484e8820c382b348fcd81fa47f0548616861146c
[platform/kernel/linux-exynos.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
140                 unsigned long start, unsigned long end)
141 {
142 }
143
144 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
145 {
146         if (pfn_valid(pfn))
147                 return PageReserved(pfn_to_page(pfn));
148
149         return true;
150 }
151
152 /*
153  * Switches to specified vcpu, until a matching vcpu_put()
154  */
155 int vcpu_load(struct kvm_vcpu *vcpu)
156 {
157         int cpu;
158
159         if (mutex_lock_killable(&vcpu->mutex))
160                 return -EINTR;
161         cpu = get_cpu();
162         preempt_notifier_register(&vcpu->preempt_notifier);
163         kvm_arch_vcpu_load(vcpu, cpu);
164         put_cpu();
165         return 0;
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171         preempt_disable();
172         kvm_arch_vcpu_put(vcpu);
173         preempt_notifier_unregister(&vcpu->preempt_notifier);
174         preempt_enable();
175         mutex_unlock(&vcpu->mutex);
176 }
177 EXPORT_SYMBOL_GPL(vcpu_put);
178
179 /* TODO: merge with kvm_arch_vcpu_should_kick */
180 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
181 {
182         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
183
184         /*
185          * We need to wait for the VCPU to reenable interrupts and get out of
186          * READING_SHADOW_PAGE_TABLES mode.
187          */
188         if (req & KVM_REQUEST_WAIT)
189                 return mode != OUTSIDE_GUEST_MODE;
190
191         /*
192          * Need to kick a running VCPU, but otherwise there is nothing to do.
193          */
194         return mode == IN_GUEST_MODE;
195 }
196
197 static void ack_flush(void *_completed)
198 {
199 }
200
201 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
202 {
203         if (unlikely(!cpus))
204                 cpus = cpu_online_mask;
205
206         if (cpumask_empty(cpus))
207                 return false;
208
209         smp_call_function_many(cpus, ack_flush, NULL, wait);
210         return true;
211 }
212
213 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
214 {
215         int i, cpu, me;
216         cpumask_var_t cpus;
217         bool called;
218         struct kvm_vcpu *vcpu;
219
220         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
221
222         me = get_cpu();
223         kvm_for_each_vcpu(i, vcpu, kvm) {
224                 kvm_make_request(req, vcpu);
225                 cpu = vcpu->cpu;
226
227                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
228                         continue;
229
230                 if (cpus != NULL && cpu != -1 && cpu != me &&
231                     kvm_request_needs_ipi(vcpu, req))
232                         __cpumask_set_cpu(cpu, cpus);
233         }
234         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
235         put_cpu();
236         free_cpumask_var(cpus);
237         return called;
238 }
239
240 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
241 void kvm_flush_remote_tlbs(struct kvm *kvm)
242 {
243         /*
244          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
245          * kvm_make_all_cpus_request.
246          */
247         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
248
249         /*
250          * We want to publish modifications to the page tables before reading
251          * mode. Pairs with a memory barrier in arch-specific code.
252          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
253          * and smp_mb in walk_shadow_page_lockless_begin/end.
254          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
255          *
256          * There is already an smp_mb__after_atomic() before
257          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
258          * barrier here.
259          */
260         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
261                 ++kvm->stat.remote_tlb_flush;
262         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
263 }
264 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
265 #endif
266
267 void kvm_reload_remote_mmus(struct kvm *kvm)
268 {
269         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
270 }
271
272 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
273 {
274         struct page *page;
275         int r;
276
277         mutex_init(&vcpu->mutex);
278         vcpu->cpu = -1;
279         vcpu->kvm = kvm;
280         vcpu->vcpu_id = id;
281         vcpu->pid = NULL;
282         init_swait_queue_head(&vcpu->wq);
283         kvm_async_pf_vcpu_init(vcpu);
284
285         vcpu->pre_pcpu = -1;
286         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
287
288         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
289         if (!page) {
290                 r = -ENOMEM;
291                 goto fail;
292         }
293         vcpu->run = page_address(page);
294
295         kvm_vcpu_set_in_spin_loop(vcpu, false);
296         kvm_vcpu_set_dy_eligible(vcpu, false);
297         vcpu->preempted = false;
298
299         r = kvm_arch_vcpu_init(vcpu);
300         if (r < 0)
301                 goto fail_free_run;
302         return 0;
303
304 fail_free_run:
305         free_page((unsigned long)vcpu->run);
306 fail:
307         return r;
308 }
309 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
310
311 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
312 {
313         /*
314          * no need for rcu_read_lock as VCPU_RUN is the only place that
315          * will change the vcpu->pid pointer and on uninit all file
316          * descriptors are already gone.
317          */
318         put_pid(rcu_dereference_protected(vcpu->pid, 1));
319         kvm_arch_vcpu_uninit(vcpu);
320         free_page((unsigned long)vcpu->run);
321 }
322 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
323
324 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
325 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
326 {
327         return container_of(mn, struct kvm, mmu_notifier);
328 }
329
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331                                         struct mm_struct *mm,
332                                         unsigned long address,
333                                         pte_t pte)
334 {
335         struct kvm *kvm = mmu_notifier_to_kvm(mn);
336         int idx;
337
338         idx = srcu_read_lock(&kvm->srcu);
339         spin_lock(&kvm->mmu_lock);
340         kvm->mmu_notifier_seq++;
341         kvm_set_spte_hva(kvm, address, pte);
342         spin_unlock(&kvm->mmu_lock);
343         srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347                                                     struct mm_struct *mm,
348                                                     unsigned long start,
349                                                     unsigned long end)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int need_tlb_flush = 0, idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         /*
357          * The count increase must become visible at unlock time as no
358          * spte can be established without taking the mmu_lock and
359          * count is also read inside the mmu_lock critical section.
360          */
361         kvm->mmu_notifier_count++;
362         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363         need_tlb_flush |= kvm->tlbs_dirty;
364         /* we've to flush the tlb before the pages can be freed */
365         if (need_tlb_flush)
366                 kvm_flush_remote_tlbs(kvm);
367
368         spin_unlock(&kvm->mmu_lock);
369
370         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
371
372         srcu_read_unlock(&kvm->srcu, idx);
373 }
374
375 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
376                                                   struct mm_struct *mm,
377                                                   unsigned long start,
378                                                   unsigned long end)
379 {
380         struct kvm *kvm = mmu_notifier_to_kvm(mn);
381
382         spin_lock(&kvm->mmu_lock);
383         /*
384          * This sequence increase will notify the kvm page fault that
385          * the page that is going to be mapped in the spte could have
386          * been freed.
387          */
388         kvm->mmu_notifier_seq++;
389         smp_wmb();
390         /*
391          * The above sequence increase must be visible before the
392          * below count decrease, which is ensured by the smp_wmb above
393          * in conjunction with the smp_rmb in mmu_notifier_retry().
394          */
395         kvm->mmu_notifier_count--;
396         spin_unlock(&kvm->mmu_lock);
397
398         BUG_ON(kvm->mmu_notifier_count < 0);
399 }
400
401 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
402                                               struct mm_struct *mm,
403                                               unsigned long start,
404                                               unsigned long end)
405 {
406         struct kvm *kvm = mmu_notifier_to_kvm(mn);
407         int young, idx;
408
409         idx = srcu_read_lock(&kvm->srcu);
410         spin_lock(&kvm->mmu_lock);
411
412         young = kvm_age_hva(kvm, start, end);
413         if (young)
414                 kvm_flush_remote_tlbs(kvm);
415
416         spin_unlock(&kvm->mmu_lock);
417         srcu_read_unlock(&kvm->srcu, idx);
418
419         return young;
420 }
421
422 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
423                                         struct mm_struct *mm,
424                                         unsigned long start,
425                                         unsigned long end)
426 {
427         struct kvm *kvm = mmu_notifier_to_kvm(mn);
428         int young, idx;
429
430         idx = srcu_read_lock(&kvm->srcu);
431         spin_lock(&kvm->mmu_lock);
432         /*
433          * Even though we do not flush TLB, this will still adversely
434          * affect performance on pre-Haswell Intel EPT, where there is
435          * no EPT Access Bit to clear so that we have to tear down EPT
436          * tables instead. If we find this unacceptable, we can always
437          * add a parameter to kvm_age_hva so that it effectively doesn't
438          * do anything on clear_young.
439          *
440          * Also note that currently we never issue secondary TLB flushes
441          * from clear_young, leaving this job up to the regular system
442          * cadence. If we find this inaccurate, we might come up with a
443          * more sophisticated heuristic later.
444          */
445         young = kvm_age_hva(kvm, start, end);
446         spin_unlock(&kvm->mmu_lock);
447         srcu_read_unlock(&kvm->srcu, idx);
448
449         return young;
450 }
451
452 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
453                                        struct mm_struct *mm,
454                                        unsigned long address)
455 {
456         struct kvm *kvm = mmu_notifier_to_kvm(mn);
457         int young, idx;
458
459         idx = srcu_read_lock(&kvm->srcu);
460         spin_lock(&kvm->mmu_lock);
461         young = kvm_test_age_hva(kvm, address);
462         spin_unlock(&kvm->mmu_lock);
463         srcu_read_unlock(&kvm->srcu, idx);
464
465         return young;
466 }
467
468 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
469                                      struct mm_struct *mm)
470 {
471         struct kvm *kvm = mmu_notifier_to_kvm(mn);
472         int idx;
473
474         idx = srcu_read_lock(&kvm->srcu);
475         kvm_arch_flush_shadow_all(kvm);
476         srcu_read_unlock(&kvm->srcu, idx);
477 }
478
479 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
480         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
481         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
482         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
483         .clear_young            = kvm_mmu_notifier_clear_young,
484         .test_young             = kvm_mmu_notifier_test_young,
485         .change_pte             = kvm_mmu_notifier_change_pte,
486         .release                = kvm_mmu_notifier_release,
487 };
488
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
492         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
493 }
494
495 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
496
497 static int kvm_init_mmu_notifier(struct kvm *kvm)
498 {
499         return 0;
500 }
501
502 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
503
504 static struct kvm_memslots *kvm_alloc_memslots(void)
505 {
506         int i;
507         struct kvm_memslots *slots;
508
509         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
510         if (!slots)
511                 return NULL;
512
513         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
514                 slots->id_to_index[i] = slots->memslots[i].id = i;
515
516         return slots;
517 }
518
519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
520 {
521         if (!memslot->dirty_bitmap)
522                 return;
523
524         kvfree(memslot->dirty_bitmap);
525         memslot->dirty_bitmap = NULL;
526 }
527
528 /*
529  * Free any memory in @free but not in @dont.
530  */
531 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
532                               struct kvm_memory_slot *dont)
533 {
534         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
535                 kvm_destroy_dirty_bitmap(free);
536
537         kvm_arch_free_memslot(kvm, free, dont);
538
539         free->npages = 0;
540 }
541
542 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
543 {
544         struct kvm_memory_slot *memslot;
545
546         if (!slots)
547                 return;
548
549         kvm_for_each_memslot(memslot, slots)
550                 kvm_free_memslot(kvm, memslot, NULL);
551
552         kvfree(slots);
553 }
554
555 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
556 {
557         int i;
558
559         if (!kvm->debugfs_dentry)
560                 return;
561
562         debugfs_remove_recursive(kvm->debugfs_dentry);
563
564         if (kvm->debugfs_stat_data) {
565                 for (i = 0; i < kvm_debugfs_num_entries; i++)
566                         kfree(kvm->debugfs_stat_data[i]);
567                 kfree(kvm->debugfs_stat_data);
568         }
569 }
570
571 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
572 {
573         char dir_name[ITOA_MAX_LEN * 2];
574         struct kvm_stat_data *stat_data;
575         struct kvm_stats_debugfs_item *p;
576
577         if (!debugfs_initialized())
578                 return 0;
579
580         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
581         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
582                                                  kvm_debugfs_dir);
583         if (!kvm->debugfs_dentry)
584                 return -ENOMEM;
585
586         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
587                                          sizeof(*kvm->debugfs_stat_data),
588                                          GFP_KERNEL);
589         if (!kvm->debugfs_stat_data)
590                 return -ENOMEM;
591
592         for (p = debugfs_entries; p->name; p++) {
593                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
594                 if (!stat_data)
595                         return -ENOMEM;
596
597                 stat_data->kvm = kvm;
598                 stat_data->offset = p->offset;
599                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
600                 if (!debugfs_create_file(p->name, 0644,
601                                          kvm->debugfs_dentry,
602                                          stat_data,
603                                          stat_fops_per_vm[p->kind]))
604                         return -ENOMEM;
605         }
606         return 0;
607 }
608
609 static struct kvm *kvm_create_vm(unsigned long type)
610 {
611         int r, i;
612         struct kvm *kvm = kvm_arch_alloc_vm();
613
614         if (!kvm)
615                 return ERR_PTR(-ENOMEM);
616
617         spin_lock_init(&kvm->mmu_lock);
618         mmgrab(current->mm);
619         kvm->mm = current->mm;
620         kvm_eventfd_init(kvm);
621         mutex_init(&kvm->lock);
622         mutex_init(&kvm->irq_lock);
623         mutex_init(&kvm->slots_lock);
624         refcount_set(&kvm->users_count, 1);
625         INIT_LIST_HEAD(&kvm->devices);
626
627         r = kvm_arch_init_vm(kvm, type);
628         if (r)
629                 goto out_err_no_disable;
630
631         r = hardware_enable_all();
632         if (r)
633                 goto out_err_no_disable;
634
635 #ifdef CONFIG_HAVE_KVM_IRQFD
636         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
637 #endif
638
639         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
640
641         r = -ENOMEM;
642         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
643                 struct kvm_memslots *slots = kvm_alloc_memslots();
644                 if (!slots)
645                         goto out_err_no_srcu;
646                 /*
647                  * Generations must be different for each address space.
648                  * Init kvm generation close to the maximum to easily test the
649                  * code of handling generation number wrap-around.
650                  */
651                 slots->generation = i * 2 - 150;
652                 rcu_assign_pointer(kvm->memslots[i], slots);
653         }
654
655         if (init_srcu_struct(&kvm->srcu))
656                 goto out_err_no_srcu;
657         if (init_srcu_struct(&kvm->irq_srcu))
658                 goto out_err_no_irq_srcu;
659         for (i = 0; i < KVM_NR_BUSES; i++) {
660                 rcu_assign_pointer(kvm->buses[i],
661                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
662                 if (!kvm->buses[i])
663                         goto out_err;
664         }
665
666         r = kvm_init_mmu_notifier(kvm);
667         if (r)
668                 goto out_err;
669
670         spin_lock(&kvm_lock);
671         list_add(&kvm->vm_list, &vm_list);
672         spin_unlock(&kvm_lock);
673
674         preempt_notifier_inc();
675
676         return kvm;
677
678 out_err:
679         cleanup_srcu_struct(&kvm->irq_srcu);
680 out_err_no_irq_srcu:
681         cleanup_srcu_struct(&kvm->srcu);
682 out_err_no_srcu:
683         hardware_disable_all();
684 out_err_no_disable:
685         refcount_set(&kvm->users_count, 0);
686         for (i = 0; i < KVM_NR_BUSES; i++)
687                 kfree(kvm_get_bus(kvm, i));
688         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
689                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
690         kvm_arch_free_vm(kvm);
691         mmdrop(current->mm);
692         return ERR_PTR(r);
693 }
694
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697         struct kvm_device *dev, *tmp;
698
699         /*
700          * We do not need to take the kvm->lock here, because nobody else
701          * has a reference to the struct kvm at this point and therefore
702          * cannot access the devices list anyhow.
703          */
704         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
705                 list_del(&dev->vm_node);
706                 dev->ops->destroy(dev);
707         }
708 }
709
710 static void kvm_destroy_vm(struct kvm *kvm)
711 {
712         int i;
713         struct mm_struct *mm = kvm->mm;
714
715         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
716         kvm_destroy_vm_debugfs(kvm);
717         kvm_arch_sync_events(kvm);
718         spin_lock(&kvm_lock);
719         list_del(&kvm->vm_list);
720         spin_unlock(&kvm_lock);
721         kvm_free_irq_routing(kvm);
722         for (i = 0; i < KVM_NR_BUSES; i++) {
723                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
724
725                 if (bus)
726                         kvm_io_bus_destroy(bus);
727                 kvm->buses[i] = NULL;
728         }
729         kvm_coalesced_mmio_free(kvm);
730 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
731         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
732 #else
733         kvm_arch_flush_shadow_all(kvm);
734 #endif
735         kvm_arch_destroy_vm(kvm);
736         kvm_destroy_devices(kvm);
737         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
738                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
739         cleanup_srcu_struct(&kvm->irq_srcu);
740         cleanup_srcu_struct(&kvm->srcu);
741         kvm_arch_free_vm(kvm);
742         preempt_notifier_dec();
743         hardware_disable_all();
744         mmdrop(mm);
745 }
746
747 void kvm_get_kvm(struct kvm *kvm)
748 {
749         refcount_inc(&kvm->users_count);
750 }
751 EXPORT_SYMBOL_GPL(kvm_get_kvm);
752
753 void kvm_put_kvm(struct kvm *kvm)
754 {
755         if (refcount_dec_and_test(&kvm->users_count))
756                 kvm_destroy_vm(kvm);
757 }
758 EXPORT_SYMBOL_GPL(kvm_put_kvm);
759
760
761 static int kvm_vm_release(struct inode *inode, struct file *filp)
762 {
763         struct kvm *kvm = filp->private_data;
764
765         kvm_irqfd_release(kvm);
766
767         kvm_put_kvm(kvm);
768         return 0;
769 }
770
771 /*
772  * Allocation size is twice as large as the actual dirty bitmap size.
773  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
774  */
775 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
776 {
777         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
778
779         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
780         if (!memslot->dirty_bitmap)
781                 return -ENOMEM;
782
783         return 0;
784 }
785
786 /*
787  * Insert memslot and re-sort memslots based on their GFN,
788  * so binary search could be used to lookup GFN.
789  * Sorting algorithm takes advantage of having initially
790  * sorted array and known changed memslot position.
791  */
792 static void update_memslots(struct kvm_memslots *slots,
793                             struct kvm_memory_slot *new)
794 {
795         int id = new->id;
796         int i = slots->id_to_index[id];
797         struct kvm_memory_slot *mslots = slots->memslots;
798
799         WARN_ON(mslots[i].id != id);
800         if (!new->npages) {
801                 WARN_ON(!mslots[i].npages);
802                 if (mslots[i].npages)
803                         slots->used_slots--;
804         } else {
805                 if (!mslots[i].npages)
806                         slots->used_slots++;
807         }
808
809         while (i < KVM_MEM_SLOTS_NUM - 1 &&
810                new->base_gfn <= mslots[i + 1].base_gfn) {
811                 if (!mslots[i + 1].npages)
812                         break;
813                 mslots[i] = mslots[i + 1];
814                 slots->id_to_index[mslots[i].id] = i;
815                 i++;
816         }
817
818         /*
819          * The ">=" is needed when creating a slot with base_gfn == 0,
820          * so that it moves before all those with base_gfn == npages == 0.
821          *
822          * On the other hand, if new->npages is zero, the above loop has
823          * already left i pointing to the beginning of the empty part of
824          * mslots, and the ">=" would move the hole backwards in this
825          * case---which is wrong.  So skip the loop when deleting a slot.
826          */
827         if (new->npages) {
828                 while (i > 0 &&
829                        new->base_gfn >= mslots[i - 1].base_gfn) {
830                         mslots[i] = mslots[i - 1];
831                         slots->id_to_index[mslots[i].id] = i;
832                         i--;
833                 }
834         } else
835                 WARN_ON_ONCE(i != slots->used_slots);
836
837         mslots[i] = *new;
838         slots->id_to_index[mslots[i].id] = i;
839 }
840
841 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
842 {
843         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
844
845 #ifdef __KVM_HAVE_READONLY_MEM
846         valid_flags |= KVM_MEM_READONLY;
847 #endif
848
849         if (mem->flags & ~valid_flags)
850                 return -EINVAL;
851
852         return 0;
853 }
854
855 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
856                 int as_id, struct kvm_memslots *slots)
857 {
858         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
859
860         /*
861          * Set the low bit in the generation, which disables SPTE caching
862          * until the end of synchronize_srcu_expedited.
863          */
864         WARN_ON(old_memslots->generation & 1);
865         slots->generation = old_memslots->generation + 1;
866
867         rcu_assign_pointer(kvm->memslots[as_id], slots);
868         synchronize_srcu_expedited(&kvm->srcu);
869
870         /*
871          * Increment the new memslot generation a second time. This prevents
872          * vm exits that race with memslot updates from caching a memslot
873          * generation that will (potentially) be valid forever.
874          *
875          * Generations must be unique even across address spaces.  We do not need
876          * a global counter for that, instead the generation space is evenly split
877          * across address spaces.  For example, with two address spaces, address
878          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
879          * use generations 2, 6, 10, 14, ...
880          */
881         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
882
883         kvm_arch_memslots_updated(kvm, slots);
884
885         return old_memslots;
886 }
887
888 /*
889  * Allocate some memory and give it an address in the guest physical address
890  * space.
891  *
892  * Discontiguous memory is allowed, mostly for framebuffers.
893  *
894  * Must be called holding kvm->slots_lock for write.
895  */
896 int __kvm_set_memory_region(struct kvm *kvm,
897                             const struct kvm_userspace_memory_region *mem)
898 {
899         int r;
900         gfn_t base_gfn;
901         unsigned long npages;
902         struct kvm_memory_slot *slot;
903         struct kvm_memory_slot old, new;
904         struct kvm_memslots *slots = NULL, *old_memslots;
905         int as_id, id;
906         enum kvm_mr_change change;
907
908         r = check_memory_region_flags(mem);
909         if (r)
910                 goto out;
911
912         r = -EINVAL;
913         as_id = mem->slot >> 16;
914         id = (u16)mem->slot;
915
916         /* General sanity checks */
917         if (mem->memory_size & (PAGE_SIZE - 1))
918                 goto out;
919         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
920                 goto out;
921         /* We can read the guest memory with __xxx_user() later on. */
922         if ((id < KVM_USER_MEM_SLOTS) &&
923             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
924              !access_ok(VERIFY_WRITE,
925                         (void __user *)(unsigned long)mem->userspace_addr,
926                         mem->memory_size)))
927                 goto out;
928         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
929                 goto out;
930         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
931                 goto out;
932
933         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
934         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
935         npages = mem->memory_size >> PAGE_SHIFT;
936
937         if (npages > KVM_MEM_MAX_NR_PAGES)
938                 goto out;
939
940         new = old = *slot;
941
942         new.id = id;
943         new.base_gfn = base_gfn;
944         new.npages = npages;
945         new.flags = mem->flags;
946
947         if (npages) {
948                 if (!old.npages)
949                         change = KVM_MR_CREATE;
950                 else { /* Modify an existing slot. */
951                         if ((mem->userspace_addr != old.userspace_addr) ||
952                             (npages != old.npages) ||
953                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
954                                 goto out;
955
956                         if (base_gfn != old.base_gfn)
957                                 change = KVM_MR_MOVE;
958                         else if (new.flags != old.flags)
959                                 change = KVM_MR_FLAGS_ONLY;
960                         else { /* Nothing to change. */
961                                 r = 0;
962                                 goto out;
963                         }
964                 }
965         } else {
966                 if (!old.npages)
967                         goto out;
968
969                 change = KVM_MR_DELETE;
970                 new.base_gfn = 0;
971                 new.flags = 0;
972         }
973
974         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
975                 /* Check for overlaps */
976                 r = -EEXIST;
977                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
978                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
979                             (slot->id == id))
980                                 continue;
981                         if (!((base_gfn + npages <= slot->base_gfn) ||
982                               (base_gfn >= slot->base_gfn + slot->npages)))
983                                 goto out;
984                 }
985         }
986
987         /* Free page dirty bitmap if unneeded */
988         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
989                 new.dirty_bitmap = NULL;
990
991         r = -ENOMEM;
992         if (change == KVM_MR_CREATE) {
993                 new.userspace_addr = mem->userspace_addr;
994
995                 if (kvm_arch_create_memslot(kvm, &new, npages))
996                         goto out_free;
997         }
998
999         /* Allocate page dirty bitmap if needed */
1000         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1001                 if (kvm_create_dirty_bitmap(&new) < 0)
1002                         goto out_free;
1003         }
1004
1005         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1006         if (!slots)
1007                 goto out_free;
1008         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1009
1010         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1011                 slot = id_to_memslot(slots, id);
1012                 slot->flags |= KVM_MEMSLOT_INVALID;
1013
1014                 old_memslots = install_new_memslots(kvm, as_id, slots);
1015
1016                 /* From this point no new shadow pages pointing to a deleted,
1017                  * or moved, memslot will be created.
1018                  *
1019                  * validation of sp->gfn happens in:
1020                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1021                  *      - kvm_is_visible_gfn (mmu_check_roots)
1022                  */
1023                 kvm_arch_flush_shadow_memslot(kvm, slot);
1024
1025                 /*
1026                  * We can re-use the old_memslots from above, the only difference
1027                  * from the currently installed memslots is the invalid flag.  This
1028                  * will get overwritten by update_memslots anyway.
1029                  */
1030                 slots = old_memslots;
1031         }
1032
1033         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1034         if (r)
1035                 goto out_slots;
1036
1037         /* actual memory is freed via old in kvm_free_memslot below */
1038         if (change == KVM_MR_DELETE) {
1039                 new.dirty_bitmap = NULL;
1040                 memset(&new.arch, 0, sizeof(new.arch));
1041         }
1042
1043         update_memslots(slots, &new);
1044         old_memslots = install_new_memslots(kvm, as_id, slots);
1045
1046         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1047
1048         kvm_free_memslot(kvm, &old, &new);
1049         kvfree(old_memslots);
1050         return 0;
1051
1052 out_slots:
1053         kvfree(slots);
1054 out_free:
1055         kvm_free_memslot(kvm, &new, &old);
1056 out:
1057         return r;
1058 }
1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1060
1061 int kvm_set_memory_region(struct kvm *kvm,
1062                           const struct kvm_userspace_memory_region *mem)
1063 {
1064         int r;
1065
1066         mutex_lock(&kvm->slots_lock);
1067         r = __kvm_set_memory_region(kvm, mem);
1068         mutex_unlock(&kvm->slots_lock);
1069         return r;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1072
1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1074                                           struct kvm_userspace_memory_region *mem)
1075 {
1076         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1077                 return -EINVAL;
1078
1079         return kvm_set_memory_region(kvm, mem);
1080 }
1081
1082 int kvm_get_dirty_log(struct kvm *kvm,
1083                         struct kvm_dirty_log *log, int *is_dirty)
1084 {
1085         struct kvm_memslots *slots;
1086         struct kvm_memory_slot *memslot;
1087         int i, as_id, id;
1088         unsigned long n;
1089         unsigned long any = 0;
1090
1091         as_id = log->slot >> 16;
1092         id = (u16)log->slot;
1093         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1094                 return -EINVAL;
1095
1096         slots = __kvm_memslots(kvm, as_id);
1097         memslot = id_to_memslot(slots, id);
1098         if (!memslot->dirty_bitmap)
1099                 return -ENOENT;
1100
1101         n = kvm_dirty_bitmap_bytes(memslot);
1102
1103         for (i = 0; !any && i < n/sizeof(long); ++i)
1104                 any = memslot->dirty_bitmap[i];
1105
1106         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1107                 return -EFAULT;
1108
1109         if (any)
1110                 *is_dirty = 1;
1111         return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1114
1115 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1116 /**
1117  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1118  *      are dirty write protect them for next write.
1119  * @kvm:        pointer to kvm instance
1120  * @log:        slot id and address to which we copy the log
1121  * @is_dirty:   flag set if any page is dirty
1122  *
1123  * We need to keep it in mind that VCPU threads can write to the bitmap
1124  * concurrently. So, to avoid losing track of dirty pages we keep the
1125  * following order:
1126  *
1127  *    1. Take a snapshot of the bit and clear it if needed.
1128  *    2. Write protect the corresponding page.
1129  *    3. Copy the snapshot to the userspace.
1130  *    4. Upon return caller flushes TLB's if needed.
1131  *
1132  * Between 2 and 4, the guest may write to the page using the remaining TLB
1133  * entry.  This is not a problem because the page is reported dirty using
1134  * the snapshot taken before and step 4 ensures that writes done after
1135  * exiting to userspace will be logged for the next call.
1136  *
1137  */
1138 int kvm_get_dirty_log_protect(struct kvm *kvm,
1139                         struct kvm_dirty_log *log, bool *is_dirty)
1140 {
1141         struct kvm_memslots *slots;
1142         struct kvm_memory_slot *memslot;
1143         int i, as_id, id;
1144         unsigned long n;
1145         unsigned long *dirty_bitmap;
1146         unsigned long *dirty_bitmap_buffer;
1147
1148         as_id = log->slot >> 16;
1149         id = (u16)log->slot;
1150         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1151                 return -EINVAL;
1152
1153         slots = __kvm_memslots(kvm, as_id);
1154         memslot = id_to_memslot(slots, id);
1155
1156         dirty_bitmap = memslot->dirty_bitmap;
1157         if (!dirty_bitmap)
1158                 return -ENOENT;
1159
1160         n = kvm_dirty_bitmap_bytes(memslot);
1161
1162         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1163         memset(dirty_bitmap_buffer, 0, n);
1164
1165         spin_lock(&kvm->mmu_lock);
1166         *is_dirty = false;
1167         for (i = 0; i < n / sizeof(long); i++) {
1168                 unsigned long mask;
1169                 gfn_t offset;
1170
1171                 if (!dirty_bitmap[i])
1172                         continue;
1173
1174                 *is_dirty = true;
1175
1176                 mask = xchg(&dirty_bitmap[i], 0);
1177                 dirty_bitmap_buffer[i] = mask;
1178
1179                 if (mask) {
1180                         offset = i * BITS_PER_LONG;
1181                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1182                                                                 offset, mask);
1183                 }
1184         }
1185
1186         spin_unlock(&kvm->mmu_lock);
1187         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1188                 return -EFAULT;
1189         return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1192 #endif
1193
1194 bool kvm_largepages_enabled(void)
1195 {
1196         return largepages_enabled;
1197 }
1198
1199 void kvm_disable_largepages(void)
1200 {
1201         largepages_enabled = false;
1202 }
1203 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1204
1205 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1206 {
1207         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1208 }
1209 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1210
1211 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1212 {
1213         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1214 }
1215
1216 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1217 {
1218         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1219
1220         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1221               memslot->flags & KVM_MEMSLOT_INVALID)
1222                 return false;
1223
1224         return true;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1227
1228 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1229 {
1230         struct vm_area_struct *vma;
1231         unsigned long addr, size;
1232
1233         size = PAGE_SIZE;
1234
1235         addr = gfn_to_hva(kvm, gfn);
1236         if (kvm_is_error_hva(addr))
1237                 return PAGE_SIZE;
1238
1239         down_read(&current->mm->mmap_sem);
1240         vma = find_vma(current->mm, addr);
1241         if (!vma)
1242                 goto out;
1243
1244         size = vma_kernel_pagesize(vma);
1245
1246 out:
1247         up_read(&current->mm->mmap_sem);
1248
1249         return size;
1250 }
1251
1252 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1253 {
1254         return slot->flags & KVM_MEM_READONLY;
1255 }
1256
1257 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1258                                        gfn_t *nr_pages, bool write)
1259 {
1260         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1261                 return KVM_HVA_ERR_BAD;
1262
1263         if (memslot_is_readonly(slot) && write)
1264                 return KVM_HVA_ERR_RO_BAD;
1265
1266         if (nr_pages)
1267                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1268
1269         return __gfn_to_hva_memslot(slot, gfn);
1270 }
1271
1272 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1273                                      gfn_t *nr_pages)
1274 {
1275         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1276 }
1277
1278 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1279                                         gfn_t gfn)
1280 {
1281         return gfn_to_hva_many(slot, gfn, NULL);
1282 }
1283 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1284
1285 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1286 {
1287         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_hva);
1290
1291 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1292 {
1293         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1296
1297 /*
1298  * If writable is set to false, the hva returned by this function is only
1299  * allowed to be read.
1300  */
1301 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1302                                       gfn_t gfn, bool *writable)
1303 {
1304         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1305
1306         if (!kvm_is_error_hva(hva) && writable)
1307                 *writable = !memslot_is_readonly(slot);
1308
1309         return hva;
1310 }
1311
1312 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1313 {
1314         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1315
1316         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1317 }
1318
1319 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1320 {
1321         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1322
1323         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1324 }
1325
1326 static int get_user_page_nowait(unsigned long start, int write,
1327                 struct page **page)
1328 {
1329         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1330
1331         if (write)
1332                 flags |= FOLL_WRITE;
1333
1334         return get_user_pages(start, 1, flags, page, NULL);
1335 }
1336
1337 static inline int check_user_page_hwpoison(unsigned long addr)
1338 {
1339         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1340
1341         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1342         return rc == -EHWPOISON;
1343 }
1344
1345 /*
1346  * The atomic path to get the writable pfn which will be stored in @pfn,
1347  * true indicates success, otherwise false is returned.
1348  */
1349 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1350                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1351 {
1352         struct page *page[1];
1353         int npages;
1354
1355         if (!(async || atomic))
1356                 return false;
1357
1358         /*
1359          * Fast pin a writable pfn only if it is a write fault request
1360          * or the caller allows to map a writable pfn for a read fault
1361          * request.
1362          */
1363         if (!(write_fault || writable))
1364                 return false;
1365
1366         npages = __get_user_pages_fast(addr, 1, 1, page);
1367         if (npages == 1) {
1368                 *pfn = page_to_pfn(page[0]);
1369
1370                 if (writable)
1371                         *writable = true;
1372                 return true;
1373         }
1374
1375         return false;
1376 }
1377
1378 /*
1379  * The slow path to get the pfn of the specified host virtual address,
1380  * 1 indicates success, -errno is returned if error is detected.
1381  */
1382 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1383                            bool *writable, kvm_pfn_t *pfn)
1384 {
1385         struct page *page[1];
1386         int npages = 0;
1387
1388         might_sleep();
1389
1390         if (writable)
1391                 *writable = write_fault;
1392
1393         if (async) {
1394                 down_read(&current->mm->mmap_sem);
1395                 npages = get_user_page_nowait(addr, write_fault, page);
1396                 up_read(&current->mm->mmap_sem);
1397         } else {
1398                 unsigned int flags = FOLL_HWPOISON;
1399
1400                 if (write_fault)
1401                         flags |= FOLL_WRITE;
1402
1403                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1404         }
1405         if (npages != 1)
1406                 return npages;
1407
1408         /* map read fault as writable if possible */
1409         if (unlikely(!write_fault) && writable) {
1410                 struct page *wpage[1];
1411
1412                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1413                 if (npages == 1) {
1414                         *writable = true;
1415                         put_page(page[0]);
1416                         page[0] = wpage[0];
1417                 }
1418
1419                 npages = 1;
1420         }
1421         *pfn = page_to_pfn(page[0]);
1422         return npages;
1423 }
1424
1425 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1426 {
1427         if (unlikely(!(vma->vm_flags & VM_READ)))
1428                 return false;
1429
1430         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1431                 return false;
1432
1433         return true;
1434 }
1435
1436 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1437                                unsigned long addr, bool *async,
1438                                bool write_fault, kvm_pfn_t *p_pfn)
1439 {
1440         unsigned long pfn;
1441         int r;
1442
1443         r = follow_pfn(vma, addr, &pfn);
1444         if (r) {
1445                 /*
1446                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1447                  * not call the fault handler, so do it here.
1448                  */
1449                 bool unlocked = false;
1450                 r = fixup_user_fault(current, current->mm, addr,
1451                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1452                                      &unlocked);
1453                 if (unlocked)
1454                         return -EAGAIN;
1455                 if (r)
1456                         return r;
1457
1458                 r = follow_pfn(vma, addr, &pfn);
1459                 if (r)
1460                         return r;
1461
1462         }
1463
1464
1465         /*
1466          * Get a reference here because callers of *hva_to_pfn* and
1467          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1468          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1469          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1470          * simply do nothing for reserved pfns.
1471          *
1472          * Whoever called remap_pfn_range is also going to call e.g.
1473          * unmap_mapping_range before the underlying pages are freed,
1474          * causing a call to our MMU notifier.
1475          */ 
1476         kvm_get_pfn(pfn);
1477
1478         *p_pfn = pfn;
1479         return 0;
1480 }
1481
1482 /*
1483  * Pin guest page in memory and return its pfn.
1484  * @addr: host virtual address which maps memory to the guest
1485  * @atomic: whether this function can sleep
1486  * @async: whether this function need to wait IO complete if the
1487  *         host page is not in the memory
1488  * @write_fault: whether we should get a writable host page
1489  * @writable: whether it allows to map a writable host page for !@write_fault
1490  *
1491  * The function will map a writable host page for these two cases:
1492  * 1): @write_fault = true
1493  * 2): @write_fault = false && @writable, @writable will tell the caller
1494  *     whether the mapping is writable.
1495  */
1496 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1497                         bool write_fault, bool *writable)
1498 {
1499         struct vm_area_struct *vma;
1500         kvm_pfn_t pfn = 0;
1501         int npages, r;
1502
1503         /* we can do it either atomically or asynchronously, not both */
1504         BUG_ON(atomic && async);
1505
1506         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1507                 return pfn;
1508
1509         if (atomic)
1510                 return KVM_PFN_ERR_FAULT;
1511
1512         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1513         if (npages == 1)
1514                 return pfn;
1515
1516         down_read(&current->mm->mmap_sem);
1517         if (npages == -EHWPOISON ||
1518               (!async && check_user_page_hwpoison(addr))) {
1519                 pfn = KVM_PFN_ERR_HWPOISON;
1520                 goto exit;
1521         }
1522
1523 retry:
1524         vma = find_vma_intersection(current->mm, addr, addr + 1);
1525
1526         if (vma == NULL)
1527                 pfn = KVM_PFN_ERR_FAULT;
1528         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1529                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1530                 if (r == -EAGAIN)
1531                         goto retry;
1532                 if (r < 0)
1533                         pfn = KVM_PFN_ERR_FAULT;
1534         } else {
1535                 if (async && vma_is_valid(vma, write_fault))
1536                         *async = true;
1537                 pfn = KVM_PFN_ERR_FAULT;
1538         }
1539 exit:
1540         up_read(&current->mm->mmap_sem);
1541         return pfn;
1542 }
1543
1544 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1545                                bool atomic, bool *async, bool write_fault,
1546                                bool *writable)
1547 {
1548         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1549
1550         if (addr == KVM_HVA_ERR_RO_BAD) {
1551                 if (writable)
1552                         *writable = false;
1553                 return KVM_PFN_ERR_RO_FAULT;
1554         }
1555
1556         if (kvm_is_error_hva(addr)) {
1557                 if (writable)
1558                         *writable = false;
1559                 return KVM_PFN_NOSLOT;
1560         }
1561
1562         /* Do not map writable pfn in the readonly memslot. */
1563         if (writable && memslot_is_readonly(slot)) {
1564                 *writable = false;
1565                 writable = NULL;
1566         }
1567
1568         return hva_to_pfn(addr, atomic, async, write_fault,
1569                           writable);
1570 }
1571 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1572
1573 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1574                       bool *writable)
1575 {
1576         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1577                                     write_fault, writable);
1578 }
1579 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1580
1581 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1582 {
1583         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1584 }
1585 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1586
1587 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1588 {
1589         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1590 }
1591 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1592
1593 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1594 {
1595         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1596 }
1597 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1598
1599 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1600 {
1601         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1602 }
1603 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1604
1605 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1606 {
1607         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1610
1611 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1612 {
1613         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1614 }
1615 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1616
1617 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1618                             struct page **pages, int nr_pages)
1619 {
1620         unsigned long addr;
1621         gfn_t entry = 0;
1622
1623         addr = gfn_to_hva_many(slot, gfn, &entry);
1624         if (kvm_is_error_hva(addr))
1625                 return -1;
1626
1627         if (entry < nr_pages)
1628                 return 0;
1629
1630         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1631 }
1632 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1633
1634 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1635 {
1636         if (is_error_noslot_pfn(pfn))
1637                 return KVM_ERR_PTR_BAD_PAGE;
1638
1639         if (kvm_is_reserved_pfn(pfn)) {
1640                 WARN_ON(1);
1641                 return KVM_ERR_PTR_BAD_PAGE;
1642         }
1643
1644         return pfn_to_page(pfn);
1645 }
1646
1647 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1648 {
1649         kvm_pfn_t pfn;
1650
1651         pfn = gfn_to_pfn(kvm, gfn);
1652
1653         return kvm_pfn_to_page(pfn);
1654 }
1655 EXPORT_SYMBOL_GPL(gfn_to_page);
1656
1657 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1658 {
1659         kvm_pfn_t pfn;
1660
1661         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1662
1663         return kvm_pfn_to_page(pfn);
1664 }
1665 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1666
1667 void kvm_release_page_clean(struct page *page)
1668 {
1669         WARN_ON(is_error_page(page));
1670
1671         kvm_release_pfn_clean(page_to_pfn(page));
1672 }
1673 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1674
1675 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1676 {
1677         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1678                 put_page(pfn_to_page(pfn));
1679 }
1680 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1681
1682 void kvm_release_page_dirty(struct page *page)
1683 {
1684         WARN_ON(is_error_page(page));
1685
1686         kvm_release_pfn_dirty(page_to_pfn(page));
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1689
1690 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1691 {
1692         kvm_set_pfn_dirty(pfn);
1693         kvm_release_pfn_clean(pfn);
1694 }
1695
1696 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1697 {
1698         if (!kvm_is_reserved_pfn(pfn)) {
1699                 struct page *page = pfn_to_page(pfn);
1700
1701                 if (!PageReserved(page))
1702                         SetPageDirty(page);
1703         }
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1706
1707 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1708 {
1709         if (!kvm_is_reserved_pfn(pfn))
1710                 mark_page_accessed(pfn_to_page(pfn));
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1713
1714 void kvm_get_pfn(kvm_pfn_t pfn)
1715 {
1716         if (!kvm_is_reserved_pfn(pfn))
1717                 get_page(pfn_to_page(pfn));
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1720
1721 static int next_segment(unsigned long len, int offset)
1722 {
1723         if (len > PAGE_SIZE - offset)
1724                 return PAGE_SIZE - offset;
1725         else
1726                 return len;
1727 }
1728
1729 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1730                                  void *data, int offset, int len)
1731 {
1732         int r;
1733         unsigned long addr;
1734
1735         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1736         if (kvm_is_error_hva(addr))
1737                 return -EFAULT;
1738         r = __copy_from_user(data, (void __user *)addr + offset, len);
1739         if (r)
1740                 return -EFAULT;
1741         return 0;
1742 }
1743
1744 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1745                         int len)
1746 {
1747         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1748
1749         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1752
1753 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1754                              int offset, int len)
1755 {
1756         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1757
1758         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1761
1762 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1763 {
1764         gfn_t gfn = gpa >> PAGE_SHIFT;
1765         int seg;
1766         int offset = offset_in_page(gpa);
1767         int ret;
1768
1769         while ((seg = next_segment(len, offset)) != 0) {
1770                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1771                 if (ret < 0)
1772                         return ret;
1773                 offset = 0;
1774                 len -= seg;
1775                 data += seg;
1776                 ++gfn;
1777         }
1778         return 0;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_read_guest);
1781
1782 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1783 {
1784         gfn_t gfn = gpa >> PAGE_SHIFT;
1785         int seg;
1786         int offset = offset_in_page(gpa);
1787         int ret;
1788
1789         while ((seg = next_segment(len, offset)) != 0) {
1790                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1791                 if (ret < 0)
1792                         return ret;
1793                 offset = 0;
1794                 len -= seg;
1795                 data += seg;
1796                 ++gfn;
1797         }
1798         return 0;
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1801
1802 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1803                                    void *data, int offset, unsigned long len)
1804 {
1805         int r;
1806         unsigned long addr;
1807
1808         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1809         if (kvm_is_error_hva(addr))
1810                 return -EFAULT;
1811         pagefault_disable();
1812         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1813         pagefault_enable();
1814         if (r)
1815                 return -EFAULT;
1816         return 0;
1817 }
1818
1819 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1820                           unsigned long len)
1821 {
1822         gfn_t gfn = gpa >> PAGE_SHIFT;
1823         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1824         int offset = offset_in_page(gpa);
1825
1826         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1829
1830 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1831                                void *data, unsigned long len)
1832 {
1833         gfn_t gfn = gpa >> PAGE_SHIFT;
1834         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1835         int offset = offset_in_page(gpa);
1836
1837         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1840
1841 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1842                                   const void *data, int offset, int len)
1843 {
1844         int r;
1845         unsigned long addr;
1846
1847         addr = gfn_to_hva_memslot(memslot, gfn);
1848         if (kvm_is_error_hva(addr))
1849                 return -EFAULT;
1850         r = __copy_to_user((void __user *)addr + offset, data, len);
1851         if (r)
1852                 return -EFAULT;
1853         mark_page_dirty_in_slot(memslot, gfn);
1854         return 0;
1855 }
1856
1857 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1858                          const void *data, int offset, int len)
1859 {
1860         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1861
1862         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1865
1866 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1867                               const void *data, int offset, int len)
1868 {
1869         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1870
1871         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1872 }
1873 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1874
1875 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1876                     unsigned long len)
1877 {
1878         gfn_t gfn = gpa >> PAGE_SHIFT;
1879         int seg;
1880         int offset = offset_in_page(gpa);
1881         int ret;
1882
1883         while ((seg = next_segment(len, offset)) != 0) {
1884                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1885                 if (ret < 0)
1886                         return ret;
1887                 offset = 0;
1888                 len -= seg;
1889                 data += seg;
1890                 ++gfn;
1891         }
1892         return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_write_guest);
1895
1896 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1897                          unsigned long len)
1898 {
1899         gfn_t gfn = gpa >> PAGE_SHIFT;
1900         int seg;
1901         int offset = offset_in_page(gpa);
1902         int ret;
1903
1904         while ((seg = next_segment(len, offset)) != 0) {
1905                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1906                 if (ret < 0)
1907                         return ret;
1908                 offset = 0;
1909                 len -= seg;
1910                 data += seg;
1911                 ++gfn;
1912         }
1913         return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1916
1917 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1918                                        struct gfn_to_hva_cache *ghc,
1919                                        gpa_t gpa, unsigned long len)
1920 {
1921         int offset = offset_in_page(gpa);
1922         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1923         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1924         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1925         gfn_t nr_pages_avail;
1926
1927         ghc->gpa = gpa;
1928         ghc->generation = slots->generation;
1929         ghc->len = len;
1930         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1931         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1932         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1933                 ghc->hva += offset;
1934         } else {
1935                 /*
1936                  * If the requested region crosses two memslots, we still
1937                  * verify that the entire region is valid here.
1938                  */
1939                 while (start_gfn <= end_gfn) {
1940                         nr_pages_avail = 0;
1941                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1942                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1943                                                    &nr_pages_avail);
1944                         if (kvm_is_error_hva(ghc->hva))
1945                                 return -EFAULT;
1946                         start_gfn += nr_pages_avail;
1947                 }
1948                 /* Use the slow path for cross page reads and writes. */
1949                 ghc->memslot = NULL;
1950         }
1951         return 0;
1952 }
1953
1954 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1955                               gpa_t gpa, unsigned long len)
1956 {
1957         struct kvm_memslots *slots = kvm_memslots(kvm);
1958         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1959 }
1960 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1961
1962 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1963                            void *data, int offset, unsigned long len)
1964 {
1965         struct kvm_memslots *slots = kvm_memslots(kvm);
1966         int r;
1967         gpa_t gpa = ghc->gpa + offset;
1968
1969         BUG_ON(len + offset > ghc->len);
1970
1971         if (slots->generation != ghc->generation)
1972                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1973
1974         if (unlikely(!ghc->memslot))
1975                 return kvm_write_guest(kvm, gpa, data, len);
1976
1977         if (kvm_is_error_hva(ghc->hva))
1978                 return -EFAULT;
1979
1980         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1981         if (r)
1982                 return -EFAULT;
1983         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1984
1985         return 0;
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1988
1989 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1990                            void *data, unsigned long len)
1991 {
1992         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1995
1996 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1997                            void *data, unsigned long len)
1998 {
1999         struct kvm_memslots *slots = kvm_memslots(kvm);
2000         int r;
2001
2002         BUG_ON(len > ghc->len);
2003
2004         if (slots->generation != ghc->generation)
2005                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2006
2007         if (unlikely(!ghc->memslot))
2008                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2009
2010         if (kvm_is_error_hva(ghc->hva))
2011                 return -EFAULT;
2012
2013         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2014         if (r)
2015                 return -EFAULT;
2016
2017         return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2020
2021 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2022 {
2023         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2024
2025         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2028
2029 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2030 {
2031         gfn_t gfn = gpa >> PAGE_SHIFT;
2032         int seg;
2033         int offset = offset_in_page(gpa);
2034         int ret;
2035
2036         while ((seg = next_segment(len, offset)) != 0) {
2037                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2038                 if (ret < 0)
2039                         return ret;
2040                 offset = 0;
2041                 len -= seg;
2042                 ++gfn;
2043         }
2044         return 0;
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2047
2048 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2049                                     gfn_t gfn)
2050 {
2051         if (memslot && memslot->dirty_bitmap) {
2052                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2053
2054                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2055         }
2056 }
2057
2058 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2059 {
2060         struct kvm_memory_slot *memslot;
2061
2062         memslot = gfn_to_memslot(kvm, gfn);
2063         mark_page_dirty_in_slot(memslot, gfn);
2064 }
2065 EXPORT_SYMBOL_GPL(mark_page_dirty);
2066
2067 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2068 {
2069         struct kvm_memory_slot *memslot;
2070
2071         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2072         mark_page_dirty_in_slot(memslot, gfn);
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2075
2076 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2077 {
2078         unsigned int old, val, grow;
2079
2080         old = val = vcpu->halt_poll_ns;
2081         grow = READ_ONCE(halt_poll_ns_grow);
2082         /* 10us base */
2083         if (val == 0 && grow)
2084                 val = 10000;
2085         else
2086                 val *= grow;
2087
2088         if (val > halt_poll_ns)
2089                 val = halt_poll_ns;
2090
2091         vcpu->halt_poll_ns = val;
2092         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2093 }
2094
2095 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2096 {
2097         unsigned int old, val, shrink;
2098
2099         old = val = vcpu->halt_poll_ns;
2100         shrink = READ_ONCE(halt_poll_ns_shrink);
2101         if (shrink == 0)
2102                 val = 0;
2103         else
2104                 val /= shrink;
2105
2106         vcpu->halt_poll_ns = val;
2107         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2108 }
2109
2110 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2111 {
2112         if (kvm_arch_vcpu_runnable(vcpu)) {
2113                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2114                 return -EINTR;
2115         }
2116         if (kvm_cpu_has_pending_timer(vcpu))
2117                 return -EINTR;
2118         if (signal_pending(current))
2119                 return -EINTR;
2120
2121         return 0;
2122 }
2123
2124 /*
2125  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2126  */
2127 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2128 {
2129         ktime_t start, cur;
2130         DECLARE_SWAITQUEUE(wait);
2131         bool waited = false;
2132         u64 block_ns;
2133
2134         start = cur = ktime_get();
2135         if (vcpu->halt_poll_ns) {
2136                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2137
2138                 ++vcpu->stat.halt_attempted_poll;
2139                 do {
2140                         /*
2141                          * This sets KVM_REQ_UNHALT if an interrupt
2142                          * arrives.
2143                          */
2144                         if (kvm_vcpu_check_block(vcpu) < 0) {
2145                                 ++vcpu->stat.halt_successful_poll;
2146                                 if (!vcpu_valid_wakeup(vcpu))
2147                                         ++vcpu->stat.halt_poll_invalid;
2148                                 goto out;
2149                         }
2150                         cur = ktime_get();
2151                 } while (single_task_running() && ktime_before(cur, stop));
2152         }
2153
2154         kvm_arch_vcpu_blocking(vcpu);
2155
2156         for (;;) {
2157                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2158
2159                 if (kvm_vcpu_check_block(vcpu) < 0)
2160                         break;
2161
2162                 waited = true;
2163                 schedule();
2164         }
2165
2166         finish_swait(&vcpu->wq, &wait);
2167         cur = ktime_get();
2168
2169         kvm_arch_vcpu_unblocking(vcpu);
2170 out:
2171         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2172
2173         if (!vcpu_valid_wakeup(vcpu))
2174                 shrink_halt_poll_ns(vcpu);
2175         else if (halt_poll_ns) {
2176                 if (block_ns <= vcpu->halt_poll_ns)
2177                         ;
2178                 /* we had a long block, shrink polling */
2179                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2180                         shrink_halt_poll_ns(vcpu);
2181                 /* we had a short halt and our poll time is too small */
2182                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2183                         block_ns < halt_poll_ns)
2184                         grow_halt_poll_ns(vcpu);
2185         } else
2186                 vcpu->halt_poll_ns = 0;
2187
2188         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2189         kvm_arch_vcpu_block_finish(vcpu);
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2192
2193 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2194 {
2195         struct swait_queue_head *wqp;
2196
2197         wqp = kvm_arch_vcpu_wq(vcpu);
2198         if (swq_has_sleeper(wqp)) {
2199                 swake_up(wqp);
2200                 ++vcpu->stat.halt_wakeup;
2201                 return true;
2202         }
2203
2204         return false;
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2207
2208 #ifndef CONFIG_S390
2209 /*
2210  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2211  */
2212 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2213 {
2214         int me;
2215         int cpu = vcpu->cpu;
2216
2217         if (kvm_vcpu_wake_up(vcpu))
2218                 return;
2219
2220         me = get_cpu();
2221         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2222                 if (kvm_arch_vcpu_should_kick(vcpu))
2223                         smp_send_reschedule(cpu);
2224         put_cpu();
2225 }
2226 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2227 #endif /* !CONFIG_S390 */
2228
2229 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2230 {
2231         struct pid *pid;
2232         struct task_struct *task = NULL;
2233         int ret = 0;
2234
2235         rcu_read_lock();
2236         pid = rcu_dereference(target->pid);
2237         if (pid)
2238                 task = get_pid_task(pid, PIDTYPE_PID);
2239         rcu_read_unlock();
2240         if (!task)
2241                 return ret;
2242         ret = yield_to(task, 1);
2243         put_task_struct(task);
2244
2245         return ret;
2246 }
2247 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2248
2249 /*
2250  * Helper that checks whether a VCPU is eligible for directed yield.
2251  * Most eligible candidate to yield is decided by following heuristics:
2252  *
2253  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2254  *  (preempted lock holder), indicated by @in_spin_loop.
2255  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2256  *
2257  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2258  *  chance last time (mostly it has become eligible now since we have probably
2259  *  yielded to lockholder in last iteration. This is done by toggling
2260  *  @dy_eligible each time a VCPU checked for eligibility.)
2261  *
2262  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2263  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2264  *  burning. Giving priority for a potential lock-holder increases lock
2265  *  progress.
2266  *
2267  *  Since algorithm is based on heuristics, accessing another VCPU data without
2268  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2269  *  and continue with next VCPU and so on.
2270  */
2271 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2272 {
2273 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2274         bool eligible;
2275
2276         eligible = !vcpu->spin_loop.in_spin_loop ||
2277                     vcpu->spin_loop.dy_eligible;
2278
2279         if (vcpu->spin_loop.in_spin_loop)
2280                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2281
2282         return eligible;
2283 #else
2284         return true;
2285 #endif
2286 }
2287
2288 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2289 {
2290         struct kvm *kvm = me->kvm;
2291         struct kvm_vcpu *vcpu;
2292         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2293         int yielded = 0;
2294         int try = 3;
2295         int pass;
2296         int i;
2297
2298         kvm_vcpu_set_in_spin_loop(me, true);
2299         /*
2300          * We boost the priority of a VCPU that is runnable but not
2301          * currently running, because it got preempted by something
2302          * else and called schedule in __vcpu_run.  Hopefully that
2303          * VCPU is holding the lock that we need and will release it.
2304          * We approximate round-robin by starting at the last boosted VCPU.
2305          */
2306         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2307                 kvm_for_each_vcpu(i, vcpu, kvm) {
2308                         if (!pass && i <= last_boosted_vcpu) {
2309                                 i = last_boosted_vcpu;
2310                                 continue;
2311                         } else if (pass && i > last_boosted_vcpu)
2312                                 break;
2313                         if (!ACCESS_ONCE(vcpu->preempted))
2314                                 continue;
2315                         if (vcpu == me)
2316                                 continue;
2317                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2318                                 continue;
2319                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2320                                 continue;
2321                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2322                                 continue;
2323
2324                         yielded = kvm_vcpu_yield_to(vcpu);
2325                         if (yielded > 0) {
2326                                 kvm->last_boosted_vcpu = i;
2327                                 break;
2328                         } else if (yielded < 0) {
2329                                 try--;
2330                                 if (!try)
2331                                         break;
2332                         }
2333                 }
2334         }
2335         kvm_vcpu_set_in_spin_loop(me, false);
2336
2337         /* Ensure vcpu is not eligible during next spinloop */
2338         kvm_vcpu_set_dy_eligible(me, false);
2339 }
2340 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2341
2342 static int kvm_vcpu_fault(struct vm_fault *vmf)
2343 {
2344         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2345         struct page *page;
2346
2347         if (vmf->pgoff == 0)
2348                 page = virt_to_page(vcpu->run);
2349 #ifdef CONFIG_X86
2350         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2351                 page = virt_to_page(vcpu->arch.pio_data);
2352 #endif
2353 #ifdef CONFIG_KVM_MMIO
2354         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2355                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2356 #endif
2357         else
2358                 return kvm_arch_vcpu_fault(vcpu, vmf);
2359         get_page(page);
2360         vmf->page = page;
2361         return 0;
2362 }
2363
2364 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2365         .fault = kvm_vcpu_fault,
2366 };
2367
2368 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2369 {
2370         vma->vm_ops = &kvm_vcpu_vm_ops;
2371         return 0;
2372 }
2373
2374 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2375 {
2376         struct kvm_vcpu *vcpu = filp->private_data;
2377
2378         debugfs_remove_recursive(vcpu->debugfs_dentry);
2379         kvm_put_kvm(vcpu->kvm);
2380         return 0;
2381 }
2382
2383 static struct file_operations kvm_vcpu_fops = {
2384         .release        = kvm_vcpu_release,
2385         .unlocked_ioctl = kvm_vcpu_ioctl,
2386 #ifdef CONFIG_KVM_COMPAT
2387         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2388 #endif
2389         .mmap           = kvm_vcpu_mmap,
2390         .llseek         = noop_llseek,
2391 };
2392
2393 /*
2394  * Allocates an inode for the vcpu.
2395  */
2396 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2397 {
2398         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2399 }
2400
2401 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2402 {
2403         char dir_name[ITOA_MAX_LEN * 2];
2404         int ret;
2405
2406         if (!kvm_arch_has_vcpu_debugfs())
2407                 return 0;
2408
2409         if (!debugfs_initialized())
2410                 return 0;
2411
2412         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2413         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2414                                                                 vcpu->kvm->debugfs_dentry);
2415         if (!vcpu->debugfs_dentry)
2416                 return -ENOMEM;
2417
2418         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2419         if (ret < 0) {
2420                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2421                 return ret;
2422         }
2423
2424         return 0;
2425 }
2426
2427 /*
2428  * Creates some virtual cpus.  Good luck creating more than one.
2429  */
2430 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2431 {
2432         int r;
2433         struct kvm_vcpu *vcpu;
2434
2435         if (id >= KVM_MAX_VCPU_ID)
2436                 return -EINVAL;
2437
2438         mutex_lock(&kvm->lock);
2439         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2440                 mutex_unlock(&kvm->lock);
2441                 return -EINVAL;
2442         }
2443
2444         kvm->created_vcpus++;
2445         mutex_unlock(&kvm->lock);
2446
2447         vcpu = kvm_arch_vcpu_create(kvm, id);
2448         if (IS_ERR(vcpu)) {
2449                 r = PTR_ERR(vcpu);
2450                 goto vcpu_decrement;
2451         }
2452
2453         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2454
2455         r = kvm_arch_vcpu_setup(vcpu);
2456         if (r)
2457                 goto vcpu_destroy;
2458
2459         r = kvm_create_vcpu_debugfs(vcpu);
2460         if (r)
2461                 goto vcpu_destroy;
2462
2463         mutex_lock(&kvm->lock);
2464         if (kvm_get_vcpu_by_id(kvm, id)) {
2465                 r = -EEXIST;
2466                 goto unlock_vcpu_destroy;
2467         }
2468
2469         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2470
2471         /* Now it's all set up, let userspace reach it */
2472         kvm_get_kvm(kvm);
2473         r = create_vcpu_fd(vcpu);
2474         if (r < 0) {
2475                 kvm_put_kvm(kvm);
2476                 goto unlock_vcpu_destroy;
2477         }
2478
2479         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2480
2481         /*
2482          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2483          * before kvm->online_vcpu's incremented value.
2484          */
2485         smp_wmb();
2486         atomic_inc(&kvm->online_vcpus);
2487
2488         mutex_unlock(&kvm->lock);
2489         kvm_arch_vcpu_postcreate(vcpu);
2490         return r;
2491
2492 unlock_vcpu_destroy:
2493         mutex_unlock(&kvm->lock);
2494         debugfs_remove_recursive(vcpu->debugfs_dentry);
2495 vcpu_destroy:
2496         kvm_arch_vcpu_destroy(vcpu);
2497 vcpu_decrement:
2498         mutex_lock(&kvm->lock);
2499         kvm->created_vcpus--;
2500         mutex_unlock(&kvm->lock);
2501         return r;
2502 }
2503
2504 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2505 {
2506         if (sigset) {
2507                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2508                 vcpu->sigset_active = 1;
2509                 vcpu->sigset = *sigset;
2510         } else
2511                 vcpu->sigset_active = 0;
2512         return 0;
2513 }
2514
2515 static long kvm_vcpu_ioctl(struct file *filp,
2516                            unsigned int ioctl, unsigned long arg)
2517 {
2518         struct kvm_vcpu *vcpu = filp->private_data;
2519         void __user *argp = (void __user *)arg;
2520         int r;
2521         struct kvm_fpu *fpu = NULL;
2522         struct kvm_sregs *kvm_sregs = NULL;
2523
2524         if (vcpu->kvm->mm != current->mm)
2525                 return -EIO;
2526
2527         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2528                 return -EINVAL;
2529
2530 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2531         /*
2532          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2533          * so vcpu_load() would break it.
2534          */
2535         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2536                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2537 #endif
2538
2539
2540         r = vcpu_load(vcpu);
2541         if (r)
2542                 return r;
2543         switch (ioctl) {
2544         case KVM_RUN: {
2545                 struct pid *oldpid;
2546                 r = -EINVAL;
2547                 if (arg)
2548                         goto out;
2549                 oldpid = rcu_access_pointer(vcpu->pid);
2550                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2551                         /* The thread running this VCPU changed. */
2552                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2553
2554                         rcu_assign_pointer(vcpu->pid, newpid);
2555                         if (oldpid)
2556                                 synchronize_rcu();
2557                         put_pid(oldpid);
2558                 }
2559                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2560                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2561                 break;
2562         }
2563         case KVM_GET_REGS: {
2564                 struct kvm_regs *kvm_regs;
2565
2566                 r = -ENOMEM;
2567                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2568                 if (!kvm_regs)
2569                         goto out;
2570                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2571                 if (r)
2572                         goto out_free1;
2573                 r = -EFAULT;
2574                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2575                         goto out_free1;
2576                 r = 0;
2577 out_free1:
2578                 kfree(kvm_regs);
2579                 break;
2580         }
2581         case KVM_SET_REGS: {
2582                 struct kvm_regs *kvm_regs;
2583
2584                 r = -ENOMEM;
2585                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2586                 if (IS_ERR(kvm_regs)) {
2587                         r = PTR_ERR(kvm_regs);
2588                         goto out;
2589                 }
2590                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2591                 kfree(kvm_regs);
2592                 break;
2593         }
2594         case KVM_GET_SREGS: {
2595                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2596                 r = -ENOMEM;
2597                 if (!kvm_sregs)
2598                         goto out;
2599                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2600                 if (r)
2601                         goto out;
2602                 r = -EFAULT;
2603                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2604                         goto out;
2605                 r = 0;
2606                 break;
2607         }
2608         case KVM_SET_SREGS: {
2609                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2610                 if (IS_ERR(kvm_sregs)) {
2611                         r = PTR_ERR(kvm_sregs);
2612                         kvm_sregs = NULL;
2613                         goto out;
2614                 }
2615                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2616                 break;
2617         }
2618         case KVM_GET_MP_STATE: {
2619                 struct kvm_mp_state mp_state;
2620
2621                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2622                 if (r)
2623                         goto out;
2624                 r = -EFAULT;
2625                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2626                         goto out;
2627                 r = 0;
2628                 break;
2629         }
2630         case KVM_SET_MP_STATE: {
2631                 struct kvm_mp_state mp_state;
2632
2633                 r = -EFAULT;
2634                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2635                         goto out;
2636                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2637                 break;
2638         }
2639         case KVM_TRANSLATE: {
2640                 struct kvm_translation tr;
2641
2642                 r = -EFAULT;
2643                 if (copy_from_user(&tr, argp, sizeof(tr)))
2644                         goto out;
2645                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2646                 if (r)
2647                         goto out;
2648                 r = -EFAULT;
2649                 if (copy_to_user(argp, &tr, sizeof(tr)))
2650                         goto out;
2651                 r = 0;
2652                 break;
2653         }
2654         case KVM_SET_GUEST_DEBUG: {
2655                 struct kvm_guest_debug dbg;
2656
2657                 r = -EFAULT;
2658                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2659                         goto out;
2660                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2661                 break;
2662         }
2663         case KVM_SET_SIGNAL_MASK: {
2664                 struct kvm_signal_mask __user *sigmask_arg = argp;
2665                 struct kvm_signal_mask kvm_sigmask;
2666                 sigset_t sigset, *p;
2667
2668                 p = NULL;
2669                 if (argp) {
2670                         r = -EFAULT;
2671                         if (copy_from_user(&kvm_sigmask, argp,
2672                                            sizeof(kvm_sigmask)))
2673                                 goto out;
2674                         r = -EINVAL;
2675                         if (kvm_sigmask.len != sizeof(sigset))
2676                                 goto out;
2677                         r = -EFAULT;
2678                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2679                                            sizeof(sigset)))
2680                                 goto out;
2681                         p = &sigset;
2682                 }
2683                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2684                 break;
2685         }
2686         case KVM_GET_FPU: {
2687                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2688                 r = -ENOMEM;
2689                 if (!fpu)
2690                         goto out;
2691                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2692                 if (r)
2693                         goto out;
2694                 r = -EFAULT;
2695                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2696                         goto out;
2697                 r = 0;
2698                 break;
2699         }
2700         case KVM_SET_FPU: {
2701                 fpu = memdup_user(argp, sizeof(*fpu));
2702                 if (IS_ERR(fpu)) {
2703                         r = PTR_ERR(fpu);
2704                         fpu = NULL;
2705                         goto out;
2706                 }
2707                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2708                 break;
2709         }
2710         default:
2711                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2712         }
2713 out:
2714         vcpu_put(vcpu);
2715         kfree(fpu);
2716         kfree(kvm_sregs);
2717         return r;
2718 }
2719
2720 #ifdef CONFIG_KVM_COMPAT
2721 static long kvm_vcpu_compat_ioctl(struct file *filp,
2722                                   unsigned int ioctl, unsigned long arg)
2723 {
2724         struct kvm_vcpu *vcpu = filp->private_data;
2725         void __user *argp = compat_ptr(arg);
2726         int r;
2727
2728         if (vcpu->kvm->mm != current->mm)
2729                 return -EIO;
2730
2731         switch (ioctl) {
2732         case KVM_SET_SIGNAL_MASK: {
2733                 struct kvm_signal_mask __user *sigmask_arg = argp;
2734                 struct kvm_signal_mask kvm_sigmask;
2735                 compat_sigset_t csigset;
2736                 sigset_t sigset;
2737
2738                 if (argp) {
2739                         r = -EFAULT;
2740                         if (copy_from_user(&kvm_sigmask, argp,
2741                                            sizeof(kvm_sigmask)))
2742                                 goto out;
2743                         r = -EINVAL;
2744                         if (kvm_sigmask.len != sizeof(csigset))
2745                                 goto out;
2746                         r = -EFAULT;
2747                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2748                                            sizeof(csigset)))
2749                                 goto out;
2750                         sigset_from_compat(&sigset, &csigset);
2751                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2752                 } else
2753                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2754                 break;
2755         }
2756         default:
2757                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2758         }
2759
2760 out:
2761         return r;
2762 }
2763 #endif
2764
2765 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2766                                  int (*accessor)(struct kvm_device *dev,
2767                                                  struct kvm_device_attr *attr),
2768                                  unsigned long arg)
2769 {
2770         struct kvm_device_attr attr;
2771
2772         if (!accessor)
2773                 return -EPERM;
2774
2775         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2776                 return -EFAULT;
2777
2778         return accessor(dev, &attr);
2779 }
2780
2781 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2782                              unsigned long arg)
2783 {
2784         struct kvm_device *dev = filp->private_data;
2785
2786         switch (ioctl) {
2787         case KVM_SET_DEVICE_ATTR:
2788                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2789         case KVM_GET_DEVICE_ATTR:
2790                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2791         case KVM_HAS_DEVICE_ATTR:
2792                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2793         default:
2794                 if (dev->ops->ioctl)
2795                         return dev->ops->ioctl(dev, ioctl, arg);
2796
2797                 return -ENOTTY;
2798         }
2799 }
2800
2801 static int kvm_device_release(struct inode *inode, struct file *filp)
2802 {
2803         struct kvm_device *dev = filp->private_data;
2804         struct kvm *kvm = dev->kvm;
2805
2806         kvm_put_kvm(kvm);
2807         return 0;
2808 }
2809
2810 static const struct file_operations kvm_device_fops = {
2811         .unlocked_ioctl = kvm_device_ioctl,
2812 #ifdef CONFIG_KVM_COMPAT
2813         .compat_ioctl = kvm_device_ioctl,
2814 #endif
2815         .release = kvm_device_release,
2816 };
2817
2818 struct kvm_device *kvm_device_from_filp(struct file *filp)
2819 {
2820         if (filp->f_op != &kvm_device_fops)
2821                 return NULL;
2822
2823         return filp->private_data;
2824 }
2825
2826 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2827 #ifdef CONFIG_KVM_MPIC
2828         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2829         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2830 #endif
2831 };
2832
2833 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2834 {
2835         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2836                 return -ENOSPC;
2837
2838         if (kvm_device_ops_table[type] != NULL)
2839                 return -EEXIST;
2840
2841         kvm_device_ops_table[type] = ops;
2842         return 0;
2843 }
2844
2845 void kvm_unregister_device_ops(u32 type)
2846 {
2847         if (kvm_device_ops_table[type] != NULL)
2848                 kvm_device_ops_table[type] = NULL;
2849 }
2850
2851 static int kvm_ioctl_create_device(struct kvm *kvm,
2852                                    struct kvm_create_device *cd)
2853 {
2854         struct kvm_device_ops *ops = NULL;
2855         struct kvm_device *dev;
2856         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2857         int ret;
2858
2859         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2860                 return -ENODEV;
2861
2862         ops = kvm_device_ops_table[cd->type];
2863         if (ops == NULL)
2864                 return -ENODEV;
2865
2866         if (test)
2867                 return 0;
2868
2869         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2870         if (!dev)
2871                 return -ENOMEM;
2872
2873         dev->ops = ops;
2874         dev->kvm = kvm;
2875
2876         mutex_lock(&kvm->lock);
2877         ret = ops->create(dev, cd->type);
2878         if (ret < 0) {
2879                 mutex_unlock(&kvm->lock);
2880                 kfree(dev);
2881                 return ret;
2882         }
2883         list_add(&dev->vm_node, &kvm->devices);
2884         mutex_unlock(&kvm->lock);
2885
2886         if (ops->init)
2887                 ops->init(dev);
2888
2889         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2890         if (ret < 0) {
2891                 mutex_lock(&kvm->lock);
2892                 list_del(&dev->vm_node);
2893                 mutex_unlock(&kvm->lock);
2894                 ops->destroy(dev);
2895                 return ret;
2896         }
2897
2898         kvm_get_kvm(kvm);
2899         cd->fd = ret;
2900         return 0;
2901 }
2902
2903 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2904 {
2905         switch (arg) {
2906         case KVM_CAP_USER_MEMORY:
2907         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2908         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2909         case KVM_CAP_INTERNAL_ERROR_DATA:
2910 #ifdef CONFIG_HAVE_KVM_MSI
2911         case KVM_CAP_SIGNAL_MSI:
2912 #endif
2913 #ifdef CONFIG_HAVE_KVM_IRQFD
2914         case KVM_CAP_IRQFD:
2915         case KVM_CAP_IRQFD_RESAMPLE:
2916 #endif
2917         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2918         case KVM_CAP_CHECK_EXTENSION_VM:
2919                 return 1;
2920 #ifdef CONFIG_KVM_MMIO
2921         case KVM_CAP_COALESCED_MMIO:
2922                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2923 #endif
2924 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2925         case KVM_CAP_IRQ_ROUTING:
2926                 return KVM_MAX_IRQ_ROUTES;
2927 #endif
2928 #if KVM_ADDRESS_SPACE_NUM > 1
2929         case KVM_CAP_MULTI_ADDRESS_SPACE:
2930                 return KVM_ADDRESS_SPACE_NUM;
2931 #endif
2932         case KVM_CAP_MAX_VCPU_ID:
2933                 return KVM_MAX_VCPU_ID;
2934         default:
2935                 break;
2936         }
2937         return kvm_vm_ioctl_check_extension(kvm, arg);
2938 }
2939
2940 static long kvm_vm_ioctl(struct file *filp,
2941                            unsigned int ioctl, unsigned long arg)
2942 {
2943         struct kvm *kvm = filp->private_data;
2944         void __user *argp = (void __user *)arg;
2945         int r;
2946
2947         if (kvm->mm != current->mm)
2948                 return -EIO;
2949         switch (ioctl) {
2950         case KVM_CREATE_VCPU:
2951                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2952                 break;
2953         case KVM_SET_USER_MEMORY_REGION: {
2954                 struct kvm_userspace_memory_region kvm_userspace_mem;
2955
2956                 r = -EFAULT;
2957                 if (copy_from_user(&kvm_userspace_mem, argp,
2958                                                 sizeof(kvm_userspace_mem)))
2959                         goto out;
2960
2961                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2962                 break;
2963         }
2964         case KVM_GET_DIRTY_LOG: {
2965                 struct kvm_dirty_log log;
2966
2967                 r = -EFAULT;
2968                 if (copy_from_user(&log, argp, sizeof(log)))
2969                         goto out;
2970                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2971                 break;
2972         }
2973 #ifdef CONFIG_KVM_MMIO
2974         case KVM_REGISTER_COALESCED_MMIO: {
2975                 struct kvm_coalesced_mmio_zone zone;
2976
2977                 r = -EFAULT;
2978                 if (copy_from_user(&zone, argp, sizeof(zone)))
2979                         goto out;
2980                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2981                 break;
2982         }
2983         case KVM_UNREGISTER_COALESCED_MMIO: {
2984                 struct kvm_coalesced_mmio_zone zone;
2985
2986                 r = -EFAULT;
2987                 if (copy_from_user(&zone, argp, sizeof(zone)))
2988                         goto out;
2989                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2990                 break;
2991         }
2992 #endif
2993         case KVM_IRQFD: {
2994                 struct kvm_irqfd data;
2995
2996                 r = -EFAULT;
2997                 if (copy_from_user(&data, argp, sizeof(data)))
2998                         goto out;
2999                 r = kvm_irqfd(kvm, &data);
3000                 break;
3001         }
3002         case KVM_IOEVENTFD: {
3003                 struct kvm_ioeventfd data;
3004
3005                 r = -EFAULT;
3006                 if (copy_from_user(&data, argp, sizeof(data)))
3007                         goto out;
3008                 r = kvm_ioeventfd(kvm, &data);
3009                 break;
3010         }
3011 #ifdef CONFIG_HAVE_KVM_MSI
3012         case KVM_SIGNAL_MSI: {
3013                 struct kvm_msi msi;
3014
3015                 r = -EFAULT;
3016                 if (copy_from_user(&msi, argp, sizeof(msi)))
3017                         goto out;
3018                 r = kvm_send_userspace_msi(kvm, &msi);
3019                 break;
3020         }
3021 #endif
3022 #ifdef __KVM_HAVE_IRQ_LINE
3023         case KVM_IRQ_LINE_STATUS:
3024         case KVM_IRQ_LINE: {
3025                 struct kvm_irq_level irq_event;
3026
3027                 r = -EFAULT;
3028                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3029                         goto out;
3030
3031                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3032                                         ioctl == KVM_IRQ_LINE_STATUS);
3033                 if (r)
3034                         goto out;
3035
3036                 r = -EFAULT;
3037                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3038                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3039                                 goto out;
3040                 }
3041
3042                 r = 0;
3043                 break;
3044         }
3045 #endif
3046 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3047         case KVM_SET_GSI_ROUTING: {
3048                 struct kvm_irq_routing routing;
3049                 struct kvm_irq_routing __user *urouting;
3050                 struct kvm_irq_routing_entry *entries = NULL;
3051
3052                 r = -EFAULT;
3053                 if (copy_from_user(&routing, argp, sizeof(routing)))
3054                         goto out;
3055                 r = -EINVAL;
3056                 if (!kvm_arch_can_set_irq_routing(kvm))
3057                         goto out;
3058                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3059                         goto out;
3060                 if (routing.flags)
3061                         goto out;
3062                 if (routing.nr) {
3063                         r = -ENOMEM;
3064                         entries = vmalloc(routing.nr * sizeof(*entries));
3065                         if (!entries)
3066                                 goto out;
3067                         r = -EFAULT;
3068                         urouting = argp;
3069                         if (copy_from_user(entries, urouting->entries,
3070                                            routing.nr * sizeof(*entries)))
3071                                 goto out_free_irq_routing;
3072                 }
3073                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3074                                         routing.flags);
3075 out_free_irq_routing:
3076                 vfree(entries);
3077                 break;
3078         }
3079 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3080         case KVM_CREATE_DEVICE: {
3081                 struct kvm_create_device cd;
3082
3083                 r = -EFAULT;
3084                 if (copy_from_user(&cd, argp, sizeof(cd)))
3085                         goto out;
3086
3087                 r = kvm_ioctl_create_device(kvm, &cd);
3088                 if (r)
3089                         goto out;
3090
3091                 r = -EFAULT;
3092                 if (copy_to_user(argp, &cd, sizeof(cd)))
3093                         goto out;
3094
3095                 r = 0;
3096                 break;
3097         }
3098         case KVM_CHECK_EXTENSION:
3099                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3100                 break;
3101         default:
3102                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3103         }
3104 out:
3105         return r;
3106 }
3107
3108 #ifdef CONFIG_KVM_COMPAT
3109 struct compat_kvm_dirty_log {
3110         __u32 slot;
3111         __u32 padding1;
3112         union {
3113                 compat_uptr_t dirty_bitmap; /* one bit per page */
3114                 __u64 padding2;
3115         };
3116 };
3117
3118 static long kvm_vm_compat_ioctl(struct file *filp,
3119                            unsigned int ioctl, unsigned long arg)
3120 {
3121         struct kvm *kvm = filp->private_data;
3122         int r;
3123
3124         if (kvm->mm != current->mm)
3125                 return -EIO;
3126         switch (ioctl) {
3127         case KVM_GET_DIRTY_LOG: {
3128                 struct compat_kvm_dirty_log compat_log;
3129                 struct kvm_dirty_log log;
3130
3131                 if (copy_from_user(&compat_log, (void __user *)arg,
3132                                    sizeof(compat_log)))
3133                         return -EFAULT;
3134                 log.slot         = compat_log.slot;
3135                 log.padding1     = compat_log.padding1;
3136                 log.padding2     = compat_log.padding2;
3137                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3138
3139                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3140                 break;
3141         }
3142         default:
3143                 r = kvm_vm_ioctl(filp, ioctl, arg);
3144         }
3145         return r;
3146 }
3147 #endif
3148
3149 static struct file_operations kvm_vm_fops = {
3150         .release        = kvm_vm_release,
3151         .unlocked_ioctl = kvm_vm_ioctl,
3152 #ifdef CONFIG_KVM_COMPAT
3153         .compat_ioctl   = kvm_vm_compat_ioctl,
3154 #endif
3155         .llseek         = noop_llseek,
3156 };
3157
3158 static int kvm_dev_ioctl_create_vm(unsigned long type)
3159 {
3160         int r;
3161         struct kvm *kvm;
3162         struct file *file;
3163
3164         kvm = kvm_create_vm(type);
3165         if (IS_ERR(kvm))
3166                 return PTR_ERR(kvm);
3167 #ifdef CONFIG_KVM_MMIO
3168         r = kvm_coalesced_mmio_init(kvm);
3169         if (r < 0) {
3170                 kvm_put_kvm(kvm);
3171                 return r;
3172         }
3173 #endif
3174         r = get_unused_fd_flags(O_CLOEXEC);
3175         if (r < 0) {
3176                 kvm_put_kvm(kvm);
3177                 return r;
3178         }
3179         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3180         if (IS_ERR(file)) {
3181                 put_unused_fd(r);
3182                 kvm_put_kvm(kvm);
3183                 return PTR_ERR(file);
3184         }
3185
3186         /*
3187          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3188          * already set, with ->release() being kvm_vm_release().  In error
3189          * cases it will be called by the final fput(file) and will take
3190          * care of doing kvm_put_kvm(kvm).
3191          */
3192         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3193                 put_unused_fd(r);
3194                 fput(file);
3195                 return -ENOMEM;
3196         }
3197         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3198
3199         fd_install(r, file);
3200         return r;
3201 }
3202
3203 static long kvm_dev_ioctl(struct file *filp,
3204                           unsigned int ioctl, unsigned long arg)
3205 {
3206         long r = -EINVAL;
3207
3208         switch (ioctl) {
3209         case KVM_GET_API_VERSION:
3210                 if (arg)
3211                         goto out;
3212                 r = KVM_API_VERSION;
3213                 break;
3214         case KVM_CREATE_VM:
3215                 r = kvm_dev_ioctl_create_vm(arg);
3216                 break;
3217         case KVM_CHECK_EXTENSION:
3218                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3219                 break;
3220         case KVM_GET_VCPU_MMAP_SIZE:
3221                 if (arg)
3222                         goto out;
3223                 r = PAGE_SIZE;     /* struct kvm_run */
3224 #ifdef CONFIG_X86
3225                 r += PAGE_SIZE;    /* pio data page */
3226 #endif
3227 #ifdef CONFIG_KVM_MMIO
3228                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3229 #endif
3230                 break;
3231         case KVM_TRACE_ENABLE:
3232         case KVM_TRACE_PAUSE:
3233         case KVM_TRACE_DISABLE:
3234                 r = -EOPNOTSUPP;
3235                 break;
3236         default:
3237                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3238         }
3239 out:
3240         return r;
3241 }
3242
3243 static struct file_operations kvm_chardev_ops = {
3244         .unlocked_ioctl = kvm_dev_ioctl,
3245         .compat_ioctl   = kvm_dev_ioctl,
3246         .llseek         = noop_llseek,
3247 };
3248
3249 static struct miscdevice kvm_dev = {
3250         KVM_MINOR,
3251         "kvm",
3252         &kvm_chardev_ops,
3253 };
3254
3255 static void hardware_enable_nolock(void *junk)
3256 {
3257         int cpu = raw_smp_processor_id();
3258         int r;
3259
3260         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3261                 return;
3262
3263         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3264
3265         r = kvm_arch_hardware_enable();
3266
3267         if (r) {
3268                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3269                 atomic_inc(&hardware_enable_failed);
3270                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3271         }
3272 }
3273
3274 static int kvm_starting_cpu(unsigned int cpu)
3275 {
3276         raw_spin_lock(&kvm_count_lock);
3277         if (kvm_usage_count)
3278                 hardware_enable_nolock(NULL);
3279         raw_spin_unlock(&kvm_count_lock);
3280         return 0;
3281 }
3282
3283 static void hardware_disable_nolock(void *junk)
3284 {
3285         int cpu = raw_smp_processor_id();
3286
3287         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3288                 return;
3289         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3290         kvm_arch_hardware_disable();
3291 }
3292
3293 static int kvm_dying_cpu(unsigned int cpu)
3294 {
3295         raw_spin_lock(&kvm_count_lock);
3296         if (kvm_usage_count)
3297                 hardware_disable_nolock(NULL);
3298         raw_spin_unlock(&kvm_count_lock);
3299         return 0;
3300 }
3301
3302 static void hardware_disable_all_nolock(void)
3303 {
3304         BUG_ON(!kvm_usage_count);
3305
3306         kvm_usage_count--;
3307         if (!kvm_usage_count)
3308                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3309 }
3310
3311 static void hardware_disable_all(void)
3312 {
3313         raw_spin_lock(&kvm_count_lock);
3314         hardware_disable_all_nolock();
3315         raw_spin_unlock(&kvm_count_lock);
3316 }
3317
3318 static int hardware_enable_all(void)
3319 {
3320         int r = 0;
3321
3322         raw_spin_lock(&kvm_count_lock);
3323
3324         kvm_usage_count++;
3325         if (kvm_usage_count == 1) {
3326                 atomic_set(&hardware_enable_failed, 0);
3327                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3328
3329                 if (atomic_read(&hardware_enable_failed)) {
3330                         hardware_disable_all_nolock();
3331                         r = -EBUSY;
3332                 }
3333         }
3334
3335         raw_spin_unlock(&kvm_count_lock);
3336
3337         return r;
3338 }
3339
3340 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3341                       void *v)
3342 {
3343         /*
3344          * Some (well, at least mine) BIOSes hang on reboot if
3345          * in vmx root mode.
3346          *
3347          * And Intel TXT required VMX off for all cpu when system shutdown.
3348          */
3349         pr_info("kvm: exiting hardware virtualization\n");
3350         kvm_rebooting = true;
3351         on_each_cpu(hardware_disable_nolock, NULL, 1);
3352         return NOTIFY_OK;
3353 }
3354
3355 static struct notifier_block kvm_reboot_notifier = {
3356         .notifier_call = kvm_reboot,
3357         .priority = 0,
3358 };
3359
3360 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3361 {
3362         int i;
3363
3364         for (i = 0; i < bus->dev_count; i++) {
3365                 struct kvm_io_device *pos = bus->range[i].dev;
3366
3367                 kvm_iodevice_destructor(pos);
3368         }
3369         kfree(bus);
3370 }
3371
3372 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3373                                  const struct kvm_io_range *r2)
3374 {
3375         gpa_t addr1 = r1->addr;
3376         gpa_t addr2 = r2->addr;
3377
3378         if (addr1 < addr2)
3379                 return -1;
3380
3381         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3382          * accept any overlapping write.  Any order is acceptable for
3383          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3384          * we process all of them.
3385          */
3386         if (r2->len) {
3387                 addr1 += r1->len;
3388                 addr2 += r2->len;
3389         }
3390
3391         if (addr1 > addr2)
3392                 return 1;
3393
3394         return 0;
3395 }
3396
3397 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3398 {
3399         return kvm_io_bus_cmp(p1, p2);
3400 }
3401
3402 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3403                           gpa_t addr, int len)
3404 {
3405         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3406                 .addr = addr,
3407                 .len = len,
3408                 .dev = dev,
3409         };
3410
3411         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3412                 kvm_io_bus_sort_cmp, NULL);
3413
3414         return 0;
3415 }
3416
3417 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3418                              gpa_t addr, int len)
3419 {
3420         struct kvm_io_range *range, key;
3421         int off;
3422
3423         key = (struct kvm_io_range) {
3424                 .addr = addr,
3425                 .len = len,
3426         };
3427
3428         range = bsearch(&key, bus->range, bus->dev_count,
3429                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3430         if (range == NULL)
3431                 return -ENOENT;
3432
3433         off = range - bus->range;
3434
3435         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3436                 off--;
3437
3438         return off;
3439 }
3440
3441 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3442                               struct kvm_io_range *range, const void *val)
3443 {
3444         int idx;
3445
3446         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3447         if (idx < 0)
3448                 return -EOPNOTSUPP;
3449
3450         while (idx < bus->dev_count &&
3451                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3452                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3453                                         range->len, val))
3454                         return idx;
3455                 idx++;
3456         }
3457
3458         return -EOPNOTSUPP;
3459 }
3460
3461 /* kvm_io_bus_write - called under kvm->slots_lock */
3462 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3463                      int len, const void *val)
3464 {
3465         struct kvm_io_bus *bus;
3466         struct kvm_io_range range;
3467         int r;
3468
3469         range = (struct kvm_io_range) {
3470                 .addr = addr,
3471                 .len = len,
3472         };
3473
3474         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3475         if (!bus)
3476                 return -ENOMEM;
3477         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3478         return r < 0 ? r : 0;
3479 }
3480
3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3483                             gpa_t addr, int len, const void *val, long cookie)
3484 {
3485         struct kvm_io_bus *bus;
3486         struct kvm_io_range range;
3487
3488         range = (struct kvm_io_range) {
3489                 .addr = addr,
3490                 .len = len,
3491         };
3492
3493         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3494         if (!bus)
3495                 return -ENOMEM;
3496
3497         /* First try the device referenced by cookie. */
3498         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3499             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3500                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3501                                         val))
3502                         return cookie;
3503
3504         /*
3505          * cookie contained garbage; fall back to search and return the
3506          * correct cookie value.
3507          */
3508         return __kvm_io_bus_write(vcpu, bus, &range, val);
3509 }
3510
3511 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3512                              struct kvm_io_range *range, void *val)
3513 {
3514         int idx;
3515
3516         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3517         if (idx < 0)
3518                 return -EOPNOTSUPP;
3519
3520         while (idx < bus->dev_count &&
3521                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3522                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3523                                        range->len, val))
3524                         return idx;
3525                 idx++;
3526         }
3527
3528         return -EOPNOTSUPP;
3529 }
3530 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3531
3532 /* kvm_io_bus_read - called under kvm->slots_lock */
3533 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3534                     int len, void *val)
3535 {
3536         struct kvm_io_bus *bus;
3537         struct kvm_io_range range;
3538         int r;
3539
3540         range = (struct kvm_io_range) {
3541                 .addr = addr,
3542                 .len = len,
3543         };
3544
3545         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3546         if (!bus)
3547                 return -ENOMEM;
3548         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3549         return r < 0 ? r : 0;
3550 }
3551
3552
3553 /* Caller must hold slots_lock. */
3554 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3555                             int len, struct kvm_io_device *dev)
3556 {
3557         struct kvm_io_bus *new_bus, *bus;
3558
3559         bus = kvm_get_bus(kvm, bus_idx);
3560         if (!bus)
3561                 return -ENOMEM;
3562
3563         /* exclude ioeventfd which is limited by maximum fd */
3564         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3565                 return -ENOSPC;
3566
3567         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3568                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3569         if (!new_bus)
3570                 return -ENOMEM;
3571         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3572                sizeof(struct kvm_io_range)));
3573         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3574         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3575         synchronize_srcu_expedited(&kvm->srcu);
3576         kfree(bus);
3577
3578         return 0;
3579 }
3580
3581 /* Caller must hold slots_lock. */
3582 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3583                                struct kvm_io_device *dev)
3584 {
3585         int i;
3586         struct kvm_io_bus *new_bus, *bus;
3587
3588         bus = kvm_get_bus(kvm, bus_idx);
3589         if (!bus)
3590                 return;
3591
3592         for (i = 0; i < bus->dev_count; i++)
3593                 if (bus->range[i].dev == dev) {
3594                         break;
3595                 }
3596
3597         if (i == bus->dev_count)
3598                 return;
3599
3600         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3601                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3602         if (!new_bus)  {
3603                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3604                 goto broken;
3605         }
3606
3607         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3608         new_bus->dev_count--;
3609         memcpy(new_bus->range + i, bus->range + i + 1,
3610                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3611
3612 broken:
3613         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3614         synchronize_srcu_expedited(&kvm->srcu);
3615         kfree(bus);
3616         return;
3617 }
3618
3619 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3620                                          gpa_t addr)
3621 {
3622         struct kvm_io_bus *bus;
3623         int dev_idx, srcu_idx;
3624         struct kvm_io_device *iodev = NULL;
3625
3626         srcu_idx = srcu_read_lock(&kvm->srcu);
3627
3628         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3629         if (!bus)
3630                 goto out_unlock;
3631
3632         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3633         if (dev_idx < 0)
3634                 goto out_unlock;
3635
3636         iodev = bus->range[dev_idx].dev;
3637
3638 out_unlock:
3639         srcu_read_unlock(&kvm->srcu, srcu_idx);
3640
3641         return iodev;
3642 }
3643 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3644
3645 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3646                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3647                            const char *fmt)
3648 {
3649         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3650                                           inode->i_private;
3651
3652         /* The debugfs files are a reference to the kvm struct which
3653          * is still valid when kvm_destroy_vm is called.
3654          * To avoid the race between open and the removal of the debugfs
3655          * directory we test against the users count.
3656          */
3657         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3658                 return -ENOENT;
3659
3660         if (simple_attr_open(inode, file, get, set, fmt)) {
3661                 kvm_put_kvm(stat_data->kvm);
3662                 return -ENOMEM;
3663         }
3664
3665         return 0;
3666 }
3667
3668 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3669 {
3670         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3671                                           inode->i_private;
3672
3673         simple_attr_release(inode, file);
3674         kvm_put_kvm(stat_data->kvm);
3675
3676         return 0;
3677 }
3678
3679 static int vm_stat_get_per_vm(void *data, u64 *val)
3680 {
3681         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3682
3683         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3684
3685         return 0;
3686 }
3687
3688 static int vm_stat_clear_per_vm(void *data, u64 val)
3689 {
3690         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3691
3692         if (val)
3693                 return -EINVAL;
3694
3695         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3696
3697         return 0;
3698 }
3699
3700 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3701 {
3702         __simple_attr_check_format("%llu\n", 0ull);
3703         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3704                                 vm_stat_clear_per_vm, "%llu\n");
3705 }
3706
3707 static const struct file_operations vm_stat_get_per_vm_fops = {
3708         .owner   = THIS_MODULE,
3709         .open    = vm_stat_get_per_vm_open,
3710         .release = kvm_debugfs_release,
3711         .read    = simple_attr_read,
3712         .write   = simple_attr_write,
3713         .llseek  = no_llseek,
3714 };
3715
3716 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3717 {
3718         int i;
3719         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3720         struct kvm_vcpu *vcpu;
3721
3722         *val = 0;
3723
3724         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3725                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3726
3727         return 0;
3728 }
3729
3730 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3731 {
3732         int i;
3733         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3734         struct kvm_vcpu *vcpu;
3735
3736         if (val)
3737                 return -EINVAL;
3738
3739         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3740                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3741
3742         return 0;
3743 }
3744
3745 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3746 {
3747         __simple_attr_check_format("%llu\n", 0ull);
3748         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3749                                  vcpu_stat_clear_per_vm, "%llu\n");
3750 }
3751
3752 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3753         .owner   = THIS_MODULE,
3754         .open    = vcpu_stat_get_per_vm_open,
3755         .release = kvm_debugfs_release,
3756         .read    = simple_attr_read,
3757         .write   = simple_attr_write,
3758         .llseek  = no_llseek,
3759 };
3760
3761 static const struct file_operations *stat_fops_per_vm[] = {
3762         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3763         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3764 };
3765
3766 static int vm_stat_get(void *_offset, u64 *val)
3767 {
3768         unsigned offset = (long)_offset;
3769         struct kvm *kvm;
3770         struct kvm_stat_data stat_tmp = {.offset = offset};
3771         u64 tmp_val;
3772
3773         *val = 0;
3774         spin_lock(&kvm_lock);
3775         list_for_each_entry(kvm, &vm_list, vm_list) {
3776                 stat_tmp.kvm = kvm;
3777                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3778                 *val += tmp_val;
3779         }
3780         spin_unlock(&kvm_lock);
3781         return 0;
3782 }
3783
3784 static int vm_stat_clear(void *_offset, u64 val)
3785 {
3786         unsigned offset = (long)_offset;
3787         struct kvm *kvm;
3788         struct kvm_stat_data stat_tmp = {.offset = offset};
3789
3790         if (val)
3791                 return -EINVAL;
3792
3793         spin_lock(&kvm_lock);
3794         list_for_each_entry(kvm, &vm_list, vm_list) {
3795                 stat_tmp.kvm = kvm;
3796                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3797         }
3798         spin_unlock(&kvm_lock);
3799
3800         return 0;
3801 }
3802
3803 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3804
3805 static int vcpu_stat_get(void *_offset, u64 *val)
3806 {
3807         unsigned offset = (long)_offset;
3808         struct kvm *kvm;
3809         struct kvm_stat_data stat_tmp = {.offset = offset};
3810         u64 tmp_val;
3811
3812         *val = 0;
3813         spin_lock(&kvm_lock);
3814         list_for_each_entry(kvm, &vm_list, vm_list) {
3815                 stat_tmp.kvm = kvm;
3816                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3817                 *val += tmp_val;
3818         }
3819         spin_unlock(&kvm_lock);
3820         return 0;
3821 }
3822
3823 static int vcpu_stat_clear(void *_offset, u64 val)
3824 {
3825         unsigned offset = (long)_offset;
3826         struct kvm *kvm;
3827         struct kvm_stat_data stat_tmp = {.offset = offset};
3828
3829         if (val)
3830                 return -EINVAL;
3831
3832         spin_lock(&kvm_lock);
3833         list_for_each_entry(kvm, &vm_list, vm_list) {
3834                 stat_tmp.kvm = kvm;
3835                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3836         }
3837         spin_unlock(&kvm_lock);
3838
3839         return 0;
3840 }
3841
3842 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3843                         "%llu\n");
3844
3845 static const struct file_operations *stat_fops[] = {
3846         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3847         [KVM_STAT_VM]   = &vm_stat_fops,
3848 };
3849
3850 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3851 {
3852         struct kobj_uevent_env *env;
3853         unsigned long long created, active;
3854
3855         if (!kvm_dev.this_device || !kvm)
3856                 return;
3857
3858         spin_lock(&kvm_lock);
3859         if (type == KVM_EVENT_CREATE_VM) {
3860                 kvm_createvm_count++;
3861                 kvm_active_vms++;
3862         } else if (type == KVM_EVENT_DESTROY_VM) {
3863                 kvm_active_vms--;
3864         }
3865         created = kvm_createvm_count;
3866         active = kvm_active_vms;
3867         spin_unlock(&kvm_lock);
3868
3869         env = kzalloc(sizeof(*env), GFP_KERNEL);
3870         if (!env)
3871                 return;
3872
3873         add_uevent_var(env, "CREATED=%llu", created);
3874         add_uevent_var(env, "COUNT=%llu", active);
3875
3876         if (type == KVM_EVENT_CREATE_VM) {
3877                 add_uevent_var(env, "EVENT=create");
3878                 kvm->userspace_pid = task_pid_nr(current);
3879         } else if (type == KVM_EVENT_DESTROY_VM) {
3880                 add_uevent_var(env, "EVENT=destroy");
3881         }
3882         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3883
3884         if (kvm->debugfs_dentry) {
3885                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3886
3887                 if (p) {
3888                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3889                         if (!IS_ERR(tmp))
3890                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3891                         kfree(p);
3892                 }
3893         }
3894         /* no need for checks, since we are adding at most only 5 keys */
3895         env->envp[env->envp_idx++] = NULL;
3896         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3897         kfree(env);
3898 }
3899
3900 static int kvm_init_debug(void)
3901 {
3902         int r = -EEXIST;
3903         struct kvm_stats_debugfs_item *p;
3904
3905         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3906         if (kvm_debugfs_dir == NULL)
3907                 goto out;
3908
3909         kvm_debugfs_num_entries = 0;
3910         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3911                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3912                                          (void *)(long)p->offset,
3913                                          stat_fops[p->kind]))
3914                         goto out_dir;
3915         }
3916
3917         return 0;
3918
3919 out_dir:
3920         debugfs_remove_recursive(kvm_debugfs_dir);
3921 out:
3922         return r;
3923 }
3924
3925 static int kvm_suspend(void)
3926 {
3927         if (kvm_usage_count)
3928                 hardware_disable_nolock(NULL);
3929         return 0;
3930 }
3931
3932 static void kvm_resume(void)
3933 {
3934         if (kvm_usage_count) {
3935                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3936                 hardware_enable_nolock(NULL);
3937         }
3938 }
3939
3940 static struct syscore_ops kvm_syscore_ops = {
3941         .suspend = kvm_suspend,
3942         .resume = kvm_resume,
3943 };
3944
3945 static inline
3946 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3947 {
3948         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3949 }
3950
3951 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3952 {
3953         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3954
3955         if (vcpu->preempted)
3956                 vcpu->preempted = false;
3957
3958         kvm_arch_sched_in(vcpu, cpu);
3959
3960         kvm_arch_vcpu_load(vcpu, cpu);
3961 }
3962
3963 static void kvm_sched_out(struct preempt_notifier *pn,
3964                           struct task_struct *next)
3965 {
3966         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3967
3968         if (current->state == TASK_RUNNING)
3969                 vcpu->preempted = true;
3970         kvm_arch_vcpu_put(vcpu);
3971 }
3972
3973 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3974                   struct module *module)
3975 {
3976         int r;
3977         int cpu;
3978
3979         r = kvm_arch_init(opaque);
3980         if (r)
3981                 goto out_fail;
3982
3983         /*
3984          * kvm_arch_init makes sure there's at most one caller
3985          * for architectures that support multiple implementations,
3986          * like intel and amd on x86.
3987          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3988          * conflicts in case kvm is already setup for another implementation.
3989          */
3990         r = kvm_irqfd_init();
3991         if (r)
3992                 goto out_irqfd;
3993
3994         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3995                 r = -ENOMEM;
3996                 goto out_free_0;
3997         }
3998
3999         r = kvm_arch_hardware_setup();
4000         if (r < 0)
4001                 goto out_free_0a;
4002
4003         for_each_online_cpu(cpu) {
4004                 smp_call_function_single(cpu,
4005                                 kvm_arch_check_processor_compat,
4006                                 &r, 1);
4007                 if (r < 0)
4008                         goto out_free_1;
4009         }
4010
4011         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4012                                       kvm_starting_cpu, kvm_dying_cpu);
4013         if (r)
4014                 goto out_free_2;
4015         register_reboot_notifier(&kvm_reboot_notifier);
4016
4017         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4018         if (!vcpu_align)
4019                 vcpu_align = __alignof__(struct kvm_vcpu);
4020         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4021                                            0, NULL);
4022         if (!kvm_vcpu_cache) {
4023                 r = -ENOMEM;
4024                 goto out_free_3;
4025         }
4026
4027         r = kvm_async_pf_init();
4028         if (r)
4029                 goto out_free;
4030
4031         kvm_chardev_ops.owner = module;
4032         kvm_vm_fops.owner = module;
4033         kvm_vcpu_fops.owner = module;
4034
4035         r = misc_register(&kvm_dev);
4036         if (r) {
4037                 pr_err("kvm: misc device register failed\n");
4038                 goto out_unreg;
4039         }
4040
4041         register_syscore_ops(&kvm_syscore_ops);
4042
4043         kvm_preempt_ops.sched_in = kvm_sched_in;
4044         kvm_preempt_ops.sched_out = kvm_sched_out;
4045
4046         r = kvm_init_debug();
4047         if (r) {
4048                 pr_err("kvm: create debugfs files failed\n");
4049                 goto out_undebugfs;
4050         }
4051
4052         r = kvm_vfio_ops_init();
4053         WARN_ON(r);
4054
4055         return 0;
4056
4057 out_undebugfs:
4058         unregister_syscore_ops(&kvm_syscore_ops);
4059         misc_deregister(&kvm_dev);
4060 out_unreg:
4061         kvm_async_pf_deinit();
4062 out_free:
4063         kmem_cache_destroy(kvm_vcpu_cache);
4064 out_free_3:
4065         unregister_reboot_notifier(&kvm_reboot_notifier);
4066         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4067 out_free_2:
4068 out_free_1:
4069         kvm_arch_hardware_unsetup();
4070 out_free_0a:
4071         free_cpumask_var(cpus_hardware_enabled);
4072 out_free_0:
4073         kvm_irqfd_exit();
4074 out_irqfd:
4075         kvm_arch_exit();
4076 out_fail:
4077         return r;
4078 }
4079 EXPORT_SYMBOL_GPL(kvm_init);
4080
4081 void kvm_exit(void)
4082 {
4083         debugfs_remove_recursive(kvm_debugfs_dir);
4084         misc_deregister(&kvm_dev);
4085         kmem_cache_destroy(kvm_vcpu_cache);
4086         kvm_async_pf_deinit();
4087         unregister_syscore_ops(&kvm_syscore_ops);
4088         unregister_reboot_notifier(&kvm_reboot_notifier);
4089         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4090         on_each_cpu(hardware_disable_nolock, NULL, 1);
4091         kvm_arch_hardware_unsetup();
4092         kvm_arch_exit();
4093         kvm_irqfd_exit();
4094         free_cpumask_var(cpus_hardware_enabled);
4095         kvm_vfio_ops_exit();
4096 }
4097 EXPORT_SYMBOL_GPL(kvm_exit);