timer(vcpu))
3274                 goto out;
3275         if (signal_pending(current))
3276                 goto out;
3277         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3278                 goto out;
3279
3280         ret = 0;
3281 out:
3282         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3283         return ret;
3284 }
3285
3286 /*
3287  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3288  * pending.  This is mostly used when halting a vCPU, but may also be used
3289  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3290  */
3291 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3292 {
3293         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3294         bool waited = false;
3295
3296         vcpu->stat.generic.blocking = 1;
3297
3298         kvm_arch_vcpu_blocking(vcpu);
3299
3300         prepare_to_rcuwait(wait);
3301         for (;;) {
3302                 set_current_state(TASK_INTERRUPTIBLE);
3303
3304                 if (kvm_vcpu_check_block(vcpu) < 0)
3305                         break;
3306
3307                 waited = true;
3308                 schedule();
3309         }
3310         finish_rcuwait(wait);
3311
3312         kvm_arch_vcpu_unblocking(vcpu);
3313
3314         vcpu->stat.generic.blocking = 0;
3315
3316         return waited;
3317 }
3318
3319 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3320                                           ktime_t end, bool success)
3321 {
3322         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3323         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3324
3325         ++vcpu->stat.generic.halt_attempted_poll;
3326
3327         if (success) {
3328                 ++vcpu->stat.generic.halt_successful_poll;
3329
3330                 if (!vcpu_valid_wakeup(vcpu))
3331                         ++vcpu->stat.generic.halt_poll_invalid;
3332
3333                 stats->halt_poll_success_ns += poll_ns;
3334                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3335         } else {
3336                 stats->halt_poll_fail_ns += poll_ns;
3337                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3338         }
3339 }
3340
3341 /*
3342  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3343  * polling is enabled, busy wait for a short time before blocking to avoid the
3344  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3345  * is halted.
3346  */
3347 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3348 {
3349         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3350         bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3351         ktime_t start, cur, poll_end;
3352         bool waited = false;
3353         u64 halt_ns;
3354
3355         start = cur = poll_end = ktime_get();
3356         if (do_halt_poll) {
3357                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3358
3359                 do {
3360                         /*
3361                          * This sets KVM_REQ_UNHALT if an interrupt
3362                          * arrives.
3363                          */
3364                         if (kvm_vcpu_check_block(vcpu) < 0)
3365                                 goto out;
3366                         cpu_relax();
3367                         poll_end = cur = ktime_get();
3368                 } while (kvm_vcpu_can_poll(cur, stop));
3369         }
3370
3371         waited = kvm_vcpu_block(vcpu);
3372
3373         cur = ktime_get();
3374         if (waited) {
3375                 vcpu->stat.generic.halt_wait_ns +=
3376                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3377                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3378                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3379         }
3380 out:
3381         /* The total time the vCPU was "halted", including polling time. */
3382         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3383
3384         /*
3385          * Note, halt-polling is considered successful so long as the vCPU was
3386          * never actually scheduled out, i.e. even if the wake event arrived
3387          * after of the halt-polling loop itself, but before the full wait.
3388          */
3389         if (do_halt_poll)
3390                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3391
3392         if (halt_poll_allowed) {
3393                 if (!vcpu_valid_wakeup(vcpu)) {
3394                         shrink_halt_poll_ns(vcpu);
3395                 } else if (vcpu->kvm->max_halt_poll_ns) {
3396                         if (halt_ns <= vcpu->halt_poll_ns)
3397                                 ;
3398                         /* we had a long block, shrink polling */
3399                         else if (vcpu->halt_poll_ns &&
3400                                  halt_ns > vcpu->kvm->max_halt_poll_ns)
3401                                 shrink_halt_poll_ns(vcpu);
3402                         /* we had a short halt and our poll time is too small */
3403                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3404                                  halt_ns < vcpu->kvm->max_halt_poll_ns)
3405                                 grow_halt_poll_ns(vcpu);
3406                 } else {
3407                         vcpu->halt_poll_ns = 0;
3408                 }
3409         }
3410
3411         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3412 }
3413 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3414
3415 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3416 {
3417         if (__kvm_vcpu_wake_up(vcpu)) {
3418                 WRITE_ONCE(vcpu->ready, true);
3419                 ++vcpu->stat.generic.halt_wakeup;
3420                 return true;
3421         }
3422
3423         return false;
3424 }
3425 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3426
3427 #ifndef CONFIG_S390
3428 /*
3429  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3430  */
3431 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3432 {
3433         int me, cpu;
3434
3435         if (kvm_vcpu_wake_up(vcpu))
3436                 return;
3437
3438         me = get_cpu();
3439         /*
3440          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3441          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3442          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3443          * within the vCPU thread itself.
3444          */
3445         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3446                 if (vcpu->mode == IN_GUEST_MODE)
3447                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3448                 goto out;
3449         }
3450
3451         /*
3452          * Note, the vCPU could get migrated to a different pCPU at any point
3453          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3454          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3455          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3456          * vCPU also requires it to leave IN_GUEST_MODE.
3457          */
3458         if (kvm_arch_vcpu_should_kick(vcpu)) {
3459                 cpu = READ_ONCE(vcpu->cpu);
3460                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3461                         smp_send_reschedule(cpu);
3462         }
3463 out:
3464         put_cpu();
3465 }
3466 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3467 #endif /* !CONFIG_S390 */
3468
3469 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3470 {
3471         struct pid *pid;
3472         struct task_struct *task = NULL;
3473         int ret = 0;
3474
3475         rcu_read_lock();
3476         pid = rcu_dereference(target->pid);
3477         if (pid)
3478                 task = get_pid_task(pid, PIDTYPE_PID);
3479         rcu_read_unlock();
3480         if (!task)
3481                 return ret;
3482         ret = yield_to(task, 1);
3483         put_task_struct(task);
3484
3485         return ret;
3486 }
3487 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3488
3489 /*
3490  * Helper that checks whether a VCPU is eligible for directed yield.
3491  * Most eligible candidate to yield is decided by following heuristics:
3492  *
3493  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3494  *  (preempted lock holder), indicated by @in_spin_loop.
3495  *  Set at the beginning and cleared at the end of interception/PLE handler.
3496  *
3497  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3498  *  chance last time (mostly it has become eligible now since we have probably
3499  *  yielded to lockholder in last iteration. This is done by toggling
3500  *  @dy_eligible each time a VCPU checked for eligibility.)
3501  *
3502  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3503  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3504  *  burning. Giving priority for a potential lock-holder increases lock
3505  *  progress.
3506  *
3507  *  Since algorithm is based on heuristics, accessing another VCPU data without
3508  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3509  *  and continue with next VCPU and so on.
3510  */
3511 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3512 {
3513 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3514         bool eligible;
3515
3516         eligible = !vcpu->spin_loop.in_spin_loop ||
3517                     vcpu->spin_loop.dy_eligible;
3518
3519         if (vcpu->spin_loop.in_spin_loop)
3520                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3521
3522         return eligible;
3523 #else
3524         return true;
3525 #endif
3526 }
3527
3528 /*
3529  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3530  * a vcpu_load/vcpu_put pair.  However, for most architectures
3531  * kvm_arch_vcpu_runnable does not require vcpu_load.
3532  */
3533 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3534 {
3535         return kvm_arch_vcpu_runnable(vcpu);
3536 }
3537
3538 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3539 {
3540         if (kvm_arch_dy_runnable(vcpu))
3541                 return true;
3542
3543 #ifdef CONFIG_KVM_ASYNC_PF
3544         if (!list_empty_careful(&vcpu->async_pf.done))
3545                 return true;
3546 #endif
3547
3548         return false;
3549 }
3550
3551 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3552 {
3553         return false;
3554 }
3555
3556 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3557 {
3558         struct kvm *kvm = me->kvm;
3559         struct kvm_vcpu *vcpu;
3560         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3561         unsigned long i;
3562         int yielded = 0;
3563         int try = 3;
3564         int pass;
3565
3566         kvm_vcpu_set_in_spin_loop(me, true);
3567         /*
3568          * We boost the priority of a VCPU that is runnable but not
3569          * currently running, because it got preempted by something
3570          * else and called schedule in __vcpu_run.  Hopefully that
3571          * VCPU is holding the lock that we need and will release it.
3572          * We approximate round-robin by starting at the last boosted VCPU.
3573          */
3574         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3575                 kvm_for_each_vcpu(i, vcpu, kvm) {
3576                         if (!pass && i <= last_boosted_vcpu) {
3577                                 i = last_boosted_vcpu;
3578                                 continue;
3579                         } else if (pass && i > last_boosted_vcpu)
3580                                 break;
3581                         if (!READ_ONCE(vcpu->ready))
3582                                 continue;
3583                         if (vcpu == me)
3584                                 continue;
3585                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3586                                 continue;
3587                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3588                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3589                             !kvm_arch_vcpu_in_kernel(vcpu))
3590                                 continue;
3591                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3592                                 continue;
3593
3594                         yielded = kvm_vcpu_yield_to(vcpu);
3595                         if (yielded > 0) {
3596                                 kvm->last_boosted_vcpu = i;
3597                                 break;
3598                         } else if (yielded < 0) {
3599                                 try--;
3600                                 if (!try)
3601                                         break;
3602                         }
3603                 }
3604         }
3605         kvm_vcpu_set_in_spin_loop(me, false);
3606
3607         /* Ensure vcpu is not eligible during next spinloop */
3608         kvm_vcpu_set_dy_eligible(me, false);
3609 }
3610 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3611
3612 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3613 {
3614 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3615         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3616             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3617              kvm->dirty_ring_size / PAGE_SIZE);
3618 #else
3619         return false;
3620 #endif
3621 }
3622
3623 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3624 {
3625         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3626         struct page *page;
3627
3628         if (vmf->pgoff == 0)
3629                 page = virt_to_page(vcpu->run);
3630 #ifdef CONFIG_X86
3631         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3632                 page = virt_to_page(vcpu->arch.pio_data);
3633 #endif
3634 #ifdef CONFIG_KVM_MMIO
3635         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3636                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3637 #endif
3638         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3639                 page = kvm_dirty_ring_get_page(
3640                     &vcpu->dirty_ring,
3641                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3642         else
3643                 return kvm_arch_vcpu_fault(vcpu, vmf);
3644         get_page(page);
3645         vmf->page = page;
3646         return 0;
3647 }
3648
3649 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3650         .fault = kvm_vcpu_fault,
3651 };
3652
3653 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3654 {
3655         struct kvm_vcpu *vcpu = file->private_data;
3656         unsigned long pages = vma_pages(vma);
3657
3658         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3659              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3660             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3661                 return -EINVAL;
3662
3663         vma->vm_ops = &kvm_vcpu_vm_ops;
3664         return 0;
3665 }
3666
3667 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3668 {
3669         struct kvm_vcpu *vcpu = filp->private_data;
3670
3671         kvm_put_kvm(vcpu->kvm);
3672         return 0;
3673 }
3674
3675 static struct file_operations kvm_vcpu_fops = {
3676         .release        = kvm_vcpu_release,
3677         .unlocked_ioctl = kvm_vcpu_ioctl,
3678         .mmap           = kvm_vcpu_mmap,
3679         .llseek         = noop_llseek,
3680         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3681 };
3682
3683 /*
3684  * Allocates an inode for the vcpu.
3685  */
3686 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3687 {
3688         char name[8 + 1 + ITOA_MAX_LEN + 1];
3689
3690         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3691         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3692 }
3693
3694 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3695 {
3696 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3697         struct dentry *debugfs_dentry;
3698         char dir_name[ITOA_MAX_LEN * 2];
3699
3700         if (!debugfs_initialized())
3701                 return;
3702
3703         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3704         debugfs_dentry = debugfs_create_dir(dir_name,
3705                                             vcpu->kvm->debugfs_dentry);
3706
3707         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3708 #endif
3709 }
3710
3711 /*
3712  * Creates some virtual cpus.  Good luck creating more than one.
3713  */
3714 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3715 {
3716         int r;
3717         struct kvm_vcpu *vcpu;
3718         struct page *page;
3719
3720         if (id >= KVM_MAX_VCPU_IDS)
3721                 return -EINVAL;
3722
3723         mutex_lock(&kvm->lock);
3724         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3725                 mutex_unlock(&kvm->lock);
3726                 return -EINVAL;
3727         }
3728
3729         kvm->created_vcpus++;
3730         mutex_unlock(&kvm->lock);
3731
3732         r = kvm_arch_vcpu_precreate(kvm, id);
3733         if (r)
3734                 goto vcpu_decrement;
3735
3736         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3737         if (!vcpu) {
3738                 r = -ENOMEM;
3739                 goto vcpu_decrement;
3740         }
3741
3742         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3743         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3744         if (!page) {
3745                 r = -ENOMEM;
3746                 goto vcpu_free;
3747         }
3748         vcpu->run = page_address(page);
3749
3750         kvm_vcpu_init(vcpu, kvm, id);
3751
3752         r = kvm_arch_vcpu_create(vcpu);
3753         if (r)
3754                 goto vcpu_free_run_page;
3755
3756         if (kvm->dirty_ring_size) {
3757                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3758                                          id, kvm->dirty_ring_size);
3759                 if (r)
3760                         goto arch_vcpu_destroy;
3761         }
3762
3763         mutex_lock(&kvm->lock);
3764         if (kvm_get_vcpu_by_id(kvm, id)) {
3765                 r = -EEXIST;
3766                 goto unlock_vcpu_destroy;
3767         }
3768
3769         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3770         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3771         BUG_ON(r == -EBUSY);
3772         if (r)
3773                 goto unlock_vcpu_destroy;
3774
3775         /* Fill the stats id string for the vcpu */
3776         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3777                  task_pid_nr(current), id);
3778
3779         /* Now it's all set up, let userspace reach it */
3780         kvm_get_kvm(kvm);
3781         r = create_vcpu_fd(vcpu);
3782         if (r < 0) {
3783                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3784                 kvm_put_kvm_no_destroy(kvm);
3785                 goto unlock_vcpu_destroy;
3786         }
3787
3788         /*
3789          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3790          * pointer before kvm->online_vcpu's incremented value.
3791          */
3792         smp_wmb();
3793         atomic_inc(&kvm->online_vcpus);
3794
3795         mutex_unlock(&kvm->lock);
3796         kvm_arch_vcpu_postcreate(vcpu);
3797         kvm_create_vcpu_debugfs(vcpu);
3798         return r;
3799
3800 unlock_vcpu_destroy:
3801         mutex_unlock(&kvm->lock);
3802         kvm_dirty_ring_free(&vcpu->dirty_ring);
3803 arch_vcpu_destroy:
3804         kvm_arch_vcpu_destroy(vcpu);
3805 vcpu_free_run_page:
3806         free_page((unsigned long)vcpu->run);
3807 vcpu_free:
3808         kmem_cache_free(kvm_vcpu_cache, vcpu);
3809 vcpu_decrement:
3810         mutex_lock(&kvm->lock);
3811         kvm->created_vcpus--;
3812         mutex_unlock(&kvm->lock);
3813         return r;
3814 }
3815
3816 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3817 {
3818         if (sigset) {
3819                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3820                 vcpu->sigset_active = 1;
3821                 vcpu->sigset = *sigset;
3822         } else
3823                 vcpu->sigset_active = 0;
3824         return 0;
3825 }
3826
3827 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3828                               size_t size, loff_t *offset)
3829 {
3830         struct kvm_vcpu *vcpu = file->private_data;
3831
3832         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3833                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3834                         sizeof(vcpu->stat), user_buffer, size, offset);
3835 }
3836
3837 static const struct file_operations kvm_vcpu_stats_fops = {
3838         .read = kvm_vcpu_stats_read,
3839         .llseek = noop_llseek,
3840 };
3841
3842 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3843 {
3844         int fd;
3845         struct file *file;
3846         char name[15 + ITOA_MAX_LEN + 1];
3847
3848         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3849
3850         fd = get_unused_fd_flags(O_CLOEXEC);
3851         if (fd < 0)
3852                 return fd;
3853
3854         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3855         if (IS_ERR(file)) {
3856                 put_unused_fd(fd);
3857                 return PTR_ERR(file);
3858         }
3859         file->f_mode |= FMODE_PREAD;
3860         fd_install(fd, file);
3861
3862         return fd;
3863 }
3864
3865 static long kvm_vcpu_ioctl(struct file *filp,
3866                            unsigned int ioctl, unsigned long arg)
3867 {
3868         struct kvm_vcpu *vcpu = filp->private_data;
3869         void __user *argp = (void __user *)arg;
3870         int r;
3871         struct kvm_fpu *fpu = NULL;
3872         struct kvm_sregs *kvm_sregs = NULL;
3873
3874         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3875                 return -EIO;
3876
3877         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3878                 return -EINVAL;
3879
3880         /*
3881          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3882          * execution; mutex_lock() would break them.
3883          */
3884         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3885         if (r != -ENOIOCTLCMD)
3886                 return r;
3887
3888         if (mutex_lock_killable(&vcpu->mutex))
3889                 return -EINTR;
3890         switch (ioctl) {
3891         case KVM_RUN: {
3892                 struct pid *oldpid;
3893                 r = -EINVAL;
3894                 if (arg)
3895                         goto out;
3896                 oldpid = rcu_access_pointer(vcpu->pid);
3897                 if (unlikely(oldpid != task_pid(current))) {
3898                         /* The thread running this VCPU changed. */
3899                         struct pid *newpid;
3900
3901                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3902                         if (r)
3903                                 break;
3904
3905                         newpid = get_task_pid(current, PIDTYPE_PID);
3906                         rcu_assign_pointer(vcpu->pid, newpid);
3907                         if (oldpid)
3908                                 synchronize_rcu();
3909                         put_pid(oldpid);
3910                 }
3911                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3912                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3913                 break;
3914         }
3915         case KVM_GET_REGS: {
3916                 struct kvm_regs *kvm_regs;
3917
3918                 r = -ENOMEM;
3919                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3920                 if (!kvm_regs)
3921                         goto out;
3922                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3923                 if (r)
3924                         goto out_free1;
3925                 r = -EFAULT;
3926                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3927                         goto out_free1;
3928                 r = 0;
3929 out_free1:
3930                 kfree(kvm_regs);
3931                 break;
3932         }
3933         case KVM_SET_REGS: {
3934                 struct kvm_regs *kvm_regs;
3935
3936                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3937                 if (IS_ERR(kvm_regs)) {
3938                         r = PTR_ERR(kvm_regs);
3939                         goto out;
3940                 }
3941                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3942                 kfree(kvm_regs);
3943                 break;
3944         }
3945         case KVM_GET_SREGS: {
3946                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3947                                     GFP_KERNEL_ACCOUNT);
3948                 r = -ENOMEM;
3949                 if (!kvm_sregs)
3950                         goto out;
3951                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3952                 if (r)
3953                         goto out;
3954                 r = -EFAULT;
3955                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3956                         goto out;
3957                 r = 0;
3958                 break;
3959         }
3960         case KVM_SET_SREGS: {
3961                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3962                 if (IS_ERR(kvm_sregs)) {
3963                         r = PTR_ERR(kvm_sregs);
3964                         kvm_sregs = NULL;
3965                         goto out;
3966                 }
3967                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3968                 break;
3969         }
3970         case KVM_GET_MP_STATE: {
3971                 struct kvm_mp_state mp_state;
3972
3973                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3974                 if (r)
3975                         goto out;
3976                 r = -EFAULT;
3977                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3978                         goto out;
3979                 r = 0;
3980                 break;
3981         }
3982         case KVM_SET_MP_STATE: {
3983                 struct kvm_mp_state mp_state;
3984
3985                 r = -EFAULT;
3986                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3987                         goto out;
3988                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3989                 break;
3990         }
3991         case KVM_TRANSLATE: {
3992                 struct kvm_translation tr;
3993
3994                 r = -EFAULT;
3995                 if (copy_from_user(&tr, argp, sizeof(tr)))
3996                         goto out;
3997                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3998                 if (r)
3999                         goto out;
4000                 r = -EFAULT;
4001                 if (copy_to_user(argp, &tr, sizeof(tr)))
4002                         goto out;
4003                 r = 0;
4004                 break;
4005         }
4006         case KVM_SET_GUEST_DEBUG: {
4007                 struct kvm_guest_debug dbg;
4008
4009                 r = -EFAULT;
4010                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4011                         goto out;
4012                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4013                 break;
4014         }
4015         case KVM_SET_SIGNAL_MASK: {
4016                 struct kvm_signal_mask __user *sigmask_arg = argp;
4017                 struct kvm_signal_mask kvm_sigmask;
4018                 sigset_t sigset, *p;
4019
4020                 p = NULL;
4021                 if (argp) {
4022                         r = -EFAULT;
4023                         if (copy_from_user(&kvm_sigmask, argp,
4024                                            sizeof(kvm_sigmask)))
4025                                 goto out;
4026                         r = -EINVAL;
4027                         if (kvm_sigmask.len != sizeof(sigset))
4028                                 goto out;
4029                         r = -EFAULT;
4030                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4031                                            sizeof(sigset)))
4032                                 goto out;
4033                         p = &sigset;
4034                 }
4035                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4036                 break;
4037         }
4038         case KVM_GET_FPU: {
4039                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4040                 r = -ENOMEM;
4041                 if (!fpu)
4042                         goto out;
4043                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4044                 if (r)
4045                         goto out;
4046                 r = -EFAULT;
4047                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4048                         goto out;
4049                 r = 0;
4050                 break;
4051         }
4052         case KVM_SET_FPU: {
4053                 fpu = memdup_user(argp, sizeof(*fpu));
4054                 if (IS_ERR(fpu)) {
4055                         r = PTR_ERR(fpu);
4056                         fpu = NULL;
4057                         goto out;
4058                 }
4059                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4060                 break;
4061         }
4062         case KVM_GET_STATS_FD: {
4063                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4064                 break;
4065         }
4066         default:
4067                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4068         }
4069 out:
4070         mutex_unlock(&vcpu->mutex);
4071         kfree(fpu);
4072         kfree(kvm_sregs);
4073         return r;
4074 }
4075
4076 #ifdef CONFIG_KVM_COMPAT
4077 static long kvm_vcpu_compat_ioctl(struct file *filp,
4078                                   unsigned int ioctl, unsigned long arg)
4079 {
4080         struct kvm_vcpu *vcpu = filp->private_data;
4081         void __user *argp = compat_ptr(arg);
4082         int r;
4083
4084         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4085                 return -EIO;
4086
4087         switch (ioctl) {
4088         case KVM_SET_SIGNAL_MASK: {
4089                 struct kvm_signal_mask __user *sigmask_arg = argp;
4090                 struct kvm_signal_mask kvm_sigmask;
4091                 sigset_t sigset;
4092
4093                 if (argp) {
4094                         r = -EFAULT;
4095                         if (copy_from_user(&kvm_sigmask, argp,
4096                                            sizeof(kvm_sigmask)))
4097                                 goto out;
4098                         r = -EINVAL;
4099                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4100                                 goto out;
4101                         r = -EFAULT;
4102                         if (get_compat_sigset(&sigset,
4103                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4104                                 goto out;
4105                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4106                 } else
4107                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4108                 break;
4109         }
4110         default:
4111                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4112         }
4113
4114 out:
4115         return r;
4116 }
4117 #endif
4118
4119 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4120 {
4121         struct kvm_device *dev = filp->private_data;
4122
4123         if (dev->ops->mmap)
4124                 return dev->ops->mmap(dev, vma);
4125
4126         return -ENODEV;
4127 }
4128
4129 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4130                                  int (*accessor)(struct kvm_device *dev,
4131                                                  struct kvm_device_attr *attr),
4132                                  unsigned long arg)
4133 {
4134         struct kvm_device_attr attr;
4135
4136         if (!accessor)
4137                 return -EPERM;
4138
4139         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4140                 return -EFAULT;
4141
4142         return accessor(dev, &attr);
4143 }
4144
4145 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4146                              unsigned long arg)
4147 {
4148         struct kvm_device *dev = filp->private_data;
4149
4150         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4151                 return -EIO;
4152
4153         switch (ioctl) {
4154         case KVM_SET_DEVICE_ATTR:
4155                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4156         case KVM_GET_DEVICE_ATTR:
4157                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4158         case KVM_HAS_DEVICE_ATTR:
4159                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4160         default:
4161                 if (dev->ops->ioctl)
4162                         return dev->ops->ioctl(dev, ioctl, arg);
4163
4164                 return -ENOTTY;
4165         }
4166 }
4167
4168 static int kvm_device_release(struct inode *inode, struct file *filp)
4169 {
4170         struct kvm_device *dev = filp->private_data;
4171         struct kvm *kvm = dev->kvm;
4172
4173         if (dev->ops->release) {
4174                 mutex_lock(&kvm->lock);
4175                 list_del(&dev->vm_node);
4176                 dev->ops->release(dev);
4177                 mutex_unlock(&kvm->lock);
4178         }
4179
4180         kvm_put_kvm(kvm);
4181         return 0;
4182 }
4183
4184 static const struct file_operations kvm_device_fops = {
4185         .unlocked_ioctl = kvm_device_ioctl,
4186         .release = kvm_device_release,
4187         KVM_COMPAT(kvm_device_ioctl),
4188         .mmap = kvm_device_mmap,
4189 };
4190
4191 struct kvm_device *kvm_device_from_filp(struct file *filp)
4192 {
4193         if (filp->f_op != &kvm_device_fops)
4194                 return NULL;
4195
4196         return filp->private_data;
4197 }
4198
4199 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4200 #ifdef CONFIG_KVM_MPIC
4201         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4202         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4203 #endif
4204 };
4205
4206 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4207 {
4208         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4209                 return -ENOSPC;
4210
4211         if (kvm_device_ops_table[type] != NULL)
4212                 return -EEXIST;
4213
4214         kvm_device_ops_table[type] = ops;
4215         return 0;
4216 }
4217
4218 void kvm_unregister_device_ops(u32 type)
4219 {
4220         if (kvm_device_ops_table[type] != NULL)
4221                 kvm_device_ops_table[type] = NULL;
4222 }
4223
4224 static int kvm_ioctl_create_device(struct kvm *kvm,
4225                                    struct kvm_create_device *cd)
4226 {
4227         const struct kvm_device_ops *ops = NULL;
4228         struct kvm_device *dev;
4229         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4230         int type;
4231         int ret;
4232
4233         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4234                 return -ENODEV;
4235
4236         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4237         ops = kvm_device_ops_table[type];
4238         if (ops == NULL)
4239                 return -ENODEV;
4240
4241         if (test)
4242                 return 0;
4243
4244         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4245         if (!dev)
4246                 return -ENOMEM;
4247
4248         dev->ops = ops;
4249         dev->kvm = kvm;
4250
4251         mutex_lock(&kvm->lock);
4252         ret = ops->create(dev, type);
4253         if (ret < 0) {
4254                 mutex_unlock(&kvm->lock);
4255                 kfree(dev);
4256                 return ret;
4257         }
4258         list_add(&dev->vm_node, &kvm->devices);
4259         mutex_unlock(&kvm->lock);
4260
4261         if (ops->init)
4262                 ops->init(dev);
4263
4264         kvm_get_kvm(kvm);
4265         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4266         if (ret < 0) {
4267                 kvm_put_kvm_no_destroy(kvm);
4268                 mutex_lock(&kvm->lock);
4269                 list_del(&dev->vm_node);
4270                 mutex_unlock(&kvm->lock);
4271                 ops->destroy(dev);
4272                 return ret;
4273         }
4274
4275         cd->fd = ret;
4276         return 0;
4277 }
4278
4279 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4280 {
4281         switch (arg) {
4282         case KVM_CAP_USER_MEMORY:
4283         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4284         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4285         case KVM_CAP_INTERNAL_ERROR_DATA:
4286 #ifdef CONFIG_HAVE_KVM_MSI
4287         case KVM_CAP_SIGNAL_MSI:
4288 #endif
4289 #ifdef CONFIG_HAVE_KVM_IRQFD
4290         case KVM_CAP_IRQFD:
4291         case KVM_CAP_IRQFD_RESAMPLE:
4292 #endif
4293         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4294         case KVM_CAP_CHECK_EXTENSION_VM:
4295         case KVM_CAP_ENABLE_CAP_VM:
4296         case KVM_CAP_HALT_POLL:
4297                 return 1;
4298 #ifdef CONFIG_KVM_MMIO
4299         case KVM_CAP_COALESCED_MMIO:
4300                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4301         case KVM_CAP_COALESCED_PIO:
4302                 return 1;
4303 #endif
4304 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4305         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4306                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4307 #endif
4308 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4309         case KVM_CAP_IRQ_ROUTING:
4310                 return KVM_MAX_IRQ_ROUTES;
4311 #endif
4312 #if KVM_ADDRESS_SPACE_NUM > 1
4313         case KVM_CAP_MULTI_ADDRESS_SPACE:
4314                 return KVM_ADDRESS_SPACE_NUM;
4315 #endif
4316         case KVM_CAP_NR_MEMSLOTS:
4317                 return KVM_USER_MEM_SLOTS;
4318         case KVM_CAP_DIRTY_LOG_RING:
4319 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4320                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4321 #else
4322                 return 0;
4323 #endif
4324         case KVM_CAP_BINARY_STATS_FD:
4325                 return 1;
4326         default:
4327                 break;
4328         }
4329         return kvm_vm_ioctl_check_extension(kvm, arg);
4330 }
4331
4332 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4333 {
4334         int r;
4335
4336         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4337                 return -EINVAL;
4338
4339         /* the size should be power of 2 */
4340         if (!size || (size & (size - 1)))
4341                 return -EINVAL;
4342
4343         /* Should be bigger to keep the reserved entries, or a page */
4344         if (size < kvm_dirty_ring_get_rsvd_entries() *
4345             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4346                 return -EINVAL;
4347
4348         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4349             sizeof(struct kvm_dirty_gfn))
4350                 return -E2BIG;
4351
4352         /* We only allow it to set once */
4353         if (kvm->dirty_ring_size)
4354                 return -EINVAL;
4355
4356         mutex_lock(&kvm->lock);
4357
4358         if (kvm->created_vcpus) {
4359                 /* We don't allow to change this value after vcpu created */
4360                 r = -EINVAL;
4361         } else {
4362                 kvm->dirty_ring_size = size;
4363                 r = 0;
4364         }
4365
4366         mutex_unlock(&kvm->lock);
4367         return r;
4368 }
4369
4370 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4371 {
4372         unsigned long i;
4373         struct kvm_vcpu *vcpu;
4374         int cleared = 0;
4375
4376         if (!kvm->dirty_ring_size)
4377                 return -EINVAL;
4378
4379         mutex_lock(&kvm->slots_lock);
4380
4381         kvm_for_each_vcpu(i, vcpu, kvm)
4382                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4383
4384         mutex_unlock(&kvm->slots_lock);
4385
4386         if (cleared)
4387                 kvm_flush_remote_tlbs(kvm);
4388
4389         return cleared;
4390 }
4391
4392 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4393                                                   struct kvm_enable_cap *cap)
4394 {
4395         return -EINVAL;
4396 }
4397
4398 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4399                                            struct kvm_enable_cap *cap)
4400 {
4401         switch (cap->cap) {
4402 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4403         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4404                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4405
4406                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4407                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4408
4409                 if (cap->flags || (cap->args[0] & ~allowed_options))
4410                         return -EINVAL;
4411                 kvm->manual_dirty_log_protect = cap->args[0];
4412                 return 0;
4413         }
4414 #endif
4415         case KVM_CAP_HALT_POLL: {
4416                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4417                         return -EINVAL;
4418
4419                 kvm->max_halt_poll_ns = cap->args[0];
4420                 return 0;
4421         }
4422         case KVM_CAP_DIRTY_LOG_RING:
4423                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4424         default:
4425                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4426         }
4427 }
4428
4429 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4430                               size_t size, loff_t *offset)
4431 {
4432         struct kvm *kvm = file->private_data;
4433
4434         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4435                                 &kvm_vm_stats_desc[0], &kvm->stat,
4436                                 sizeof(kvm->stat), user_buffer, size, offset);
4437 }
4438
4439 static const struct file_operations kvm_vm_stats_fops = {
4440         .read = kvm_vm_stats_read,
4441         .llseek = noop_llseek,
4442 };
4443
4444 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4445 {
4446         int fd;
4447         struct file *file;
4448
4449         fd = get_unused_fd_flags(O_CLOEXEC);
4450         if (fd < 0)
4451                 return fd;
4452
4453         file = anon_inode_getfile("kvm-vm-stats",
4454                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4455         if (IS_ERR(file)) {
4456                 put_unused_fd(fd);
4457                 return PTR_ERR(file);
4458         }
4459         file->f_mode |= FMODE_PREAD;
4460         fd_install(fd, file);
4461
4462         return fd;
4463 }
4464
4465 static long kvm_vm_ioctl(struct file *filp,
4466                            unsigned int ioctl, unsigned long arg)
4467 {
4468         struct kvm *kvm = filp->private_data;
4469         void __user *argp = (void __user *)arg;
4470         int r;
4471
4472         if (kvm->mm != current->mm || kvm->vm_dead)
4473                 return -EIO;
4474         switch (ioctl) {
4475         case KVM_CREATE_VCPU:
4476                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4477                 break;
4478         case KVM_ENABLE_CAP: {
4479                 struct kvm_enable_cap cap;
4480
4481                 r = -EFAULT;
4482                 if (copy_from_user(&cap, argp, sizeof(cap)))
4483                         goto out;
4484                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4485                 break;
4486         }
4487         case KVM_SET_USER_MEMORY_REGION: {
4488                 struct kvm_userspace_memory_region kvm_userspace_mem;
4489
4490                 r = -EFAULT;
4491                 if (copy_from_user(&kvm_userspace_mem, argp,
4492                                                 sizeof(kvm_userspace_mem)))
4493                         goto out;
4494
4495                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4496                 break;
4497         }
4498         case KVM_GET_DIRTY_LOG: {
4499                 struct kvm_dirty_log log;
4500
4501                 r = -EFAULT;
4502                 if (copy_from_user(&log, argp, sizeof(log)))
4503                         goto out;
4504                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4505                 break;
4506         }
4507 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4508         case KVM_CLEAR_DIRTY_LOG: {
4509                 struct kvm_clear_dirty_log log;
4510
4511                 r = -EFAULT;
4512                 if (copy_from_user(&log, argp, sizeof(log)))
4513                         goto out;
4514                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4515                 break;
4516         }
4517 #endif
4518 #ifdef CONFIG_KVM_MMIO
4519         case KVM_REGISTER_COALESCED_MMIO: {
4520                 struct kvm_coalesced_mmio_zone zone;
4521
4522                 r = -EFAULT;
4523                 if (copy_from_user(&zone, argp, sizeof(zone)))
4524                         goto out;
4525                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4526                 break;
4527         }
4528         case KVM_UNREGISTER_COALESCED_MMIO: {
4529                 struct kvm_coalesced_mmio_zone zone;
4530
4531                 r = -EFAULT;
4532                 if (copy_from_user(&zone, argp, sizeof(zone)))
4533                         goto out;
4534                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4535                 break;
4536         }
4537 #endif
4538         case KVM_IRQFD: {
4539                 struct kvm_irqfd data;
4540
4541                 r = -EFAULT;
4542                 if (copy_from_user(&data, argp, sizeof(data)))
4543                         goto out;
4544                 r = kvm_irqfd(kvm, &data);
4545                 break;
4546         }
4547         case KVM_IOEVENTFD: {
4548                 struct kvm_ioeventfd data;
4549
4550                 r = -EFAULT;
4551                 if (copy_from_user(&data, argp, sizeof(data)))
4552                         goto out;
4553                 r = kvm_ioeventfd(kvm, &data);
4554                 break;
4555         }
4556 #ifdef CONFIG_HAVE_KVM_MSI
4557         case KVM_SIGNAL_MSI: {
4558                 struct kvm_msi msi;
4559
4560                 r = -EFAULT;
4561                 if (copy_from_user(&msi, argp, sizeof(msi)))
4562                         goto out;
4563                 r = kvm_send_userspace_msi(kvm, &msi);
4564                 break;
4565         }
4566 #endif
4567 #ifdef __KVM_HAVE_IRQ_LINE
4568         case KVM_IRQ_LINE_STATUS:
4569         case KVM_IRQ_LINE: {
4570                 struct kvm_irq_level irq_event;
4571
4572                 r = -EFAULT;
4573                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4574                         goto out;
4575
4576                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4577                                         ioctl == KVM_IRQ_LINE_STATUS);
4578                 if (r)
4579                         goto out;
4580
4581                 r = -EFAULT;
4582                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4583                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4584                                 goto out;
4585                 }
4586
4587                 r = 0;
4588                 break;
4589         }
4590 #endif
4591 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4592         case KVM_SET_GSI_ROUTING: {
4593                 struct kvm_irq_routing routing;
4594                 struct kvm_irq_routing __user *urouting;
4595                 struct kvm_irq_routing_entry *entries = NULL;
4596
4597                 r = -EFAULT;
4598                 if (copy_from_user(&routing, argp, sizeof(routing)))
4599                         goto out;
4600                 r = -EINVAL;
4601                 if (!kvm_arch_can_set_irq_routing(kvm))
4602                         goto out;
4603                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4604                         goto out;
4605                 if (routing.flags)
4606                         goto out;
4607                 if (routing.nr) {
4608                         urouting = argp;
4609                         entries = vmemdup_user(urouting->entries,
4610                                                array_size(sizeof(*entries),
4611                                                           routing.nr));
4612                         if (IS_ERR(entries)) {
4613                                 r = PTR_ERR(entries);
4614                                 goto out;
4615                         }
4616                 }
4617                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4618                                         routing.flags);
4619                 kvfree(entries);
4620                 break;
4621         }
4622 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4623         case KVM_CREATE_DEVICE: {
4624                 struct kvm_create_device cd;
4625
4626                 r = -EFAULT;
4627                 if (copy_from_user(&cd, argp, sizeof(cd)))
4628                         goto out;
4629
4630                 r = kvm_ioctl_create_device(kvm, &cd);
4631                 if (r)
4632                         goto out;
4633
4634                 r = -EFAULT;
4635                 if (copy_to_user(argp, &cd, sizeof(cd)))
4636                         goto out;
4637
4638                 r = 0;
4639                 break;
4640         }
4641         case KVM_CHECK_EXTENSION:
4642                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4643                 break;
4644         case KVM_RESET_DIRTY_RINGS:
4645                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4646                 break;
4647         case KVM_GET_STATS_FD:
4648                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4649                 break;
4650         default:
4651                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4652         }
4653 out:
4654         return r;
4655 }
4656
4657 #ifdef CONFIG_KVM_COMPAT
4658 struct compat_kvm_dirty_log {
4659         __u32 slot;
4660         __u32 padding1;
4661         union {
4662                 compat_uptr_t dirty_bitmap; /* one bit per page */
4663                 __u64 padding2;
4664         };
4665 };
4666
4667 struct compat_kvm_clear_dirty_log {
4668         __u32 slot;
4669         __u32 num_pages;
4670         __u64 first_page;
4671         union {
4672                 compat_uptr_t dirty_bitmap; /* one bit per page */
4673                 __u64 padding2;
4674         };
4675 };
4676
4677 static long kvm_vm_compat_ioctl(struct file *filp,
4678                            unsigned int ioctl, unsigned long arg)
4679 {
4680         struct kvm *kvm = filp->private_data;
4681         int r;
4682
4683         if (kvm->mm != current->mm || kvm->vm_dead)
4684                 return -EIO;
4685         switch (ioctl) {
4686 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4687         case KVM_CLEAR_DIRTY_LOG: {
4688                 struct compat_kvm_clear_dirty_log compat_log;
4689                 struct kvm_clear_dirty_log log;
4690
4691                 if (copy_from_user(&compat_log, (void __user *)arg,
4692                                    sizeof(compat_log)))
4693                         return -EFAULT;
4694                 log.slot         = compat_log.slot;
4695                 log.num_pages    = compat_log.num_pages;
4696                 log.first_page   = compat_log.first_page;
4697                 log.padding2     = compat_log.padding2;
4698                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4699
4700                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4701                 break;
4702         }
4703 #endif
4704         case KVM_GET_DIRTY_LOG: {
4705                 struct compat_kvm_dirty_log compat_log;
4706                 struct kvm_dirty_log log;
4707
4708                 if (copy_from_user(&compat_log, (void __user *)arg,
4709                                    sizeof(compat_log)))
4710                         return -EFAULT;
4711                 log.slot         = compat_log.slot;
4712                 log.padding1     = compat_log.padding1;
4713                 log.padding2     = compat_log.padding2;
4714                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4715
4716                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4717                 break;
4718         }
4719         default:
4720                 r = kvm_vm_ioctl(filp, ioctl, arg);
4721         }
4722         return r;
4723 }
4724 #endif
4725
4726 static struct file_operations kvm_vm_fops = {
4727         .release        = kvm_vm_release,
4728         .unlocked_ioctl = kvm_vm_ioctl,
4729         .llseek         = noop_llseek,
4730         KVM_COMPAT(kvm_vm_compat_ioctl),
4731 };
4732
4733 bool file_is_kvm(struct file *file)
4734 {
4735         return file && file->f_op == &kvm_vm_fops;
4736 }
4737 EXPORT_SYMBOL_GPL(file_is_kvm);
4738
4739 static int kvm_dev_ioctl_create_vm(unsigned long type)
4740 {
4741         int r;
4742         struct kvm *kvm;
4743         struct file *file;
4744
4745         kvm = kvm_create_vm(type);
4746         if (IS_ERR(kvm))
4747                 return PTR_ERR(kvm);
4748 #ifdef CONFIG_KVM_MMIO
4749         r = kvm_coalesced_mmio_init(kvm);
4750         if (r < 0)
4751                 goto put_kvm;
4752 #endif
4753         r = get_unused_fd_flags(O_CLOEXEC);
4754         if (r < 0)
4755                 goto put_kvm;
4756
4757         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4758                         "kvm-%d", task_pid_nr(current));
4759
4760         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4761         if (IS_ERR(file)) {
4762                 put_unused_fd(r);
4763                 r = PTR_ERR(file);
4764                 goto put_kvm;
4765         }
4766
4767         /*
4768          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4769          * already set, with ->release() being kvm_vm_release().  In error
4770          * cases it will be called by the final fput(file) and will take
4771          * care of doing kvm_put_kvm(kvm).
4772          */
4773         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4774                 put_unused_fd(r);
4775                 fput(file);
4776                 return -ENOMEM;
4777         }
4778         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4779
4780         fd_install(r, file);
4781         return r;
4782
4783 put_kvm:
4784         kvm_put_kvm(kvm);
4785         return r;
4786 }
4787
4788 static long kvm_dev_ioctl(struct file *filp,
4789                           unsigned int ioctl, unsigned long arg)
4790 {
4791         long r = -EINVAL;
4792
4793         switch (ioctl) {
4794         case KVM_GET_API_VERSION:
4795                 if (arg)
4796                         goto out;
4797                 r = KVM_API_VERSION;
4798                 break;
4799         case KVM_CREATE_VM:
4800                 r = kvm_dev_ioctl_create_vm(arg);
4801                 break;
4802         case KVM_CHECK_EXTENSION:
4803                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4804                 break;
4805         case KVM_GET_VCPU_MMAP_SIZE:
4806                 if (arg)
4807                         goto out;
4808                 r = PAGE_SIZE;     /* struct kvm_run */
4809 #ifdef CONFIG_X86
4810                 r += PAGE_SIZE;    /* pio data page */
4811 #endif
4812 #ifdef CONFIG_KVM_MMIO
4813                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4814 #endif
4815                 break;
4816         case KVM_TRACE_ENABLE:
4817         case KVM_TRACE_PAUSE:
4818         case KVM_TRACE_DISABLE:
4819                 r = -EOPNOTSUPP;
4820                 break;
4821         default:
4822                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4823         }
4824 out:
4825         return r;
4826 }
4827
4828 static struct file_operations kvm_chardev_ops = {
4829         .unlocked_ioctl = kvm_dev_ioctl,
4830         .llseek         = noop_llseek,
4831         KVM_COMPAT(kvm_dev_ioctl),
4832 };
4833
4834 static struct miscdevice kvm_dev = {
4835         KVM_MINOR,
4836         "kvm",
4837         &kvm_chardev_ops,
4838 };
4839
4840 static void hardware_enable_nolock(void *junk)
4841 {
4842         int cpu = raw_smp_processor_id();
4843         int r;
4844
4845         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4846                 return;
4847
4848         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4849
4850         r = kvm_arch_hardware_enable();
4851
4852         if (r) {
4853                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4854                 atomic_inc(&hardware_enable_failed);
4855                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4856         }
4857 }
4858
4859 static int kvm_starting_cpu(unsigned int cpu)
4860 {
4861         raw_spin_lock(&kvm_count_lock);
4862         if (kvm_usage_count)
4863                 hardware_enable_nolock(NULL);
4864         raw_spin_unlock(&kvm_count_lock);
4865         return 0;
4866 }
4867
4868 static void hardware_disable_nolock(void *junk)
4869 {
4870         int cpu = raw_smp_processor_id();
4871
4872         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4873                 return;
4874         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4875         kvm_arch_hardware_disable();
4876 }
4877
4878 static int kvm_dying_cpu(unsigned int cpu)
4879 {
4880         raw_spin_lock(&kvm_count_lock);
4881         if (kvm_usage_count)
4882                 hardware_disable_nolock(NULL);
4883         raw_spin_unlock(&kvm_count_lock);
4884         return 0;
4885 }
4886
4887 static void hardware_disable_all_nolock(void)
4888 {
4889         BUG_ON(!kvm_usage_count);
4890
4891         kvm_usage_count--;
4892         if (!kvm_usage_count)
4893                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4894 }
4895
4896 static void hardware_disable_all(void)
4897 {
4898         raw_spin_lock(&kvm_count_lock);
4899         hardware_disable_all_nolock();
4900         raw_spin_unlock(&kvm_count_lock);
4901 }
4902
4903 static int hardware_enable_all(void)
4904 {
4905         int r = 0;
4906
4907         raw_spin_lock(&kvm_count_lock);
4908
4909         kvm_usage_count++;
4910         if (kvm_usage_count == 1) {
4911                 atomic_set(&hardware_enable_failed, 0);
4912                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4913
4914                 if (atomic_read(&hardware_enable_failed)) {
4915                         hardware_disable_all_nolock();
4916                         r = -EBUSY;
4917                 }
4918         }
4919
4920         raw_spin_unlock(&kvm_count_lock);
4921
4922         return r;
4923 }
4924
4925 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4926                       void *v)
4927 {
4928         /*
4929          * Some (well, at least mine) BIOSes hang on reboot if
4930          * in vmx root mode.
4931          *
4932          * And Intel TXT required VMX off for all cpu when system shutdown.
4933          */
4934         pr_info("kvm: exiting hardware virtualization\n");
4935         kvm_rebooting = true;
4936         on_each_cpu(hardware_disable_nolock, NULL, 1);
4937         return NOTIFY_OK;
4938 }
4939
4940 static struct notifier_block kvm_reboot_notifier = {
4941         .notifier_call = kvm_reboot,
4942         .priority = 0,
4943 };
4944
4945 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4946 {
4947         int i;
4948
4949         for (i = 0; i < bus->dev_count; i++) {
4950                 struct kvm_io_device *pos = bus->range[i].dev;
4951
4952                 kvm_iodevice_destructor(pos);
4953         }
4954         kfree(bus);
4955 }
4956
4957 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4958                                  const struct kvm_io_range *r2)
4959 {
4960         gpa_t addr1 = r1->addr;
4961         gpa_t addr2 = r2->addr;
4962
4963         if (addr1 < addr2)
4964                 return -1;
4965
4966         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4967          * accept any overlapping write.  Any order is acceptable for
4968          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4969          * we process all of them.
4970          */
4971         if (r2->len) {
4972                 addr1 += r1->len;
4973                 addr2 += r2->len;
4974         }
4975
4976         if (addr1 > addr2)
4977                 return 1;
4978
4979         return 0;
4980 }
4981
4982 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4983 {
4984         return kvm_io_bus_cmp(p1, p2);
4985 }
4986
4987 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4988                              gpa_t addr, int len)
4989 {
4990         struct kvm_io_range *range, key;
4991         int off;
4992
4993         key = (struct kvm_io_range) {
4994                 .addr = addr,
4995                 .len = len,
4996         };
4997
4998         range = bsearch(&key, bus->range, bus->dev_count,
4999                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5000         if (range == NULL)
5001                 return -ENOENT;
5002
5003         off = range - bus->range;
5004
5005         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5006                 off--;
5007
5008         return off;
5009 }
5010
5011 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5012                               struct kvm_io_range *range, const void *val)
5013 {
5014         int idx;
5015
5016         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5017         if (idx < 0)
5018                 return -EOPNOTSUPP;
5019
5020         while (idx < bus->dev_count &&
5021                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5022                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5023                                         range->len, val))
5024                         return idx;
5025                 idx++;
5026         }
5027
5028         return -EOPNOTSUPP;
5029 }
5030
5031 /* kvm_io_bus_write - called under kvm->slots_lock */
5032 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5033                      int len, const void *val)
5034 {
5035         struct kvm_io_bus *bus;
5036         struct kvm_io_range range;
5037         int r;
5038
5039         range = (struct kvm_io_range) {
5040                 .addr = addr,
5041                 .len = len,
5042         };
5043
5044         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5045         if (!bus)
5046                 return -ENOMEM;
5047         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5048         return r < 0 ? r : 0;
5049 }
5050 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5051
5052 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5053 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5054                             gpa_t addr, int len, const void *val, long cookie)
5055 {
5056         struct kvm_io_bus *bus;
5057         struct kvm_io_range range;
5058
5059         range = (struct kvm_io_range) {
5060                 .addr = addr,
5061                 .len = len,
5062         };
5063
5064         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5065         if (!bus)
5066                 return -ENOMEM;
5067
5068         /* First try the device referenced by cookie. */
5069         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5070             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5071                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5072                                         val))
5073                         return cookie;
5074
5075         /*
5076          * cookie contained garbage; fall back to search and return the
5077          * correct cookie value.
5078          */
5079         return __kvm_io_bus_write(vcpu, bus, &range, val);
5080 }
5081
5082 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5083                              struct kvm_io_range *range, void *val)
5084 {
5085         int idx;
5086
5087         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5088         if (idx < 0)
5089                 return -EOPNOTSUPP;
5090
5091         while (idx < bus->dev_count &&
5092                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5093                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5094                                        range->len, val))
5095                         return idx;
5096                 idx++;
5097         }
5098
5099         return -EOPNOTSUPP;
5100 }
5101
5102 /* kvm_io_bus_read - called under kvm->slots_lock */
5103 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5104                     int len, void *val)
5105 {
5106         struct kvm_io_bus *bus;
5107         struct kvm_io_range range;
5108         int r;
5109
5110         range = (struct kvm_io_range) {
5111                 .addr = addr,
5112                 .len = len,
5113         };
5114
5115         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5116         if (!bus)
5117                 return -ENOMEM;
5118         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5119         return r < 0 ? r : 0;
5120 }
5121
5122 /* Caller must hold slots_lock. */
5123 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5124                             int len, struct kvm_io_device *dev)
5125 {
5126         int i;
5127         struct kvm_io_bus *new_bus, *bus;
5128         struct kvm_io_range range;
5129
5130         bus = kvm_get_bus(kvm, bus_idx);
5131         if (!bus)
5132                 return -ENOMEM;
5133
5134         /* exclude ioeventfd which is limited by maximum fd */
5135         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5136                 return -ENOSPC;
5137
5138         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5139                           GFP_KERNEL_ACCOUNT);
5140         if (!new_bus)
5141                 return -ENOMEM;
5142
5143         range = (struct kvm_io_range) {
5144                 .addr = addr,
5145                 .len = len,
5146                 .dev = dev,
5147         };
5148
5149         for (i = 0; i < bus->dev_count; i++)
5150                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5151                         break;
5152
5153         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5154         new_bus->dev_count++;
5155         new_bus->range[i] = range;
5156         memcpy(new_bus->range + i + 1, bus->range + i,
5157                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5158         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5159         synchronize_srcu_expedited(&kvm->srcu);
5160         kfree(bus);
5161
5162         return 0;
5163 }
5164
5165 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5166                               struct kvm_io_device *dev)
5167 {
5168         int i, j;
5169         struct kvm_io_bus *new_bus, *bus;
5170
5171         lockdep_assert_held(&kvm->slots_lock);
5172
5173         bus = kvm_get_bus(kvm, bus_idx);
5174         if (!bus)
5175                 return 0;
5176
5177         for (i = 0; i < bus->dev_count; i++) {
5178                 if (bus->range[i].dev == dev) {
5179                         break;
5180                 }
5181         }
5182
5183         if (i == bus->dev_count)
5184                 return 0;
5185
5186         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5187                           GFP_KERNEL_ACCOUNT);
5188         if (new_bus) {
5189                 memcpy(new_bus, bus, struct_size(bus, range, i));
5190                 new_bus->dev_count--;
5191                 memcpy(new_bus->range + i, bus->range + i + 1,
5192                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5193         }
5194
5195         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5196         synchronize_srcu_expedited(&kvm->srcu);
5197
5198         /* Destroy the old bus _after_ installing the (null) bus. */
5199         if (!new_bus) {
5200                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5201                 for (j = 0; j < bus->dev_count; j++) {
5202                         if (j == i)
5203                                 continue;
5204                         kvm_iodevice_destructor(bus->range[j].dev);
5205                 }
5206         }
5207
5208         kfree(bus);
5209         return new_bus ? 0 : -ENOMEM;
5210 }
5211
5212 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5213                                          gpa_t addr)
5214 {
5215         struct kvm_io_bus *bus;
5216         int dev_idx, srcu_idx;
5217         struct kvm_io_device *iodev = NULL;
5218
5219         srcu_idx = srcu_read_lock(&kvm->srcu);
5220
5221         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5222         if (!bus)
5223                 goto out_unlock;
5224
5225         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5226         if (dev_idx < 0)
5227                 goto out_unlock;
5228
5229         iodev = bus->range[dev_idx].dev;
5230
5231 out_unlock:
5232         srcu_read_unlock(&kvm->srcu, srcu_idx);
5233
5234         return iodev;
5235 }
5236 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5237
5238 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5239                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5240                            const char *fmt)
5241 {
5242         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5243                                           inode->i_private;
5244
5245         /*
5246          * The debugfs files are a reference to the kvm struct which
5247         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5248         * avoids the race between open and the removal of the debugfs directory.
5249          */
5250         if (!kvm_get_kvm_safe(stat_data->kvm))
5251                 return -ENOENT;
5252
5253         if (simple_attr_open(inode, file, get,
5254                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5255                     ? set : NULL,
5256                     fmt)) {
5257                 kvm_put_kvm(stat_data->kvm);
5258                 return -ENOMEM;
5259         }
5260
5261         return 0;
5262 }
5263
5264 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5265 {
5266         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5267                                           inode->i_private;
5268
5269         simple_attr_release(inode, file);
5270         kvm_put_kvm(stat_data->kvm);
5271
5272         return 0;
5273 }
5274
5275 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5276 {
5277         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5278
5279         return 0;
5280 }
5281
5282 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5283 {
5284         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5285
5286         return 0;
5287 }
5288
5289 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5290 {
5291         unsigned long i;
5292         struct kvm_vcpu *vcpu;
5293
5294         *val = 0;
5295
5296         kvm_for_each_vcpu(i, vcpu, kvm)
5297                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5298
5299         return 0;
5300 }
5301
5302 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5303 {
5304         unsigned long i;
5305         struct kvm_vcpu *vcpu;
5306
5307         kvm_for_each_vcpu(i, vcpu, kvm)
5308                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5309
5310         return 0;
5311 }
5312
5313 static int kvm_stat_data_get(void *data, u64 *val)
5314 {
5315         int r = -EFAULT;
5316         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5317
5318         switch (stat_data->kind) {
5319         case KVM_STAT_VM:
5320                 r = kvm_get_stat_per_vm(stat_data->kvm,
5321                                         stat_data->desc->desc.offset, val);
5322                 break;
5323         case KVM_STAT_VCPU:
5324                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5325                                           stat_data->desc->desc.offset, val);
5326                 break;
5327         }
5328
5329         return r;
5330 }
5331
5332 static int kvm_stat_data_clear(void *data, u64 val)
5333 {
5334         int r = -EFAULT;
5335         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5336
5337         if (val)
5338                 return -EINVAL;
5339
5340         switch (stat_data->kind) {
5341         case KVM_STAT_VM:
5342                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5343                                           stat_data->desc->desc.offset);
5344                 break;
5345         case KVM_STAT_VCPU:
5346                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5347                                             stat_data->desc->desc.offset);
5348                 break;
5349         }
5350
5351         return r;
5352 }
5353
5354 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5355 {
5356         __simple_attr_check_format("%llu\n", 0ull);
5357         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5358                                 kvm_stat_data_clear, "%llu\n");
5359 }
5360
5361 static const struct file_operations stat_fops_per_vm = {
5362         .owner = THIS_MODULE,
5363         .open = kvm_stat_data_open,
5364         .release = kvm_debugfs_release,
5365         .read = simple_attr_read,
5366         .write = simple_attr_write,
5367         .llseek = no_llseek,
5368 };
5369
5370 static int vm_stat_get(void *_offset, u64 *val)
5371 {
5372         unsigned offset = (long)_offset;
5373         struct kvm *kvm;
5374         u64 tmp_val;
5375
5376         *val = 0;
5377         mutex_lock(&kvm_lock);
5378         list_for_each_entry(kvm, &vm_list, vm_list) {
5379                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5380                 *val += tmp_val;
5381         }
5382         mutex_unlock(&kvm_lock);
5383         return 0;
5384 }
5385
5386 static int vm_stat_clear(void *_offset, u64 val)
5387 {
5388         unsigned offset = (long)_offset;
5389         struct kvm *kvm;
5390
5391         if (val)
5392                 return -EINVAL;
5393
5394         mutex_lock(&kvm_lock);
5395         list_for_each_entry(kvm, &vm_list, vm_list) {
5396                 kvm_clear_stat_per_vm(kvm, offset);
5397         }
5398         mutex_unlock(&kvm_lock);
5399
5400         return 0;
5401 }
5402
5403 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5404 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5405
5406 static int vcpu_stat_get(void *_offset, u64 *val)
5407 {
5408         unsigned offset = (long)_offset;
5409         struct kvm *kvm;
5410         u64 tmp_val;
5411
5412         *val = 0;
5413         mutex_lock(&kvm_lock);
5414         list_for_each_entry(kvm, &vm_list, vm_list) {
5415                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5416                 *val += tmp_val;
5417         }
5418         mutex_unlock(&kvm_lock);
5419         return 0;
5420 }
5421
5422 static int vcpu_stat_clear(void *_offset, u64 val)
5423 {
5424         unsigned offset = (long)_offset;
5425         struct kvm *kvm;
5426
5427         if (val)
5428                 return -EINVAL;
5429
5430         mutex_lock(&kvm_lock);
5431         list_for_each_entry(kvm, &vm_list, vm_list) {
5432                 kvm_clear_stat_per_vcpu(kvm, offset);
5433         }
5434         mutex_unlock(&kvm_lock);
5435
5436         return 0;
5437 }
5438
5439 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5440                         "%llu\n");
5441 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5442
5443 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5444 {
5445         struct kobj_uevent_env *env;
5446         unsigned long long created, active;
5447
5448         if (!kvm_dev.this_device || !kvm)
5449                 return;
5450
5451         mutex_lock(&kvm_lock);
5452         if (type == KVM_EVENT_CREATE_VM) {
5453                 kvm_createvm_count++;
5454                 kvm_active_vms++;
5455         } else if (type == KVM_EVENT_DESTROY_VM) {
5456                 kvm_active_vms--;
5457         }
5458         created = kvm_createvm_count;
5459         active = kvm_active_vms;
5460         mutex_unlock(&kvm_lock);
5461
5462         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5463         if (!env)
5464                 return;
5465
5466         add_uevent_var(env, "CREATED=%llu", created);
5467         add_uevent_var(env, "COUNT=%llu", active);
5468
5469         if (type == KVM_EVENT_CREATE_VM) {
5470                 add_uevent_var(env, "EVENT=create");
5471                 kvm->userspace_pid = task_pid_nr(current);
5472         } else if (type == KVM_EVENT_DESTROY_VM) {
5473                 add_uevent_var(env, "EVENT=destroy");
5474         }
5475         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5476
5477         if (kvm->debugfs_dentry) {
5478                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5479
5480                 if (p) {
5481                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5482                         if (!IS_ERR(tmp))
5483                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5484                         kfree(p);
5485                 }
5486         }
5487         /* no need for checks, since we are adding at most only 5 keys */
5488         env->envp[env->envp_idx++] = NULL;
5489         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5490         kfree(env);
5491 }
5492
5493 static void kvm_init_debug(void)
5494 {
5495         const struct file_operations *fops;
5496         const struct _kvm_stats_desc *pdesc;
5497         int i;
5498
5499         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5500
5501         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5502                 pdesc = &kvm_vm_stats_desc[i];
5503                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5504                         fops = &vm_stat_fops;
5505                 else
5506                         fops = &vm_stat_readonly_fops;
5507                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5508                                 kvm_debugfs_dir,
5509                                 (void *)(long)pdesc->desc.offset, fops);
5510         }
5511
5512         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5513                 pdesc = &kvm_vcpu_stats_desc[i];
5514                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5515                         fops = &vcpu_stat_fops;
5516                 else
5517                         fops = &vcpu_stat_readonly_fops;
5518                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5519                                 kvm_debugfs_dir,
5520                                 (void *)(long)pdesc->desc.offset, fops);
5521         }
5522 }
5523
5524 static int kvm_suspend(void)
5525 {
5526         if (kvm_usage_count)
5527                 hardware_disable_nolock(NULL);
5528         return 0;
5529 }
5530
5531 static void kvm_resume(void)
5532 {
5533         if (kvm_usage_count) {
5534 #ifdef CONFIG_LOCKDEP
5535                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5536 #endif
5537                 hardware_enable_nolock(NULL);
5538         }
5539 }
5540
5541 static struct syscore_ops kvm_syscore_ops = {
5542         .suspend = kvm_suspend,
5543         .resume = kvm_resume,
5544 };
5545
5546 static inline
5547 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5548 {
5549         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5550 }
5551
5552 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5553 {
5554         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5555
5556         WRITE_ONCE(vcpu->preempted, false);
5557         WRITE_ONCE(vcpu->ready, false);
5558
5559         __this_cpu_write(kvm_running_vcpu, vcpu);
5560         kvm_arch_sched_in(vcpu, cpu);
5561         kvm_arch_vcpu_load(vcpu, cpu);
5562 }
5563
5564 static void kvm_sched_out(struct preempt_notifier *pn,
5565                           struct task_struct *next)
5566 {
5567         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5568
5569         if (current->on_rq) {
5570                 WRITE_ONCE(vcpu->preempted, true);
5571                 WRITE_ONCE(vcpu->ready, true);
5572         }
5573         kvm_arch_vcpu_put(vcpu);
5574         __this_cpu_write(kvm_running_vcpu, NULL);
5575 }
5576
5577 /**
5578  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5579  *
5580  * We can disable preemption locally around accessing the per-CPU variable,
5581  * and use the resolved vcpu pointer after enabling preemption again,
5582  * because even if the current thread is migrated to another CPU, reading
5583  * the per-CPU value later will give us the same value as we update the
5584  * per-CPU variable in the preempt notifier handlers.
5585  */
5586 struct kvm_vcpu *kvm_get_running_vcpu(void)
5587 {
5588         struct kvm_vcpu *vcpu;
5589
5590         preempt_disable();
5591         vcpu = __this_cpu_read(kvm_running_vcpu);
5592         preempt_enable();
5593
5594         return vcpu;
5595 }
5596 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5597
5598 /**
5599  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5600  */
5601 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5602 {
5603         return &kvm_running_vcpu;
5604 }
5605
5606 #ifdef CONFIG_GUEST_PERF_EVENTS
5607 static unsigned int kvm_guest_state(void)
5608 {
5609         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5610         unsigned int state;
5611
5612         if (!kvm_arch_pmi_in_guest(vcpu))
5613                 return 0;
5614
5615         state = PERF_GUEST_ACTIVE;
5616         if (!kvm_arch_vcpu_in_kernel(vcpu))
5617                 state |= PERF_GUEST_USER;
5618
5619         return state;
5620 }
5621
5622 static unsigned long kvm_guest_get_ip(void)
5623 {
5624         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5625
5626         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5627         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5628                 return 0;
5629
5630         return kvm_arch_vcpu_get_ip(vcpu);
5631 }
5632
5633 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5634         .state                  = kvm_guest_state,
5635         .get_ip                 = kvm_guest_get_ip,
5636         .handle_intel_pt_intr   = NULL,
5637 };
5638
5639 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5640 {
5641         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5642         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5643 }
5644 void kvm_unregister_perf_callbacks(void)
5645 {
5646         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5647 }
5648 #endif
5649
5650 struct kvm_cpu_compat_check {
5651         void *opaque;
5652         int *ret;
5653 };
5654
5655 static void check_processor_compat(void *data)
5656 {
5657         struct kvm_cpu_compat_check *c = data;
5658
5659         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5660 }
5661
5662 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5663                   struct module *module)
5664 {
5665         struct kvm_cpu_compat_check c;
5666         int r;
5667         int cpu;
5668
5669         r = kvm_arch_init(opaque);
5670         if (r)
5671                 goto out_fail;
5672
5673         /*
5674          * kvm_arch_init makes sure there's at most one caller
5675          * for architectures that support multiple implementations,
5676          * like intel and amd on x86.
5677          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5678          * conflicts in case kvm is already setup for another implementation.
5679          */
5680         r = kvm_irqfd_init();
5681         if (r)
5682                 goto out_irqfd;
5683
5684         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5685                 r = -ENOMEM;
5686                 goto out_free_0;
5687         }
5688
5689         r = kvm_arch_hardware_setup(opaque);
5690         if (r < 0)
5691                 goto out_free_1;
5692
5693         c.ret = &r;
5694         c.opaque = opaque;
5695         for_each_online_cpu(cpu) {
5696                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5697                 if (r < 0)
5698                         goto out_free_2;
5699         }
5700
5701         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5702                                       kvm_starting_cpu, kvm_dying_cpu);
5703         if (r)
5704                 goto out_free_2;
5705         register_reboot_notifier(&kvm_reboot_notifier);
5706
5707         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5708         if (!vcpu_align)
5709                 vcpu_align = __alignof__(struct kvm_vcpu);
5710         kvm_vcpu_cache =
5711                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5712                                            SLAB_ACCOUNT,
5713                                            offsetof(struct kvm_vcpu, arch),
5714                                            offsetofend(struct kvm_vcpu, stats_id)
5715                                            - offsetof(struct kvm_vcpu, arch),
5716                                            NULL);
5717         if (!kvm_vcpu_cache) {
5718                 r = -ENOMEM;
5719                 goto out_free_3;
5720         }
5721
5722         for_each_possible_cpu(cpu) {
5723                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5724                                             GFP_KERNEL, cpu_to_node(cpu))) {
5725                         r = -ENOMEM;
5726                         goto out_free_4;
5727                 }
5728         }
5729
5730         r = kvm_async_pf_init();
5731         if (r)
5732                 goto out_free_5;
5733
5734         kvm_chardev_ops.owner = module;
5735         kvm_vm_fops.owner = module;
5736         kvm_vcpu_fops.owner = module;
5737
5738         r = misc_register(&kvm_dev);
5739         if (r) {
5740                 pr_err("kvm: misc device register failed\n");
5741                 goto out_unreg;
5742         }
5743
5744         register_syscore_ops(&kvm_syscore_ops);
5745
5746         kvm_preempt_ops.sched_in = kvm_sched_in;
5747         kvm_preempt_ops.sched_out = kvm_sched_out;
5748
5749         kvm_init_debug();
5750
5751         r = kvm_vfio_ops_init();
5752         WARN_ON(r);
5753
5754         return 0;
5755
5756 out_unreg:
5757         kvm_async_pf_deinit();
5758 out_free_5:
5759         for_each_possible_cpu(cpu)
5760                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5761 out_free_4:
5762         kmem_cache_destroy(kvm_vcpu_cache);
5763 out_free_3:
5764         unregister_reboot_notifier(&kvm_reboot_notifier);
5765         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5766 out_free_2:
5767         kvm_arch_hardware_unsetup();
5768 out_free_1:
5769         free_cpumask_var(cpus_hardware_enabled);
5770 out_free_0:
5771         kvm_irqfd_exit();
5772 out_irqfd:
5773         kvm_arch_exit();
5774 out_fail:
5775         return r;
5776 }
5777 EXPORT_SYMBOL_GPL(kvm_init);
5778
5779 void kvm_exit(void)
5780 {
5781         int cpu;
5782
5783         debugfs_remove_recursive(kvm_debugfs_dir);
5784         misc_deregister(&kvm_dev);
5785         for_each_possible_cpu(cpu)
5786                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5787         kmem_cache_destroy(kvm_vcpu_cache);
5788         kvm_async_pf_deinit();
5789         unregister_syscore_ops(&kvm_syscore_ops);
5790         unregister_reboot_notifier(&kvm_reboot_notifier);
5791         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5792         on_each_cpu(hardware_disable_nolock, NULL, 1);
5793         kvm_arch_hardware_unsetup();
5794         kvm_arch_exit();
5795         kvm_irqfd_exit();
5796         free_cpumask_var(cpus_hardware_enabled);
5797         kvm_vfio_ops_exit();
5798 }
5799 EXPORT_SYMBOL_GPL(kvm_exit);
5800
5801 struct kvm_vm_worker_thread_context {
5802         struct kvm *kvm;
5803         struct task_struct *parent;
5804         struct completion init_done;
5805         kvm_vm_thread_fn_t thread_fn;
5806         uintptr_t data;
5807         int err;
5808 };
5809
5810 static int kvm_vm_worker_thread(void *context)
5811 {
5812         /*
5813          * The init_context is allocated on the stack of the parent thread, so
5814          * we have to locally copy anything that is needed beyond initialization
5815          */
5816         struct kvm_vm_worker_thread_context *init_context = context;
5817         struct kvm *kvm = init_context->kvm;
5818         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5819         uintptr_t data = init_context->data;
5820         int err;
5821
5822         err = kthread_park(current);
5823         /* kthread_park(current) is never supposed to return an error */
5824         WARN_ON(err != 0);
5825         if (err)
5826                 goto init_complete;
5827
5828         err = cgroup_attach_task_all(init_context->parent, current);
5829         if (err) {
5830                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5831                         __func__, err);
5832                 goto init_complete;
5833         }
5834
5835         set_user_nice(current, task_nice(init_context->parent));
5836
5837 init_complete:
5838         init_context->err = err;
5839         complete(&init_context->init_done);
5840         init_context = NULL;
5841
5842         if (err)
5843                 return err;
5844
5845         /* Wait to be woken up by the spawner before proceeding. */
5846         kthread_parkme();
5847
5848         if (!kthread_should_stop())
5849                 err = thread_fn(kvm, data);
5850
5851         return err;
5852 }
5853
5854 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5855                                 uintptr_t data, const char *name,
5856                                 struct task_struct **thread_ptr)
5857 {
5858         struct kvm_vm_worker_thread_context init_context = {};
5859         struct task_struct *thread;
5860
5861         *thread_ptr = NULL;
5862         init_context.kvm = kvm;
5863         init_context.parent = current;
5864         init_context.thread_fn = thread_fn;
5865         init_context.data = data;
5866         init_completion(&init_context.init_done);
5867
5868         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5869                              "%s-%d", name, task_pid_nr(current));
5870         if (IS_ERR(thread))
5871                 return PTR_ERR(thread);
5872
5873         /* kthread_run is never supposed to return NULL */
5874         WARN_ON(thread == NULL);
5875
5876         wait_for_completion(&init_context.init_done);
5877
5878         if (!init_context.err)
5879                 *thread_ptr = thread;
5880
5881         return init_context.err;
5882 }