xfs: preserve DIFLAG2_NREXT64 when setting other inode attributes
[platform/kernel/linux-starfive.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123                            unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126                                   unsigned long arg);
127 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137                                 unsigned long arg) { return -EINVAL; }
138
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141         return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
144                         .open           = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163                                                    unsigned long start, unsigned long end)
164 {
165 }
166
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
172 {
173         /*
174          * The metadata used by is_zone_device_page() to determine whether or
175          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176          * the device has been pinned, e.g. by get_user_pages().  WARN if the
177          * page_count() is zero to help detect bad usage of this helper.
178          */
179         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
180                 return false;
181
182         return is_zone_device_page(pfn_to_page(pfn));
183 }
184
185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
186 {
187         /*
188          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
189          * perspective they are "normal" pages, albeit with slightly different
190          * usage rules.
191          */
192         if (pfn_valid(pfn))
193                 return PageReserved(pfn_to_page(pfn)) &&
194                        !is_zero_pfn(pfn) &&
195                        !kvm_is_zone_device_pfn(pfn);
196
197         return true;
198 }
199
200 /*
201  * Switches to specified vcpu, until a matching vcpu_put()
202  */
203 void vcpu_load(struct kvm_vcpu *vcpu)
204 {
205         int cpu = get_cpu();
206
207         __this_cpu_write(kvm_running_vcpu, vcpu);
208         preempt_notifier_register(&vcpu->preempt_notifier);
209         kvm_arch_vcpu_load(vcpu, cpu);
210         put_cpu();
211 }
212 EXPORT_SYMBOL_GPL(vcpu_load);
213
214 void vcpu_put(struct kvm_vcpu *vcpu)
215 {
216         preempt_disable();
217         kvm_arch_vcpu_put(vcpu);
218         preempt_notifier_unregister(&vcpu->preempt_notifier);
219         __this_cpu_write(kvm_running_vcpu, NULL);
220         preempt_enable();
221 }
222 EXPORT_SYMBOL_GPL(vcpu_put);
223
224 /* TODO: merge with kvm_arch_vcpu_should_kick */
225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
226 {
227         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
228
229         /*
230          * We need to wait for the VCPU to reenable interrupts and get out of
231          * READING_SHADOW_PAGE_TABLES mode.
232          */
233         if (req & KVM_REQUEST_WAIT)
234                 return mode != OUTSIDE_GUEST_MODE;
235
236         /*
237          * Need to kick a running VCPU, but otherwise there is nothing to do.
238          */
239         return mode == IN_GUEST_MODE;
240 }
241
242 static void ack_flush(void *_completed)
243 {
244 }
245
246 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
247 {
248         if (cpumask_empty(cpus))
249                 return false;
250
251         smp_call_function_many(cpus, ack_flush, NULL, wait);
252         return true;
253 }
254
255 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
256                                   struct cpumask *tmp, int current_cpu)
257 {
258         int cpu;
259
260         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
261                 __kvm_make_request(req, vcpu);
262
263         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
264                 return;
265
266         /*
267          * Note, the vCPU could get migrated to a different pCPU at any point
268          * after kvm_request_needs_ipi(), which could result in sending an IPI
269          * to the previous pCPU.  But, that's OK because the purpose of the IPI
270          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
271          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
272          * after this point is also OK, as the requirement is only that KVM wait
273          * for vCPUs that were reading SPTEs _before_ any changes were
274          * finalized. See kvm_vcpu_kick() for more details on handling requests.
275          */
276         if (kvm_request_needs_ipi(vcpu, req)) {
277                 cpu = READ_ONCE(vcpu->cpu);
278                 if (cpu != -1 && cpu != current_cpu)
279                         __cpumask_set_cpu(cpu, tmp);
280         }
281 }
282
283 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
284                                  unsigned long *vcpu_bitmap)
285 {
286         struct kvm_vcpu *vcpu;
287         struct cpumask *cpus;
288         int i, me;
289         bool called;
290
291         me = get_cpu();
292
293         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
294         cpumask_clear(cpus);
295
296         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
297                 vcpu = kvm_get_vcpu(kvm, i);
298                 if (!vcpu)
299                         continue;
300                 kvm_make_vcpu_request(vcpu, req, cpus, me);
301         }
302
303         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
304         put_cpu();
305
306         return called;
307 }
308
309 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
310                                       struct kvm_vcpu *except)
311 {
312         struct kvm_vcpu *vcpu;
313         struct cpumask *cpus;
314         unsigned long i;
315         bool called;
316         int me;
317
318         me = get_cpu();
319
320         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
321         cpumask_clear(cpus);
322
323         kvm_for_each_vcpu(i, vcpu, kvm) {
324                 if (vcpu == except)
325                         continue;
326                 kvm_make_vcpu_request(vcpu, req, cpus, me);
327         }
328
329         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
330         put_cpu();
331
332         return called;
333 }
334
335 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
336 {
337         return kvm_make_all_cpus_request_except(kvm, req, NULL);
338 }
339 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
340
341 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
342 void kvm_flush_remote_tlbs(struct kvm *kvm)
343 {
344         ++kvm->stat.generic.remote_tlb_flush_requests;
345
346         /*
347          * We want to publish modifications to the page tables before reading
348          * mode. Pairs with a memory barrier in arch-specific code.
349          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
350          * and smp_mb in walk_shadow_page_lockless_begin/end.
351          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
352          *
353          * There is already an smp_mb__after_atomic() before
354          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
355          * barrier here.
356          */
357         if (!kvm_arch_flush_remote_tlb(kvm)
358             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
359                 ++kvm->stat.generic.remote_tlb_flush;
360 }
361 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
362 #endif
363
364 static void kvm_flush_shadow_all(struct kvm *kvm)
365 {
366         kvm_arch_flush_shadow_all(kvm);
367         kvm_arch_guest_memory_reclaimed(kvm);
368 }
369
370 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
371 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
372                                                gfp_t gfp_flags)
373 {
374         gfp_flags |= mc->gfp_zero;
375
376         if (mc->kmem_cache)
377                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
378         else
379                 return (void *)__get_free_page(gfp_flags);
380 }
381
382 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
383 {
384         void *obj;
385
386         if (mc->nobjs >= min)
387                 return 0;
388         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
389                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
390                 if (!obj)
391                         return mc->nobjs >= min ? 0 : -ENOMEM;
392                 mc->objects[mc->nobjs++] = obj;
393         }
394         return 0;
395 }
396
397 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
398 {
399         return mc->nobjs;
400 }
401
402 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
403 {
404         while (mc->nobjs) {
405                 if (mc->kmem_cache)
406                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
407                 else
408                         free_page((unsigned long)mc->objects[--mc->nobjs]);
409         }
410 }
411
412 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
413 {
414         void *p;
415
416         if (WARN_ON(!mc->nobjs))
417                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
418         else
419                 p = mc->objects[--mc->nobjs];
420         BUG_ON(!p);
421         return p;
422 }
423 #endif
424
425 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
426 {
427         mutex_init(&vcpu->mutex);
428         vcpu->cpu = -1;
429         vcpu->kvm = kvm;
430         vcpu->vcpu_id = id;
431         vcpu->pid = NULL;
432 #ifndef __KVM_HAVE_ARCH_WQP
433         rcuwait_init(&vcpu->wait);
434 #endif
435         kvm_async_pf_vcpu_init(vcpu);
436
437         kvm_vcpu_set_in_spin_loop(vcpu, false);
438         kvm_vcpu_set_dy_eligible(vcpu, false);
439         vcpu->preempted = false;
440         vcpu->ready = false;
441         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
442         vcpu->last_used_slot = NULL;
443 }
444
445 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
446 {
447         kvm_arch_vcpu_destroy(vcpu);
448         kvm_dirty_ring_free(&vcpu->dirty_ring);
449
450         /*
451          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
452          * the vcpu->pid pointer, and at destruction time all file descriptors
453          * are already gone.
454          */
455         put_pid(rcu_dereference_protected(vcpu->pid, 1));
456
457         free_page((unsigned long)vcpu->run);
458         kmem_cache_free(kvm_vcpu_cache, vcpu);
459 }
460
461 void kvm_destroy_vcpus(struct kvm *kvm)
462 {
463         unsigned long i;
464         struct kvm_vcpu *vcpu;
465
466         kvm_for_each_vcpu(i, vcpu, kvm) {
467                 kvm_vcpu_destroy(vcpu);
468                 xa_erase(&kvm->vcpu_array, i);
469         }
470
471         atomic_set(&kvm->online_vcpus, 0);
472 }
473 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
474
475 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
476 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
477 {
478         return container_of(mn, struct kvm, mmu_notifier);
479 }
480
481 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
482                                               struct mm_struct *mm,
483                                               unsigned long start, unsigned long end)
484 {
485         struct kvm *kvm = mmu_notifier_to_kvm(mn);
486         int idx;
487
488         idx = srcu_read_lock(&kvm->srcu);
489         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
490         srcu_read_unlock(&kvm->srcu, idx);
491 }
492
493 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
494
495 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
496                              unsigned long end);
497
498 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
499
500 struct kvm_hva_range {
501         unsigned long start;
502         unsigned long end;
503         pte_t pte;
504         hva_handler_t handler;
505         on_lock_fn_t on_lock;
506         on_unlock_fn_t on_unlock;
507         bool flush_on_ret;
508         bool may_block;
509 };
510
511 /*
512  * Use a dedicated stub instead of NULL to indicate that there is no callback
513  * function/handler.  The compiler technically can't guarantee that a real
514  * function will have a non-zero address, and so it will generate code to
515  * check for !NULL, whereas comparing against a stub will be elided at compile
516  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
517  */
518 static void kvm_null_fn(void)
519 {
520
521 }
522 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
523
524 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
525 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
526         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
527              node;                                                           \
528              node = interval_tree_iter_next(node, start, last))      \
529
530 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
531                                                   const struct kvm_hva_range *range)
532 {
533         bool ret = false, locked = false;
534         struct kvm_gfn_range gfn_range;
535         struct kvm_memory_slot *slot;
536         struct kvm_memslots *slots;
537         int i, idx;
538
539         if (WARN_ON_ONCE(range->end <= range->start))
540                 return 0;
541
542         /* A null handler is allowed if and only if on_lock() is provided. */
543         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
544                          IS_KVM_NULL_FN(range->handler)))
545                 return 0;
546
547         idx = srcu_read_lock(&kvm->srcu);
548
549         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
550                 struct interval_tree_node *node;
551
552                 slots = __kvm_memslots(kvm, i);
553                 kvm_for_each_memslot_in_hva_range(node, slots,
554                                                   range->start, range->end - 1) {
555                         unsigned long hva_start, hva_end;
556
557                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
558                         hva_start = max(range->start, slot->userspace_addr);
559                         hva_end = min(range->end, slot->userspace_addr +
560                                                   (slot->npages << PAGE_SHIFT));
561
562                         /*
563                          * To optimize for the likely case where the address
564                          * range is covered by zero or one memslots, don't
565                          * bother making these conditional (to avoid writes on
566                          * the second or later invocation of the handler).
567                          */
568                         gfn_range.pte = range->pte;
569                         gfn_range.may_block = range->may_block;
570
571                         /*
572                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
573                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
574                          */
575                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
576                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
577                         gfn_range.slot = slot;
578
579                         if (!locked) {
580                                 locked = true;
581                                 KVM_MMU_LOCK(kvm);
582                                 if (!IS_KVM_NULL_FN(range->on_lock))
583                                         range->on_lock(kvm, range->start, range->end);
584                                 if (IS_KVM_NULL_FN(range->handler))
585                                         break;
586                         }
587                         ret |= range->handler(kvm, &gfn_range);
588                 }
589         }
590
591         if (range->flush_on_ret && ret)
592                 kvm_flush_remote_tlbs(kvm);
593
594         if (locked) {
595                 KVM_MMU_UNLOCK(kvm);
596                 if (!IS_KVM_NULL_FN(range->on_unlock))
597                         range->on_unlock(kvm);
598         }
599
600         srcu_read_unlock(&kvm->srcu, idx);
601
602         /* The notifiers are averse to booleans. :-( */
603         return (int)ret;
604 }
605
606 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
607                                                 unsigned long start,
608                                                 unsigned long end,
609                                                 pte_t pte,
610                                                 hva_handler_t handler)
611 {
612         struct kvm *kvm = mmu_notifier_to_kvm(mn);
613         const struct kvm_hva_range range = {
614                 .start          = start,
615                 .end            = end,
616                 .pte            = pte,
617                 .handler        = handler,
618                 .on_lock        = (void *)kvm_null_fn,
619                 .on_unlock      = (void *)kvm_null_fn,
620                 .flush_on_ret   = true,
621                 .may_block      = false,
622         };
623
624         return __kvm_handle_hva_range(kvm, &range);
625 }
626
627 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
628                                                          unsigned long start,
629                                                          unsigned long end,
630                                                          hva_handler_t handler)
631 {
632         struct kvm *kvm = mmu_notifier_to_kvm(mn);
633         const struct kvm_hva_range range = {
634                 .start          = start,
635                 .end            = end,
636                 .pte            = __pte(0),
637                 .handler        = handler,
638                 .on_lock        = (void *)kvm_null_fn,
639                 .on_unlock      = (void *)kvm_null_fn,
640                 .flush_on_ret   = false,
641                 .may_block      = false,
642         };
643
644         return __kvm_handle_hva_range(kvm, &range);
645 }
646 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
647                                         struct mm_struct *mm,
648                                         unsigned long address,
649                                         pte_t pte)
650 {
651         struct kvm *kvm = mmu_notifier_to_kvm(mn);
652
653         trace_kvm_set_spte_hva(address);
654
655         /*
656          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
657          * If mmu_notifier_count is zero, then no in-progress invalidations,
658          * including this one, found a relevant memslot at start(); rechecking
659          * memslots here is unnecessary.  Note, a false positive (count elevated
660          * by a different invalidation) is sub-optimal but functionally ok.
661          */
662         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
663         if (!READ_ONCE(kvm->mmu_notifier_count))
664                 return;
665
666         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
667 }
668
669 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
670                                    unsigned long end)
671 {
672         /*
673          * The count increase must become visible at unlock time as no
674          * spte can be established without taking the mmu_lock and
675          * count is also read inside the mmu_lock critical section.
676          */
677         kvm->mmu_notifier_count++;
678         if (likely(kvm->mmu_notifier_count == 1)) {
679                 kvm->mmu_notifier_range_start = start;
680                 kvm->mmu_notifier_range_end = end;
681         } else {
682                 /*
683                  * Fully tracking multiple concurrent ranges has diminishing
684                  * returns. Keep things simple and just find the minimal range
685                  * which includes the current and new ranges. As there won't be
686                  * enough information to subtract a range after its invalidate
687                  * completes, any ranges invalidated concurrently will
688                  * accumulate and persist until all outstanding invalidates
689                  * complete.
690                  */
691                 kvm->mmu_notifier_range_start =
692                         min(kvm->mmu_notifier_range_start, start);
693                 kvm->mmu_notifier_range_end =
694                         max(kvm->mmu_notifier_range_end, end);
695         }
696 }
697
698 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
699                                         const struct mmu_notifier_range *range)
700 {
701         struct kvm *kvm = mmu_notifier_to_kvm(mn);
702         const struct kvm_hva_range hva_range = {
703                 .start          = range->start,
704                 .end            = range->end,
705                 .pte            = __pte(0),
706                 .handler        = kvm_unmap_gfn_range,
707                 .on_lock        = kvm_inc_notifier_count,
708                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
709                 .flush_on_ret   = true,
710                 .may_block      = mmu_notifier_range_blockable(range),
711         };
712
713         trace_kvm_unmap_hva_range(range->start, range->end);
714
715         /*
716          * Prevent memslot modification between range_start() and range_end()
717          * so that conditionally locking provides the same result in both
718          * functions.  Without that guarantee, the mmu_notifier_count
719          * adjustments will be imbalanced.
720          *
721          * Pairs with the decrement in range_end().
722          */
723         spin_lock(&kvm->mn_invalidate_lock);
724         kvm->mn_active_invalidate_count++;
725         spin_unlock(&kvm->mn_invalidate_lock);
726
727         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
728                                           hva_range.may_block);
729
730         __kvm_handle_hva_range(kvm, &hva_range);
731
732         return 0;
733 }
734
735 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
736                                    unsigned long end)
737 {
738         /*
739          * This sequence increase will notify the kvm page fault that
740          * the page that is going to be mapped in the spte could have
741          * been freed.
742          */
743         kvm->mmu_notifier_seq++;
744         smp_wmb();
745         /*
746          * The above sequence increase must be visible before the
747          * below count decrease, which is ensured by the smp_wmb above
748          * in conjunction with the smp_rmb in mmu_notifier_retry().
749          */
750         kvm->mmu_notifier_count--;
751 }
752
753 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
754                                         const struct mmu_notifier_range *range)
755 {
756         struct kvm *kvm = mmu_notifier_to_kvm(mn);
757         const struct kvm_hva_range hva_range = {
758                 .start          = range->start,
759                 .end            = range->end,
760                 .pte            = __pte(0),
761                 .handler        = (void *)kvm_null_fn,
762                 .on_lock        = kvm_dec_notifier_count,
763                 .on_unlock      = (void *)kvm_null_fn,
764                 .flush_on_ret   = false,
765                 .may_block      = mmu_notifier_range_blockable(range),
766         };
767         bool wake;
768
769         __kvm_handle_hva_range(kvm, &hva_range);
770
771         /* Pairs with the increment in range_start(). */
772         spin_lock(&kvm->mn_invalidate_lock);
773         wake = (--kvm->mn_active_invalidate_count == 0);
774         spin_unlock(&kvm->mn_invalidate_lock);
775
776         /*
777          * There can only be one waiter, since the wait happens under
778          * slots_lock.
779          */
780         if (wake)
781                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
782
783         BUG_ON(kvm->mmu_notifier_count < 0);
784 }
785
786 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
787                                               struct mm_struct *mm,
788                                               unsigned long start,
789                                               unsigned long end)
790 {
791         trace_kvm_age_hva(start, end);
792
793         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
794 }
795
796 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
797                                         struct mm_struct *mm,
798                                         unsigned long start,
799                                         unsigned long end)
800 {
801         trace_kvm_age_hva(start, end);
802
803         /*
804          * Even though we do not flush TLB, this will still adversely
805          * affect performance on pre-Haswell Intel EPT, where there is
806          * no EPT Access Bit to clear so that we have to tear down EPT
807          * tables instead. If we find this unacceptable, we can always
808          * add a parameter to kvm_age_hva so that it effectively doesn't
809          * do anything on clear_young.
810          *
811          * Also note that currently we never issue secondary TLB flushes
812          * from clear_young, leaving this job up to the regular system
813          * cadence. If we find this inaccurate, we might come up with a
814          * more sophisticated heuristic later.
815          */
816         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
817 }
818
819 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
820                                        struct mm_struct *mm,
821                                        unsigned long address)
822 {
823         trace_kvm_test_age_hva(address);
824
825         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
826                                              kvm_test_age_gfn);
827 }
828
829 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
830                                      struct mm_struct *mm)
831 {
832         struct kvm *kvm = mmu_notifier_to_kvm(mn);
833         int idx;
834
835         idx = srcu_read_lock(&kvm->srcu);
836         kvm_flush_shadow_all(kvm);
837         srcu_read_unlock(&kvm->srcu, idx);
838 }
839
840 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
841         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
842         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
843         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
844         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
845         .clear_young            = kvm_mmu_notifier_clear_young,
846         .test_young             = kvm_mmu_notifier_test_young,
847         .change_pte             = kvm_mmu_notifier_change_pte,
848         .release                = kvm_mmu_notifier_release,
849 };
850
851 static int kvm_init_mmu_notifier(struct kvm *kvm)
852 {
853         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
854         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
855 }
856
857 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
858
859 static int kvm_init_mmu_notifier(struct kvm *kvm)
860 {
861         return 0;
862 }
863
864 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
865
866 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
867 static int kvm_pm_notifier_call(struct notifier_block *bl,
868                                 unsigned long state,
869                                 void *unused)
870 {
871         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
872
873         return kvm_arch_pm_notifier(kvm, state);
874 }
875
876 static void kvm_init_pm_notifier(struct kvm *kvm)
877 {
878         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
879         /* Suspend KVM before we suspend ftrace, RCU, etc. */
880         kvm->pm_notifier.priority = INT_MAX;
881         register_pm_notifier(&kvm->pm_notifier);
882 }
883
884 static void kvm_destroy_pm_notifier(struct kvm *kvm)
885 {
886         unregister_pm_notifier(&kvm->pm_notifier);
887 }
888 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
889 static void kvm_init_pm_notifier(struct kvm *kvm)
890 {
891 }
892
893 static void kvm_destroy_pm_notifier(struct kvm *kvm)
894 {
895 }
896 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
897
898 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
899 {
900         if (!memslot->dirty_bitmap)
901                 return;
902
903         kvfree(memslot->dirty_bitmap);
904         memslot->dirty_bitmap = NULL;
905 }
906
907 /* This does not remove the slot from struct kvm_memslots data structures */
908 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
909 {
910         kvm_destroy_dirty_bitmap(slot);
911
912         kvm_arch_free_memslot(kvm, slot);
913
914         kfree(slot);
915 }
916
917 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
918 {
919         struct hlist_node *idnode;
920         struct kvm_memory_slot *memslot;
921         int bkt;
922
923         /*
924          * The same memslot objects live in both active and inactive sets,
925          * arbitrarily free using index '1' so the second invocation of this
926          * function isn't operating over a structure with dangling pointers
927          * (even though this function isn't actually touching them).
928          */
929         if (!slots->node_idx)
930                 return;
931
932         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
933                 kvm_free_memslot(kvm, memslot);
934 }
935
936 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
937 {
938         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
939         case KVM_STATS_TYPE_INSTANT:
940                 return 0444;
941         case KVM_STATS_TYPE_CUMULATIVE:
942         case KVM_STATS_TYPE_PEAK:
943         default:
944                 return 0644;
945         }
946 }
947
948
949 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
950 {
951         int i;
952         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
953                                       kvm_vcpu_stats_header.num_desc;
954
955         if (IS_ERR(kvm->debugfs_dentry))
956                 return;
957
958         debugfs_remove_recursive(kvm->debugfs_dentry);
959
960         if (kvm->debugfs_stat_data) {
961                 for (i = 0; i < kvm_debugfs_num_entries; i++)
962                         kfree(kvm->debugfs_stat_data[i]);
963                 kfree(kvm->debugfs_stat_data);
964         }
965 }
966
967 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
968 {
969         static DEFINE_MUTEX(kvm_debugfs_lock);
970         struct dentry *dent;
971         char dir_name[ITOA_MAX_LEN * 2];
972         struct kvm_stat_data *stat_data;
973         const struct _kvm_stats_desc *pdesc;
974         int i, ret;
975         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
976                                       kvm_vcpu_stats_header.num_desc;
977
978         if (!debugfs_initialized())
979                 return 0;
980
981         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
982         mutex_lock(&kvm_debugfs_lock);
983         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
984         if (dent) {
985                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
986                 dput(dent);
987                 mutex_unlock(&kvm_debugfs_lock);
988                 return 0;
989         }
990         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
991         mutex_unlock(&kvm_debugfs_lock);
992         if (IS_ERR(dent))
993                 return 0;
994
995         kvm->debugfs_dentry = dent;
996         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
997                                          sizeof(*kvm->debugfs_stat_data),
998                                          GFP_KERNEL_ACCOUNT);
999         if (!kvm->debugfs_stat_data)
1000                 return -ENOMEM;
1001
1002         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1003                 pdesc = &kvm_vm_stats_desc[i];
1004                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1005                 if (!stat_data)
1006                         return -ENOMEM;
1007
1008                 stat_data->kvm = kvm;
1009                 stat_data->desc = pdesc;
1010                 stat_data->kind = KVM_STAT_VM;
1011                 kvm->debugfs_stat_data[i] = stat_data;
1012                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1013                                     kvm->debugfs_dentry, stat_data,
1014                                     &stat_fops_per_vm);
1015         }
1016
1017         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1018                 pdesc = &kvm_vcpu_stats_desc[i];
1019                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1020                 if (!stat_data)
1021                         return -ENOMEM;
1022
1023                 stat_data->kvm = kvm;
1024                 stat_data->desc = pdesc;
1025                 stat_data->kind = KVM_STAT_VCPU;
1026                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1027                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1028                                     kvm->debugfs_dentry, stat_data,
1029                                     &stat_fops_per_vm);
1030         }
1031
1032         ret = kvm_arch_create_vm_debugfs(kvm);
1033         if (ret) {
1034                 kvm_destroy_vm_debugfs(kvm);
1035                 return i;
1036         }
1037
1038         return 0;
1039 }
1040
1041 /*
1042  * Called after the VM is otherwise initialized, but just before adding it to
1043  * the vm_list.
1044  */
1045 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1046 {
1047         return 0;
1048 }
1049
1050 /*
1051  * Called just after removing the VM from the vm_list, but before doing any
1052  * other destruction.
1053  */
1054 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1055 {
1056 }
1057
1058 /*
1059  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1060  * be setup already, so we can create arch-specific debugfs entries under it.
1061  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1062  * a per-arch destroy interface is not needed.
1063  */
1064 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1065 {
1066         return 0;
1067 }
1068
1069 static struct kvm *kvm_create_vm(unsigned long type)
1070 {
1071         struct kvm *kvm = kvm_arch_alloc_vm();
1072         struct kvm_memslots *slots;
1073         int r = -ENOMEM;
1074         int i, j;
1075
1076         if (!kvm)
1077                 return ERR_PTR(-ENOMEM);
1078
1079         KVM_MMU_LOCK_INIT(kvm);
1080         mmgrab(current->mm);
1081         kvm->mm = current->mm;
1082         kvm_eventfd_init(kvm);
1083         mutex_init(&kvm->lock);
1084         mutex_init(&kvm->irq_lock);
1085         mutex_init(&kvm->slots_lock);
1086         mutex_init(&kvm->slots_arch_lock);
1087         spin_lock_init(&kvm->mn_invalidate_lock);
1088         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1089         xa_init(&kvm->vcpu_array);
1090
1091         INIT_LIST_HEAD(&kvm->gpc_list);
1092         spin_lock_init(&kvm->gpc_lock);
1093
1094         INIT_LIST_HEAD(&kvm->devices);
1095         kvm->max_vcpus = KVM_MAX_VCPUS;
1096
1097         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1098
1099         /*
1100          * Force subsequent debugfs file creations to fail if the VM directory
1101          * is not created (by kvm_create_vm_debugfs()).
1102          */
1103         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1104
1105         if (init_srcu_struct(&kvm->srcu))
1106                 goto out_err_no_srcu;
1107         if (init_srcu_struct(&kvm->irq_srcu))
1108                 goto out_err_no_irq_srcu;
1109
1110         refcount_set(&kvm->users_count, 1);
1111         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1112                 for (j = 0; j < 2; j++) {
1113                         slots = &kvm->__memslots[i][j];
1114
1115                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1116                         slots->hva_tree = RB_ROOT_CACHED;
1117                         slots->gfn_tree = RB_ROOT;
1118                         hash_init(slots->id_hash);
1119                         slots->node_idx = j;
1120
1121                         /* Generations must be different for each address space. */
1122                         slots->generation = i;
1123                 }
1124
1125                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1126         }
1127
1128         for (i = 0; i < KVM_NR_BUSES; i++) {
1129                 rcu_assign_pointer(kvm->buses[i],
1130                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1131                 if (!kvm->buses[i])
1132                         goto out_err_no_arch_destroy_vm;
1133         }
1134
1135         kvm->max_halt_poll_ns = halt_poll_ns;
1136
1137         r = kvm_arch_init_vm(kvm, type);
1138         if (r)
1139                 goto out_err_no_arch_destroy_vm;
1140
1141         r = hardware_enable_all();
1142         if (r)
1143                 goto out_err_no_disable;
1144
1145 #ifdef CONFIG_HAVE_KVM_IRQFD
1146         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1147 #endif
1148
1149         r = kvm_init_mmu_notifier(kvm);
1150         if (r)
1151                 goto out_err_no_mmu_notifier;
1152
1153         r = kvm_arch_post_init_vm(kvm);
1154         if (r)
1155                 goto out_err;
1156
1157         mutex_lock(&kvm_lock);
1158         list_add(&kvm->vm_list, &vm_list);
1159         mutex_unlock(&kvm_lock);
1160
1161         preempt_notifier_inc();
1162         kvm_init_pm_notifier(kvm);
1163
1164         /*
1165          * When the fd passed to this ioctl() is opened it pins the module,
1166          * but try_module_get() also prevents getting a reference if the module
1167          * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
1168          */
1169         if (!try_module_get(kvm_chardev_ops.owner)) {
1170                 r = -ENODEV;
1171                 goto out_err;
1172         }
1173
1174         return kvm;
1175
1176 out_err:
1177 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1178         if (kvm->mmu_notifier.ops)
1179                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1180 #endif
1181 out_err_no_mmu_notifier:
1182         hardware_disable_all();
1183 out_err_no_disable:
1184         kvm_arch_destroy_vm(kvm);
1185 out_err_no_arch_destroy_vm:
1186         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1187         for (i = 0; i < KVM_NR_BUSES; i++)
1188                 kfree(kvm_get_bus(kvm, i));
1189         cleanup_srcu_struct(&kvm->irq_srcu);
1190 out_err_no_irq_srcu:
1191         cleanup_srcu_struct(&kvm->srcu);
1192 out_err_no_srcu:
1193         kvm_arch_free_vm(kvm);
1194         mmdrop(current->mm);
1195         return ERR_PTR(r);
1196 }
1197
1198 static void kvm_destroy_devices(struct kvm *kvm)
1199 {
1200         struct kvm_device *dev, *tmp;
1201
1202         /*
1203          * We do not need to take the kvm->lock here, because nobody else
1204          * has a reference to the struct kvm at this point and therefore
1205          * cannot access the devices list anyhow.
1206          */
1207         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1208                 list_del(&dev->vm_node);
1209                 dev->ops->destroy(dev);
1210         }
1211 }
1212
1213 static void kvm_destroy_vm(struct kvm *kvm)
1214 {
1215         int i;
1216         struct mm_struct *mm = kvm->mm;
1217
1218         kvm_destroy_pm_notifier(kvm);
1219         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1220         kvm_destroy_vm_debugfs(kvm);
1221         kvm_arch_sync_events(kvm);
1222         mutex_lock(&kvm_lock);
1223         list_del(&kvm->vm_list);
1224         mutex_unlock(&kvm_lock);
1225         kvm_arch_pre_destroy_vm(kvm);
1226
1227         kvm_free_irq_routing(kvm);
1228         for (i = 0; i < KVM_NR_BUSES; i++) {
1229                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1230
1231                 if (bus)
1232                         kvm_io_bus_destroy(bus);
1233                 kvm->buses[i] = NULL;
1234         }
1235         kvm_coalesced_mmio_free(kvm);
1236 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1237         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1238         /*
1239          * At this point, pending calls to invalidate_range_start()
1240          * have completed but no more MMU notifiers will run, so
1241          * mn_active_invalidate_count may remain unbalanced.
1242          * No threads can be waiting in install_new_memslots as the
1243          * last reference on KVM has been dropped, but freeing
1244          * memslots would deadlock without this manual intervention.
1245          */
1246         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1247         kvm->mn_active_invalidate_count = 0;
1248 #else
1249         kvm_flush_shadow_all(kvm);
1250 #endif
1251         kvm_arch_destroy_vm(kvm);
1252         kvm_destroy_devices(kvm);
1253         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1254                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1255                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1256         }
1257         cleanup_srcu_struct(&kvm->irq_srcu);
1258         cleanup_srcu_struct(&kvm->srcu);
1259         kvm_arch_free_vm(kvm);
1260         preempt_notifier_dec();
1261         hardware_disable_all();
1262         mmdrop(mm);
1263         module_put(kvm_chardev_ops.owner);
1264 }
1265
1266 void kvm_get_kvm(struct kvm *kvm)
1267 {
1268         refcount_inc(&kvm->users_count);
1269 }
1270 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1271
1272 /*
1273  * Make sure the vm is not during destruction, which is a safe version of
1274  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1275  */
1276 bool kvm_get_kvm_safe(struct kvm *kvm)
1277 {
1278         return refcount_inc_not_zero(&kvm->users_count);
1279 }
1280 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1281
1282 void kvm_put_kvm(struct kvm *kvm)
1283 {
1284         if (refcount_dec_and_test(&kvm->users_count))
1285                 kvm_destroy_vm(kvm);
1286 }
1287 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1288
1289 /*
1290  * Used to put a reference that was taken on behalf of an object associated
1291  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1292  * of the new file descriptor fails and the reference cannot be transferred to
1293  * its final owner.  In such cases, the caller is still actively using @kvm and
1294  * will fail miserably if the refcount unexpectedly hits zero.
1295  */
1296 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1297 {
1298         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1301
1302 static int kvm_vm_release(struct inode *inode, struct file *filp)
1303 {
1304         struct kvm *kvm = filp->private_data;
1305
1306         kvm_irqfd_release(kvm);
1307
1308         kvm_put_kvm(kvm);
1309         return 0;
1310 }
1311
1312 /*
1313  * Allocation size is twice as large as the actual dirty bitmap size.
1314  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1315  */
1316 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1317 {
1318         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1319
1320         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1321         if (!memslot->dirty_bitmap)
1322                 return -ENOMEM;
1323
1324         return 0;
1325 }
1326
1327 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1328 {
1329         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1330         int node_idx_inactive = active->node_idx ^ 1;
1331
1332         return &kvm->__memslots[as_id][node_idx_inactive];
1333 }
1334
1335 /*
1336  * Helper to get the address space ID when one of memslot pointers may be NULL.
1337  * This also serves as a sanity that at least one of the pointers is non-NULL,
1338  * and that their address space IDs don't diverge.
1339  */
1340 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1341                                   struct kvm_memory_slot *b)
1342 {
1343         if (WARN_ON_ONCE(!a && !b))
1344                 return 0;
1345
1346         if (!a)
1347                 return b->as_id;
1348         if (!b)
1349                 return a->as_id;
1350
1351         WARN_ON_ONCE(a->as_id != b->as_id);
1352         return a->as_id;
1353 }
1354
1355 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1356                                 struct kvm_memory_slot *slot)
1357 {
1358         struct rb_root *gfn_tree = &slots->gfn_tree;
1359         struct rb_node **node, *parent;
1360         int idx = slots->node_idx;
1361
1362         parent = NULL;
1363         for (node = &gfn_tree->rb_node; *node; ) {
1364                 struct kvm_memory_slot *tmp;
1365
1366                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1367                 parent = *node;
1368                 if (slot->base_gfn < tmp->base_gfn)
1369                         node = &(*node)->rb_left;
1370                 else if (slot->base_gfn > tmp->base_gfn)
1371                         node = &(*node)->rb_right;
1372                 else
1373                         BUG();
1374         }
1375
1376         rb_link_node(&slot->gfn_node[idx], parent, node);
1377         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1378 }
1379
1380 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1381                                struct kvm_memory_slot *slot)
1382 {
1383         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1384 }
1385
1386 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1387                                  struct kvm_memory_slot *old,
1388                                  struct kvm_memory_slot *new)
1389 {
1390         int idx = slots->node_idx;
1391
1392         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1393
1394         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1395                         &slots->gfn_tree);
1396 }
1397
1398 /*
1399  * Replace @old with @new in the inactive memslots.
1400  *
1401  * With NULL @old this simply adds @new.
1402  * With NULL @new this simply removes @old.
1403  *
1404  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1405  * appropriately.
1406  */
1407 static void kvm_replace_memslot(struct kvm *kvm,
1408                                 struct kvm_memory_slot *old,
1409                                 struct kvm_memory_slot *new)
1410 {
1411         int as_id = kvm_memslots_get_as_id(old, new);
1412         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1413         int idx = slots->node_idx;
1414
1415         if (old) {
1416                 hash_del(&old->id_node[idx]);
1417                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1418
1419                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1420                         atomic_long_set(&slots->last_used_slot, (long)new);
1421
1422                 if (!new) {
1423                         kvm_erase_gfn_node(slots, old);
1424                         return;
1425                 }
1426         }
1427
1428         /*
1429          * Initialize @new's hva range.  Do this even when replacing an @old
1430          * slot, kvm_copy_memslot() deliberately does not touch node data.
1431          */
1432         new->hva_node[idx].start = new->userspace_addr;
1433         new->hva_node[idx].last = new->userspace_addr +
1434                                   (new->npages << PAGE_SHIFT) - 1;
1435
1436         /*
1437          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1438          * hva_node needs to be swapped with remove+insert even though hva can't
1439          * change when replacing an existing slot.
1440          */
1441         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1442         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1443
1444         /*
1445          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1446          * switch the node in the gfn tree instead of removing the old and
1447          * inserting the new as two separate operations. Replacement is a
1448          * single O(1) operation versus two O(log(n)) operations for
1449          * remove+insert.
1450          */
1451         if (old && old->base_gfn == new->base_gfn) {
1452                 kvm_replace_gfn_node(slots, old, new);
1453         } else {
1454                 if (old)
1455                         kvm_erase_gfn_node(slots, old);
1456                 kvm_insert_gfn_node(slots, new);
1457         }
1458 }
1459
1460 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1461 {
1462         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1463
1464 #ifdef __KVM_HAVE_READONLY_MEM
1465         valid_flags |= KVM_MEM_READONLY;
1466 #endif
1467
1468         if (mem->flags & ~valid_flags)
1469                 return -EINVAL;
1470
1471         return 0;
1472 }
1473
1474 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1475 {
1476         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1477
1478         /* Grab the generation from the activate memslots. */
1479         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1480
1481         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1482         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1483
1484         /*
1485          * Do not store the new memslots while there are invalidations in
1486          * progress, otherwise the locking in invalidate_range_start and
1487          * invalidate_range_end will be unbalanced.
1488          */
1489         spin_lock(&kvm->mn_invalidate_lock);
1490         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1491         while (kvm->mn_active_invalidate_count) {
1492                 set_current_state(TASK_UNINTERRUPTIBLE);
1493                 spin_unlock(&kvm->mn_invalidate_lock);
1494                 schedule();
1495                 spin_lock(&kvm->mn_invalidate_lock);
1496         }
1497         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1498         rcu_assign_pointer(kvm->memslots[as_id], slots);
1499         spin_unlock(&kvm->mn_invalidate_lock);
1500
1501         /*
1502          * Acquired in kvm_set_memslot. Must be released before synchronize
1503          * SRCU below in order to avoid deadlock with another thread
1504          * acquiring the slots_arch_lock in an srcu critical section.
1505          */
1506         mutex_unlock(&kvm->slots_arch_lock);
1507
1508         synchronize_srcu_expedited(&kvm->srcu);
1509
1510         /*
1511          * Increment the new memslot generation a second time, dropping the
1512          * update in-progress flag and incrementing the generation based on
1513          * the number of address spaces.  This provides a unique and easily
1514          * identifiable generation number while the memslots are in flux.
1515          */
1516         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1517
1518         /*
1519          * Generations must be unique even across address spaces.  We do not need
1520          * a global counter for that, instead the generation space is evenly split
1521          * across address spaces.  For example, with two address spaces, address
1522          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1523          * use generations 1, 3, 5, ...
1524          */
1525         gen += KVM_ADDRESS_SPACE_NUM;
1526
1527         kvm_arch_memslots_updated(kvm, gen);
1528
1529         slots->generation = gen;
1530 }
1531
1532 static int kvm_prepare_memory_region(struct kvm *kvm,
1533                                      const struct kvm_memory_slot *old,
1534                                      struct kvm_memory_slot *new,
1535                                      enum kvm_mr_change change)
1536 {
1537         int r;
1538
1539         /*
1540          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1541          * will be freed on "commit".  If logging is enabled in both old and
1542          * new, reuse the existing bitmap.  If logging is enabled only in the
1543          * new and KVM isn't using a ring buffer, allocate and initialize a
1544          * new bitmap.
1545          */
1546         if (change != KVM_MR_DELETE) {
1547                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1548                         new->dirty_bitmap = NULL;
1549                 else if (old && old->dirty_bitmap)
1550                         new->dirty_bitmap = old->dirty_bitmap;
1551                 else if (!kvm->dirty_ring_size) {
1552                         r = kvm_alloc_dirty_bitmap(new);
1553                         if (r)
1554                                 return r;
1555
1556                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1557                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1558                 }
1559         }
1560
1561         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1562
1563         /* Free the bitmap on failure if it was allocated above. */
1564         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1565                 kvm_destroy_dirty_bitmap(new);
1566
1567         return r;
1568 }
1569
1570 static void kvm_commit_memory_region(struct kvm *kvm,
1571                                      struct kvm_memory_slot *old,
1572                                      const struct kvm_memory_slot *new,
1573                                      enum kvm_mr_change change)
1574 {
1575         /*
1576          * Update the total number of memslot pages before calling the arch
1577          * hook so that architectures can consume the result directly.
1578          */
1579         if (change == KVM_MR_DELETE)
1580                 kvm->nr_memslot_pages -= old->npages;
1581         else if (change == KVM_MR_CREATE)
1582                 kvm->nr_memslot_pages += new->npages;
1583
1584         kvm_arch_commit_memory_region(kvm, old, new, change);
1585
1586         switch (change) {
1587         case KVM_MR_CREATE:
1588                 /* Nothing more to do. */
1589                 break;
1590         case KVM_MR_DELETE:
1591                 /* Free the old memslot and all its metadata. */
1592                 kvm_free_memslot(kvm, old);
1593                 break;
1594         case KVM_MR_MOVE:
1595         case KVM_MR_FLAGS_ONLY:
1596                 /*
1597                  * Free the dirty bitmap as needed; the below check encompasses
1598                  * both the flags and whether a ring buffer is being used)
1599                  */
1600                 if (old->dirty_bitmap && !new->dirty_bitmap)
1601                         kvm_destroy_dirty_bitmap(old);
1602
1603                 /*
1604                  * The final quirk.  Free the detached, old slot, but only its
1605                  * memory, not any metadata.  Metadata, including arch specific
1606                  * data, may be reused by @new.
1607                  */
1608                 kfree(old);
1609                 break;
1610         default:
1611                 BUG();
1612         }
1613 }
1614
1615 /*
1616  * Activate @new, which must be installed in the inactive slots by the caller,
1617  * by swapping the active slots and then propagating @new to @old once @old is
1618  * unreachable and can be safely modified.
1619  *
1620  * With NULL @old this simply adds @new to @active (while swapping the sets).
1621  * With NULL @new this simply removes @old from @active and frees it
1622  * (while also swapping the sets).
1623  */
1624 static void kvm_activate_memslot(struct kvm *kvm,
1625                                  struct kvm_memory_slot *old,
1626                                  struct kvm_memory_slot *new)
1627 {
1628         int as_id = kvm_memslots_get_as_id(old, new);
1629
1630         kvm_swap_active_memslots(kvm, as_id);
1631
1632         /* Propagate the new memslot to the now inactive memslots. */
1633         kvm_replace_memslot(kvm, old, new);
1634 }
1635
1636 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1637                              const struct kvm_memory_slot *src)
1638 {
1639         dest->base_gfn = src->base_gfn;
1640         dest->npages = src->npages;
1641         dest->dirty_bitmap = src->dirty_bitmap;
1642         dest->arch = src->arch;
1643         dest->userspace_addr = src->userspace_addr;
1644         dest->flags = src->flags;
1645         dest->id = src->id;
1646         dest->as_id = src->as_id;
1647 }
1648
1649 static void kvm_invalidate_memslot(struct kvm *kvm,
1650                                    struct kvm_memory_slot *old,
1651                                    struct kvm_memory_slot *invalid_slot)
1652 {
1653         /*
1654          * Mark the current slot INVALID.  As with all memslot modifications,
1655          * this must be done on an unreachable slot to avoid modifying the
1656          * current slot in the active tree.
1657          */
1658         kvm_copy_memslot(invalid_slot, old);
1659         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1660         kvm_replace_memslot(kvm, old, invalid_slot);
1661
1662         /*
1663          * Activate the slot that is now marked INVALID, but don't propagate
1664          * the slot to the now inactive slots. The slot is either going to be
1665          * deleted or recreated as a new slot.
1666          */
1667         kvm_swap_active_memslots(kvm, old->as_id);
1668
1669         /*
1670          * From this point no new shadow pages pointing to a deleted, or moved,
1671          * memslot will be created.  Validation of sp->gfn happens in:
1672          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1673          *      - kvm_is_visible_gfn (mmu_check_root)
1674          */
1675         kvm_arch_flush_shadow_memslot(kvm, old);
1676         kvm_arch_guest_memory_reclaimed(kvm);
1677
1678         /* Was released by kvm_swap_active_memslots, reacquire. */
1679         mutex_lock(&kvm->slots_arch_lock);
1680
1681         /*
1682          * Copy the arch-specific field of the newly-installed slot back to the
1683          * old slot as the arch data could have changed between releasing
1684          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1685          * above.  Writers are required to retrieve memslots *after* acquiring
1686          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1687          */
1688         old->arch = invalid_slot->arch;
1689 }
1690
1691 static void kvm_create_memslot(struct kvm *kvm,
1692                                struct kvm_memory_slot *new)
1693 {
1694         /* Add the new memslot to the inactive set and activate. */
1695         kvm_replace_memslot(kvm, NULL, new);
1696         kvm_activate_memslot(kvm, NULL, new);
1697 }
1698
1699 static void kvm_delete_memslot(struct kvm *kvm,
1700                                struct kvm_memory_slot *old,
1701                                struct kvm_memory_slot *invalid_slot)
1702 {
1703         /*
1704          * Remove the old memslot (in the inactive memslots) by passing NULL as
1705          * the "new" slot, and for the invalid version in the active slots.
1706          */
1707         kvm_replace_memslot(kvm, old, NULL);
1708         kvm_activate_memslot(kvm, invalid_slot, NULL);
1709 }
1710
1711 static void kvm_move_memslot(struct kvm *kvm,
1712                              struct kvm_memory_slot *old,
1713                              struct kvm_memory_slot *new,
1714                              struct kvm_memory_slot *invalid_slot)
1715 {
1716         /*
1717          * Replace the old memslot in the inactive slots, and then swap slots
1718          * and replace the current INVALID with the new as well.
1719          */
1720         kvm_replace_memslot(kvm, old, new);
1721         kvm_activate_memslot(kvm, invalid_slot, new);
1722 }
1723
1724 static void kvm_update_flags_memslot(struct kvm *kvm,
1725                                      struct kvm_memory_slot *old,
1726                                      struct kvm_memory_slot *new)
1727 {
1728         /*
1729          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1730          * an intermediate step. Instead, the old memslot is simply replaced
1731          * with a new, updated copy in both memslot sets.
1732          */
1733         kvm_replace_memslot(kvm, old, new);
1734         kvm_activate_memslot(kvm, old, new);
1735 }
1736
1737 static int kvm_set_memslot(struct kvm *kvm,
1738                            struct kvm_memory_slot *old,
1739                            struct kvm_memory_slot *new,
1740                            enum kvm_mr_change change)
1741 {
1742         struct kvm_memory_slot *invalid_slot;
1743         int r;
1744
1745         /*
1746          * Released in kvm_swap_active_memslots.
1747          *
1748          * Must be held from before the current memslots are copied until
1749          * after the new memslots are installed with rcu_assign_pointer,
1750          * then released before the synchronize srcu in kvm_swap_active_memslots.
1751          *
1752          * When modifying memslots outside of the slots_lock, must be held
1753          * before reading the pointer to the current memslots until after all
1754          * changes to those memslots are complete.
1755          *
1756          * These rules ensure that installing new memslots does not lose
1757          * changes made to the previous memslots.
1758          */
1759         mutex_lock(&kvm->slots_arch_lock);
1760
1761         /*
1762          * Invalidate the old slot if it's being deleted or moved.  This is
1763          * done prior to actually deleting/moving the memslot to allow vCPUs to
1764          * continue running by ensuring there are no mappings or shadow pages
1765          * for the memslot when it is deleted/moved.  Without pre-invalidation
1766          * (and without a lock), a window would exist between effecting the
1767          * delete/move and committing the changes in arch code where KVM or a
1768          * guest could access a non-existent memslot.
1769          *
1770          * Modifications are done on a temporary, unreachable slot.  The old
1771          * slot needs to be preserved in case a later step fails and the
1772          * invalidation needs to be reverted.
1773          */
1774         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1775                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1776                 if (!invalid_slot) {
1777                         mutex_unlock(&kvm->slots_arch_lock);
1778                         return -ENOMEM;
1779                 }
1780                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1781         }
1782
1783         r = kvm_prepare_memory_region(kvm, old, new, change);
1784         if (r) {
1785                 /*
1786                  * For DELETE/MOVE, revert the above INVALID change.  No
1787                  * modifications required since the original slot was preserved
1788                  * in the inactive slots.  Changing the active memslots also
1789                  * release slots_arch_lock.
1790                  */
1791                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1792                         kvm_activate_memslot(kvm, invalid_slot, old);
1793                         kfree(invalid_slot);
1794                 } else {
1795                         mutex_unlock(&kvm->slots_arch_lock);
1796                 }
1797                 return r;
1798         }
1799
1800         /*
1801          * For DELETE and MOVE, the working slot is now active as the INVALID
1802          * version of the old slot.  MOVE is particularly special as it reuses
1803          * the old slot and returns a copy of the old slot (in working_slot).
1804          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1805          * old slot is detached but otherwise preserved.
1806          */
1807         if (change == KVM_MR_CREATE)
1808                 kvm_create_memslot(kvm, new);
1809         else if (change == KVM_MR_DELETE)
1810                 kvm_delete_memslot(kvm, old, invalid_slot);
1811         else if (change == KVM_MR_MOVE)
1812                 kvm_move_memslot(kvm, old, new, invalid_slot);
1813         else if (change == KVM_MR_FLAGS_ONLY)
1814                 kvm_update_flags_memslot(kvm, old, new);
1815         else
1816                 BUG();
1817
1818         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1819         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1820                 kfree(invalid_slot);
1821
1822         /*
1823          * No need to refresh new->arch, changes after dropping slots_arch_lock
1824          * will directly hit the final, active memslot.  Architectures are
1825          * responsible for knowing that new->arch may be stale.
1826          */
1827         kvm_commit_memory_region(kvm, old, new, change);
1828
1829         return 0;
1830 }
1831
1832 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1833                                       gfn_t start, gfn_t end)
1834 {
1835         struct kvm_memslot_iter iter;
1836
1837         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1838                 if (iter.slot->id != id)
1839                         return true;
1840         }
1841
1842         return false;
1843 }
1844
1845 /*
1846  * Allocate some memory and give it an address in the guest physical address
1847  * space.
1848  *
1849  * Discontiguous memory is allowed, mostly for framebuffers.
1850  *
1851  * Must be called holding kvm->slots_lock for write.
1852  */
1853 int __kvm_set_memory_region(struct kvm *kvm,
1854                             const struct kvm_userspace_memory_region *mem)
1855 {
1856         struct kvm_memory_slot *old, *new;
1857         struct kvm_memslots *slots;
1858         enum kvm_mr_change change;
1859         unsigned long npages;
1860         gfn_t base_gfn;
1861         int as_id, id;
1862         int r;
1863
1864         r = check_memory_region_flags(mem);
1865         if (r)
1866                 return r;
1867
1868         as_id = mem->slot >> 16;
1869         id = (u16)mem->slot;
1870
1871         /* General sanity checks */
1872         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1873             (mem->memory_size != (unsigned long)mem->memory_size))
1874                 return -EINVAL;
1875         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1876                 return -EINVAL;
1877         /* We can read the guest memory with __xxx_user() later on. */
1878         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1879             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1880              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1881                         mem->memory_size))
1882                 return -EINVAL;
1883         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1884                 return -EINVAL;
1885         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1886                 return -EINVAL;
1887         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1888                 return -EINVAL;
1889
1890         slots = __kvm_memslots(kvm, as_id);
1891
1892         /*
1893          * Note, the old memslot (and the pointer itself!) may be invalidated
1894          * and/or destroyed by kvm_set_memslot().
1895          */
1896         old = id_to_memslot(slots, id);
1897
1898         if (!mem->memory_size) {
1899                 if (!old || !old->npages)
1900                         return -EINVAL;
1901
1902                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1903                         return -EIO;
1904
1905                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1906         }
1907
1908         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1909         npages = (mem->memory_size >> PAGE_SHIFT);
1910
1911         if (!old || !old->npages) {
1912                 change = KVM_MR_CREATE;
1913
1914                 /*
1915                  * To simplify KVM internals, the total number of pages across
1916                  * all memslots must fit in an unsigned long.
1917                  */
1918                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1919                         return -EINVAL;
1920         } else { /* Modify an existing slot. */
1921                 if ((mem->userspace_addr != old->userspace_addr) ||
1922                     (npages != old->npages) ||
1923                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1924                         return -EINVAL;
1925
1926                 if (base_gfn != old->base_gfn)
1927                         change = KVM_MR_MOVE;
1928                 else if (mem->flags != old->flags)
1929                         change = KVM_MR_FLAGS_ONLY;
1930                 else /* Nothing to change. */
1931                         return 0;
1932         }
1933
1934         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1935             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1936                 return -EEXIST;
1937
1938         /* Allocate a slot that will persist in the memslot. */
1939         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1940         if (!new)
1941                 return -ENOMEM;
1942
1943         new->as_id = as_id;
1944         new->id = id;
1945         new->base_gfn = base_gfn;
1946         new->npages = npages;
1947         new->flags = mem->flags;
1948         new->userspace_addr = mem->userspace_addr;
1949
1950         r = kvm_set_memslot(kvm, old, new, change);
1951         if (r)
1952                 kfree(new);
1953         return r;
1954 }
1955 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1956
1957 int kvm_set_memory_region(struct kvm *kvm,
1958                           const struct kvm_userspace_memory_region *mem)
1959 {
1960         int r;
1961
1962         mutex_lock(&kvm->slots_lock);
1963         r = __kvm_set_memory_region(kvm, mem);
1964         mutex_unlock(&kvm->slots_lock);
1965         return r;
1966 }
1967 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1968
1969 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1970                                           struct kvm_userspace_memory_region *mem)
1971 {
1972         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1973                 return -EINVAL;
1974
1975         return kvm_set_memory_region(kvm, mem);
1976 }
1977
1978 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1979 /**
1980  * kvm_get_dirty_log - get a snapshot of dirty pages
1981  * @kvm:        pointer to kvm instance
1982  * @log:        slot id and address to which we copy the log
1983  * @is_dirty:   set to '1' if any dirty pages were found
1984  * @memslot:    set to the associated memslot, always valid on success
1985  */
1986 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1987                       int *is_dirty, struct kvm_memory_slot **memslot)
1988 {
1989         struct kvm_memslots *slots;
1990         int i, as_id, id;
1991         unsigned long n;
1992         unsigned long any = 0;
1993
1994         /* Dirty ring tracking is exclusive to dirty log tracking */
1995         if (kvm->dirty_ring_size)
1996                 return -ENXIO;
1997
1998         *memslot = NULL;
1999         *is_dirty = 0;
2000
2001         as_id = log->slot >> 16;
2002         id = (u16)log->slot;
2003         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2004                 return -EINVAL;
2005
2006         slots = __kvm_memslots(kvm, as_id);
2007         *memslot = id_to_memslot(slots, id);
2008         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2009                 return -ENOENT;
2010
2011         kvm_arch_sync_dirty_log(kvm, *memslot);
2012
2013         n = kvm_dirty_bitmap_bytes(*memslot);
2014
2015         for (i = 0; !any && i < n/sizeof(long); ++i)
2016                 any = (*memslot)->dirty_bitmap[i];
2017
2018         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2019                 return -EFAULT;
2020
2021         if (any)
2022                 *is_dirty = 1;
2023         return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2026
2027 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2028 /**
2029  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2030  *      and reenable dirty page tracking for the corresponding pages.
2031  * @kvm:        pointer to kvm instance
2032  * @log:        slot id and address to which we copy the log
2033  *
2034  * We need to keep it in mind that VCPU threads can write to the bitmap
2035  * concurrently. So, to avoid losing track of dirty pages we keep the
2036  * following order:
2037  *
2038  *    1. Take a snapshot of the bit and clear it if needed.
2039  *    2. Write protect the corresponding page.
2040  *    3. Copy the snapshot to the userspace.
2041  *    4. Upon return caller flushes TLB's if needed.
2042  *
2043  * Between 2 and 4, the guest may write to the page using the remaining TLB
2044  * entry.  This is not a problem because the page is reported dirty using
2045  * the snapshot taken before and step 4 ensures that writes done after
2046  * exiting to userspace will be logged for the next call.
2047  *
2048  */
2049 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2050 {
2051         struct kvm_memslots *slots;
2052         struct kvm_memory_slot *memslot;
2053         int i, as_id, id;
2054         unsigned long n;
2055         unsigned long *dirty_bitmap;
2056         unsigned long *dirty_bitmap_buffer;
2057         bool flush;
2058
2059         /* Dirty ring tracking is exclusive to dirty log tracking */
2060         if (kvm->dirty_ring_size)
2061                 return -ENXIO;
2062
2063         as_id = log->slot >> 16;
2064         id = (u16)log->slot;
2065         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2066                 return -EINVAL;
2067
2068         slots = __kvm_memslots(kvm, as_id);
2069         memslot = id_to_memslot(slots, id);
2070         if (!memslot || !memslot->dirty_bitmap)
2071                 return -ENOENT;
2072
2073         dirty_bitmap = memslot->dirty_bitmap;
2074
2075         kvm_arch_sync_dirty_log(kvm, memslot);
2076
2077         n = kvm_dirty_bitmap_bytes(memslot);
2078         flush = false;
2079         if (kvm->manual_dirty_log_protect) {
2080                 /*
2081                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2082                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2083                  * is some code duplication between this function and
2084                  * kvm_get_dirty_log, but hopefully all architecture
2085                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2086                  * can be eliminated.
2087                  */
2088                 dirty_bitmap_buffer = dirty_bitmap;
2089         } else {
2090                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2091                 memset(dirty_bitmap_buffer, 0, n);
2092
2093                 KVM_MMU_LOCK(kvm);
2094                 for (i = 0; i < n / sizeof(long); i++) {
2095                         unsigned long mask;
2096                         gfn_t offset;
2097
2098                         if (!dirty_bitmap[i])
2099                                 continue;
2100
2101                         flush = true;
2102                         mask = xchg(&dirty_bitmap[i], 0);
2103                         dirty_bitmap_buffer[i] = mask;
2104
2105                         offset = i * BITS_PER_LONG;
2106                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2107                                                                 offset, mask);
2108                 }
2109                 KVM_MMU_UNLOCK(kvm);
2110         }
2111
2112         if (flush)
2113                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2114
2115         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2116                 return -EFAULT;
2117         return 0;
2118 }
2119
2120
2121 /**
2122  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2123  * @kvm: kvm instance
2124  * @log: slot id and address to which we copy the log
2125  *
2126  * Steps 1-4 below provide general overview of dirty page logging. See
2127  * kvm_get_dirty_log_protect() function description for additional details.
2128  *
2129  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2130  * always flush the TLB (step 4) even if previous step failed  and the dirty
2131  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2132  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2133  * writes will be marked dirty for next log read.
2134  *
2135  *   1. Take a snapshot of the bit and clear it if needed.
2136  *   2. Write protect the corresponding page.
2137  *   3. Copy the snapshot to the userspace.
2138  *   4. Flush TLB's if needed.
2139  */
2140 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2141                                       struct kvm_dirty_log *log)
2142 {
2143         int r;
2144
2145         mutex_lock(&kvm->slots_lock);
2146
2147         r = kvm_get_dirty_log_protect(kvm, log);
2148
2149         mutex_unlock(&kvm->slots_lock);
2150         return r;
2151 }
2152
2153 /**
2154  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2155  *      and reenable dirty page tracking for the corresponding pages.
2156  * @kvm:        pointer to kvm instance
2157  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2158  */
2159 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2160                                        struct kvm_clear_dirty_log *log)
2161 {
2162         struct kvm_memslots *slots;
2163         struct kvm_memory_slot *memslot;
2164         int as_id, id;
2165         gfn_t offset;
2166         unsigned long i, n;
2167         unsigned long *dirty_bitmap;
2168         unsigned long *dirty_bitmap_buffer;
2169         bool flush;
2170
2171         /* Dirty ring tracking is exclusive to dirty log tracking */
2172         if (kvm->dirty_ring_size)
2173                 return -ENXIO;
2174
2175         as_id = log->slot >> 16;
2176         id = (u16)log->slot;
2177         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2178                 return -EINVAL;
2179
2180         if (log->first_page & 63)
2181                 return -EINVAL;
2182
2183         slots = __kvm_memslots(kvm, as_id);
2184         memslot = id_to_memslot(slots, id);
2185         if (!memslot || !memslot->dirty_bitmap)
2186                 return -ENOENT;
2187
2188         dirty_bitmap = memslot->dirty_bitmap;
2189
2190         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2191
2192         if (log->first_page > memslot->npages ||
2193             log->num_pages > memslot->npages - log->first_page ||
2194             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2195             return -EINVAL;
2196
2197         kvm_arch_sync_dirty_log(kvm, memslot);
2198
2199         flush = false;
2200         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2201         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2202                 return -EFAULT;
2203
2204         KVM_MMU_LOCK(kvm);
2205         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2206                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2207              i++, offset += BITS_PER_LONG) {
2208                 unsigned long mask = *dirty_bitmap_buffer++;
2209                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2210                 if (!mask)
2211                         continue;
2212
2213                 mask &= atomic_long_fetch_andnot(mask, p);
2214
2215                 /*
2216                  * mask contains the bits that really have been cleared.  This
2217                  * never includes any bits beyond the length of the memslot (if
2218                  * the length is not aligned to 64 pages), therefore it is not
2219                  * a problem if userspace sets them in log->dirty_bitmap.
2220                 */
2221                 if (mask) {
2222                         flush = true;
2223                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2224                                                                 offset, mask);
2225                 }
2226         }
2227         KVM_MMU_UNLOCK(kvm);
2228
2229         if (flush)
2230                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2231
2232         return 0;
2233 }
2234
2235 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2236                                         struct kvm_clear_dirty_log *log)
2237 {
2238         int r;
2239
2240         mutex_lock(&kvm->slots_lock);
2241
2242         r = kvm_clear_dirty_log_protect(kvm, log);
2243
2244         mutex_unlock(&kvm->slots_lock);
2245         return r;
2246 }
2247 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2248
2249 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2250 {
2251         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2252 }
2253 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2254
2255 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2256 {
2257         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2258         u64 gen = slots->generation;
2259         struct kvm_memory_slot *slot;
2260
2261         /*
2262          * This also protects against using a memslot from a different address space,
2263          * since different address spaces have different generation numbers.
2264          */
2265         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2266                 vcpu->last_used_slot = NULL;
2267                 vcpu->last_used_slot_gen = gen;
2268         }
2269
2270         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2271         if (slot)
2272                 return slot;
2273
2274         /*
2275          * Fall back to searching all memslots. We purposely use
2276          * search_memslots() instead of __gfn_to_memslot() to avoid
2277          * thrashing the VM-wide last_used_slot in kvm_memslots.
2278          */
2279         slot = search_memslots(slots, gfn, false);
2280         if (slot) {
2281                 vcpu->last_used_slot = slot;
2282                 return slot;
2283         }
2284
2285         return NULL;
2286 }
2287
2288 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2289 {
2290         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2291
2292         return kvm_is_visible_memslot(memslot);
2293 }
2294 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2295
2296 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2297 {
2298         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2299
2300         return kvm_is_visible_memslot(memslot);
2301 }
2302 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2303
2304 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2305 {
2306         struct vm_area_struct *vma;
2307         unsigned long addr, size;
2308
2309         size = PAGE_SIZE;
2310
2311         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2312         if (kvm_is_error_hva(addr))
2313                 return PAGE_SIZE;
2314
2315         mmap_read_lock(current->mm);
2316         vma = find_vma(current->mm, addr);
2317         if (!vma)
2318                 goto out;
2319
2320         size = vma_kernel_pagesize(vma);
2321
2322 out:
2323         mmap_read_unlock(current->mm);
2324
2325         return size;
2326 }
2327
2328 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2329 {
2330         return slot->flags & KVM_MEM_READONLY;
2331 }
2332
2333 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2334                                        gfn_t *nr_pages, bool write)
2335 {
2336         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2337                 return KVM_HVA_ERR_BAD;
2338
2339         if (memslot_is_readonly(slot) && write)
2340                 return KVM_HVA_ERR_RO_BAD;
2341
2342         if (nr_pages)
2343                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2344
2345         return __gfn_to_hva_memslot(slot, gfn);
2346 }
2347
2348 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2349                                      gfn_t *nr_pages)
2350 {
2351         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2352 }
2353
2354 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2355                                         gfn_t gfn)
2356 {
2357         return gfn_to_hva_many(slot, gfn, NULL);
2358 }
2359 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2360
2361 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2362 {
2363         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2364 }
2365 EXPORT_SYMBOL_GPL(gfn_to_hva);
2366
2367 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2368 {
2369         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2372
2373 /*
2374  * Return the hva of a @gfn and the R/W attribute if possible.
2375  *
2376  * @slot: the kvm_memory_slot which contains @gfn
2377  * @gfn: the gfn to be translated
2378  * @writable: used to return the read/write attribute of the @slot if the hva
2379  * is valid and @writable is not NULL
2380  */
2381 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2382                                       gfn_t gfn, bool *writable)
2383 {
2384         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2385
2386         if (!kvm_is_error_hva(hva) && writable)
2387                 *writable = !memslot_is_readonly(slot);
2388
2389         return hva;
2390 }
2391
2392 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2393 {
2394         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2395
2396         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2397 }
2398
2399 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2400 {
2401         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2402
2403         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2404 }
2405
2406 static inline int check_user_page_hwpoison(unsigned long addr)
2407 {
2408         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2409
2410         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2411         return rc == -EHWPOISON;
2412 }
2413
2414 /*
2415  * The fast path to get the writable pfn which will be stored in @pfn,
2416  * true indicates success, otherwise false is returned.  It's also the
2417  * only part that runs if we can in atomic context.
2418  */
2419 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2420                             bool *writable, kvm_pfn_t *pfn)
2421 {
2422         struct page *page[1];
2423
2424         /*
2425          * Fast pin a writable pfn only if it is a write fault request
2426          * or the caller allows to map a writable pfn for a read fault
2427          * request.
2428          */
2429         if (!(write_fault || writable))
2430                 return false;
2431
2432         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2433                 *pfn = page_to_pfn(page[0]);
2434
2435                 if (writable)
2436                         *writable = true;
2437                 return true;
2438         }
2439
2440         return false;
2441 }
2442
2443 /*
2444  * The slow path to get the pfn of the specified host virtual address,
2445  * 1 indicates success, -errno is returned if error is detected.
2446  */
2447 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2448                            bool *writable, kvm_pfn_t *pfn)
2449 {
2450         unsigned int flags = FOLL_HWPOISON;
2451         struct page *page;
2452         int npages = 0;
2453
2454         might_sleep();
2455
2456         if (writable)
2457                 *writable = write_fault;
2458
2459         if (write_fault)
2460                 flags |= FOLL_WRITE;
2461         if (async)
2462                 flags |= FOLL_NOWAIT;
2463
2464         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2465         if (npages != 1)
2466                 return npages;
2467
2468         /* map read fault as writable if possible */
2469         if (unlikely(!write_fault) && writable) {
2470                 struct page *wpage;
2471
2472                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2473                         *writable = true;
2474                         put_page(page);
2475                         page = wpage;
2476                 }
2477         }
2478         *pfn = page_to_pfn(page);
2479         return npages;
2480 }
2481
2482 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2483 {
2484         if (unlikely(!(vma->vm_flags & VM_READ)))
2485                 return false;
2486
2487         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2488                 return false;
2489
2490         return true;
2491 }
2492
2493 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2494 {
2495         if (kvm_is_reserved_pfn(pfn))
2496                 return 1;
2497         return get_page_unless_zero(pfn_to_page(pfn));
2498 }
2499
2500 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2501                                unsigned long addr, bool write_fault,
2502                                bool *writable, kvm_pfn_t *p_pfn)
2503 {
2504         kvm_pfn_t pfn;
2505         pte_t *ptep;
2506         spinlock_t *ptl;
2507         int r;
2508
2509         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2510         if (r) {
2511                 /*
2512                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2513                  * not call the fault handler, so do it here.
2514                  */
2515                 bool unlocked = false;
2516                 r = fixup_user_fault(current->mm, addr,
2517                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2518                                      &unlocked);
2519                 if (unlocked)
2520                         return -EAGAIN;
2521                 if (r)
2522                         return r;
2523
2524                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2525                 if (r)
2526                         return r;
2527         }
2528
2529         if (write_fault && !pte_write(*ptep)) {
2530                 pfn = KVM_PFN_ERR_RO_FAULT;
2531                 goto out;
2532         }
2533
2534         if (writable)
2535                 *writable = pte_write(*ptep);
2536         pfn = pte_pfn(*ptep);
2537
2538         /*
2539          * Get a reference here because callers of *hva_to_pfn* and
2540          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2541          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2542          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2543          * simply do nothing for reserved pfns.
2544          *
2545          * Whoever called remap_pfn_range is also going to call e.g.
2546          * unmap_mapping_range before the underlying pages are freed,
2547          * causing a call to our MMU notifier.
2548          *
2549          * Certain IO or PFNMAP mappings can be backed with valid
2550          * struct pages, but be allocated without refcounting e.g.,
2551          * tail pages of non-compound higher order allocations, which
2552          * would then underflow the refcount when the caller does the
2553          * required put_page. Don't allow those pages here.
2554          */ 
2555         if (!kvm_try_get_pfn(pfn))
2556                 r = -EFAULT;
2557
2558 out:
2559         pte_unmap_unlock(ptep, ptl);
2560         *p_pfn = pfn;
2561
2562         return r;
2563 }
2564
2565 /*
2566  * Pin guest page in memory and return its pfn.
2567  * @addr: host virtual address which maps memory to the guest
2568  * @atomic: whether this function can sleep
2569  * @async: whether this function need to wait IO complete if the
2570  *         host page is not in the memory
2571  * @write_fault: whether we should get a writable host page
2572  * @writable: whether it allows to map a writable host page for !@write_fault
2573  *
2574  * The function will map a writable host page for these two cases:
2575  * 1): @write_fault = true
2576  * 2): @write_fault = false && @writable, @writable will tell the caller
2577  *     whether the mapping is writable.
2578  */
2579 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2580                      bool write_fault, bool *writable)
2581 {
2582         struct vm_area_struct *vma;
2583         kvm_pfn_t pfn = 0;
2584         int npages, r;
2585
2586         /* we can do it either atomically or asynchronously, not both */
2587         BUG_ON(atomic && async);
2588
2589         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2590                 return pfn;
2591
2592         if (atomic)
2593                 return KVM_PFN_ERR_FAULT;
2594
2595         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2596         if (npages == 1)
2597                 return pfn;
2598
2599         mmap_read_lock(current->mm);
2600         if (npages == -EHWPOISON ||
2601               (!async && check_user_page_hwpoison(addr))) {
2602                 pfn = KVM_PFN_ERR_HWPOISON;
2603                 goto exit;
2604         }
2605
2606 retry:
2607         vma = vma_lookup(current->mm, addr);
2608
2609         if (vma == NULL)
2610                 pfn = KVM_PFN_ERR_FAULT;
2611         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2612                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2613                 if (r == -EAGAIN)
2614                         goto retry;
2615                 if (r < 0)
2616                         pfn = KVM_PFN_ERR_FAULT;
2617         } else {
2618                 if (async && vma_is_valid(vma, write_fault))
2619                         *async = true;
2620                 pfn = KVM_PFN_ERR_FAULT;
2621         }
2622 exit:
2623         mmap_read_unlock(current->mm);
2624         return pfn;
2625 }
2626
2627 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2628                                bool atomic, bool *async, bool write_fault,
2629                                bool *writable, hva_t *hva)
2630 {
2631         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2632
2633         if (hva)
2634                 *hva = addr;
2635
2636         if (addr == KVM_HVA_ERR_RO_BAD) {
2637                 if (writable)
2638                         *writable = false;
2639                 return KVM_PFN_ERR_RO_FAULT;
2640         }
2641
2642         if (kvm_is_error_hva(addr)) {
2643                 if (writable)
2644                         *writable = false;
2645                 return KVM_PFN_NOSLOT;
2646         }
2647
2648         /* Do not map writable pfn in the readonly memslot. */
2649         if (writable && memslot_is_readonly(slot)) {
2650                 *writable = false;
2651                 writable = NULL;
2652         }
2653
2654         return hva_to_pfn(addr, atomic, async, write_fault,
2655                           writable);
2656 }
2657 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2658
2659 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2660                       bool *writable)
2661 {
2662         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2663                                     write_fault, writable, NULL);
2664 }
2665 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2666
2667 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2668 {
2669         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2670 }
2671 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2672
2673 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2674 {
2675         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2676 }
2677 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2678
2679 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2680 {
2681         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2682 }
2683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2684
2685 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2686 {
2687         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2688 }
2689 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2690
2691 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2692 {
2693         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2694 }
2695 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2696
2697 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2698                             struct page **pages, int nr_pages)
2699 {
2700         unsigned long addr;
2701         gfn_t entry = 0;
2702
2703         addr = gfn_to_hva_many(slot, gfn, &entry);
2704         if (kvm_is_error_hva(addr))
2705                 return -1;
2706
2707         if (entry < nr_pages)
2708                 return 0;
2709
2710         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2711 }
2712 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2713
2714 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2715 {
2716         if (is_error_noslot_pfn(pfn))
2717                 return KVM_ERR_PTR_BAD_PAGE;
2718
2719         if (kvm_is_reserved_pfn(pfn)) {
2720                 WARN_ON(1);
2721                 return KVM_ERR_PTR_BAD_PAGE;
2722         }
2723
2724         return pfn_to_page(pfn);
2725 }
2726
2727 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2728 {
2729         kvm_pfn_t pfn;
2730
2731         pfn = gfn_to_pfn(kvm, gfn);
2732
2733         return kvm_pfn_to_page(pfn);
2734 }
2735 EXPORT_SYMBOL_GPL(gfn_to_page);
2736
2737 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2738 {
2739         if (pfn == 0)
2740                 return;
2741
2742         if (dirty)
2743                 kvm_release_pfn_dirty(pfn);
2744         else
2745                 kvm_release_pfn_clean(pfn);
2746 }
2747
2748 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2749 {
2750         kvm_pfn_t pfn;
2751         void *hva = NULL;
2752         struct page *page = KVM_UNMAPPED_PAGE;
2753
2754         if (!map)
2755                 return -EINVAL;
2756
2757         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2758         if (is_error_noslot_pfn(pfn))
2759                 return -EINVAL;
2760
2761         if (pfn_valid(pfn)) {
2762                 page = pfn_to_page(pfn);
2763                 hva = kmap(page);
2764 #ifdef CONFIG_HAS_IOMEM
2765         } else {
2766                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2767 #endif
2768         }
2769
2770         if (!hva)
2771                 return -EFAULT;
2772
2773         map->page = page;
2774         map->hva = hva;
2775         map->pfn = pfn;
2776         map->gfn = gfn;
2777
2778         return 0;
2779 }
2780 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2781
2782 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2783 {
2784         if (!map)
2785                 return;
2786
2787         if (!map->hva)
2788                 return;
2789
2790         if (map->page != KVM_UNMAPPED_PAGE)
2791                 kunmap(map->page);
2792 #ifdef CONFIG_HAS_IOMEM
2793         else
2794                 memunmap(map->hva);
2795 #endif
2796
2797         if (dirty)
2798                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2799
2800         kvm_release_pfn(map->pfn, dirty);
2801
2802         map->hva = NULL;
2803         map->page = NULL;
2804 }
2805 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2806
2807 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2808 {
2809         kvm_pfn_t pfn;
2810
2811         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2812
2813         return kvm_pfn_to_page(pfn);
2814 }
2815 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2816
2817 void kvm_release_page_clean(struct page *page)
2818 {
2819         WARN_ON(is_error_page(page));
2820
2821         kvm_release_pfn_clean(page_to_pfn(page));
2822 }
2823 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2824
2825 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2826 {
2827         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2828                 put_page(pfn_to_page(pfn));
2829 }
2830 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2831
2832 void kvm_release_page_dirty(struct page *page)
2833 {
2834         WARN_ON(is_error_page(page));
2835
2836         kvm_release_pfn_dirty(page_to_pfn(page));
2837 }
2838 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2839
2840 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2841 {
2842         kvm_set_pfn_dirty(pfn);
2843         kvm_release_pfn_clean(pfn);
2844 }
2845 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2846
2847 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2848 {
2849         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2850                 SetPageDirty(pfn_to_page(pfn));
2851 }
2852 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2853
2854 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2855 {
2856         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2857                 mark_page_accessed(pfn_to_page(pfn));
2858 }
2859 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2860
2861 static int next_segment(unsigned long len, int offset)
2862 {
2863         if (len > PAGE_SIZE - offset)
2864                 return PAGE_SIZE - offset;
2865         else
2866                 return len;
2867 }
2868
2869 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2870                                  void *data, int offset, int len)
2871 {
2872         int r;
2873         unsigned long addr;
2874
2875         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2876         if (kvm_is_error_hva(addr))
2877                 return -EFAULT;
2878         r = __copy_from_user(data, (void __user *)addr + offset, len);
2879         if (r)
2880                 return -EFAULT;
2881         return 0;
2882 }
2883
2884 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2885                         int len)
2886 {
2887         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2888
2889         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2890 }
2891 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2892
2893 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2894                              int offset, int len)
2895 {
2896         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2897
2898         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2899 }
2900 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2901
2902 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2903 {
2904         gfn_t gfn = gpa >> PAGE_SHIFT;
2905         int seg;
2906         int offset = offset_in_page(gpa);
2907         int ret;
2908
2909         while ((seg = next_segment(len, offset)) != 0) {
2910                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2911                 if (ret < 0)
2912                         return ret;
2913                 offset = 0;
2914                 len -= seg;
2915                 data += seg;
2916                 ++gfn;
2917         }
2918         return 0;
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_read_guest);
2921
2922 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2923 {
2924         gfn_t gfn = gpa >> PAGE_SHIFT;
2925         int seg;
2926         int offset = offset_in_page(gpa);
2927         int ret;
2928
2929         while ((seg = next_segment(len, offset)) != 0) {
2930                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2931                 if (ret < 0)
2932                         return ret;
2933                 offset = 0;
2934                 len -= seg;
2935                 data += seg;
2936                 ++gfn;
2937         }
2938         return 0;
2939 }
2940 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2941
2942 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2943                                    void *data, int offset, unsigned long len)
2944 {
2945         int r;
2946         unsigned long addr;
2947
2948         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2949         if (kvm_is_error_hva(addr))
2950                 return -EFAULT;
2951         pagefault_disable();
2952         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2953         pagefault_enable();
2954         if (r)
2955                 return -EFAULT;
2956         return 0;
2957 }
2958
2959 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2960                                void *data, unsigned long len)
2961 {
2962         gfn_t gfn = gpa >> PAGE_SHIFT;
2963         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2964         int offset = offset_in_page(gpa);
2965
2966         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2967 }
2968 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2969
2970 static int __kvm_write_guest_page(struct kvm *kvm,
2971                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2972                                   const void *data, int offset, int len)
2973 {
2974         int r;
2975         unsigned long addr;
2976
2977         addr = gfn_to_hva_memslot(memslot, gfn);
2978         if (kvm_is_error_hva(addr))
2979                 return -EFAULT;
2980         r = __copy_to_user((void __user *)addr + offset, data, len);
2981         if (r)
2982                 return -EFAULT;
2983         mark_page_dirty_in_slot(kvm, memslot, gfn);
2984         return 0;
2985 }
2986
2987 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2988                          const void *data, int offset, int len)
2989 {
2990         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2991
2992         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2993 }
2994 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2995
2996 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2997                               const void *data, int offset, int len)
2998 {
2999         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3000
3001         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3002 }
3003 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3004
3005 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3006                     unsigned long len)
3007 {
3008         gfn_t gfn = gpa >> PAGE_SHIFT;
3009         int seg;
3010         int offset = offset_in_page(gpa);
3011         int ret;
3012
3013         while ((seg = next_segment(len, offset)) != 0) {
3014                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3015                 if (ret < 0)
3016                         return ret;
3017                 offset = 0;
3018                 len -= seg;
3019                 data += seg;
3020                 ++gfn;
3021         }
3022         return 0;
3023 }
3024 EXPORT_SYMBOL_GPL(kvm_write_guest);
3025
3026 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3027                          unsigned long len)
3028 {
3029         gfn_t gfn = gpa >> PAGE_SHIFT;
3030         int seg;
3031         int offset = offset_in_page(gpa);
3032         int ret;
3033
3034         while ((seg = next_segment(len, offset)) != 0) {
3035                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3036                 if (ret < 0)
3037                         return ret;
3038                 offset = 0;
3039                 len -= seg;
3040                 data += seg;
3041                 ++gfn;
3042         }
3043         return 0;
3044 }
3045 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3046
3047 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3048                                        struct gfn_to_hva_cache *ghc,
3049                                        gpa_t gpa, unsigned long len)
3050 {
3051         int offset = offset_in_page(gpa);
3052         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3053         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3054         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3055         gfn_t nr_pages_avail;
3056
3057         /* Update ghc->generation before performing any error checks. */
3058         ghc->generation = slots->generation;
3059
3060         if (start_gfn > end_gfn) {
3061                 ghc->hva = KVM_HVA_ERR_BAD;
3062                 return -EINVAL;
3063         }
3064
3065         /*
3066          * If the requested region crosses two memslots, we still
3067          * verify that the entire region is valid here.
3068          */
3069         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3070                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3071                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3072                                            &nr_pages_avail);
3073                 if (kvm_is_error_hva(ghc->hva))
3074                         return -EFAULT;
3075         }
3076
3077         /* Use the slow path for cross page reads and writes. */
3078         if (nr_pages_needed == 1)
3079                 ghc->hva += offset;
3080         else
3081                 ghc->memslot = NULL;
3082
3083         ghc->gpa = gpa;
3084         ghc->len = len;
3085         return 0;
3086 }
3087
3088 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3089                               gpa_t gpa, unsigned long len)
3090 {
3091         struct kvm_memslots *slots = kvm_memslots(kvm);
3092         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3093 }
3094 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3095
3096 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3097                                   void *data, unsigned int offset,
3098                                   unsigned long len)
3099 {
3100         struct kvm_memslots *slots = kvm_memslots(kvm);
3101         int r;
3102         gpa_t gpa = ghc->gpa + offset;
3103
3104         if (WARN_ON_ONCE(len + offset > ghc->len))
3105                 return -EINVAL;
3106
3107         if (slots->generation != ghc->generation) {
3108                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3109                         return -EFAULT;
3110         }
3111
3112         if (kvm_is_error_hva(ghc->hva))
3113                 return -EFAULT;
3114
3115         if (unlikely(!ghc->memslot))
3116                 return kvm_write_guest(kvm, gpa, data, len);
3117
3118         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3119         if (r)
3120                 return -EFAULT;
3121         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3122
3123         return 0;
3124 }
3125 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3126
3127 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3128                            void *data, unsigned long len)
3129 {
3130         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3131 }
3132 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3133
3134 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3135                                  void *data, unsigned int offset,
3136                                  unsigned long len)
3137 {
3138         struct kvm_memslots *slots = kvm_memslots(kvm);
3139         int r;
3140         gpa_t gpa = ghc->gpa + offset;
3141
3142         if (WARN_ON_ONCE(len + offset > ghc->len))
3143                 return -EINVAL;
3144
3145         if (slots->generation != ghc->generation) {
3146                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3147                         return -EFAULT;
3148         }
3149
3150         if (kvm_is_error_hva(ghc->hva))
3151                 return -EFAULT;
3152
3153         if (unlikely(!ghc->memslot))
3154                 return kvm_read_guest(kvm, gpa, data, len);
3155
3156         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3157         if (r)
3158                 return -EFAULT;
3159
3160         return 0;
3161 }
3162 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3163
3164 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3165                           void *data, unsigned long len)
3166 {
3167         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3168 }
3169 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3170
3171 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3172 {
3173         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3174         gfn_t gfn = gpa >> PAGE_SHIFT;
3175         int seg;
3176         int offset = offset_in_page(gpa);
3177         int ret;
3178
3179         while ((seg = next_segment(len, offset)) != 0) {
3180                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3181                 if (ret < 0)
3182                         return ret;
3183                 offset = 0;
3184                 len -= seg;
3185                 ++gfn;
3186         }
3187         return 0;
3188 }
3189 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3190
3191 void mark_page_dirty_in_slot(struct kvm *kvm,
3192                              const struct kvm_memory_slot *memslot,
3193                              gfn_t gfn)
3194 {
3195         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3196
3197 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3198         if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3199                 return;
3200 #endif
3201
3202         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3203                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3204                 u32 slot = (memslot->as_id << 16) | memslot->id;
3205
3206                 if (kvm->dirty_ring_size)
3207                         kvm_dirty_ring_push(&vcpu->dirty_ring,
3208                                             slot, rel_gfn);
3209                 else
3210                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3211         }
3212 }
3213 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3214
3215 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3216 {
3217         struct kvm_memory_slot *memslot;
3218
3219         memslot = gfn_to_memslot(kvm, gfn);
3220         mark_page_dirty_in_slot(kvm, memslot, gfn);
3221 }
3222 EXPORT_SYMBOL_GPL(mark_page_dirty);
3223
3224 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3225 {
3226         struct kvm_memory_slot *memslot;
3227
3228         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3229         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3230 }
3231 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3232
3233 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3234 {
3235         if (!vcpu->sigset_active)
3236                 return;
3237
3238         /*
3239          * This does a lockless modification of ->real_blocked, which is fine
3240          * because, only current can change ->real_blocked and all readers of
3241          * ->real_blocked don't care as long ->real_blocked is always a subset
3242          * of ->blocked.
3243          */
3244         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3245 }
3246
3247 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3248 {
3249         if (!vcpu->sigset_active)
3250                 return;
3251
3252         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3253         sigemptyset(&current->real_blocked);
3254 }
3255
3256 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3257 {
3258         unsigned int old, val, grow, grow_start;
3259
3260         old = val = vcpu->halt_poll_ns;
3261         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3262         grow = READ_ONCE(halt_poll_ns_grow);
3263         if (!grow)
3264                 goto out;
3265
3266         val *= grow;
3267         if (val < grow_start)
3268                 val = grow_start;
3269
3270         if (val > vcpu->kvm->max_halt_poll_ns)
3271                 val = vcpu->kvm->max_halt_poll_ns;
3272
3273         vcpu->halt_poll_ns = val;
3274 out:
3275         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3276 }
3277
3278 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3279 {
3280         unsigned int old, val, shrink, grow_start;
3281
3282         old = val = vcpu->halt_poll_ns;
3283         shrink = READ_ONCE(halt_poll_ns_shrink);
3284         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3285         if (shrink == 0)
3286                 val = 0;
3287         else
3288                 val /= shrink;
3289
3290         if (val < grow_start)
3291                 val = 0;
3292
3293         vcpu->halt_poll_ns = val;
3294         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3295 }
3296
3297 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3298 {
3299         int ret = -EINTR;
3300         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3301
3302         if (kvm_arch_vcpu_runnable(vcpu)) {
3303                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3304                 goto out;
3305         }
3306         if (kvm_cpu_has_pending_timer(vcpu))
3307                 goto out;
3308         if (signal_pending(current))
3309                 goto out;
3310         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3311                 goto out;
3312
3313         ret = 0;
3314 out:
3315         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3316         return ret;
3317 }
3318
3319 /*
3320  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3321  * pending.  This is mostly used when halting a vCPU, but may also be used
3322  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3323  */
3324 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3325 {
3326         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3327         bool waited = false;
3328
3329         vcpu->stat.generic.blocking = 1;
3330
3331         kvm_arch_vcpu_blocking(vcpu);
3332
3333         prepare_to_rcuwait(wait);
3334         for (;;) {
3335                 set_current_state(TASK_INTERRUPTIBLE);
3336
3337                 if (kvm_vcpu_check_block(vcpu) < 0)
3338                         break;
3339
3340                 waited = true;
3341                 schedule();
3342         }
3343         finish_rcuwait(wait);
3344
3345         kvm_arch_vcpu_unblocking(vcpu);
3346
3347         vcpu->stat.generic.blocking = 0;
3348
3349         return waited;
3350 }
3351
3352 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3353                                           ktime_t end, bool success)
3354 {
3355         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3356         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3357
3358         ++vcpu->stat.generic.halt_attempted_poll;
3359
3360         if (success) {
3361                 ++vcpu->stat.generic.halt_successful_poll;
3362
3363                 if (!vcpu_valid_wakeup(vcpu))
3364                         ++vcpu->stat.generic.halt_poll_invalid;
3365
3366                 stats->halt_poll_success_ns += poll_ns;
3367                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3368         } else {
3369                 stats->halt_poll_fail_ns += poll_ns;
3370                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3371         }
3372 }
3373
3374 /*
3375  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3376  * polling is enabled, busy wait for a short time before blocking to avoid the
3377  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3378  * is halted.
3379  */
3380 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3381 {
3382         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3383         bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3384         ktime_t start, cur, poll_end;
3385         bool waited = false;
3386         u64 halt_ns;
3387
3388         start = cur = poll_end = ktime_get();
3389         if (do_halt_poll) {
3390                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3391
3392                 do {
3393                         /*
3394                          * This sets KVM_REQ_UNHALT if an interrupt
3395                          * arrives.
3396                          */
3397                         if (kvm_vcpu_check_block(vcpu) < 0)
3398                                 goto out;
3399                         cpu_relax();
3400                         poll_end = cur = ktime_get();
3401                 } while (kvm_vcpu_can_poll(cur, stop));
3402         }
3403
3404         waited = kvm_vcpu_block(vcpu);
3405
3406         cur = ktime_get();
3407         if (waited) {
3408                 vcpu->stat.generic.halt_wait_ns +=
3409                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3410                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3411                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3412         }
3413 out:
3414         /* The total time the vCPU was "halted", including polling time. */
3415         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3416
3417         /*
3418          * Note, halt-polling is considered successful so long as the vCPU was
3419          * never actually scheduled out, i.e. even if the wake event arrived
3420          * after of the halt-polling loop itself, but before the full wait.
3421          */
3422         if (do_halt_poll)
3423                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3424
3425         if (halt_poll_allowed) {
3426                 if (!vcpu_valid_wakeup(vcpu)) {
3427                         shrink_halt_poll_ns(vcpu);
3428                 } else if (vcpu->kvm->max_halt_poll_ns) {
3429                         if (halt_ns <= vcpu->halt_poll_ns)
3430                                 ;
3431                         /* we had a long block, shrink polling */
3432                         else if (vcpu->halt_poll_ns &&
3433                                  halt_ns > vcpu->kvm->max_halt_poll_ns)
3434                                 shrink_halt_poll_ns(vcpu);
3435                         /* we had a short halt and our poll time is too small */
3436                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3437                                  halt_ns < vcpu->kvm->max_halt_poll_ns)
3438                                 grow_halt_poll_ns(vcpu);
3439                 } else {
3440                         vcpu->halt_poll_ns = 0;
3441                 }
3442         }
3443
3444         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3445 }
3446 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3447
3448 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3449 {
3450         if (__kvm_vcpu_wake_up(vcpu)) {
3451                 WRITE_ONCE(vcpu->ready, true);
3452                 ++vcpu->stat.generic.halt_wakeup;
3453                 return true;
3454         }
3455
3456         return false;
3457 }
3458 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3459
3460 #ifndef CONFIG_S390
3461 /*
3462  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3463  */
3464 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3465 {
3466         int me, cpu;
3467
3468         if (kvm_vcpu_wake_up(vcpu))
3469                 return;
3470
3471         me = get_cpu();
3472         /*
3473          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3474          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3475          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3476          * within the vCPU thread itself.
3477          */
3478         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3479                 if (vcpu->mode == IN_GUEST_MODE)
3480                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3481                 goto out;
3482         }
3483
3484         /*
3485          * Note, the vCPU could get migrated to a different pCPU at any point
3486          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3487          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3488          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3489          * vCPU also requires it to leave IN_GUEST_MODE.
3490          */
3491         if (kvm_arch_vcpu_should_kick(vcpu)) {
3492                 cpu = READ_ONCE(vcpu->cpu);
3493                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3494                         smp_send_reschedule(cpu);
3495         }
3496 out:
3497         put_cpu();
3498 }
3499 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3500 #endif /* !CONFIG_S390 */
3501
3502 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3503 {
3504         struct pid *pid;
3505         struct task_struct *task = NULL;
3506         int ret = 0;
3507
3508         rcu_read_lock();
3509         pid = rcu_dereference(target->pid);
3510         if (pid)
3511                 task = get_pid_task(pid, PIDTYPE_PID);
3512         rcu_read_unlock();
3513         if (!task)
3514                 return ret;
3515         ret = yield_to(task, 1);
3516         put_task_struct(task);
3517
3518         return ret;
3519 }
3520 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3521
3522 /*
3523  * Helper that checks whether a VCPU is eligible for directed yield.
3524  * Most eligible candidate to yield is decided by following heuristics:
3525  *
3526  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3527  *  (preempted lock holder), indicated by @in_spin_loop.
3528  *  Set at the beginning and cleared at the end of interception/PLE handler.
3529  *
3530  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3531  *  chance last time (mostly it has become eligible now since we have probably
3532  *  yielded to lockholder in last iteration. This is done by toggling
3533  *  @dy_eligible each time a VCPU checked for eligibility.)
3534  *
3535  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3536  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3537  *  burning. Giving priority for a potential lock-holder increases lock
3538  *  progress.
3539  *
3540  *  Since algorithm is based on heuristics, accessing another VCPU data without
3541  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3542  *  and continue with next VCPU and so on.
3543  */
3544 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3545 {
3546 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3547         bool eligible;
3548
3549         eligible = !vcpu->spin_loop.in_spin_loop ||
3550                     vcpu->spin_loop.dy_eligible;
3551
3552         if (vcpu->spin_loop.in_spin_loop)
3553                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3554
3555         return eligible;
3556 #else
3557         return true;
3558 #endif
3559 }
3560
3561 /*
3562  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3563  * a vcpu_load/vcpu_put pair.  However, for most architectures
3564  * kvm_arch_vcpu_runnable does not require vcpu_load.
3565  */
3566 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3567 {
3568         return kvm_arch_vcpu_runnable(vcpu);
3569 }
3570
3571 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3572 {
3573         if (kvm_arch_dy_runnable(vcpu))
3574                 return true;
3575
3576 #ifdef CONFIG_KVM_ASYNC_PF
3577         if (!list_empty_careful(&vcpu->async_pf.done))
3578                 return true;
3579 #endif
3580
3581         return false;
3582 }
3583
3584 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3585 {
3586         return false;
3587 }
3588
3589 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3590 {
3591         struct kvm *kvm = me->kvm;
3592         struct kvm_vcpu *vcpu;
3593         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3594         unsigned long i;
3595         int yielded = 0;
3596         int try = 3;
3597         int pass;
3598
3599         kvm_vcpu_set_in_spin_loop(me, true);
3600         /*
3601          * We boost the priority of a VCPU that is runnable but not
3602          * currently running, because it got preempted by something
3603          * else and called schedule in __vcpu_run.  Hopefully that
3604          * VCPU is holding the lock that we need and will release it.
3605          * We approximate round-robin by starting at the last boosted VCPU.
3606          */
3607         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3608                 kvm_for_each_vcpu(i, vcpu, kvm) {
3609                         if (!pass && i <= last_boosted_vcpu) {
3610                                 i = last_boosted_vcpu;
3611                                 continue;
3612                         } else if (pass && i > last_boosted_vcpu)
3613                                 break;
3614                         if (!READ_ONCE(vcpu->ready))
3615                                 continue;
3616                         if (vcpu == me)
3617                                 continue;
3618                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3619                                 continue;
3620                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3621                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3622                             !kvm_arch_vcpu_in_kernel(vcpu))
3623                                 continue;
3624                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3625                                 continue;
3626
3627                         yielded = kvm_vcpu_yield_to(vcpu);
3628                         if (yielded > 0) {
3629                                 kvm->last_boosted_vcpu = i;
3630                                 break;
3631                         } else if (yielded < 0) {
3632                                 try--;
3633                                 if (!try)
3634                                         break;
3635                         }
3636                 }
3637         }
3638         kvm_vcpu_set_in_spin_loop(me, false);
3639
3640         /* Ensure vcpu is not eligible during next spinloop */
3641         kvm_vcpu_set_dy_eligible(me, false);
3642 }
3643 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3644
3645 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3646 {
3647 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3648         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3649             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3650              kvm->dirty_ring_size / PAGE_SIZE);
3651 #else
3652         return false;
3653 #endif
3654 }
3655
3656 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3657 {
3658         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3659         struct page *page;
3660
3661         if (vmf->pgoff == 0)
3662                 page = virt_to_page(vcpu->run);
3663 #ifdef CONFIG_X86
3664         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3665                 page = virt_to_page(vcpu->arch.pio_data);
3666 #endif
3667 #ifdef CONFIG_KVM_MMIO
3668         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3669                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3670 #endif
3671         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3672                 page = kvm_dirty_ring_get_page(
3673                     &vcpu->dirty_ring,
3674                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3675         else
3676                 return kvm_arch_vcpu_fault(vcpu, vmf);
3677         get_page(page);
3678         vmf->page = page;
3679         return 0;
3680 }
3681
3682 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3683         .fault = kvm_vcpu_fault,
3684 };
3685
3686 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3687 {
3688         struct kvm_vcpu *vcpu = file->private_data;
3689         unsigned long pages = vma_pages(vma);
3690
3691         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3692              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3693             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3694                 return -EINVAL;
3695
3696         vma->vm_ops = &kvm_vcpu_vm_ops;
3697         return 0;
3698 }
3699
3700 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3701 {
3702         struct kvm_vcpu *vcpu = filp->private_data;
3703
3704         kvm_put_kvm(vcpu->kvm);
3705         return 0;
3706 }
3707
3708 static const struct file_operations kvm_vcpu_fops = {
3709         .release        = kvm_vcpu_release,
3710         .unlocked_ioctl = kvm_vcpu_ioctl,
3711         .mmap           = kvm_vcpu_mmap,
3712         .llseek         = noop_llseek,
3713         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3714 };
3715
3716 /*
3717  * Allocates an inode for the vcpu.
3718  */
3719 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3720 {
3721         char name[8 + 1 + ITOA_MAX_LEN + 1];
3722
3723         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3724         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3725 }
3726
3727 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3728 {
3729 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3730         struct dentry *debugfs_dentry;
3731         char dir_name[ITOA_MAX_LEN * 2];
3732
3733         if (!debugfs_initialized())
3734                 return;
3735
3736         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3737         debugfs_dentry = debugfs_create_dir(dir_name,
3738                                             vcpu->kvm->debugfs_dentry);
3739
3740         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3741 #endif
3742 }
3743
3744 /*
3745  * Creates some virtual cpus.  Good luck creating more than one.
3746  */
3747 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3748 {
3749         int r;
3750         struct kvm_vcpu *vcpu;
3751         struct page *page;
3752
3753         if (id >= KVM_MAX_VCPU_IDS)
3754                 return -EINVAL;
3755
3756         mutex_lock(&kvm->lock);
3757         if (kvm->created_vcpus >= kvm->max_vcpus) {
3758                 mutex_unlock(&kvm->lock);
3759                 return -EINVAL;
3760         }
3761
3762         kvm->created_vcpus++;
3763         mutex_unlock(&kvm->lock);
3764
3765         r = kvm_arch_vcpu_precreate(kvm, id);
3766         if (r)
3767                 goto vcpu_decrement;
3768
3769         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3770         if (!vcpu) {
3771                 r = -ENOMEM;
3772                 goto vcpu_decrement;
3773         }
3774
3775         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3776         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3777         if (!page) {
3778                 r = -ENOMEM;
3779                 goto vcpu_free;
3780         }
3781         vcpu->run = page_address(page);
3782
3783         kvm_vcpu_init(vcpu, kvm, id);
3784
3785         r = kvm_arch_vcpu_create(vcpu);
3786         if (r)
3787                 goto vcpu_free_run_page;
3788
3789         if (kvm->dirty_ring_size) {
3790                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3791                                          id, kvm->dirty_ring_size);
3792                 if (r)
3793                         goto arch_vcpu_destroy;
3794         }
3795
3796         mutex_lock(&kvm->lock);
3797         if (kvm_get_vcpu_by_id(kvm, id)) {
3798                 r = -EEXIST;
3799                 goto unlock_vcpu_destroy;
3800         }
3801
3802         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3803         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3804         BUG_ON(r == -EBUSY);
3805         if (r)
3806                 goto unlock_vcpu_destroy;
3807
3808         /* Fill the stats id string for the vcpu */
3809         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3810                  task_pid_nr(current), id);
3811
3812         /* Now it's all set up, let userspace reach it */
3813         kvm_get_kvm(kvm);
3814         r = create_vcpu_fd(vcpu);
3815         if (r < 0) {
3816                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3817                 kvm_put_kvm_no_destroy(kvm);
3818                 goto unlock_vcpu_destroy;
3819         }
3820
3821         /*
3822          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3823          * pointer before kvm->online_vcpu's incremented value.
3824          */
3825         smp_wmb();
3826         atomic_inc(&kvm->online_vcpus);
3827
3828         mutex_unlock(&kvm->lock);
3829         kvm_arch_vcpu_postcreate(vcpu);
3830         kvm_create_vcpu_debugfs(vcpu);
3831         return r;
3832
3833 unlock_vcpu_destroy:
3834         mutex_unlock(&kvm->lock);
3835         kvm_dirty_ring_free(&vcpu->dirty_ring);
3836 arch_vcpu_destroy:
3837         kvm_arch_vcpu_destroy(vcpu);
3838 vcpu_free_run_page:
3839         free_page((unsigned long)vcpu->run);
3840 vcpu_free:
3841         kmem_cache_free(kvm_vcpu_cache, vcpu);
3842 vcpu_decrement:
3843         mutex_lock(&kvm->lock);
3844         kvm->created_vcpus--;
3845         mutex_unlock(&kvm->lock);
3846         return r;
3847 }
3848
3849 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3850 {
3851         if (sigset) {
3852                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3853                 vcpu->sigset_active = 1;
3854                 vcpu->sigset = *sigset;
3855         } else
3856                 vcpu->sigset_active = 0;
3857         return 0;
3858 }
3859
3860 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3861                               size_t size, loff_t *offset)
3862 {
3863         struct kvm_vcpu *vcpu = file->private_data;
3864
3865         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3866                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3867                         sizeof(vcpu->stat), user_buffer, size, offset);
3868 }
3869
3870 static const struct file_operations kvm_vcpu_stats_fops = {
3871         .read = kvm_vcpu_stats_read,
3872         .llseek = noop_llseek,
3873 };
3874
3875 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3876 {
3877         int fd;
3878         struct file *file;
3879         char name[15 + ITOA_MAX_LEN + 1];
3880
3881         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3882
3883         fd = get_unused_fd_flags(O_CLOEXEC);
3884         if (fd < 0)
3885                 return fd;
3886
3887         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3888         if (IS_ERR(file)) {
3889                 put_unused_fd(fd);
3890                 return PTR_ERR(file);
3891         }
3892         file->f_mode |= FMODE_PREAD;
3893         fd_install(fd, file);
3894
3895         return fd;
3896 }
3897
3898 static long kvm_vcpu_ioctl(struct file *filp,
3899                            unsigned int ioctl, unsigned long arg)
3900 {
3901         struct kvm_vcpu *vcpu = filp->private_data;
3902         void __user *argp = (void __user *)arg;
3903         int r;
3904         struct kvm_fpu *fpu = NULL;
3905         struct kvm_sregs *kvm_sregs = NULL;
3906
3907         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3908                 return -EIO;
3909
3910         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3911                 return -EINVAL;
3912
3913         /*
3914          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3915          * execution; mutex_lock() would break them.
3916          */
3917         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3918         if (r != -ENOIOCTLCMD)
3919                 return r;
3920
3921         if (mutex_lock_killable(&vcpu->mutex))
3922                 return -EINTR;
3923         switch (ioctl) {
3924         case KVM_RUN: {
3925                 struct pid *oldpid;
3926                 r = -EINVAL;
3927                 if (arg)
3928                         goto out;
3929                 oldpid = rcu_access_pointer(vcpu->pid);
3930                 if (unlikely(oldpid != task_pid(current))) {
3931                         /* The thread running this VCPU changed. */
3932                         struct pid *newpid;
3933
3934                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3935                         if (r)
3936                                 break;
3937
3938                         newpid = get_task_pid(current, PIDTYPE_PID);
3939                         rcu_assign_pointer(vcpu->pid, newpid);
3940                         if (oldpid)
3941                                 synchronize_rcu();
3942                         put_pid(oldpid);
3943                 }
3944                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3945                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3946                 break;
3947         }
3948         case KVM_GET_REGS: {
3949                 struct kvm_regs *kvm_regs;
3950
3951                 r = -ENOMEM;
3952                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3953                 if (!kvm_regs)
3954                         goto out;
3955                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3956                 if (r)
3957                         goto out_free1;
3958                 r = -EFAULT;
3959                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3960                         goto out_free1;
3961                 r = 0;
3962 out_free1:
3963                 kfree(kvm_regs);
3964                 break;
3965         }
3966         case KVM_SET_REGS: {
3967                 struct kvm_regs *kvm_regs;
3968
3969                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3970                 if (IS_ERR(kvm_regs)) {
3971                         r = PTR_ERR(kvm_regs);
3972                         goto out;
3973                 }
3974                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3975                 kfree(kvm_regs);
3976                 break;
3977         }
3978         case KVM_GET_SREGS: {
3979                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3980                                     GFP_KERNEL_ACCOUNT);
3981                 r = -ENOMEM;
3982                 if (!kvm_sregs)
3983                         goto out;
3984                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3985                 if (r)
3986                         goto out;
3987                 r = -EFAULT;
3988                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3989                         goto out;
3990                 r = 0;
3991                 break;
3992         }
3993         case KVM_SET_SREGS: {
3994                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3995                 if (IS_ERR(kvm_sregs)) {
3996                         r = PTR_ERR(kvm_sregs);
3997                         kvm_sregs = NULL;
3998                         goto out;
3999                 }
4000                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4001                 break;
4002         }
4003         case KVM_GET_MP_STATE: {
4004                 struct kvm_mp_state mp_state;
4005
4006                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4007                 if (r)
4008                         goto out;
4009                 r = -EFAULT;
4010                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4011                         goto out;
4012                 r = 0;
4013                 break;
4014         }
4015         case KVM_SET_MP_STATE: {
4016                 struct kvm_mp_state mp_state;
4017
4018                 r = -EFAULT;
4019                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4020                         goto out;
4021                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4022                 break;
4023         }
4024         case KVM_TRANSLATE: {
4025                 struct kvm_translation tr;
4026
4027                 r = -EFAULT;
4028                 if (copy_from_user(&tr, argp, sizeof(tr)))
4029                         goto out;
4030                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4031                 if (r)
4032                         goto out;
4033                 r = -EFAULT;
4034                 if (copy_to_user(argp, &tr, sizeof(tr)))
4035                         goto out;
4036                 r = 0;
4037                 break;
4038         }
4039         case KVM_SET_GUEST_DEBUG: {
4040                 struct kvm_guest_debug dbg;
4041
4042                 r = -EFAULT;
4043                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4044                         goto out;
4045                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4046                 break;
4047         }
4048         case KVM_SET_SIGNAL_MASK: {
4049                 struct kvm_signal_mask __user *sigmask_arg = argp;
4050                 struct kvm_signal_mask kvm_sigmask;
4051                 sigset_t sigset, *p;
4052
4053                 p = NULL;
4054                 if (argp) {
4055                         r = -EFAULT;
4056                         if (copy_from_user(&kvm_sigmask, argp,
4057                                            sizeof(kvm_sigmask)))
4058                                 goto out;
4059                         r = -EINVAL;
4060                         if (kvm_sigmask.len != sizeof(sigset))
4061                                 goto out;
4062                         r = -EFAULT;
4063                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4064                                            sizeof(sigset)))
4065                                 goto out;
4066                         p = &sigset;
4067                 }
4068                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4069                 break;
4070         }
4071         case KVM_GET_FPU: {
4072                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4073                 r = -ENOMEM;
4074                 if (!fpu)
4075                         goto out;
4076                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4077                 if (r)
4078                         goto out;
4079                 r = -EFAULT;
4080                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4081                         goto out;
4082                 r = 0;
4083                 break;
4084         }
4085         case KVM_SET_FPU: {
4086                 fpu = memdup_user(argp, sizeof(*fpu));
4087                 if (IS_ERR(fpu)) {
4088                         r = PTR_ERR(fpu);
4089                         fpu = NULL;
4090                         goto out;
4091                 }
4092                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4093                 break;
4094         }
4095         case KVM_GET_STATS_FD: {
4096                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4097                 break;
4098         }
4099         default:
4100                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4101         }
4102 out:
4103         mutex_unlock(&vcpu->mutex);
4104         kfree(fpu);
4105         kfree(kvm_sregs);
4106         return r;
4107 }
4108
4109 #ifdef CONFIG_KVM_COMPAT
4110 static long kvm_vcpu_compat_ioctl(struct file *filp,
4111                                   unsigned int ioctl, unsigned long arg)
4112 {
4113         struct kvm_vcpu *vcpu = filp->private_data;
4114         void __user *argp = compat_ptr(arg);
4115         int r;
4116
4117         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4118                 return -EIO;
4119
4120         switch (ioctl) {
4121         case KVM_SET_SIGNAL_MASK: {
4122                 struct kvm_signal_mask __user *sigmask_arg = argp;
4123                 struct kvm_signal_mask kvm_sigmask;
4124                 sigset_t sigset;
4125
4126                 if (argp) {
4127                         r = -EFAULT;
4128                         if (copy_from_user(&kvm_sigmask, argp,
4129                                            sizeof(kvm_sigmask)))
4130                                 goto out;
4131                         r = -EINVAL;
4132                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4133                                 goto out;
4134                         r = -EFAULT;
4135                         if (get_compat_sigset(&sigset,
4136                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4137                                 goto out;
4138                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4139                 } else
4140                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4141                 break;
4142         }
4143         default:
4144                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4145         }
4146
4147 out:
4148         return r;
4149 }
4150 #endif
4151
4152 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4153 {
4154         struct kvm_device *dev = filp->private_data;
4155
4156         if (dev->ops->mmap)
4157                 return dev->ops->mmap(dev, vma);
4158
4159         return -ENODEV;
4160 }
4161
4162 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4163                                  int (*accessor)(struct kvm_device *dev,
4164                                                  struct kvm_device_attr *attr),
4165                                  unsigned long arg)
4166 {
4167         struct kvm_device_attr attr;
4168
4169         if (!accessor)
4170                 return -EPERM;
4171
4172         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4173                 return -EFAULT;
4174
4175         return accessor(dev, &attr);
4176 }
4177
4178 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4179                              unsigned long arg)
4180 {
4181         struct kvm_device *dev = filp->private_data;
4182
4183         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4184                 return -EIO;
4185
4186         switch (ioctl) {
4187         case KVM_SET_DEVICE_ATTR:
4188                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4189         case KVM_GET_DEVICE_ATTR:
4190                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4191         case KVM_HAS_DEVICE_ATTR:
4192                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4193         default:
4194                 if (dev->ops->ioctl)
4195                         return dev->ops->ioctl(dev, ioctl, arg);
4196
4197                 return -ENOTTY;
4198         }
4199 }
4200
4201 static int kvm_device_release(struct inode *inode, struct file *filp)
4202 {
4203         struct kvm_device *dev = filp->private_data;
4204         struct kvm *kvm = dev->kvm;
4205
4206         if (dev->ops->release) {
4207                 mutex_lock(&kvm->lock);
4208                 list_del(&dev->vm_node);
4209                 dev->ops->release(dev);
4210                 mutex_unlock(&kvm->lock);
4211         }
4212
4213         kvm_put_kvm(kvm);
4214         return 0;
4215 }
4216
4217 static const struct file_operations kvm_device_fops = {
4218         .unlocked_ioctl = kvm_device_ioctl,
4219         .release = kvm_device_release,
4220         KVM_COMPAT(kvm_device_ioctl),
4221         .mmap = kvm_device_mmap,
4222 };
4223
4224 struct kvm_device *kvm_device_from_filp(struct file *filp)
4225 {
4226         if (filp->f_op != &kvm_device_fops)
4227                 return NULL;
4228
4229         return filp->private_data;
4230 }
4231
4232 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4233 #ifdef CONFIG_KVM_MPIC
4234         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4235         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4236 #endif
4237 };
4238
4239 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4240 {
4241         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4242                 return -ENOSPC;
4243
4244         if (kvm_device_ops_table[type] != NULL)
4245                 return -EEXIST;
4246
4247         kvm_device_ops_table[type] = ops;
4248         return 0;
4249 }
4250
4251 void kvm_unregister_device_ops(u32 type)
4252 {
4253         if (kvm_device_ops_table[type] != NULL)
4254                 kvm_device_ops_table[type] = NULL;
4255 }
4256
4257 static int kvm_ioctl_create_device(struct kvm *kvm,
4258                                    struct kvm_create_device *cd)
4259 {
4260         const struct kvm_device_ops *ops = NULL;
4261         struct kvm_device *dev;
4262         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4263         int type;
4264         int ret;
4265
4266         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4267                 return -ENODEV;
4268
4269         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4270         ops = kvm_device_ops_table[type];
4271         if (ops == NULL)
4272                 return -ENODEV;
4273
4274         if (test)
4275                 return 0;
4276
4277         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4278         if (!dev)
4279                 return -ENOMEM;
4280
4281         dev->ops = ops;
4282         dev->kvm = kvm;
4283
4284         mutex_lock(&kvm->lock);
4285         ret = ops->create(dev, type);
4286         if (ret < 0) {
4287                 mutex_unlock(&kvm->lock);
4288                 kfree(dev);
4289                 return ret;
4290         }
4291         list_add(&dev->vm_node, &kvm->devices);
4292         mutex_unlock(&kvm->lock);
4293
4294         if (ops->init)
4295                 ops->init(dev);
4296
4297         kvm_get_kvm(kvm);
4298         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4299         if (ret < 0) {
4300                 kvm_put_kvm_no_destroy(kvm);
4301                 mutex_lock(&kvm->lock);
4302                 list_del(&dev->vm_node);
4303                 if (ops->release)
4304                         ops->release(dev);
4305                 mutex_unlock(&kvm->lock);
4306                 if (ops->destroy)
4307                         ops->destroy(dev);
4308                 return ret;
4309         }
4310
4311         cd->fd = ret;
4312         return 0;
4313 }
4314
4315 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4316 {
4317         switch (arg) {
4318         case KVM_CAP_USER_MEMORY:
4319         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4320         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4321         case KVM_CAP_INTERNAL_ERROR_DATA:
4322 #ifdef CONFIG_HAVE_KVM_MSI
4323         case KVM_CAP_SIGNAL_MSI:
4324 #endif
4325 #ifdef CONFIG_HAVE_KVM_IRQFD
4326         case KVM_CAP_IRQFD:
4327         case KVM_CAP_IRQFD_RESAMPLE:
4328 #endif
4329         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4330         case KVM_CAP_CHECK_EXTENSION_VM:
4331         case KVM_CAP_ENABLE_CAP_VM:
4332         case KVM_CAP_HALT_POLL:
4333                 return 1;
4334 #ifdef CONFIG_KVM_MMIO
4335         case KVM_CAP_COALESCED_MMIO:
4336                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4337         case KVM_CAP_COALESCED_PIO:
4338                 return 1;
4339 #endif
4340 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4341         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4342                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4343 #endif
4344 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4345         case KVM_CAP_IRQ_ROUTING:
4346                 return KVM_MAX_IRQ_ROUTES;
4347 #endif
4348 #if KVM_ADDRESS_SPACE_NUM > 1
4349         case KVM_CAP_MULTI_ADDRESS_SPACE:
4350                 return KVM_ADDRESS_SPACE_NUM;
4351 #endif
4352         case KVM_CAP_NR_MEMSLOTS:
4353                 return KVM_USER_MEM_SLOTS;
4354         case KVM_CAP_DIRTY_LOG_RING:
4355 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4356                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4357 #else
4358                 return 0;
4359 #endif
4360         case KVM_CAP_BINARY_STATS_FD:
4361         case KVM_CAP_SYSTEM_EVENT_DATA:
4362                 return 1;
4363         default:
4364                 break;
4365         }
4366         return kvm_vm_ioctl_check_extension(kvm, arg);
4367 }
4368
4369 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4370 {
4371         int r;
4372
4373         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4374                 return -EINVAL;
4375
4376         /* the size should be power of 2 */
4377         if (!size || (size & (size - 1)))
4378                 return -EINVAL;
4379
4380         /* Should be bigger to keep the reserved entries, or a page */
4381         if (size < kvm_dirty_ring_get_rsvd_entries() *
4382             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4383                 return -EINVAL;
4384
4385         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4386             sizeof(struct kvm_dirty_gfn))
4387                 return -E2BIG;
4388
4389         /* We only allow it to set once */
4390         if (kvm->dirty_ring_size)
4391                 return -EINVAL;
4392
4393         mutex_lock(&kvm->lock);
4394
4395         if (kvm->created_vcpus) {
4396                 /* We don't allow to change this value after vcpu created */
4397                 r = -EINVAL;
4398         } else {
4399                 kvm->dirty_ring_size = size;
4400                 r = 0;
4401         }
4402
4403         mutex_unlock(&kvm->lock);
4404         return r;
4405 }
4406
4407 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4408 {
4409         unsigned long i;
4410         struct kvm_vcpu *vcpu;
4411         int cleared = 0;
4412
4413         if (!kvm->dirty_ring_size)
4414                 return -EINVAL;
4415
4416         mutex_lock(&kvm->slots_lock);
4417
4418         kvm_for_each_vcpu(i, vcpu, kvm)
4419                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4420
4421         mutex_unlock(&kvm->slots_lock);
4422
4423         if (cleared)
4424                 kvm_flush_remote_tlbs(kvm);
4425
4426         return cleared;
4427 }
4428
4429 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4430                                                   struct kvm_enable_cap *cap)
4431 {
4432         return -EINVAL;
4433 }
4434
4435 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4436                                            struct kvm_enable_cap *cap)
4437 {
4438         switch (cap->cap) {
4439 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4440         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4441                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4442
4443                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4444                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4445
4446                 if (cap->flags || (cap->args[0] & ~allowed_options))
4447                         return -EINVAL;
4448                 kvm->manual_dirty_log_protect = cap->args[0];
4449                 return 0;
4450         }
4451 #endif
4452         case KVM_CAP_HALT_POLL: {
4453                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4454                         return -EINVAL;
4455
4456                 kvm->max_halt_poll_ns = cap->args[0];
4457                 return 0;
4458         }
4459         case KVM_CAP_DIRTY_LOG_RING:
4460                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4461         default:
4462                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4463         }
4464 }
4465
4466 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4467                               size_t size, loff_t *offset)
4468 {
4469         struct kvm *kvm = file->private_data;
4470
4471         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4472                                 &kvm_vm_stats_desc[0], &kvm->stat,
4473                                 sizeof(kvm->stat), user_buffer, size, offset);
4474 }
4475
4476 static const struct file_operations kvm_vm_stats_fops = {
4477         .read = kvm_vm_stats_read,
4478         .llseek = noop_llseek,
4479 };
4480
4481 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4482 {
4483         int fd;
4484         struct file *file;
4485
4486         fd = get_unused_fd_flags(O_CLOEXEC);
4487         if (fd < 0)
4488                 return fd;
4489
4490         file = anon_inode_getfile("kvm-vm-stats",
4491                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4492         if (IS_ERR(file)) {
4493                 put_unused_fd(fd);
4494                 return PTR_ERR(file);
4495         }
4496         file->f_mode |= FMODE_PREAD;
4497         fd_install(fd, file);
4498
4499         return fd;
4500 }
4501
4502 static long kvm_vm_ioctl(struct file *filp,
4503                            unsigned int ioctl, unsigned long arg)
4504 {
4505         struct kvm *kvm = filp->private_data;
4506         void __user *argp = (void __user *)arg;
4507         int r;
4508
4509         if (kvm->mm != current->mm || kvm->vm_dead)
4510                 return -EIO;
4511         switch (ioctl) {
4512         case KVM_CREATE_VCPU:
4513                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4514                 break;
4515         case KVM_ENABLE_CAP: {
4516                 struct kvm_enable_cap cap;
4517
4518                 r = -EFAULT;
4519                 if (copy_from_user(&cap, argp, sizeof(cap)))
4520                         goto out;
4521                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4522                 break;
4523         }
4524         case KVM_SET_USER_MEMORY_REGION: {
4525                 struct kvm_userspace_memory_region kvm_userspace_mem;
4526
4527                 r = -EFAULT;
4528                 if (copy_from_user(&kvm_userspace_mem, argp,
4529                                                 sizeof(kvm_userspace_mem)))
4530                         goto out;
4531
4532                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4533                 break;
4534         }
4535         case KVM_GET_DIRTY_LOG: {
4536                 struct kvm_dirty_log log;
4537
4538                 r = -EFAULT;
4539                 if (copy_from_user(&log, argp, sizeof(log)))
4540                         goto out;
4541                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4542                 break;
4543         }
4544 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4545         case KVM_CLEAR_DIRTY_LOG: {
4546                 struct kvm_clear_dirty_log log;
4547
4548                 r = -EFAULT;
4549                 if (copy_from_user(&log, argp, sizeof(log)))
4550                         goto out;
4551                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4552                 break;
4553         }
4554 #endif
4555 #ifdef CONFIG_KVM_MMIO
4556         case KVM_REGISTER_COALESCED_MMIO: {
4557                 struct kvm_coalesced_mmio_zone zone;
4558
4559                 r = -EFAULT;
4560                 if (copy_from_user(&zone, argp, sizeof(zone)))
4561                         goto out;
4562                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4563                 break;
4564         }
4565         case KVM_UNREGISTER_COALESCED_MMIO: {
4566                 struct kvm_coalesced_mmio_zone zone;
4567
4568                 r = -EFAULT;
4569                 if (copy_from_user(&zone, argp, sizeof(zone)))
4570                         goto out;
4571                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4572                 break;
4573         }
4574 #endif
4575         case KVM_IRQFD: {
4576                 struct kvm_irqfd data;
4577
4578                 r = -EFAULT;
4579                 if (copy_from_user(&data, argp, sizeof(data)))
4580                         goto out;
4581                 r = kvm_irqfd(kvm, &data);
4582                 break;
4583         }
4584         case KVM_IOEVENTFD: {
4585                 struct kvm_ioeventfd data;
4586
4587                 r = -EFAULT;
4588                 if (copy_from_user(&data, argp, sizeof(data)))
4589                         goto out;
4590                 r = kvm_ioeventfd(kvm, &data);
4591                 break;
4592         }
4593 #ifdef CONFIG_HAVE_KVM_MSI
4594         case KVM_SIGNAL_MSI: {
4595                 struct kvm_msi msi;
4596
4597                 r = -EFAULT;
4598                 if (copy_from_user(&msi, argp, sizeof(msi)))
4599                         goto out;
4600                 r = kvm_send_userspace_msi(kvm, &msi);
4601                 break;
4602         }
4603 #endif
4604 #ifdef __KVM_HAVE_IRQ_LINE
4605         case KVM_IRQ_LINE_STATUS:
4606         case KVM_IRQ_LINE: {
4607                 struct kvm_irq_level irq_event;
4608
4609                 r = -EFAULT;
4610                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4611                         goto out;
4612
4613                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4614                                         ioctl == KVM_IRQ_LINE_STATUS);
4615                 if (r)
4616                         goto out;
4617
4618                 r = -EFAULT;
4619                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4620                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4621                                 goto out;
4622                 }
4623
4624                 r = 0;
4625                 break;
4626         }
4627 #endif
4628 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4629         case KVM_SET_GSI_ROUTING: {
4630                 struct kvm_irq_routing routing;
4631                 struct kvm_irq_routing __user *urouting;
4632                 struct kvm_irq_routing_entry *entries = NULL;
4633
4634                 r = -EFAULT;
4635                 if (copy_from_user(&routing, argp, sizeof(routing)))
4636                         goto out;
4637                 r = -EINVAL;
4638                 if (!kvm_arch_can_set_irq_routing(kvm))
4639                         goto out;
4640                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4641                         goto out;
4642                 if (routing.flags)
4643                         goto out;
4644                 if (routing.nr) {
4645                         urouting = argp;
4646                         entries = vmemdup_user(urouting->entries,
4647                                                array_size(sizeof(*entries),
4648                                                           routing.nr));
4649                         if (IS_ERR(entries)) {
4650                                 r = PTR_ERR(entries);
4651                                 goto out;
4652                         }
4653                 }
4654                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4655                                         routing.flags);
4656                 kvfree(entries);
4657                 break;
4658         }
4659 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4660         case KVM_CREATE_DEVICE: {
4661                 struct kvm_create_device cd;
4662
4663                 r = -EFAULT;
4664                 if (copy_from_user(&cd, argp, sizeof(cd)))
4665                         goto out;
4666
4667                 r = kvm_ioctl_create_device(kvm, &cd);
4668                 if (r)
4669                         goto out;
4670
4671                 r = -EFAULT;
4672                 if (copy_to_user(argp, &cd, sizeof(cd)))
4673                         goto out;
4674
4675                 r = 0;
4676                 break;
4677         }
4678         case KVM_CHECK_EXTENSION:
4679                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4680                 break;
4681         case KVM_RESET_DIRTY_RINGS:
4682                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4683                 break;
4684         case KVM_GET_STATS_FD:
4685                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4686                 break;
4687         default:
4688                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4689         }
4690 out:
4691         return r;
4692 }
4693
4694 #ifdef CONFIG_KVM_COMPAT
4695 struct compat_kvm_dirty_log {
4696         __u32 slot;
4697         __u32 padding1;
4698         union {
4699                 compat_uptr_t dirty_bitmap; /* one bit per page */
4700                 __u64 padding2;
4701         };
4702 };
4703
4704 struct compat_kvm_clear_dirty_log {
4705         __u32 slot;
4706         __u32 num_pages;
4707         __u64 first_page;
4708         union {
4709                 compat_uptr_t dirty_bitmap; /* one bit per page */
4710                 __u64 padding2;
4711         };
4712 };
4713
4714 static long kvm_vm_compat_ioctl(struct file *filp,
4715                            unsigned int ioctl, unsigned long arg)
4716 {
4717         struct kvm *kvm = filp->private_data;
4718         int r;
4719
4720         if (kvm->mm != current->mm || kvm->vm_dead)
4721                 return -EIO;
4722         switch (ioctl) {
4723 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4724         case KVM_CLEAR_DIRTY_LOG: {
4725                 struct compat_kvm_clear_dirty_log compat_log;
4726                 struct kvm_clear_dirty_log log;
4727
4728                 if (copy_from_user(&compat_log, (void __user *)arg,
4729                                    sizeof(compat_log)))
4730                         return -EFAULT;
4731                 log.slot         = compat_log.slot;
4732                 log.num_pages    = compat_log.num_pages;
4733                 log.first_page   = compat_log.first_page;
4734                 log.padding2     = compat_log.padding2;
4735                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4736
4737                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4738                 break;
4739         }
4740 #endif
4741         case KVM_GET_DIRTY_LOG: {
4742                 struct compat_kvm_dirty_log compat_log;
4743                 struct kvm_dirty_log log;
4744
4745                 if (copy_from_user(&compat_log, (void __user *)arg,
4746                                    sizeof(compat_log)))
4747                         return -EFAULT;
4748                 log.slot         = compat_log.slot;
4749                 log.padding1     = compat_log.padding1;
4750                 log.padding2     = compat_log.padding2;
4751                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4752
4753                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4754                 break;
4755         }
4756         default:
4757                 r = kvm_vm_ioctl(filp, ioctl, arg);
4758         }
4759         return r;
4760 }
4761 #endif
4762
4763 static const struct file_operations kvm_vm_fops = {
4764         .release        = kvm_vm_release,
4765         .unlocked_ioctl = kvm_vm_ioctl,
4766         .llseek         = noop_llseek,
4767         KVM_COMPAT(kvm_vm_compat_ioctl),
4768 };
4769
4770 bool file_is_kvm(struct file *file)
4771 {
4772         return file && file->f_op == &kvm_vm_fops;
4773 }
4774 EXPORT_SYMBOL_GPL(file_is_kvm);
4775
4776 static int kvm_dev_ioctl_create_vm(unsigned long type)
4777 {
4778         int r;
4779         struct kvm *kvm;
4780         struct file *file;
4781
4782         kvm = kvm_create_vm(type);
4783         if (IS_ERR(kvm))
4784                 return PTR_ERR(kvm);
4785 #ifdef CONFIG_KVM_MMIO
4786         r = kvm_coalesced_mmio_init(kvm);
4787         if (r < 0)
4788                 goto put_kvm;
4789 #endif
4790         r = get_unused_fd_flags(O_CLOEXEC);
4791         if (r < 0)
4792                 goto put_kvm;
4793
4794         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4795                         "kvm-%d", task_pid_nr(current));
4796
4797         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4798         if (IS_ERR(file)) {
4799                 put_unused_fd(r);
4800                 r = PTR_ERR(file);
4801                 goto put_kvm;
4802         }
4803
4804         /*
4805          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4806          * already set, with ->release() being kvm_vm_release().  In error
4807          * cases it will be called by the final fput(file) and will take
4808          * care of doing kvm_put_kvm(kvm).
4809          */
4810         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4811                 put_unused_fd(r);
4812                 fput(file);
4813                 return -ENOMEM;
4814         }
4815         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4816
4817         fd_install(r, file);
4818         return r;
4819
4820 put_kvm:
4821         kvm_put_kvm(kvm);
4822         return r;
4823 }
4824
4825 static long kvm_dev_ioctl(struct file *filp,
4826                           unsigned int ioctl, unsigned long arg)
4827 {
4828         long r = -EINVAL;
4829
4830         switch (ioctl) {
4831         case KVM_GET_API_VERSION:
4832                 if (arg)
4833                         goto out;
4834                 r = KVM_API_VERSION;
4835                 break;
4836         case KVM_CREATE_VM:
4837                 r = kvm_dev_ioctl_create_vm(arg);
4838                 break;
4839         case KVM_CHECK_EXTENSION:
4840                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4841                 break;
4842         case KVM_GET_VCPU_MMAP_SIZE:
4843                 if (arg)
4844                         goto out;
4845                 r = PAGE_SIZE;     /* struct kvm_run */
4846 #ifdef CONFIG_X86
4847                 r += PAGE_SIZE;    /* pio data page */
4848 #endif
4849 #ifdef CONFIG_KVM_MMIO
4850                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4851 #endif
4852                 break;
4853         case KVM_TRACE_ENABLE:
4854         case KVM_TRACE_PAUSE:
4855         case KVM_TRACE_DISABLE:
4856                 r = -EOPNOTSUPP;
4857                 break;
4858         default:
4859                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4860         }
4861 out:
4862         return r;
4863 }
4864
4865 static struct file_operations kvm_chardev_ops = {
4866         .unlocked_ioctl = kvm_dev_ioctl,
4867         .llseek         = noop_llseek,
4868         KVM_COMPAT(kvm_dev_ioctl),
4869 };
4870
4871 static struct miscdevice kvm_dev = {
4872         KVM_MINOR,
4873         "kvm",
4874         &kvm_chardev_ops,
4875 };
4876
4877 static void hardware_enable_nolock(void *junk)
4878 {
4879         int cpu = raw_smp_processor_id();
4880         int r;
4881
4882         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4883                 return;
4884
4885         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4886
4887         r = kvm_arch_hardware_enable();
4888
4889         if (r) {
4890                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4891                 atomic_inc(&hardware_enable_failed);
4892                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4893         }
4894 }
4895
4896 static int kvm_starting_cpu(unsigned int cpu)
4897 {
4898         raw_spin_lock(&kvm_count_lock);
4899         if (kvm_usage_count)
4900                 hardware_enable_nolock(NULL);
4901         raw_spin_unlock(&kvm_count_lock);
4902         return 0;
4903 }
4904
4905 static void hardware_disable_nolock(void *junk)
4906 {
4907         int cpu = raw_smp_processor_id();
4908
4909         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4910                 return;
4911         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4912         kvm_arch_hardware_disable();
4913 }
4914
4915 static int kvm_dying_cpu(unsigned int cpu)
4916 {
4917         raw_spin_lock(&kvm_count_lock);
4918         if (kvm_usage_count)
4919                 hardware_disable_nolock(NULL);
4920         raw_spin_unlock(&kvm_count_lock);
4921         return 0;
4922 }
4923
4924 static void hardware_disable_all_nolock(void)
4925 {
4926         BUG_ON(!kvm_usage_count);
4927
4928         kvm_usage_count--;
4929         if (!kvm_usage_count)
4930                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4931 }
4932
4933 static void hardware_disable_all(void)
4934 {
4935         raw_spin_lock(&kvm_count_lock);
4936         hardware_disable_all_nolock();
4937         raw_spin_unlock(&kvm_count_lock);
4938 }
4939
4940 static int hardware_enable_all(void)
4941 {
4942         int r = 0;
4943
4944         raw_spin_lock(&kvm_count_lock);
4945
4946         kvm_usage_count++;
4947         if (kvm_usage_count == 1) {
4948                 atomic_set(&hardware_enable_failed, 0);
4949                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4950
4951                 if (atomic_read(&hardware_enable_failed)) {
4952                         hardware_disable_all_nolock();
4953                         r = -EBUSY;
4954                 }
4955         }
4956
4957         raw_spin_unlock(&kvm_count_lock);
4958
4959         return r;
4960 }
4961
4962 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4963                       void *v)
4964 {
4965         /*
4966          * Some (well, at least mine) BIOSes hang on reboot if
4967          * in vmx root mode.
4968          *
4969          * And Intel TXT required VMX off for all cpu when system shutdown.
4970          */
4971         pr_info("kvm: exiting hardware virtualization\n");
4972         kvm_rebooting = true;
4973         on_each_cpu(hardware_disable_nolock, NULL, 1);
4974         return NOTIFY_OK;
4975 }
4976
4977 static struct notifier_block kvm_reboot_notifier = {
4978         .notifier_call = kvm_reboot,
4979         .priority = 0,
4980 };
4981
4982 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4983 {
4984         int i;
4985
4986         for (i = 0; i < bus->dev_count; i++) {
4987                 struct kvm_io_device *pos = bus->range[i].dev;
4988
4989                 kvm_iodevice_destructor(pos);
4990         }
4991         kfree(bus);
4992 }
4993
4994 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4995                                  const struct kvm_io_range *r2)
4996 {
4997         gpa_t addr1 = r1->addr;
4998         gpa_t addr2 = r2->addr;
4999
5000         if (addr1 < addr2)
5001                 return -1;
5002
5003         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5004          * accept any overlapping write.  Any order is acceptable for
5005          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5006          * we process all of them.
5007          */
5008         if (r2->len) {
5009                 addr1 += r1->len;
5010                 addr2 += r2->len;
5011         }
5012
5013         if (addr1 > addr2)
5014                 return 1;
5015
5016         return 0;
5017 }
5018
5019 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5020 {
5021         return kvm_io_bus_cmp(p1, p2);
5022 }
5023
5024 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5025                              gpa_t addr, int len)
5026 {
5027         struct kvm_io_range *range, key;
5028         int off;
5029
5030         key = (struct kvm_io_range) {
5031                 .addr = addr,
5032                 .len = len,
5033         };
5034
5035         range = bsearch(&key, bus->range, bus->dev_count,
5036                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5037         if (range == NULL)
5038                 return -ENOENT;
5039
5040         off = range - bus->range;
5041
5042         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5043                 off--;
5044
5045         return off;
5046 }
5047
5048 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5049                               struct kvm_io_range *range, const void *val)
5050 {
5051         int idx;
5052
5053         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5054         if (idx < 0)
5055                 return -EOPNOTSUPP;
5056
5057         while (idx < bus->dev_count &&
5058                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5059                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5060                                         range->len, val))
5061                         return idx;
5062                 idx++;
5063         }
5064
5065         return -EOPNOTSUPP;
5066 }
5067
5068 /* kvm_io_bus_write - called under kvm->slots_lock */
5069 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5070                      int len, const void *val)
5071 {
5072         struct kvm_io_bus *bus;
5073         struct kvm_io_range range;
5074         int r;
5075
5076         range = (struct kvm_io_range) {
5077                 .addr = addr,
5078                 .len = len,
5079         };
5080
5081         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5082         if (!bus)
5083                 return -ENOMEM;
5084         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5085         return r < 0 ? r : 0;
5086 }
5087 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5088
5089 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5090 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5091                             gpa_t addr, int len, const void *val, long cookie)
5092 {
5093         struct kvm_io_bus *bus;
5094         struct kvm_io_range range;
5095
5096         range = (struct kvm_io_range) {
5097                 .addr = addr,
5098                 .len = len,
5099         };
5100
5101         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5102         if (!bus)
5103                 return -ENOMEM;
5104
5105         /* First try the device referenced by cookie. */
5106         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5107             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5108                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5109                                         val))
5110                         return cookie;
5111
5112         /*
5113          * cookie contained garbage; fall back to search and return the
5114          * correct cookie value.
5115          */
5116         return __kvm_io_bus_write(vcpu, bus, &range, val);
5117 }
5118
5119 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5120                              struct kvm_io_range *range, void *val)
5121 {
5122         int idx;
5123
5124         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5125         if (idx < 0)
5126                 return -EOPNOTSUPP;
5127
5128         while (idx < bus->dev_count &&
5129                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5130                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5131                                        range->len, val))
5132                         return idx;
5133                 idx++;
5134         }
5135
5136         return -EOPNOTSUPP;
5137 }
5138
5139 /* kvm_io_bus_read - called under kvm->slots_lock */
5140 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5141                     int len, void *val)
5142 {
5143         struct kvm_io_bus *bus;
5144         struct kvm_io_range range;
5145         int r;
5146
5147         range = (struct kvm_io_range) {
5148                 .addr = addr,
5149                 .len = len,
5150         };
5151
5152         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5153         if (!bus)
5154                 return -ENOMEM;
5155         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5156         return r < 0 ? r : 0;
5157 }
5158
5159 /* Caller must hold slots_lock. */
5160 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5161                             int len, struct kvm_io_device *dev)
5162 {
5163         int i;
5164         struct kvm_io_bus *new_bus, *bus;
5165         struct kvm_io_range range;
5166
5167         bus = kvm_get_bus(kvm, bus_idx);
5168         if (!bus)
5169                 return -ENOMEM;
5170
5171         /* exclude ioeventfd which is limited by maximum fd */
5172         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5173                 return -ENOSPC;
5174
5175         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5176                           GFP_KERNEL_ACCOUNT);
5177         if (!new_bus)
5178                 return -ENOMEM;
5179
5180         range = (struct kvm_io_range) {
5181                 .addr = addr,
5182                 .len = len,
5183                 .dev = dev,
5184         };
5185
5186         for (i = 0; i < bus->dev_count; i++)
5187                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5188                         break;
5189
5190         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5191         new_bus->dev_count++;
5192         new_bus->range[i] = range;
5193         memcpy(new_bus->range + i + 1, bus->range + i,
5194                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5195         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5196         synchronize_srcu_expedited(&kvm->srcu);
5197         kfree(bus);
5198
5199         return 0;
5200 }
5201
5202 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5203                               struct kvm_io_device *dev)
5204 {
5205         int i, j;
5206         struct kvm_io_bus *new_bus, *bus;
5207
5208         lockdep_assert_held(&kvm->slots_lock);
5209
5210         bus = kvm_get_bus(kvm, bus_idx);
5211         if (!bus)
5212                 return 0;
5213
5214         for (i = 0; i < bus->dev_count; i++) {
5215                 if (bus->range[i].dev == dev) {
5216                         break;
5217                 }
5218         }
5219
5220         if (i == bus->dev_count)
5221                 return 0;
5222
5223         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5224                           GFP_KERNEL_ACCOUNT);
5225         if (new_bus) {
5226                 memcpy(new_bus, bus, struct_size(bus, range, i));
5227                 new_bus->dev_count--;
5228                 memcpy(new_bus->range + i, bus->range + i + 1,
5229                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5230         }
5231
5232         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5233         synchronize_srcu_expedited(&kvm->srcu);
5234
5235         /* Destroy the old bus _after_ installing the (null) bus. */
5236         if (!new_bus) {
5237                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5238                 for (j = 0; j < bus->dev_count; j++) {
5239                         if (j == i)
5240                                 continue;
5241                         kvm_iodevice_destructor(bus->range[j].dev);
5242                 }
5243         }
5244
5245         kfree(bus);
5246         return new_bus ? 0 : -ENOMEM;
5247 }
5248
5249 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5250                                          gpa_t addr)
5251 {
5252         struct kvm_io_bus *bus;
5253         int dev_idx, srcu_idx;
5254         struct kvm_io_device *iodev = NULL;
5255
5256         srcu_idx = srcu_read_lock(&kvm->srcu);
5257
5258         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5259         if (!bus)
5260                 goto out_unlock;
5261
5262         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5263         if (dev_idx < 0)
5264                 goto out_unlock;
5265
5266         iodev = bus->range[dev_idx].dev;
5267
5268 out_unlock:
5269         srcu_read_unlock(&kvm->srcu, srcu_idx);
5270
5271         return iodev;
5272 }
5273 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5274
5275 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5276                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5277                            const char *fmt)
5278 {
5279         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5280                                           inode->i_private;
5281
5282         /*
5283          * The debugfs files are a reference to the kvm struct which
5284         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5285         * avoids the race between open and the removal of the debugfs directory.
5286          */
5287         if (!kvm_get_kvm_safe(stat_data->kvm))
5288                 return -ENOENT;
5289
5290         if (simple_attr_open(inode, file, get,
5291                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5292                     ? set : NULL,
5293                     fmt)) {
5294                 kvm_put_kvm(stat_data->kvm);
5295                 return -ENOMEM;
5296         }
5297
5298         return 0;
5299 }
5300
5301 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5302 {
5303         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5304                                           inode->i_private;
5305
5306         simple_attr_release(inode, file);
5307         kvm_put_kvm(stat_data->kvm);
5308
5309         return 0;
5310 }
5311
5312 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5313 {
5314         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5315
5316         return 0;
5317 }
5318
5319 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5320 {
5321         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5322
5323         return 0;
5324 }
5325
5326 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5327 {
5328         unsigned long i;
5329         struct kvm_vcpu *vcpu;
5330
5331         *val = 0;
5332
5333         kvm_for_each_vcpu(i, vcpu, kvm)
5334                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5335
5336         return 0;
5337 }
5338
5339 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5340 {
5341         unsigned long i;
5342         struct kvm_vcpu *vcpu;
5343
5344         kvm_for_each_vcpu(i, vcpu, kvm)
5345                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5346
5347         return 0;
5348 }
5349
5350 static int kvm_stat_data_get(void *data, u64 *val)
5351 {
5352         int r = -EFAULT;
5353         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5354
5355         switch (stat_data->kind) {
5356         case KVM_STAT_VM:
5357                 r = kvm_get_stat_per_vm(stat_data->kvm,
5358                                         stat_data->desc->desc.offset, val);
5359                 break;
5360         case KVM_STAT_VCPU:
5361                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5362                                           stat_data->desc->desc.offset, val);
5363                 break;
5364         }
5365
5366         return r;
5367 }
5368
5369 static int kvm_stat_data_clear(void *data, u64 val)
5370 {
5371         int r = -EFAULT;
5372         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5373
5374         if (val)
5375                 return -EINVAL;
5376
5377         switch (stat_data->kind) {
5378         case KVM_STAT_VM:
5379                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5380                                           stat_data->desc->desc.offset);
5381                 break;
5382         case KVM_STAT_VCPU:
5383                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5384                                             stat_data->desc->desc.offset);
5385                 break;
5386         }
5387
5388         return r;
5389 }
5390
5391 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5392 {
5393         __simple_attr_check_format("%llu\n", 0ull);
5394         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5395                                 kvm_stat_data_clear, "%llu\n");
5396 }
5397
5398 static const struct file_operations stat_fops_per_vm = {
5399         .owner = THIS_MODULE,
5400         .open = kvm_stat_data_open,
5401         .release = kvm_debugfs_release,
5402         .read = simple_attr_read,
5403         .write = simple_attr_write,
5404         .llseek = no_llseek,
5405 };
5406
5407 static int vm_stat_get(void *_offset, u64 *val)
5408 {
5409         unsigned offset = (long)_offset;
5410         struct kvm *kvm;
5411         u64 tmp_val;
5412
5413         *val = 0;
5414         mutex_lock(&kvm_lock);
5415         list_for_each_entry(kvm, &vm_list, vm_list) {
5416                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5417                 *val += tmp_val;
5418         }
5419         mutex_unlock(&kvm_lock);
5420         return 0;
5421 }
5422
5423 static int vm_stat_clear(void *_offset, u64 val)
5424 {
5425         unsigned offset = (long)_offset;
5426         struct kvm *kvm;
5427
5428         if (val)
5429                 return -EINVAL;
5430
5431         mutex_lock(&kvm_lock);
5432         list_for_each_entry(kvm, &vm_list, vm_list) {
5433                 kvm_clear_stat_per_vm(kvm, offset);
5434         }
5435         mutex_unlock(&kvm_lock);
5436
5437         return 0;
5438 }
5439
5440 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5441 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5442
5443 static int vcpu_stat_get(void *_offset, u64 *val)
5444 {
5445         unsigned offset = (long)_offset;
5446         struct kvm *kvm;
5447         u64 tmp_val;
5448
5449         *val = 0;
5450         mutex_lock(&kvm_lock);
5451         list_for_each_entry(kvm, &vm_list, vm_list) {
5452                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5453                 *val += tmp_val;
5454         }
5455         mutex_unlock(&kvm_lock);
5456         return 0;
5457 }
5458
5459 static int vcpu_stat_clear(void *_offset, u64 val)
5460 {
5461         unsigned offset = (long)_offset;
5462         struct kvm *kvm;
5463
5464         if (val)
5465                 return -EINVAL;
5466
5467         mutex_lock(&kvm_lock);
5468         list_for_each_entry(kvm, &vm_list, vm_list) {
5469                 kvm_clear_stat_per_vcpu(kvm, offset);
5470         }
5471         mutex_unlock(&kvm_lock);
5472
5473         return 0;
5474 }
5475
5476 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5477                         "%llu\n");
5478 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5479
5480 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5481 {
5482         struct kobj_uevent_env *env;
5483         unsigned long long created, active;
5484
5485         if (!kvm_dev.this_device || !kvm)
5486                 return;
5487
5488         mutex_lock(&kvm_lock);
5489         if (type == KVM_EVENT_CREATE_VM) {
5490                 kvm_createvm_count++;
5491                 kvm_active_vms++;
5492         } else if (type == KVM_EVENT_DESTROY_VM) {
5493                 kvm_active_vms--;
5494         }
5495         created = kvm_createvm_count;
5496         active = kvm_active_vms;
5497         mutex_unlock(&kvm_lock);
5498
5499         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5500         if (!env)
5501                 return;
5502
5503         add_uevent_var(env, "CREATED=%llu", created);
5504         add_uevent_var(env, "COUNT=%llu", active);
5505
5506         if (type == KVM_EVENT_CREATE_VM) {
5507                 add_uevent_var(env, "EVENT=create");
5508                 kvm->userspace_pid = task_pid_nr(current);
5509         } else if (type == KVM_EVENT_DESTROY_VM) {
5510                 add_uevent_var(env, "EVENT=destroy");
5511         }
5512         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5513
5514         if (!IS_ERR(kvm->debugfs_dentry)) {
5515                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5516
5517                 if (p) {
5518                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5519                         if (!IS_ERR(tmp))
5520                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5521                         kfree(p);
5522                 }
5523         }
5524         /* no need for checks, since we are adding at most only 5 keys */
5525         env->envp[env->envp_idx++] = NULL;
5526         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5527         kfree(env);
5528 }
5529
5530 static void kvm_init_debug(void)
5531 {
5532         const struct file_operations *fops;
5533         const struct _kvm_stats_desc *pdesc;
5534         int i;
5535
5536         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5537
5538         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5539                 pdesc = &kvm_vm_stats_desc[i];
5540                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5541                         fops = &vm_stat_fops;
5542                 else
5543                         fops = &vm_stat_readonly_fops;
5544                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5545                                 kvm_debugfs_dir,
5546                                 (void *)(long)pdesc->desc.offset, fops);
5547         }
5548
5549         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5550                 pdesc = &kvm_vcpu_stats_desc[i];
5551                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5552                         fops = &vcpu_stat_fops;
5553                 else
5554                         fops = &vcpu_stat_readonly_fops;
5555                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5556                                 kvm_debugfs_dir,
5557                                 (void *)(long)pdesc->desc.offset, fops);
5558         }
5559 }
5560
5561 static int kvm_suspend(void)
5562 {
5563         if (kvm_usage_count)
5564                 hardware_disable_nolock(NULL);
5565         return 0;
5566 }
5567
5568 static void kvm_resume(void)
5569 {
5570         if (kvm_usage_count) {
5571                 lockdep_assert_not_held(&kvm_count_lock);
5572                 hardware_enable_nolock(NULL);
5573         }
5574 }
5575
5576 static struct syscore_ops kvm_syscore_ops = {
5577         .suspend = kvm_suspend,
5578         .resume = kvm_resume,
5579 };
5580
5581 static inline
5582 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5583 {
5584         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5585 }
5586
5587 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5588 {
5589         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5590
5591         WRITE_ONCE(vcpu->preempted, false);
5592         WRITE_ONCE(vcpu->ready, false);
5593
5594         __this_cpu_write(kvm_running_vcpu, vcpu);
5595         kvm_arch_sched_in(vcpu, cpu);
5596         kvm_arch_vcpu_load(vcpu, cpu);
5597 }
5598
5599 static void kvm_sched_out(struct preempt_notifier *pn,
5600                           struct task_struct *next)
5601 {
5602         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5603
5604         if (current->on_rq) {
5605                 WRITE_ONCE(vcpu->preempted, true);
5606                 WRITE_ONCE(vcpu->ready, true);
5607         }
5608         kvm_arch_vcpu_put(vcpu);
5609         __this_cpu_write(kvm_running_vcpu, NULL);
5610 }
5611
5612 /**
5613  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5614  *
5615  * We can disable preemption locally around accessing the per-CPU variable,
5616  * and use the resolved vcpu pointer after enabling preemption again,
5617  * because even if the current thread is migrated to another CPU, reading
5618  * the per-CPU value later will give us the same value as we update the
5619  * per-CPU variable in the preempt notifier handlers.
5620  */
5621 struct kvm_vcpu *kvm_get_running_vcpu(void)
5622 {
5623         struct kvm_vcpu *vcpu;
5624
5625         preempt_disable();
5626         vcpu = __this_cpu_read(kvm_running_vcpu);
5627         preempt_enable();
5628
5629         return vcpu;
5630 }
5631 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5632
5633 /**
5634  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5635  */
5636 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5637 {
5638         return &kvm_running_vcpu;
5639 }
5640
5641 #ifdef CONFIG_GUEST_PERF_EVENTS
5642 static unsigned int kvm_guest_state(void)
5643 {
5644         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5645         unsigned int state;
5646
5647         if (!kvm_arch_pmi_in_guest(vcpu))
5648                 return 0;
5649
5650         state = PERF_GUEST_ACTIVE;
5651         if (!kvm_arch_vcpu_in_kernel(vcpu))
5652                 state |= PERF_GUEST_USER;
5653
5654         return state;
5655 }
5656
5657 static unsigned long kvm_guest_get_ip(void)
5658 {
5659         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5660
5661         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5662         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5663                 return 0;
5664
5665         return kvm_arch_vcpu_get_ip(vcpu);
5666 }
5667
5668 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5669         .state                  = kvm_guest_state,
5670         .get_ip                 = kvm_guest_get_ip,
5671         .handle_intel_pt_intr   = NULL,
5672 };
5673
5674 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5675 {
5676         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5677         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5678 }
5679 void kvm_unregister_perf_callbacks(void)
5680 {
5681         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5682 }
5683 #endif
5684
5685 struct kvm_cpu_compat_check {
5686         void *opaque;
5687         int *ret;
5688 };
5689
5690 static void check_processor_compat(void *data)
5691 {
5692         struct kvm_cpu_compat_check *c = data;
5693
5694         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5695 }
5696
5697 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5698                   struct module *module)
5699 {
5700         struct kvm_cpu_compat_check c;
5701         int r;
5702         int cpu;
5703
5704         r = kvm_arch_init(opaque);
5705         if (r)
5706                 goto out_fail;
5707
5708         /*
5709          * kvm_arch_init makes sure there's at most one caller
5710          * for architectures that support multiple implementations,
5711          * like intel and amd on x86.
5712          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5713          * conflicts in case kvm is already setup for another implementation.
5714          */
5715         r = kvm_irqfd_init();
5716         if (r)
5717                 goto out_irqfd;
5718
5719         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5720                 r = -ENOMEM;
5721                 goto out_free_0;
5722         }
5723
5724         r = kvm_arch_hardware_setup(opaque);
5725         if (r < 0)
5726                 goto out_free_1;
5727
5728         c.ret = &r;
5729         c.opaque = opaque;
5730         for_each_online_cpu(cpu) {
5731                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5732                 if (r < 0)
5733                         goto out_free_2;
5734         }
5735
5736         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5737                                       kvm_starting_cpu, kvm_dying_cpu);
5738         if (r)
5739                 goto out_free_2;
5740         register_reboot_notifier(&kvm_reboot_notifier);
5741
5742         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5743         if (!vcpu_align)
5744                 vcpu_align = __alignof__(struct kvm_vcpu);
5745         kvm_vcpu_cache =
5746                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5747                                            SLAB_ACCOUNT,
5748                                            offsetof(struct kvm_vcpu, arch),
5749                                            offsetofend(struct kvm_vcpu, stats_id)
5750                                            - offsetof(struct kvm_vcpu, arch),
5751                                            NULL);
5752         if (!kvm_vcpu_cache) {
5753                 r = -ENOMEM;
5754                 goto out_free_3;
5755         }
5756
5757         for_each_possible_cpu(cpu) {
5758                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5759                                             GFP_KERNEL, cpu_to_node(cpu))) {
5760                         r = -ENOMEM;
5761                         goto out_free_4;
5762                 }
5763         }
5764
5765         r = kvm_async_pf_init();
5766         if (r)
5767                 goto out_free_5;
5768
5769         kvm_chardev_ops.owner = module;
5770
5771         r = misc_register(&kvm_dev);
5772         if (r) {
5773                 pr_err("kvm: misc device register failed\n");
5774                 goto out_unreg;
5775         }
5776
5777         register_syscore_ops(&kvm_syscore_ops);
5778
5779         kvm_preempt_ops.sched_in = kvm_sched_in;
5780         kvm_preempt_ops.sched_out = kvm_sched_out;
5781
5782         kvm_init_debug();
5783
5784         r = kvm_vfio_ops_init();
5785         WARN_ON(r);
5786
5787         return 0;
5788
5789 out_unreg:
5790         kvm_async_pf_deinit();
5791 out_free_5:
5792         for_each_possible_cpu(cpu)
5793                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5794 out_free_4:
5795         kmem_cache_destroy(kvm_vcpu_cache);
5796 out_free_3:
5797         unregister_reboot_notifier(&kvm_reboot_notifier);
5798         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5799 out_free_2:
5800         kvm_arch_hardware_unsetup();
5801 out_free_1:
5802         free_cpumask_var(cpus_hardware_enabled);
5803 out_free_0:
5804         kvm_irqfd_exit();
5805 out_irqfd:
5806         kvm_arch_exit();
5807 out_fail:
5808         return r;
5809 }
5810 EXPORT_SYMBOL_GPL(kvm_init);
5811
5812 void kvm_exit(void)
5813 {
5814         int cpu;
5815
5816         debugfs_remove_recursive(kvm_debugfs_dir);
5817         misc_deregister(&kvm_dev);
5818         for_each_possible_cpu(cpu)
5819                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5820         kmem_cache_destroy(kvm_vcpu_cache);
5821         kvm_async_pf_deinit();
5822         unregister_syscore_ops(&kvm_syscore_ops);
5823         unregister_reboot_notifier(&kvm_reboot_notifier);
5824         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5825         on_each_cpu(hardware_disable_nolock, NULL, 1);
5826         kvm_arch_hardware_unsetup();
5827         kvm_arch_exit();
5828         kvm_irqfd_exit();
5829         free_cpumask_var(cpus_hardware_enabled);
5830         kvm_vfio_ops_exit();
5831 }
5832 EXPORT_SYMBOL_GPL(kvm_exit);
5833
5834 struct kvm_vm_worker_thread_context {
5835         struct kvm *kvm;
5836         struct task_struct *parent;
5837         struct completion init_done;
5838         kvm_vm_thread_fn_t thread_fn;
5839         uintptr_t data;
5840         int err;
5841 };
5842
5843 static int kvm_vm_worker_thread(void *context)
5844 {
5845         /*
5846          * The init_context is allocated on the stack of the parent thread, so
5847          * we have to locally copy anything that is needed beyond initialization
5848          */
5849         struct kvm_vm_worker_thread_context *init_context = context;
5850         struct task_struct *parent;
5851         struct kvm *kvm = init_context->kvm;
5852         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5853         uintptr_t data = init_context->data;
5854         int err;
5855
5856         err = kthread_park(current);
5857         /* kthread_park(current) is never supposed to return an error */
5858         WARN_ON(err != 0);
5859         if (err)
5860                 goto init_complete;
5861
5862         err = cgroup_attach_task_all(init_context->parent, current);
5863         if (err) {
5864                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5865                         __func__, err);
5866                 goto init_complete;
5867         }
5868
5869         set_user_nice(current, task_nice(init_context->parent));
5870
5871 init_complete:
5872         init_context->err = err;
5873         complete(&init_context->init_done);
5874         init_context = NULL;
5875
5876         if (err)
5877                 goto out;
5878
5879         /* Wait to be woken up by the spawner before proceeding. */
5880         kthread_parkme();
5881
5882         if (!kthread_should_stop())
5883                 err = thread_fn(kvm, data);
5884
5885 out:
5886         /*
5887          * Move kthread back to its original cgroup to prevent it lingering in
5888          * the cgroup of the VM process, after the latter finishes its
5889          * execution.
5890          *
5891          * kthread_stop() waits on the 'exited' completion condition which is
5892          * set in exit_mm(), via mm_release(), in do_exit(). However, the
5893          * kthread is removed from the cgroup in the cgroup_exit() which is
5894          * called after the exit_mm(). This causes the kthread_stop() to return
5895          * before the kthread actually quits the cgroup.
5896          */
5897         rcu_read_lock();
5898         parent = rcu_dereference(current->real_parent);
5899         get_task_struct(parent);
5900         rcu_read_unlock();
5901         cgroup_attach_task_all(parent, current);
5902         put_task_struct(parent);
5903
5904         return err;
5905 }
5906
5907 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5908                                 uintptr_t data, const char *name,
5909                                 struct task_struct **thread_ptr)
5910 {
5911         struct kvm_vm_worker_thread_context init_context = {};
5912         struct task_struct *thread;
5913
5914         *thread_ptr = NULL;
5915         init_context.kvm = kvm;
5916         init_context.parent = current;
5917         init_context.thread_fn = thread_fn;
5918         init_context.data = data;
5919         init_completion(&init_context.init_done);
5920
5921         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5922                              "%s-%d", name, task_pid_nr(current));
5923         if (IS_ERR(thread))
5924                 return PTR_ERR(thread);
5925
5926         /* kthread_run is never supposed to return NULL */
5927         WARN_ON(thread == NULL);
5928
5929         wait_for_completion(&init_context.init_done);
5930
5931         if (!init_context.err)
5932                 *thread_ptr = thread;
5933
5934         return init_context.err;
5935 }