Merge tag 'sound-fix-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[platform/kernel/linux-rpi.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                                                    unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 /*
193  * Switches to specified vcpu, until a matching vcpu_put()
194  */
195 void vcpu_load(struct kvm_vcpu *vcpu)
196 {
197         int cpu = get_cpu();
198
199         __this_cpu_write(kvm_running_vcpu, vcpu);
200         preempt_notifier_register(&vcpu->preempt_notifier);
201         kvm_arch_vcpu_load(vcpu, cpu);
202         put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205
206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208         preempt_disable();
209         kvm_arch_vcpu_put(vcpu);
210         preempt_notifier_unregister(&vcpu->preempt_notifier);
211         __this_cpu_write(kvm_running_vcpu, NULL);
212         preempt_enable();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_put);
215
216 /* TODO: merge with kvm_arch_vcpu_should_kick */
217 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
218 {
219         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
220
221         /*
222          * We need to wait for the VCPU to reenable interrupts and get out of
223          * READING_SHADOW_PAGE_TABLES mode.
224          */
225         if (req & KVM_REQUEST_WAIT)
226                 return mode != OUTSIDE_GUEST_MODE;
227
228         /*
229          * Need to kick a running VCPU, but otherwise there is nothing to do.
230          */
231         return mode == IN_GUEST_MODE;
232 }
233
234 static void ack_flush(void *_completed)
235 {
236 }
237
238 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
239 {
240         if (unlikely(!cpus))
241                 cpus = cpu_online_mask;
242
243         if (cpumask_empty(cpus))
244                 return false;
245
246         smp_call_function_many(cpus, ack_flush, NULL, wait);
247         return true;
248 }
249
250 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
251                                  struct kvm_vcpu *except,
252                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
253 {
254         int i, cpu, me;
255         struct kvm_vcpu *vcpu;
256         bool called;
257
258         me = get_cpu();
259
260         kvm_for_each_vcpu(i, vcpu, kvm) {
261                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
262                     vcpu == except)
263                         continue;
264
265                 kvm_make_request(req, vcpu);
266                 cpu = vcpu->cpu;
267
268                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269                         continue;
270
271                 if (tmp != NULL && cpu != -1 && cpu != me &&
272                     kvm_request_needs_ipi(vcpu, req))
273                         __cpumask_set_cpu(cpu, tmp);
274         }
275
276         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
277         put_cpu();
278
279         return called;
280 }
281
282 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
283                                       struct kvm_vcpu *except)
284 {
285         cpumask_var_t cpus;
286         bool called;
287
288         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
289
290         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
291
292         free_cpumask_var(cpus);
293         return called;
294 }
295
296 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
297 {
298         return kvm_make_all_cpus_request_except(kvm, req, NULL);
299 }
300 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
301
302 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
303 void kvm_flush_remote_tlbs(struct kvm *kvm)
304 {
305         /*
306          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
307          * kvm_make_all_cpus_request.
308          */
309         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
310
311         ++kvm->stat.generic.remote_tlb_flush_requests;
312         /*
313          * We want to publish modifications to the page tables before reading
314          * mode. Pairs with a memory barrier in arch-specific code.
315          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
316          * and smp_mb in walk_shadow_page_lockless_begin/end.
317          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
318          *
319          * There is already an smp_mb__after_atomic() before
320          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
321          * barrier here.
322          */
323         if (!kvm_arch_flush_remote_tlb(kvm)
324             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
325                 ++kvm->stat.generic.remote_tlb_flush;
326         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
327 }
328 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
329 #endif
330
331 void kvm_reload_remote_mmus(struct kvm *kvm)
332 {
333         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
334 }
335
336 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
337 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
338                                                gfp_t gfp_flags)
339 {
340         gfp_flags |= mc->gfp_zero;
341
342         if (mc->kmem_cache)
343                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
344         else
345                 return (void *)__get_free_page(gfp_flags);
346 }
347
348 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
349 {
350         void *obj;
351
352         if (mc->nobjs >= min)
353                 return 0;
354         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
355                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
356                 if (!obj)
357                         return mc->nobjs >= min ? 0 : -ENOMEM;
358                 mc->objects[mc->nobjs++] = obj;
359         }
360         return 0;
361 }
362
363 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
364 {
365         return mc->nobjs;
366 }
367
368 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
369 {
370         while (mc->nobjs) {
371                 if (mc->kmem_cache)
372                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
373                 else
374                         free_page((unsigned long)mc->objects[--mc->nobjs]);
375         }
376 }
377
378 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
379 {
380         void *p;
381
382         if (WARN_ON(!mc->nobjs))
383                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
384         else
385                 p = mc->objects[--mc->nobjs];
386         BUG_ON(!p);
387         return p;
388 }
389 #endif
390
391 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
392 {
393         mutex_init(&vcpu->mutex);
394         vcpu->cpu = -1;
395         vcpu->kvm = kvm;
396         vcpu->vcpu_id = id;
397         vcpu->pid = NULL;
398         rcuwait_init(&vcpu->wait);
399         kvm_async_pf_vcpu_init(vcpu);
400
401         vcpu->pre_pcpu = -1;
402         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
403
404         kvm_vcpu_set_in_spin_loop(vcpu, false);
405         kvm_vcpu_set_dy_eligible(vcpu, false);
406         vcpu->preempted = false;
407         vcpu->ready = false;
408         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
409         vcpu->last_used_slot = 0;
410 }
411
412 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
413 {
414         kvm_dirty_ring_free(&vcpu->dirty_ring);
415         kvm_arch_vcpu_destroy(vcpu);
416
417         /*
418          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
419          * the vcpu->pid pointer, and at destruction time all file descriptors
420          * are already gone.
421          */
422         put_pid(rcu_dereference_protected(vcpu->pid, 1));
423
424         free_page((unsigned long)vcpu->run);
425         kmem_cache_free(kvm_vcpu_cache, vcpu);
426 }
427 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
428
429 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
430 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
431 {
432         return container_of(mn, struct kvm, mmu_notifier);
433 }
434
435 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
436                                               struct mm_struct *mm,
437                                               unsigned long start, unsigned long end)
438 {
439         struct kvm *kvm = mmu_notifier_to_kvm(mn);
440         int idx;
441
442         idx = srcu_read_lock(&kvm->srcu);
443         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
444         srcu_read_unlock(&kvm->srcu, idx);
445 }
446
447 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
448
449 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
450                              unsigned long end);
451
452 struct kvm_hva_range {
453         unsigned long start;
454         unsigned long end;
455         pte_t pte;
456         hva_handler_t handler;
457         on_lock_fn_t on_lock;
458         bool flush_on_ret;
459         bool may_block;
460 };
461
462 /*
463  * Use a dedicated stub instead of NULL to indicate that there is no callback
464  * function/handler.  The compiler technically can't guarantee that a real
465  * function will have a non-zero address, and so it will generate code to
466  * check for !NULL, whereas comparing against a stub will be elided at compile
467  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
468  */
469 static void kvm_null_fn(void)
470 {
471
472 }
473 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
474
475 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
476                                                   const struct kvm_hva_range *range)
477 {
478         bool ret = false, locked = false;
479         struct kvm_gfn_range gfn_range;
480         struct kvm_memory_slot *slot;
481         struct kvm_memslots *slots;
482         int i, idx;
483
484         /* A null handler is allowed if and only if on_lock() is provided. */
485         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
486                          IS_KVM_NULL_FN(range->handler)))
487                 return 0;
488
489         idx = srcu_read_lock(&kvm->srcu);
490
491         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
492                 slots = __kvm_memslots(kvm, i);
493                 kvm_for_each_memslot(slot, slots) {
494                         unsigned long hva_start, hva_end;
495
496                         hva_start = max(range->start, slot->userspace_addr);
497                         hva_end = min(range->end, slot->userspace_addr +
498                                                   (slot->npages << PAGE_SHIFT));
499                         if (hva_start >= hva_end)
500                                 continue;
501
502                         /*
503                          * To optimize for the likely case where the address
504                          * range is covered by zero or one memslots, don't
505                          * bother making these conditional (to avoid writes on
506                          * the second or later invocation of the handler).
507                          */
508                         gfn_range.pte = range->pte;
509                         gfn_range.may_block = range->may_block;
510
511                         /*
512                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
513                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
514                          */
515                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
516                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
517                         gfn_range.slot = slot;
518
519                         if (!locked) {
520                                 locked = true;
521                                 KVM_MMU_LOCK(kvm);
522                                 if (!IS_KVM_NULL_FN(range->on_lock))
523                                         range->on_lock(kvm, range->start, range->end);
524                                 if (IS_KVM_NULL_FN(range->handler))
525                                         break;
526                         }
527                         ret |= range->handler(kvm, &gfn_range);
528                 }
529         }
530
531         if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
532                 kvm_flush_remote_tlbs(kvm);
533
534         if (locked)
535                 KVM_MMU_UNLOCK(kvm);
536
537         srcu_read_unlock(&kvm->srcu, idx);
538
539         /* The notifiers are averse to booleans. :-( */
540         return (int)ret;
541 }
542
543 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
544                                                 unsigned long start,
545                                                 unsigned long end,
546                                                 pte_t pte,
547                                                 hva_handler_t handler)
548 {
549         struct kvm *kvm = mmu_notifier_to_kvm(mn);
550         const struct kvm_hva_range range = {
551                 .start          = start,
552                 .end            = end,
553                 .pte            = pte,
554                 .handler        = handler,
555                 .on_lock        = (void *)kvm_null_fn,
556                 .flush_on_ret   = true,
557                 .may_block      = false,
558         };
559
560         return __kvm_handle_hva_range(kvm, &range);
561 }
562
563 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
564                                                          unsigned long start,
565                                                          unsigned long end,
566                                                          hva_handler_t handler)
567 {
568         struct kvm *kvm = mmu_notifier_to_kvm(mn);
569         const struct kvm_hva_range range = {
570                 .start          = start,
571                 .end            = end,
572                 .pte            = __pte(0),
573                 .handler        = handler,
574                 .on_lock        = (void *)kvm_null_fn,
575                 .flush_on_ret   = false,
576                 .may_block      = false,
577         };
578
579         return __kvm_handle_hva_range(kvm, &range);
580 }
581 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
582                                         struct mm_struct *mm,
583                                         unsigned long address,
584                                         pte_t pte)
585 {
586         struct kvm *kvm = mmu_notifier_to_kvm(mn);
587
588         trace_kvm_set_spte_hva(address);
589
590         /*
591          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
592          * If mmu_notifier_count is zero, then no in-progress invalidations,
593          * including this one, found a relevant memslot at start(); rechecking
594          * memslots here is unnecessary.  Note, a false positive (count elevated
595          * by a different invalidation) is sub-optimal but functionally ok.
596          */
597         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
598         if (!READ_ONCE(kvm->mmu_notifier_count))
599                 return;
600
601         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
602 }
603
604 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
605                                    unsigned long end)
606 {
607         /*
608          * The count increase must become visible at unlock time as no
609          * spte can be established without taking the mmu_lock and
610          * count is also read inside the mmu_lock critical section.
611          */
612         kvm->mmu_notifier_count++;
613         if (likely(kvm->mmu_notifier_count == 1)) {
614                 kvm->mmu_notifier_range_start = start;
615                 kvm->mmu_notifier_range_end = end;
616         } else {
617                 /*
618                  * Fully tracking multiple concurrent ranges has dimishing
619                  * returns. Keep things simple and just find the minimal range
620                  * which includes the current and new ranges. As there won't be
621                  * enough information to subtract a range after its invalidate
622                  * completes, any ranges invalidated concurrently will
623                  * accumulate and persist until all outstanding invalidates
624                  * complete.
625                  */
626                 kvm->mmu_notifier_range_start =
627                         min(kvm->mmu_notifier_range_start, start);
628                 kvm->mmu_notifier_range_end =
629                         max(kvm->mmu_notifier_range_end, end);
630         }
631 }
632
633 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
634                                         const struct mmu_notifier_range *range)
635 {
636         struct kvm *kvm = mmu_notifier_to_kvm(mn);
637         const struct kvm_hva_range hva_range = {
638                 .start          = range->start,
639                 .end            = range->end,
640                 .pte            = __pte(0),
641                 .handler        = kvm_unmap_gfn_range,
642                 .on_lock        = kvm_inc_notifier_count,
643                 .flush_on_ret   = true,
644                 .may_block      = mmu_notifier_range_blockable(range),
645         };
646
647         trace_kvm_unmap_hva_range(range->start, range->end);
648
649         /*
650          * Prevent memslot modification between range_start() and range_end()
651          * so that conditionally locking provides the same result in both
652          * functions.  Without that guarantee, the mmu_notifier_count
653          * adjustments will be imbalanced.
654          *
655          * Pairs with the decrement in range_end().
656          */
657         spin_lock(&kvm->mn_invalidate_lock);
658         kvm->mn_active_invalidate_count++;
659         spin_unlock(&kvm->mn_invalidate_lock);
660
661         __kvm_handle_hva_range(kvm, &hva_range);
662
663         return 0;
664 }
665
666 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
667                                    unsigned long end)
668 {
669         /*
670          * This sequence increase will notify the kvm page fault that
671          * the page that is going to be mapped in the spte could have
672          * been freed.
673          */
674         kvm->mmu_notifier_seq++;
675         smp_wmb();
676         /*
677          * The above sequence increase must be visible before the
678          * below count decrease, which is ensured by the smp_wmb above
679          * in conjunction with the smp_rmb in mmu_notifier_retry().
680          */
681         kvm->mmu_notifier_count--;
682 }
683
684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
685                                         const struct mmu_notifier_range *range)
686 {
687         struct kvm *kvm = mmu_notifier_to_kvm(mn);
688         const struct kvm_hva_range hva_range = {
689                 .start          = range->start,
690                 .end            = range->end,
691                 .pte            = __pte(0),
692                 .handler        = (void *)kvm_null_fn,
693                 .on_lock        = kvm_dec_notifier_count,
694                 .flush_on_ret   = false,
695                 .may_block      = mmu_notifier_range_blockable(range),
696         };
697         bool wake;
698
699         __kvm_handle_hva_range(kvm, &hva_range);
700
701         /* Pairs with the increment in range_start(). */
702         spin_lock(&kvm->mn_invalidate_lock);
703         wake = (--kvm->mn_active_invalidate_count == 0);
704         spin_unlock(&kvm->mn_invalidate_lock);
705
706         /*
707          * There can only be one waiter, since the wait happens under
708          * slots_lock.
709          */
710         if (wake)
711                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
712
713         BUG_ON(kvm->mmu_notifier_count < 0);
714 }
715
716 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
717                                               struct mm_struct *mm,
718                                               unsigned long start,
719                                               unsigned long end)
720 {
721         trace_kvm_age_hva(start, end);
722
723         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
724 }
725
726 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
727                                         struct mm_struct *mm,
728                                         unsigned long start,
729                                         unsigned long end)
730 {
731         trace_kvm_age_hva(start, end);
732
733         /*
734          * Even though we do not flush TLB, this will still adversely
735          * affect performance on pre-Haswell Intel EPT, where there is
736          * no EPT Access Bit to clear so that we have to tear down EPT
737          * tables instead. If we find this unacceptable, we can always
738          * add a parameter to kvm_age_hva so that it effectively doesn't
739          * do anything on clear_young.
740          *
741          * Also note that currently we never issue secondary TLB flushes
742          * from clear_young, leaving this job up to the regular system
743          * cadence. If we find this inaccurate, we might come up with a
744          * more sophisticated heuristic later.
745          */
746         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
747 }
748
749 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
750                                        struct mm_struct *mm,
751                                        unsigned long address)
752 {
753         trace_kvm_test_age_hva(address);
754
755         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
756                                              kvm_test_age_gfn);
757 }
758
759 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
760                                      struct mm_struct *mm)
761 {
762         struct kvm *kvm = mmu_notifier_to_kvm(mn);
763         int idx;
764
765         idx = srcu_read_lock(&kvm->srcu);
766         kvm_arch_flush_shadow_all(kvm);
767         srcu_read_unlock(&kvm->srcu, idx);
768 }
769
770 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
771         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
772         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
773         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
774         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
775         .clear_young            = kvm_mmu_notifier_clear_young,
776         .test_young             = kvm_mmu_notifier_test_young,
777         .change_pte             = kvm_mmu_notifier_change_pte,
778         .release                = kvm_mmu_notifier_release,
779 };
780
781 static int kvm_init_mmu_notifier(struct kvm *kvm)
782 {
783         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
784         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
785 }
786
787 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
788
789 static int kvm_init_mmu_notifier(struct kvm *kvm)
790 {
791         return 0;
792 }
793
794 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
795
796 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
797 static int kvm_pm_notifier_call(struct notifier_block *bl,
798                                 unsigned long state,
799                                 void *unused)
800 {
801         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
802
803         return kvm_arch_pm_notifier(kvm, state);
804 }
805
806 static void kvm_init_pm_notifier(struct kvm *kvm)
807 {
808         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
809         /* Suspend KVM before we suspend ftrace, RCU, etc. */
810         kvm->pm_notifier.priority = INT_MAX;
811         register_pm_notifier(&kvm->pm_notifier);
812 }
813
814 static void kvm_destroy_pm_notifier(struct kvm *kvm)
815 {
816         unregister_pm_notifier(&kvm->pm_notifier);
817 }
818 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
819 static void kvm_init_pm_notifier(struct kvm *kvm)
820 {
821 }
822
823 static void kvm_destroy_pm_notifier(struct kvm *kvm)
824 {
825 }
826 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
827
828 static struct kvm_memslots *kvm_alloc_memslots(void)
829 {
830         int i;
831         struct kvm_memslots *slots;
832
833         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
834         if (!slots)
835                 return NULL;
836
837         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
838                 slots->id_to_index[i] = -1;
839
840         return slots;
841 }
842
843 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
844 {
845         if (!memslot->dirty_bitmap)
846                 return;
847
848         kvfree(memslot->dirty_bitmap);
849         memslot->dirty_bitmap = NULL;
850 }
851
852 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
853 {
854         kvm_destroy_dirty_bitmap(slot);
855
856         kvm_arch_free_memslot(kvm, slot);
857
858         slot->flags = 0;
859         slot->npages = 0;
860 }
861
862 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
863 {
864         struct kvm_memory_slot *memslot;
865
866         if (!slots)
867                 return;
868
869         kvm_for_each_memslot(memslot, slots)
870                 kvm_free_memslot(kvm, memslot);
871
872         kvfree(slots);
873 }
874
875 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
876 {
877         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
878         case KVM_STATS_TYPE_INSTANT:
879                 return 0444;
880         case KVM_STATS_TYPE_CUMULATIVE:
881         case KVM_STATS_TYPE_PEAK:
882         default:
883                 return 0644;
884         }
885 }
886
887
888 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
889 {
890         int i;
891         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
892                                       kvm_vcpu_stats_header.num_desc;
893
894         if (!kvm->debugfs_dentry)
895                 return;
896
897         debugfs_remove_recursive(kvm->debugfs_dentry);
898
899         if (kvm->debugfs_stat_data) {
900                 for (i = 0; i < kvm_debugfs_num_entries; i++)
901                         kfree(kvm->debugfs_stat_data[i]);
902                 kfree(kvm->debugfs_stat_data);
903         }
904 }
905
906 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
907 {
908         static DEFINE_MUTEX(kvm_debugfs_lock);
909         struct dentry *dent;
910         char dir_name[ITOA_MAX_LEN * 2];
911         struct kvm_stat_data *stat_data;
912         const struct _kvm_stats_desc *pdesc;
913         int i, ret;
914         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
915                                       kvm_vcpu_stats_header.num_desc;
916
917         if (!debugfs_initialized())
918                 return 0;
919
920         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
921         mutex_lock(&kvm_debugfs_lock);
922         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
923         if (dent) {
924                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
925                 dput(dent);
926                 mutex_unlock(&kvm_debugfs_lock);
927                 return 0;
928         }
929         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
930         mutex_unlock(&kvm_debugfs_lock);
931         if (IS_ERR(dent))
932                 return 0;
933
934         kvm->debugfs_dentry = dent;
935         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
936                                          sizeof(*kvm->debugfs_stat_data),
937                                          GFP_KERNEL_ACCOUNT);
938         if (!kvm->debugfs_stat_data)
939                 return -ENOMEM;
940
941         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
942                 pdesc = &kvm_vm_stats_desc[i];
943                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
944                 if (!stat_data)
945                         return -ENOMEM;
946
947                 stat_data->kvm = kvm;
948                 stat_data->desc = pdesc;
949                 stat_data->kind = KVM_STAT_VM;
950                 kvm->debugfs_stat_data[i] = stat_data;
951                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
952                                     kvm->debugfs_dentry, stat_data,
953                                     &stat_fops_per_vm);
954         }
955
956         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
957                 pdesc = &kvm_vcpu_stats_desc[i];
958                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
959                 if (!stat_data)
960                         return -ENOMEM;
961
962                 stat_data->kvm = kvm;
963                 stat_data->desc = pdesc;
964                 stat_data->kind = KVM_STAT_VCPU;
965                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
966                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
967                                     kvm->debugfs_dentry, stat_data,
968                                     &stat_fops_per_vm);
969         }
970
971         ret = kvm_arch_create_vm_debugfs(kvm);
972         if (ret) {
973                 kvm_destroy_vm_debugfs(kvm);
974                 return i;
975         }
976
977         return 0;
978 }
979
980 /*
981  * Called after the VM is otherwise initialized, but just before adding it to
982  * the vm_list.
983  */
984 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
985 {
986         return 0;
987 }
988
989 /*
990  * Called just after removing the VM from the vm_list, but before doing any
991  * other destruction.
992  */
993 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
994 {
995 }
996
997 /*
998  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
999  * be setup already, so we can create arch-specific debugfs entries under it.
1000  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1001  * a per-arch destroy interface is not needed.
1002  */
1003 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1004 {
1005         return 0;
1006 }
1007
1008 static struct kvm *kvm_create_vm(unsigned long type)
1009 {
1010         struct kvm *kvm = kvm_arch_alloc_vm();
1011         int r = -ENOMEM;
1012         int i;
1013
1014         if (!kvm)
1015                 return ERR_PTR(-ENOMEM);
1016
1017         KVM_MMU_LOCK_INIT(kvm);
1018         mmgrab(current->mm);
1019         kvm->mm = current->mm;
1020         kvm_eventfd_init(kvm);
1021         mutex_init(&kvm->lock);
1022         mutex_init(&kvm->irq_lock);
1023         mutex_init(&kvm->slots_lock);
1024         mutex_init(&kvm->slots_arch_lock);
1025         spin_lock_init(&kvm->mn_invalidate_lock);
1026         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1027
1028         INIT_LIST_HEAD(&kvm->devices);
1029
1030         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1031
1032         if (init_srcu_struct(&kvm->srcu))
1033                 goto out_err_no_srcu;
1034         if (init_srcu_struct(&kvm->irq_srcu))
1035                 goto out_err_no_irq_srcu;
1036
1037         refcount_set(&kvm->users_count, 1);
1038         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1039                 struct kvm_memslots *slots = kvm_alloc_memslots();
1040
1041                 if (!slots)
1042                         goto out_err_no_arch_destroy_vm;
1043                 /* Generations must be different for each address space. */
1044                 slots->generation = i;
1045                 rcu_assign_pointer(kvm->memslots[i], slots);
1046         }
1047
1048         for (i = 0; i < KVM_NR_BUSES; i++) {
1049                 rcu_assign_pointer(kvm->buses[i],
1050                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1051                 if (!kvm->buses[i])
1052                         goto out_err_no_arch_destroy_vm;
1053         }
1054
1055         kvm->max_halt_poll_ns = halt_poll_ns;
1056
1057         r = kvm_arch_init_vm(kvm, type);
1058         if (r)
1059                 goto out_err_no_arch_destroy_vm;
1060
1061         r = hardware_enable_all();
1062         if (r)
1063                 goto out_err_no_disable;
1064
1065 #ifdef CONFIG_HAVE_KVM_IRQFD
1066         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1067 #endif
1068
1069         r = kvm_init_mmu_notifier(kvm);
1070         if (r)
1071                 goto out_err_no_mmu_notifier;
1072
1073         r = kvm_arch_post_init_vm(kvm);
1074         if (r)
1075                 goto out_err;
1076
1077         mutex_lock(&kvm_lock);
1078         list_add(&kvm->vm_list, &vm_list);
1079         mutex_unlock(&kvm_lock);
1080
1081         preempt_notifier_inc();
1082         kvm_init_pm_notifier(kvm);
1083
1084         return kvm;
1085
1086 out_err:
1087 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1088         if (kvm->mmu_notifier.ops)
1089                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1090 #endif
1091 out_err_no_mmu_notifier:
1092         hardware_disable_all();
1093 out_err_no_disable:
1094         kvm_arch_destroy_vm(kvm);
1095 out_err_no_arch_destroy_vm:
1096         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1097         for (i = 0; i < KVM_NR_BUSES; i++)
1098                 kfree(kvm_get_bus(kvm, i));
1099         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1100                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1101         cleanup_srcu_struct(&kvm->irq_srcu);
1102 out_err_no_irq_srcu:
1103         cleanup_srcu_struct(&kvm->srcu);
1104 out_err_no_srcu:
1105         kvm_arch_free_vm(kvm);
1106         mmdrop(current->mm);
1107         return ERR_PTR(r);
1108 }
1109
1110 static void kvm_destroy_devices(struct kvm *kvm)
1111 {
1112         struct kvm_device *dev, *tmp;
1113
1114         /*
1115          * We do not need to take the kvm->lock here, because nobody else
1116          * has a reference to the struct kvm at this point and therefore
1117          * cannot access the devices list anyhow.
1118          */
1119         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1120                 list_del(&dev->vm_node);
1121                 dev->ops->destroy(dev);
1122         }
1123 }
1124
1125 static void kvm_destroy_vm(struct kvm *kvm)
1126 {
1127         int i;
1128         struct mm_struct *mm = kvm->mm;
1129
1130         kvm_destroy_pm_notifier(kvm);
1131         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1132         kvm_destroy_vm_debugfs(kvm);
1133         kvm_arch_sync_events(kvm);
1134         mutex_lock(&kvm_lock);
1135         list_del(&kvm->vm_list);
1136         mutex_unlock(&kvm_lock);
1137         kvm_arch_pre_destroy_vm(kvm);
1138
1139         kvm_free_irq_routing(kvm);
1140         for (i = 0; i < KVM_NR_BUSES; i++) {
1141                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1142
1143                 if (bus)
1144                         kvm_io_bus_destroy(bus);
1145                 kvm->buses[i] = NULL;
1146         }
1147         kvm_coalesced_mmio_free(kvm);
1148 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1149         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1150         /*
1151          * At this point, pending calls to invalidate_range_start()
1152          * have completed but no more MMU notifiers will run, so
1153          * mn_active_invalidate_count may remain unbalanced.
1154          * No threads can be waiting in install_new_memslots as the
1155          * last reference on KVM has been dropped, but freeing
1156          * memslots would deadlock without this manual intervention.
1157          */
1158         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1159         kvm->mn_active_invalidate_count = 0;
1160 #else
1161         kvm_arch_flush_shadow_all(kvm);
1162 #endif
1163         kvm_arch_destroy_vm(kvm);
1164         kvm_destroy_devices(kvm);
1165         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1166                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1167         cleanup_srcu_struct(&kvm->irq_srcu);
1168         cleanup_srcu_struct(&kvm->srcu);
1169         kvm_arch_free_vm(kvm);
1170         preempt_notifier_dec();
1171         hardware_disable_all();
1172         mmdrop(mm);
1173 }
1174
1175 void kvm_get_kvm(struct kvm *kvm)
1176 {
1177         refcount_inc(&kvm->users_count);
1178 }
1179 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1180
1181 /*
1182  * Make sure the vm is not during destruction, which is a safe version of
1183  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1184  */
1185 bool kvm_get_kvm_safe(struct kvm *kvm)
1186 {
1187         return refcount_inc_not_zero(&kvm->users_count);
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1190
1191 void kvm_put_kvm(struct kvm *kvm)
1192 {
1193         if (refcount_dec_and_test(&kvm->users_count))
1194                 kvm_destroy_vm(kvm);
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1197
1198 /*
1199  * Used to put a reference that was taken on behalf of an object associated
1200  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1201  * of the new file descriptor fails and the reference cannot be transferred to
1202  * its final owner.  In such cases, the caller is still actively using @kvm and
1203  * will fail miserably if the refcount unexpectedly hits zero.
1204  */
1205 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1206 {
1207         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1208 }
1209 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1210
1211 static int kvm_vm_release(struct inode *inode, struct file *filp)
1212 {
1213         struct kvm *kvm = filp->private_data;
1214
1215         kvm_irqfd_release(kvm);
1216
1217         kvm_put_kvm(kvm);
1218         return 0;
1219 }
1220
1221 /*
1222  * Allocation size is twice as large as the actual dirty bitmap size.
1223  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1224  */
1225 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1226 {
1227         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1228
1229         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1230         if (!memslot->dirty_bitmap)
1231                 return -ENOMEM;
1232
1233         return 0;
1234 }
1235
1236 /*
1237  * Delete a memslot by decrementing the number of used slots and shifting all
1238  * other entries in the array forward one spot.
1239  */
1240 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1241                                       struct kvm_memory_slot *memslot)
1242 {
1243         struct kvm_memory_slot *mslots = slots->memslots;
1244         int i;
1245
1246         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1247                 return;
1248
1249         slots->used_slots--;
1250
1251         if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1252                 atomic_set(&slots->last_used_slot, 0);
1253
1254         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1255                 mslots[i] = mslots[i + 1];
1256                 slots->id_to_index[mslots[i].id] = i;
1257         }
1258         mslots[i] = *memslot;
1259         slots->id_to_index[memslot->id] = -1;
1260 }
1261
1262 /*
1263  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1264  * the new slot's initial index into the memslots array.
1265  */
1266 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1267 {
1268         return slots->used_slots++;
1269 }
1270
1271 /*
1272  * Move a changed memslot backwards in the array by shifting existing slots
1273  * with a higher GFN toward the front of the array.  Note, the changed memslot
1274  * itself is not preserved in the array, i.e. not swapped at this time, only
1275  * its new index into the array is tracked.  Returns the changed memslot's
1276  * current index into the memslots array.
1277  */
1278 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1279                                             struct kvm_memory_slot *memslot)
1280 {
1281         struct kvm_memory_slot *mslots = slots->memslots;
1282         int i;
1283
1284         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1285             WARN_ON_ONCE(!slots->used_slots))
1286                 return -1;
1287
1288         /*
1289          * Move the target memslot backward in the array by shifting existing
1290          * memslots with a higher GFN (than the target memslot) towards the
1291          * front of the array.
1292          */
1293         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1294                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1295                         break;
1296
1297                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1298
1299                 /* Shift the next memslot forward one and update its index. */
1300                 mslots[i] = mslots[i + 1];
1301                 slots->id_to_index[mslots[i].id] = i;
1302         }
1303         return i;
1304 }
1305
1306 /*
1307  * Move a changed memslot forwards in the array by shifting existing slots with
1308  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1309  * is not preserved in the array, i.e. not swapped at this time, only its new
1310  * index into the array is tracked.  Returns the changed memslot's final index
1311  * into the memslots array.
1312  */
1313 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1314                                            struct kvm_memory_slot *memslot,
1315                                            int start)
1316 {
1317         struct kvm_memory_slot *mslots = slots->memslots;
1318         int i;
1319
1320         for (i = start; i > 0; i--) {
1321                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1322                         break;
1323
1324                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1325
1326                 /* Shift the next memslot back one and update its index. */
1327                 mslots[i] = mslots[i - 1];
1328                 slots->id_to_index[mslots[i].id] = i;
1329         }
1330         return i;
1331 }
1332
1333 /*
1334  * Re-sort memslots based on their GFN to account for an added, deleted, or
1335  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1336  * memslot lookup.
1337  *
1338  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1339  * at memslots[0] has the highest GFN.
1340  *
1341  * The sorting algorithm takes advantage of having initially sorted memslots
1342  * and knowing the position of the changed memslot.  Sorting is also optimized
1343  * by not swapping the updated memslot and instead only shifting other memslots
1344  * and tracking the new index for the update memslot.  Only once its final
1345  * index is known is the updated memslot copied into its position in the array.
1346  *
1347  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1348  *    the end of the array.
1349  *
1350  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1351  *    end of the array and then it forward to its correct location.
1352  *
1353  *  - When moving a memslot, the algorithm first moves the updated memslot
1354  *    backward to handle the scenario where the memslot's GFN was changed to a
1355  *    lower value.  update_memslots() then falls through and runs the same flow
1356  *    as creating a memslot to move the memslot forward to handle the scenario
1357  *    where its GFN was changed to a higher value.
1358  *
1359  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1360  * historical reasons.  Originally, invalid memslots where denoted by having
1361  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1362  * to the end of the array.  The current algorithm uses dedicated logic to
1363  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1364  *
1365  * The other historical motiviation for highest->lowest was to improve the
1366  * performance of memslot lookup.  KVM originally used a linear search starting
1367  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1368  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1369  * single memslot above the 4gb boundary.  As the largest memslot is also the
1370  * most likely to be referenced, sorting it to the front of the array was
1371  * advantageous.  The current binary search starts from the middle of the array
1372  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1373  */
1374 static void update_memslots(struct kvm_memslots *slots,
1375                             struct kvm_memory_slot *memslot,
1376                             enum kvm_mr_change change)
1377 {
1378         int i;
1379
1380         if (change == KVM_MR_DELETE) {
1381                 kvm_memslot_delete(slots, memslot);
1382         } else {
1383                 if (change == KVM_MR_CREATE)
1384                         i = kvm_memslot_insert_back(slots);
1385                 else
1386                         i = kvm_memslot_move_backward(slots, memslot);
1387                 i = kvm_memslot_move_forward(slots, memslot, i);
1388
1389                 /*
1390                  * Copy the memslot to its new position in memslots and update
1391                  * its index accordingly.
1392                  */
1393                 slots->memslots[i] = *memslot;
1394                 slots->id_to_index[memslot->id] = i;
1395         }
1396 }
1397
1398 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1399 {
1400         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1401
1402 #ifdef __KVM_HAVE_READONLY_MEM
1403         valid_flags |= KVM_MEM_READONLY;
1404 #endif
1405
1406         if (mem->flags & ~valid_flags)
1407                 return -EINVAL;
1408
1409         return 0;
1410 }
1411
1412 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1413                 int as_id, struct kvm_memslots *slots)
1414 {
1415         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1416         u64 gen = old_memslots->generation;
1417
1418         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1419         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1420
1421         /*
1422          * Do not store the new memslots while there are invalidations in
1423          * progress, otherwise the locking in invalidate_range_start and
1424          * invalidate_range_end will be unbalanced.
1425          */
1426         spin_lock(&kvm->mn_invalidate_lock);
1427         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1428         while (kvm->mn_active_invalidate_count) {
1429                 set_current_state(TASK_UNINTERRUPTIBLE);
1430                 spin_unlock(&kvm->mn_invalidate_lock);
1431                 schedule();
1432                 spin_lock(&kvm->mn_invalidate_lock);
1433         }
1434         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1435         rcu_assign_pointer(kvm->memslots[as_id], slots);
1436         spin_unlock(&kvm->mn_invalidate_lock);
1437
1438         /*
1439          * Acquired in kvm_set_memslot. Must be released before synchronize
1440          * SRCU below in order to avoid deadlock with another thread
1441          * acquiring the slots_arch_lock in an srcu critical section.
1442          */
1443         mutex_unlock(&kvm->slots_arch_lock);
1444
1445         synchronize_srcu_expedited(&kvm->srcu);
1446
1447         /*
1448          * Increment the new memslot generation a second time, dropping the
1449          * update in-progress flag and incrementing the generation based on
1450          * the number of address spaces.  This provides a unique and easily
1451          * identifiable generation number while the memslots are in flux.
1452          */
1453         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1454
1455         /*
1456          * Generations must be unique even across address spaces.  We do not need
1457          * a global counter for that, instead the generation space is evenly split
1458          * across address spaces.  For example, with two address spaces, address
1459          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1460          * use generations 1, 3, 5, ...
1461          */
1462         gen += KVM_ADDRESS_SPACE_NUM;
1463
1464         kvm_arch_memslots_updated(kvm, gen);
1465
1466         slots->generation = gen;
1467
1468         return old_memslots;
1469 }
1470
1471 static size_t kvm_memslots_size(int slots)
1472 {
1473         return sizeof(struct kvm_memslots) +
1474                (sizeof(struct kvm_memory_slot) * slots);
1475 }
1476
1477 static void kvm_copy_memslots(struct kvm_memslots *to,
1478                               struct kvm_memslots *from)
1479 {
1480         memcpy(to, from, kvm_memslots_size(from->used_slots));
1481 }
1482
1483 /*
1484  * Note, at a minimum, the current number of used slots must be allocated, even
1485  * when deleting a memslot, as we need a complete duplicate of the memslots for
1486  * use when invalidating a memslot prior to deleting/moving the memslot.
1487  */
1488 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1489                                              enum kvm_mr_change change)
1490 {
1491         struct kvm_memslots *slots;
1492         size_t new_size;
1493
1494         if (change == KVM_MR_CREATE)
1495                 new_size = kvm_memslots_size(old->used_slots + 1);
1496         else
1497                 new_size = kvm_memslots_size(old->used_slots);
1498
1499         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1500         if (likely(slots))
1501                 kvm_copy_memslots(slots, old);
1502
1503         return slots;
1504 }
1505
1506 static int kvm_set_memslot(struct kvm *kvm,
1507                            const struct kvm_userspace_memory_region *mem,
1508                            struct kvm_memory_slot *old,
1509                            struct kvm_memory_slot *new, int as_id,
1510                            enum kvm_mr_change change)
1511 {
1512         struct kvm_memory_slot *slot;
1513         struct kvm_memslots *slots;
1514         int r;
1515
1516         /*
1517          * Released in install_new_memslots.
1518          *
1519          * Must be held from before the current memslots are copied until
1520          * after the new memslots are installed with rcu_assign_pointer,
1521          * then released before the synchronize srcu in install_new_memslots.
1522          *
1523          * When modifying memslots outside of the slots_lock, must be held
1524          * before reading the pointer to the current memslots until after all
1525          * changes to those memslots are complete.
1526          *
1527          * These rules ensure that installing new memslots does not lose
1528          * changes made to the previous memslots.
1529          */
1530         mutex_lock(&kvm->slots_arch_lock);
1531
1532         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1533         if (!slots) {
1534                 mutex_unlock(&kvm->slots_arch_lock);
1535                 return -ENOMEM;
1536         }
1537
1538         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1539                 /*
1540                  * Note, the INVALID flag needs to be in the appropriate entry
1541                  * in the freshly allocated memslots, not in @old or @new.
1542                  */
1543                 slot = id_to_memslot(slots, old->id);
1544                 slot->flags |= KVM_MEMSLOT_INVALID;
1545
1546                 /*
1547                  * We can re-use the memory from the old memslots.
1548                  * It will be overwritten with a copy of the new memslots
1549                  * after reacquiring the slots_arch_lock below.
1550                  */
1551                 slots = install_new_memslots(kvm, as_id, slots);
1552
1553                 /* From this point no new shadow pages pointing to a deleted,
1554                  * or moved, memslot will be created.
1555                  *
1556                  * validation of sp->gfn happens in:
1557                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1558                  *      - kvm_is_visible_gfn (mmu_check_root)
1559                  */
1560                 kvm_arch_flush_shadow_memslot(kvm, slot);
1561
1562                 /* Released in install_new_memslots. */
1563                 mutex_lock(&kvm->slots_arch_lock);
1564
1565                 /*
1566                  * The arch-specific fields of the memslots could have changed
1567                  * between releasing the slots_arch_lock in
1568                  * install_new_memslots and here, so get a fresh copy of the
1569                  * slots.
1570                  */
1571                 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1572         }
1573
1574         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1575         if (r)
1576                 goto out_slots;
1577
1578         update_memslots(slots, new, change);
1579         slots = install_new_memslots(kvm, as_id, slots);
1580
1581         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1582
1583         kvfree(slots);
1584         return 0;
1585
1586 out_slots:
1587         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1588                 slot = id_to_memslot(slots, old->id);
1589                 slot->flags &= ~KVM_MEMSLOT_INVALID;
1590                 slots = install_new_memslots(kvm, as_id, slots);
1591         } else {
1592                 mutex_unlock(&kvm->slots_arch_lock);
1593         }
1594         kvfree(slots);
1595         return r;
1596 }
1597
1598 static int kvm_delete_memslot(struct kvm *kvm,
1599                               const struct kvm_userspace_memory_region *mem,
1600                               struct kvm_memory_slot *old, int as_id)
1601 {
1602         struct kvm_memory_slot new;
1603         int r;
1604
1605         if (!old->npages)
1606                 return -EINVAL;
1607
1608         memset(&new, 0, sizeof(new));
1609         new.id = old->id;
1610         /*
1611          * This is only for debugging purpose; it should never be referenced
1612          * for a removed memslot.
1613          */
1614         new.as_id = as_id;
1615
1616         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1617         if (r)
1618                 return r;
1619
1620         kvm_free_memslot(kvm, old);
1621         return 0;
1622 }
1623
1624 /*
1625  * Allocate some memory and give it an address in the guest physical address
1626  * space.
1627  *
1628  * Discontiguous memory is allowed, mostly for framebuffers.
1629  *
1630  * Must be called holding kvm->slots_lock for write.
1631  */
1632 int __kvm_set_memory_region(struct kvm *kvm,
1633                             const struct kvm_userspace_memory_region *mem)
1634 {
1635         struct kvm_memory_slot old, new;
1636         struct kvm_memory_slot *tmp;
1637         enum kvm_mr_change change;
1638         int as_id, id;
1639         int r;
1640
1641         r = check_memory_region_flags(mem);
1642         if (r)
1643                 return r;
1644
1645         as_id = mem->slot >> 16;
1646         id = (u16)mem->slot;
1647
1648         /* General sanity checks */
1649         if (mem->memory_size & (PAGE_SIZE - 1))
1650                 return -EINVAL;
1651         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1652                 return -EINVAL;
1653         /* We can read the guest memory with __xxx_user() later on. */
1654         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1655             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1656              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1657                         mem->memory_size))
1658                 return -EINVAL;
1659         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1660                 return -EINVAL;
1661         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1662                 return -EINVAL;
1663
1664         /*
1665          * Make a full copy of the old memslot, the pointer will become stale
1666          * when the memslots are re-sorted by update_memslots(), and the old
1667          * memslot needs to be referenced after calling update_memslots(), e.g.
1668          * to free its resources and for arch specific behavior.
1669          */
1670         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1671         if (tmp) {
1672                 old = *tmp;
1673                 tmp = NULL;
1674         } else {
1675                 memset(&old, 0, sizeof(old));
1676                 old.id = id;
1677         }
1678
1679         if (!mem->memory_size)
1680                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1681
1682         new.as_id = as_id;
1683         new.id = id;
1684         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1685         new.npages = mem->memory_size >> PAGE_SHIFT;
1686         new.flags = mem->flags;
1687         new.userspace_addr = mem->userspace_addr;
1688
1689         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1690                 return -EINVAL;
1691
1692         if (!old.npages) {
1693                 change = KVM_MR_CREATE;
1694                 new.dirty_bitmap = NULL;
1695                 memset(&new.arch, 0, sizeof(new.arch));
1696         } else { /* Modify an existing slot. */
1697                 if ((new.userspace_addr != old.userspace_addr) ||
1698                     (new.npages != old.npages) ||
1699                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1700                         return -EINVAL;
1701
1702                 if (new.base_gfn != old.base_gfn)
1703                         change = KVM_MR_MOVE;
1704                 else if (new.flags != old.flags)
1705                         change = KVM_MR_FLAGS_ONLY;
1706                 else /* Nothing to change. */
1707                         return 0;
1708
1709                 /* Copy dirty_bitmap and arch from the current memslot. */
1710                 new.dirty_bitmap = old.dirty_bitmap;
1711                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1712         }
1713
1714         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1715                 /* Check for overlaps */
1716                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1717                         if (tmp->id == id)
1718                                 continue;
1719                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1720                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1721                                 return -EEXIST;
1722                 }
1723         }
1724
1725         /* Allocate/free page dirty bitmap as needed */
1726         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1727                 new.dirty_bitmap = NULL;
1728         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1729                 r = kvm_alloc_dirty_bitmap(&new);
1730                 if (r)
1731                         return r;
1732
1733                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1734                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1735         }
1736
1737         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1738         if (r)
1739                 goto out_bitmap;
1740
1741         if (old.dirty_bitmap && !new.dirty_bitmap)
1742                 kvm_destroy_dirty_bitmap(&old);
1743         return 0;
1744
1745 out_bitmap:
1746         if (new.dirty_bitmap && !old.dirty_bitmap)
1747                 kvm_destroy_dirty_bitmap(&new);
1748         return r;
1749 }
1750 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1751
1752 int kvm_set_memory_region(struct kvm *kvm,
1753                           const struct kvm_userspace_memory_region *mem)
1754 {
1755         int r;
1756
1757         mutex_lock(&kvm->slots_lock);
1758         r = __kvm_set_memory_region(kvm, mem);
1759         mutex_unlock(&kvm->slots_lock);
1760         return r;
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1763
1764 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1765                                           struct kvm_userspace_memory_region *mem)
1766 {
1767         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1768                 return -EINVAL;
1769
1770         return kvm_set_memory_region(kvm, mem);
1771 }
1772
1773 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1774 /**
1775  * kvm_get_dirty_log - get a snapshot of dirty pages
1776  * @kvm:        pointer to kvm instance
1777  * @log:        slot id and address to which we copy the log
1778  * @is_dirty:   set to '1' if any dirty pages were found
1779  * @memslot:    set to the associated memslot, always valid on success
1780  */
1781 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1782                       int *is_dirty, struct kvm_memory_slot **memslot)
1783 {
1784         struct kvm_memslots *slots;
1785         int i, as_id, id;
1786         unsigned long n;
1787         unsigned long any = 0;
1788
1789         /* Dirty ring tracking is exclusive to dirty log tracking */
1790         if (kvm->dirty_ring_size)
1791                 return -ENXIO;
1792
1793         *memslot = NULL;
1794         *is_dirty = 0;
1795
1796         as_id = log->slot >> 16;
1797         id = (u16)log->slot;
1798         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1799                 return -EINVAL;
1800
1801         slots = __kvm_memslots(kvm, as_id);
1802         *memslot = id_to_memslot(slots, id);
1803         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1804                 return -ENOENT;
1805
1806         kvm_arch_sync_dirty_log(kvm, *memslot);
1807
1808         n = kvm_dirty_bitmap_bytes(*memslot);
1809
1810         for (i = 0; !any && i < n/sizeof(long); ++i)
1811                 any = (*memslot)->dirty_bitmap[i];
1812
1813         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1814                 return -EFAULT;
1815
1816         if (any)
1817                 *is_dirty = 1;
1818         return 0;
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1821
1822 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1823 /**
1824  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1825  *      and reenable dirty page tracking for the corresponding pages.
1826  * @kvm:        pointer to kvm instance
1827  * @log:        slot id and address to which we copy the log
1828  *
1829  * We need to keep it in mind that VCPU threads can write to the bitmap
1830  * concurrently. So, to avoid losing track of dirty pages we keep the
1831  * following order:
1832  *
1833  *    1. Take a snapshot of the bit and clear it if needed.
1834  *    2. Write protect the corresponding page.
1835  *    3. Copy the snapshot to the userspace.
1836  *    4. Upon return caller flushes TLB's if needed.
1837  *
1838  * Between 2 and 4, the guest may write to the page using the remaining TLB
1839  * entry.  This is not a problem because the page is reported dirty using
1840  * the snapshot taken before and step 4 ensures that writes done after
1841  * exiting to userspace will be logged for the next call.
1842  *
1843  */
1844 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1845 {
1846         struct kvm_memslots *slots;
1847         struct kvm_memory_slot *memslot;
1848         int i, as_id, id;
1849         unsigned long n;
1850         unsigned long *dirty_bitmap;
1851         unsigned long *dirty_bitmap_buffer;
1852         bool flush;
1853
1854         /* Dirty ring tracking is exclusive to dirty log tracking */
1855         if (kvm->dirty_ring_size)
1856                 return -ENXIO;
1857
1858         as_id = log->slot >> 16;
1859         id = (u16)log->slot;
1860         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1861                 return -EINVAL;
1862
1863         slots = __kvm_memslots(kvm, as_id);
1864         memslot = id_to_memslot(slots, id);
1865         if (!memslot || !memslot->dirty_bitmap)
1866                 return -ENOENT;
1867
1868         dirty_bitmap = memslot->dirty_bitmap;
1869
1870         kvm_arch_sync_dirty_log(kvm, memslot);
1871
1872         n = kvm_dirty_bitmap_bytes(memslot);
1873         flush = false;
1874         if (kvm->manual_dirty_log_protect) {
1875                 /*
1876                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1877                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1878                  * is some code duplication between this function and
1879                  * kvm_get_dirty_log, but hopefully all architecture
1880                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1881                  * can be eliminated.
1882                  */
1883                 dirty_bitmap_buffer = dirty_bitmap;
1884         } else {
1885                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1886                 memset(dirty_bitmap_buffer, 0, n);
1887
1888                 KVM_MMU_LOCK(kvm);
1889                 for (i = 0; i < n / sizeof(long); i++) {
1890                         unsigned long mask;
1891                         gfn_t offset;
1892
1893                         if (!dirty_bitmap[i])
1894                                 continue;
1895
1896                         flush = true;
1897                         mask = xchg(&dirty_bitmap[i], 0);
1898                         dirty_bitmap_buffer[i] = mask;
1899
1900                         offset = i * BITS_PER_LONG;
1901                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1902                                                                 offset, mask);
1903                 }
1904                 KVM_MMU_UNLOCK(kvm);
1905         }
1906
1907         if (flush)
1908                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1909
1910         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1911                 return -EFAULT;
1912         return 0;
1913 }
1914
1915
1916 /**
1917  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1918  * @kvm: kvm instance
1919  * @log: slot id and address to which we copy the log
1920  *
1921  * Steps 1-4 below provide general overview of dirty page logging. See
1922  * kvm_get_dirty_log_protect() function description for additional details.
1923  *
1924  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1925  * always flush the TLB (step 4) even if previous step failed  and the dirty
1926  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1927  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1928  * writes will be marked dirty for next log read.
1929  *
1930  *   1. Take a snapshot of the bit and clear it if needed.
1931  *   2. Write protect the corresponding page.
1932  *   3. Copy the snapshot to the userspace.
1933  *   4. Flush TLB's if needed.
1934  */
1935 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1936                                       struct kvm_dirty_log *log)
1937 {
1938         int r;
1939
1940         mutex_lock(&kvm->slots_lock);
1941
1942         r = kvm_get_dirty_log_protect(kvm, log);
1943
1944         mutex_unlock(&kvm->slots_lock);
1945         return r;
1946 }
1947
1948 /**
1949  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1950  *      and reenable dirty page tracking for the corresponding pages.
1951  * @kvm:        pointer to kvm instance
1952  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1953  */
1954 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1955                                        struct kvm_clear_dirty_log *log)
1956 {
1957         struct kvm_memslots *slots;
1958         struct kvm_memory_slot *memslot;
1959         int as_id, id;
1960         gfn_t offset;
1961         unsigned long i, n;
1962         unsigned long *dirty_bitmap;
1963         unsigned long *dirty_bitmap_buffer;
1964         bool flush;
1965
1966         /* Dirty ring tracking is exclusive to dirty log tracking */
1967         if (kvm->dirty_ring_size)
1968                 return -ENXIO;
1969
1970         as_id = log->slot >> 16;
1971         id = (u16)log->slot;
1972         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1973                 return -EINVAL;
1974
1975         if (log->first_page & 63)
1976                 return -EINVAL;
1977
1978         slots = __kvm_memslots(kvm, as_id);
1979         memslot = id_to_memslot(slots, id);
1980         if (!memslot || !memslot->dirty_bitmap)
1981                 return -ENOENT;
1982
1983         dirty_bitmap = memslot->dirty_bitmap;
1984
1985         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1986
1987         if (log->first_page > memslot->npages ||
1988             log->num_pages > memslot->npages - log->first_page ||
1989             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1990             return -EINVAL;
1991
1992         kvm_arch_sync_dirty_log(kvm, memslot);
1993
1994         flush = false;
1995         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1996         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1997                 return -EFAULT;
1998
1999         KVM_MMU_LOCK(kvm);
2000         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2001                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2002              i++, offset += BITS_PER_LONG) {
2003                 unsigned long mask = *dirty_bitmap_buffer++;
2004                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2005                 if (!mask)
2006                         continue;
2007
2008                 mask &= atomic_long_fetch_andnot(mask, p);
2009
2010                 /*
2011                  * mask contains the bits that really have been cleared.  This
2012                  * never includes any bits beyond the length of the memslot (if
2013                  * the length is not aligned to 64 pages), therefore it is not
2014                  * a problem if userspace sets them in log->dirty_bitmap.
2015                 */
2016                 if (mask) {
2017                         flush = true;
2018                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2019                                                                 offset, mask);
2020                 }
2021         }
2022         KVM_MMU_UNLOCK(kvm);
2023
2024         if (flush)
2025                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2026
2027         return 0;
2028 }
2029
2030 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2031                                         struct kvm_clear_dirty_log *log)
2032 {
2033         int r;
2034
2035         mutex_lock(&kvm->slots_lock);
2036
2037         r = kvm_clear_dirty_log_protect(kvm, log);
2038
2039         mutex_unlock(&kvm->slots_lock);
2040         return r;
2041 }
2042 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2043
2044 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2045 {
2046         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2047 }
2048 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2049
2050 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2051 {
2052         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2053         struct kvm_memory_slot *slot;
2054         int slot_index;
2055
2056         slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2057         if (slot)
2058                 return slot;
2059
2060         /*
2061          * Fall back to searching all memslots. We purposely use
2062          * search_memslots() instead of __gfn_to_memslot() to avoid
2063          * thrashing the VM-wide last_used_index in kvm_memslots.
2064          */
2065         slot = search_memslots(slots, gfn, &slot_index);
2066         if (slot) {
2067                 vcpu->last_used_slot = slot_index;
2068                 return slot;
2069         }
2070
2071         return NULL;
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2074
2075 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2076 {
2077         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2078
2079         return kvm_is_visible_memslot(memslot);
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2082
2083 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2084 {
2085         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2086
2087         return kvm_is_visible_memslot(memslot);
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2090
2091 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2092 {
2093         struct vm_area_struct *vma;
2094         unsigned long addr, size;
2095
2096         size = PAGE_SIZE;
2097
2098         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2099         if (kvm_is_error_hva(addr))
2100                 return PAGE_SIZE;
2101
2102         mmap_read_lock(current->mm);
2103         vma = find_vma(current->mm, addr);
2104         if (!vma)
2105                 goto out;
2106
2107         size = vma_kernel_pagesize(vma);
2108
2109 out:
2110         mmap_read_unlock(current->mm);
2111
2112         return size;
2113 }
2114
2115 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2116 {
2117         return slot->flags & KVM_MEM_READONLY;
2118 }
2119
2120 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2121                                        gfn_t *nr_pages, bool write)
2122 {
2123         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2124                 return KVM_HVA_ERR_BAD;
2125
2126         if (memslot_is_readonly(slot) && write)
2127                 return KVM_HVA_ERR_RO_BAD;
2128
2129         if (nr_pages)
2130                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2131
2132         return __gfn_to_hva_memslot(slot, gfn);
2133 }
2134
2135 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2136                                      gfn_t *nr_pages)
2137 {
2138         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2139 }
2140
2141 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2142                                         gfn_t gfn)
2143 {
2144         return gfn_to_hva_many(slot, gfn, NULL);
2145 }
2146 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2147
2148 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2149 {
2150         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2151 }
2152 EXPORT_SYMBOL_GPL(gfn_to_hva);
2153
2154 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2155 {
2156         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2157 }
2158 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2159
2160 /*
2161  * Return the hva of a @gfn and the R/W attribute if possible.
2162  *
2163  * @slot: the kvm_memory_slot which contains @gfn
2164  * @gfn: the gfn to be translated
2165  * @writable: used to return the read/write attribute of the @slot if the hva
2166  * is valid and @writable is not NULL
2167  */
2168 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2169                                       gfn_t gfn, bool *writable)
2170 {
2171         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2172
2173         if (!kvm_is_error_hva(hva) && writable)
2174                 *writable = !memslot_is_readonly(slot);
2175
2176         return hva;
2177 }
2178
2179 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2180 {
2181         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2182
2183         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2184 }
2185
2186 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2187 {
2188         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2189
2190         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2191 }
2192
2193 static inline int check_user_page_hwpoison(unsigned long addr)
2194 {
2195         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2196
2197         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2198         return rc == -EHWPOISON;
2199 }
2200
2201 /*
2202  * The fast path to get the writable pfn which will be stored in @pfn,
2203  * true indicates success, otherwise false is returned.  It's also the
2204  * only part that runs if we can in atomic context.
2205  */
2206 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2207                             bool *writable, kvm_pfn_t *pfn)
2208 {
2209         struct page *page[1];
2210
2211         /*
2212          * Fast pin a writable pfn only if it is a write fault request
2213          * or the caller allows to map a writable pfn for a read fault
2214          * request.
2215          */
2216         if (!(write_fault || writable))
2217                 return false;
2218
2219         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2220                 *pfn = page_to_pfn(page[0]);
2221
2222                 if (writable)
2223                         *writable = true;
2224                 return true;
2225         }
2226
2227         return false;
2228 }
2229
2230 /*
2231  * The slow path to get the pfn of the specified host virtual address,
2232  * 1 indicates success, -errno is returned if error is detected.
2233  */
2234 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2235                            bool *writable, kvm_pfn_t *pfn)
2236 {
2237         unsigned int flags = FOLL_HWPOISON;
2238         struct page *page;
2239         int npages = 0;
2240
2241         might_sleep();
2242
2243         if (writable)
2244                 *writable = write_fault;
2245
2246         if (write_fault)
2247                 flags |= FOLL_WRITE;
2248         if (async)
2249                 flags |= FOLL_NOWAIT;
2250
2251         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2252         if (npages != 1)
2253                 return npages;
2254
2255         /* map read fault as writable if possible */
2256         if (unlikely(!write_fault) && writable) {
2257                 struct page *wpage;
2258
2259                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2260                         *writable = true;
2261                         put_page(page);
2262                         page = wpage;
2263                 }
2264         }
2265         *pfn = page_to_pfn(page);
2266         return npages;
2267 }
2268
2269 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2270 {
2271         if (unlikely(!(vma->vm_flags & VM_READ)))
2272                 return false;
2273
2274         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2275                 return false;
2276
2277         return true;
2278 }
2279
2280 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2281 {
2282         if (kvm_is_reserved_pfn(pfn))
2283                 return 1;
2284         return get_page_unless_zero(pfn_to_page(pfn));
2285 }
2286
2287 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2288                                unsigned long addr, bool *async,
2289                                bool write_fault, bool *writable,
2290                                kvm_pfn_t *p_pfn)
2291 {
2292         kvm_pfn_t pfn;
2293         pte_t *ptep;
2294         spinlock_t *ptl;
2295         int r;
2296
2297         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2298         if (r) {
2299                 /*
2300                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2301                  * not call the fault handler, so do it here.
2302                  */
2303                 bool unlocked = false;
2304                 r = fixup_user_fault(current->mm, addr,
2305                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2306                                      &unlocked);
2307                 if (unlocked)
2308                         return -EAGAIN;
2309                 if (r)
2310                         return r;
2311
2312                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2313                 if (r)
2314                         return r;
2315         }
2316
2317         if (write_fault && !pte_write(*ptep)) {
2318                 pfn = KVM_PFN_ERR_RO_FAULT;
2319                 goto out;
2320         }
2321
2322         if (writable)
2323                 *writable = pte_write(*ptep);
2324         pfn = pte_pfn(*ptep);
2325
2326         /*
2327          * Get a reference here because callers of *hva_to_pfn* and
2328          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2329          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2330          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2331          * simply do nothing for reserved pfns.
2332          *
2333          * Whoever called remap_pfn_range is also going to call e.g.
2334          * unmap_mapping_range before the underlying pages are freed,
2335          * causing a call to our MMU notifier.
2336          *
2337          * Certain IO or PFNMAP mappings can be backed with valid
2338          * struct pages, but be allocated without refcounting e.g.,
2339          * tail pages of non-compound higher order allocations, which
2340          * would then underflow the refcount when the caller does the
2341          * required put_page. Don't allow those pages here.
2342          */ 
2343         if (!kvm_try_get_pfn(pfn))
2344                 r = -EFAULT;
2345
2346 out:
2347         pte_unmap_unlock(ptep, ptl);
2348         *p_pfn = pfn;
2349
2350         return r;
2351 }
2352
2353 /*
2354  * Pin guest page in memory and return its pfn.
2355  * @addr: host virtual address which maps memory to the guest
2356  * @atomic: whether this function can sleep
2357  * @async: whether this function need to wait IO complete if the
2358  *         host page is not in the memory
2359  * @write_fault: whether we should get a writable host page
2360  * @writable: whether it allows to map a writable host page for !@write_fault
2361  *
2362  * The function will map a writable host page for these two cases:
2363  * 1): @write_fault = true
2364  * 2): @write_fault = false && @writable, @writable will tell the caller
2365  *     whether the mapping is writable.
2366  */
2367 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2368                         bool write_fault, bool *writable)
2369 {
2370         struct vm_area_struct *vma;
2371         kvm_pfn_t pfn = 0;
2372         int npages, r;
2373
2374         /* we can do it either atomically or asynchronously, not both */
2375         BUG_ON(atomic && async);
2376
2377         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2378                 return pfn;
2379
2380         if (atomic)
2381                 return KVM_PFN_ERR_FAULT;
2382
2383         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2384         if (npages == 1)
2385                 return pfn;
2386
2387         mmap_read_lock(current->mm);
2388         if (npages == -EHWPOISON ||
2389               (!async && check_user_page_hwpoison(addr))) {
2390                 pfn = KVM_PFN_ERR_HWPOISON;
2391                 goto exit;
2392         }
2393
2394 retry:
2395         vma = vma_lookup(current->mm, addr);
2396
2397         if (vma == NULL)
2398                 pfn = KVM_PFN_ERR_FAULT;
2399         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2400                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2401                 if (r == -EAGAIN)
2402                         goto retry;
2403                 if (r < 0)
2404                         pfn = KVM_PFN_ERR_FAULT;
2405         } else {
2406                 if (async && vma_is_valid(vma, write_fault))
2407                         *async = true;
2408                 pfn = KVM_PFN_ERR_FAULT;
2409         }
2410 exit:
2411         mmap_read_unlock(current->mm);
2412         return pfn;
2413 }
2414
2415 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2416                                bool atomic, bool *async, bool write_fault,
2417                                bool *writable, hva_t *hva)
2418 {
2419         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2420
2421         if (hva)
2422                 *hva = addr;
2423
2424         if (addr == KVM_HVA_ERR_RO_BAD) {
2425                 if (writable)
2426                         *writable = false;
2427                 return KVM_PFN_ERR_RO_FAULT;
2428         }
2429
2430         if (kvm_is_error_hva(addr)) {
2431                 if (writable)
2432                         *writable = false;
2433                 return KVM_PFN_NOSLOT;
2434         }
2435
2436         /* Do not map writable pfn in the readonly memslot. */
2437         if (writable && memslot_is_readonly(slot)) {
2438                 *writable = false;
2439                 writable = NULL;
2440         }
2441
2442         return hva_to_pfn(addr, atomic, async, write_fault,
2443                           writable);
2444 }
2445 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2446
2447 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2448                       bool *writable)
2449 {
2450         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2451                                     write_fault, writable, NULL);
2452 }
2453 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2454
2455 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2456 {
2457         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2458 }
2459 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2460
2461 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2462 {
2463         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2464 }
2465 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2466
2467 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2468 {
2469         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2470 }
2471 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2472
2473 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2474 {
2475         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2476 }
2477 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2478
2479 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2480 {
2481         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2482 }
2483 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2484
2485 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2486                             struct page **pages, int nr_pages)
2487 {
2488         unsigned long addr;
2489         gfn_t entry = 0;
2490
2491         addr = gfn_to_hva_many(slot, gfn, &entry);
2492         if (kvm_is_error_hva(addr))
2493                 return -1;
2494
2495         if (entry < nr_pages)
2496                 return 0;
2497
2498         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2499 }
2500 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2501
2502 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2503 {
2504         if (is_error_noslot_pfn(pfn))
2505                 return KVM_ERR_PTR_BAD_PAGE;
2506
2507         if (kvm_is_reserved_pfn(pfn)) {
2508                 WARN_ON(1);
2509                 return KVM_ERR_PTR_BAD_PAGE;
2510         }
2511
2512         return pfn_to_page(pfn);
2513 }
2514
2515 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2516 {
2517         kvm_pfn_t pfn;
2518
2519         pfn = gfn_to_pfn(kvm, gfn);
2520
2521         return kvm_pfn_to_page(pfn);
2522 }
2523 EXPORT_SYMBOL_GPL(gfn_to_page);
2524
2525 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2526 {
2527         if (pfn == 0)
2528                 return;
2529
2530         if (cache)
2531                 cache->pfn = cache->gfn = 0;
2532
2533         if (dirty)
2534                 kvm_release_pfn_dirty(pfn);
2535         else
2536                 kvm_release_pfn_clean(pfn);
2537 }
2538
2539 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2540                                  struct gfn_to_pfn_cache *cache, u64 gen)
2541 {
2542         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2543
2544         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2545         cache->gfn = gfn;
2546         cache->dirty = false;
2547         cache->generation = gen;
2548 }
2549
2550 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2551                          struct kvm_host_map *map,
2552                          struct gfn_to_pfn_cache *cache,
2553                          bool atomic)
2554 {
2555         kvm_pfn_t pfn;
2556         void *hva = NULL;
2557         struct page *page = KVM_UNMAPPED_PAGE;
2558         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2559         u64 gen = slots->generation;
2560
2561         if (!map)
2562                 return -EINVAL;
2563
2564         if (cache) {
2565                 if (!cache->pfn || cache->gfn != gfn ||
2566                         cache->generation != gen) {
2567                         if (atomic)
2568                                 return -EAGAIN;
2569                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2570                 }
2571                 pfn = cache->pfn;
2572         } else {
2573                 if (atomic)
2574                         return -EAGAIN;
2575                 pfn = gfn_to_pfn_memslot(slot, gfn);
2576         }
2577         if (is_error_noslot_pfn(pfn))
2578                 return -EINVAL;
2579
2580         if (pfn_valid(pfn)) {
2581                 page = pfn_to_page(pfn);
2582                 if (atomic)
2583                         hva = kmap_atomic(page);
2584                 else
2585                         hva = kmap(page);
2586 #ifdef CONFIG_HAS_IOMEM
2587         } else if (!atomic) {
2588                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2589         } else {
2590                 return -EINVAL;
2591 #endif
2592         }
2593
2594         if (!hva)
2595                 return -EFAULT;
2596
2597         map->page = page;
2598         map->hva = hva;
2599         map->pfn = pfn;
2600         map->gfn = gfn;
2601
2602         return 0;
2603 }
2604
2605 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2606                 struct gfn_to_pfn_cache *cache, bool atomic)
2607 {
2608         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2609                         cache, atomic);
2610 }
2611 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2612
2613 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2614 {
2615         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2616                 NULL, false);
2617 }
2618 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2619
2620 static void __kvm_unmap_gfn(struct kvm *kvm,
2621                         struct kvm_memory_slot *memslot,
2622                         struct kvm_host_map *map,
2623                         struct gfn_to_pfn_cache *cache,
2624                         bool dirty, bool atomic)
2625 {
2626         if (!map)
2627                 return;
2628
2629         if (!map->hva)
2630                 return;
2631
2632         if (map->page != KVM_UNMAPPED_PAGE) {
2633                 if (atomic)
2634                         kunmap_atomic(map->hva);
2635                 else
2636                         kunmap(map->page);
2637         }
2638 #ifdef CONFIG_HAS_IOMEM
2639         else if (!atomic)
2640                 memunmap(map->hva);
2641         else
2642                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2643 #endif
2644
2645         if (dirty)
2646                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2647
2648         if (cache)
2649                 cache->dirty |= dirty;
2650         else
2651                 kvm_release_pfn(map->pfn, dirty, NULL);
2652
2653         map->hva = NULL;
2654         map->page = NULL;
2655 }
2656
2657 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2658                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2659 {
2660         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2661                         cache, dirty, atomic);
2662         return 0;
2663 }
2664 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2665
2666 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2667 {
2668         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2669                         map, NULL, dirty, false);
2670 }
2671 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2672
2673 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2674 {
2675         kvm_pfn_t pfn;
2676
2677         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2678
2679         return kvm_pfn_to_page(pfn);
2680 }
2681 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2682
2683 void kvm_release_page_clean(struct page *page)
2684 {
2685         WARN_ON(is_error_page(page));
2686
2687         kvm_release_pfn_clean(page_to_pfn(page));
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2690
2691 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2692 {
2693         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2694                 put_page(pfn_to_page(pfn));
2695 }
2696 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2697
2698 void kvm_release_page_dirty(struct page *page)
2699 {
2700         WARN_ON(is_error_page(page));
2701
2702         kvm_release_pfn_dirty(page_to_pfn(page));
2703 }
2704 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2705
2706 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2707 {
2708         kvm_set_pfn_dirty(pfn);
2709         kvm_release_pfn_clean(pfn);
2710 }
2711 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2712
2713 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2714 {
2715         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2716                 SetPageDirty(pfn_to_page(pfn));
2717 }
2718 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2719
2720 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2721 {
2722         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2723                 mark_page_accessed(pfn_to_page(pfn));
2724 }
2725 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2726
2727 static int next_segment(unsigned long len, int offset)
2728 {
2729         if (len > PAGE_SIZE - offset)
2730                 return PAGE_SIZE - offset;
2731         else
2732                 return len;
2733 }
2734
2735 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2736                                  void *data, int offset, int len)
2737 {
2738         int r;
2739         unsigned long addr;
2740
2741         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2742         if (kvm_is_error_hva(addr))
2743                 return -EFAULT;
2744         r = __copy_from_user(data, (void __user *)addr + offset, len);
2745         if (r)
2746                 return -EFAULT;
2747         return 0;
2748 }
2749
2750 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2751                         int len)
2752 {
2753         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2754
2755         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2756 }
2757 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2758
2759 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2760                              int offset, int len)
2761 {
2762         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2763
2764         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2765 }
2766 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2767
2768 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2769 {
2770         gfn_t gfn = gpa >> PAGE_SHIFT;
2771         int seg;
2772         int offset = offset_in_page(gpa);
2773         int ret;
2774
2775         while ((seg = next_segment(len, offset)) != 0) {
2776                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2777                 if (ret < 0)
2778                         return ret;
2779                 offset = 0;
2780                 len -= seg;
2781                 data += seg;
2782                 ++gfn;
2783         }
2784         return 0;
2785 }
2786 EXPORT_SYMBOL_GPL(kvm_read_guest);
2787
2788 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2789 {
2790         gfn_t gfn = gpa >> PAGE_SHIFT;
2791         int seg;
2792         int offset = offset_in_page(gpa);
2793         int ret;
2794
2795         while ((seg = next_segment(len, offset)) != 0) {
2796                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2797                 if (ret < 0)
2798                         return ret;
2799                 offset = 0;
2800                 len -= seg;
2801                 data += seg;
2802                 ++gfn;
2803         }
2804         return 0;
2805 }
2806 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2807
2808 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2809                                    void *data, int offset, unsigned long len)
2810 {
2811         int r;
2812         unsigned long addr;
2813
2814         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2815         if (kvm_is_error_hva(addr))
2816                 return -EFAULT;
2817         pagefault_disable();
2818         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2819         pagefault_enable();
2820         if (r)
2821                 return -EFAULT;
2822         return 0;
2823 }
2824
2825 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2826                                void *data, unsigned long len)
2827 {
2828         gfn_t gfn = gpa >> PAGE_SHIFT;
2829         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2830         int offset = offset_in_page(gpa);
2831
2832         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2833 }
2834 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2835
2836 static int __kvm_write_guest_page(struct kvm *kvm,
2837                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2838                                   const void *data, int offset, int len)
2839 {
2840         int r;
2841         unsigned long addr;
2842
2843         addr = gfn_to_hva_memslot(memslot, gfn);
2844         if (kvm_is_error_hva(addr))
2845                 return -EFAULT;
2846         r = __copy_to_user((void __user *)addr + offset, data, len);
2847         if (r)
2848                 return -EFAULT;
2849         mark_page_dirty_in_slot(kvm, memslot, gfn);
2850         return 0;
2851 }
2852
2853 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2854                          const void *data, int offset, int len)
2855 {
2856         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2857
2858         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2859 }
2860 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2861
2862 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2863                               const void *data, int offset, int len)
2864 {
2865         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2866
2867         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2868 }
2869 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2870
2871 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2872                     unsigned long len)
2873 {
2874         gfn_t gfn = gpa >> PAGE_SHIFT;
2875         int seg;
2876         int offset = offset_in_page(gpa);
2877         int ret;
2878
2879         while ((seg = next_segment(len, offset)) != 0) {
2880                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2881                 if (ret < 0)
2882                         return ret;
2883                 offset = 0;
2884                 len -= seg;
2885                 data += seg;
2886                 ++gfn;
2887         }
2888         return 0;
2889 }
2890 EXPORT_SYMBOL_GPL(kvm_write_guest);
2891
2892 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2893                          unsigned long len)
2894 {
2895         gfn_t gfn = gpa >> PAGE_SHIFT;
2896         int seg;
2897         int offset = offset_in_page(gpa);
2898         int ret;
2899
2900         while ((seg = next_segment(len, offset)) != 0) {
2901                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2902                 if (ret < 0)
2903                         return ret;
2904                 offset = 0;
2905                 len -= seg;
2906                 data += seg;
2907                 ++gfn;
2908         }
2909         return 0;
2910 }
2911 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2912
2913 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2914                                        struct gfn_to_hva_cache *ghc,
2915                                        gpa_t gpa, unsigned long len)
2916 {
2917         int offset = offset_in_page(gpa);
2918         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2919         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2920         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2921         gfn_t nr_pages_avail;
2922
2923         /* Update ghc->generation before performing any error checks. */
2924         ghc->generation = slots->generation;
2925
2926         if (start_gfn > end_gfn) {
2927                 ghc->hva = KVM_HVA_ERR_BAD;
2928                 return -EINVAL;
2929         }
2930
2931         /*
2932          * If the requested region crosses two memslots, we still
2933          * verify that the entire region is valid here.
2934          */
2935         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2936                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2937                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2938                                            &nr_pages_avail);
2939                 if (kvm_is_error_hva(ghc->hva))
2940                         return -EFAULT;
2941         }
2942
2943         /* Use the slow path for cross page reads and writes. */
2944         if (nr_pages_needed == 1)
2945                 ghc->hva += offset;
2946         else
2947                 ghc->memslot = NULL;
2948
2949         ghc->gpa = gpa;
2950         ghc->len = len;
2951         return 0;
2952 }
2953
2954 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2955                               gpa_t gpa, unsigned long len)
2956 {
2957         struct kvm_memslots *slots = kvm_memslots(kvm);
2958         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2959 }
2960 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2961
2962 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2963                                   void *data, unsigned int offset,
2964                                   unsigned long len)
2965 {
2966         struct kvm_memslots *slots = kvm_memslots(kvm);
2967         int r;
2968         gpa_t gpa = ghc->gpa + offset;
2969
2970         BUG_ON(len + offset > ghc->len);
2971
2972         if (slots->generation != ghc->generation) {
2973                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2974                         return -EFAULT;
2975         }
2976
2977         if (kvm_is_error_hva(ghc->hva))
2978                 return -EFAULT;
2979
2980         if (unlikely(!ghc->memslot))
2981                 return kvm_write_guest(kvm, gpa, data, len);
2982
2983         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2984         if (r)
2985                 return -EFAULT;
2986         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2987
2988         return 0;
2989 }
2990 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2991
2992 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2993                            void *data, unsigned long len)
2994 {
2995         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2996 }
2997 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2998
2999 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3000                                  void *data, unsigned int offset,
3001                                  unsigned long len)
3002 {
3003         struct kvm_memslots *slots = kvm_memslots(kvm);
3004         int r;
3005         gpa_t gpa = ghc->gpa + offset;
3006
3007         BUG_ON(len + offset > ghc->len);
3008
3009         if (slots->generation != ghc->generation) {
3010                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3011                         return -EFAULT;
3012         }
3013
3014         if (kvm_is_error_hva(ghc->hva))
3015                 return -EFAULT;
3016
3017         if (unlikely(!ghc->memslot))
3018                 return kvm_read_guest(kvm, gpa, data, len);
3019
3020         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3021         if (r)
3022                 return -EFAULT;
3023
3024         return 0;
3025 }
3026 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3027
3028 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3029                           void *data, unsigned long len)
3030 {
3031         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3032 }
3033 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3034
3035 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3036 {
3037         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3038         gfn_t gfn = gpa >> PAGE_SHIFT;
3039         int seg;
3040         int offset = offset_in_page(gpa);
3041         int ret;
3042
3043         while ((seg = next_segment(len, offset)) != 0) {
3044                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3045                 if (ret < 0)
3046                         return ret;
3047                 offset = 0;
3048                 len -= seg;
3049                 ++gfn;
3050         }
3051         return 0;
3052 }
3053 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3054
3055 void mark_page_dirty_in_slot(struct kvm *kvm,
3056                              struct kvm_memory_slot *memslot,
3057                              gfn_t gfn)
3058 {
3059         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3060                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3061                 u32 slot = (memslot->as_id << 16) | memslot->id;
3062
3063                 if (kvm->dirty_ring_size)
3064                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3065                                             slot, rel_gfn);
3066                 else
3067                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3068         }
3069 }
3070 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3071
3072 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3073 {
3074         struct kvm_memory_slot *memslot;
3075
3076         memslot = gfn_to_memslot(kvm, gfn);
3077         mark_page_dirty_in_slot(kvm, memslot, gfn);
3078 }
3079 EXPORT_SYMBOL_GPL(mark_page_dirty);
3080
3081 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3082 {
3083         struct kvm_memory_slot *memslot;
3084
3085         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3086         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3087 }
3088 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3089
3090 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3091 {
3092         if (!vcpu->sigset_active)
3093                 return;
3094
3095         /*
3096          * This does a lockless modification of ->real_blocked, which is fine
3097          * because, only current can change ->real_blocked and all readers of
3098          * ->real_blocked don't care as long ->real_blocked is always a subset
3099          * of ->blocked.
3100          */
3101         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3102 }
3103
3104 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3105 {
3106         if (!vcpu->sigset_active)
3107                 return;
3108
3109         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3110         sigemptyset(&current->real_blocked);
3111 }
3112
3113 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3114 {
3115         unsigned int old, val, grow, grow_start;
3116
3117         old = val = vcpu->halt_poll_ns;
3118         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3119         grow = READ_ONCE(halt_poll_ns_grow);
3120         if (!grow)
3121                 goto out;
3122
3123         val *= grow;
3124         if (val < grow_start)
3125                 val = grow_start;
3126
3127         if (val > vcpu->kvm->max_halt_poll_ns)
3128                 val = vcpu->kvm->max_halt_poll_ns;
3129
3130         vcpu->halt_poll_ns = val;
3131 out:
3132         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3133 }
3134
3135 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3136 {
3137         unsigned int old, val, shrink;
3138
3139         old = val = vcpu->halt_poll_ns;
3140         shrink = READ_ONCE(halt_poll_ns_shrink);
3141         if (shrink == 0)
3142                 val = 0;
3143         else
3144                 val /= shrink;
3145
3146         vcpu->halt_poll_ns = val;
3147         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3148 }
3149
3150 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3151 {
3152         int ret = -EINTR;
3153         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3154
3155         if (kvm_arch_vcpu_runnable(vcpu)) {
3156                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3157                 goto out;
3158         }
3159         if (kvm_cpu_has_pending_timer(vcpu))
3160                 goto out;
3161         if (signal_pending(current))
3162                 goto out;
3163         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3164                 goto out;
3165
3166         ret = 0;
3167 out:
3168         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3169         return ret;
3170 }
3171
3172 static inline void
3173 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3174 {
3175         if (waited)
3176                 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3177         else
3178                 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3179 }
3180
3181 /*
3182  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3183  */
3184 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3185 {
3186         ktime_t start, cur, poll_end;
3187         bool waited = false;
3188         u64 block_ns;
3189
3190         kvm_arch_vcpu_blocking(vcpu);
3191
3192         start = cur = poll_end = ktime_get();
3193         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3194                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3195
3196                 ++vcpu->stat.generic.halt_attempted_poll;
3197                 do {
3198                         /*
3199                          * This sets KVM_REQ_UNHALT if an interrupt
3200                          * arrives.
3201                          */
3202                         if (kvm_vcpu_check_block(vcpu) < 0) {
3203                                 ++vcpu->stat.generic.halt_successful_poll;
3204                                 if (!vcpu_valid_wakeup(vcpu))
3205                                         ++vcpu->stat.generic.halt_poll_invalid;
3206
3207                                 KVM_STATS_LOG_HIST_UPDATE(
3208                                       vcpu->stat.generic.halt_poll_success_hist,
3209                                       ktime_to_ns(ktime_get()) -
3210                                       ktime_to_ns(start));
3211                                 goto out;
3212                         }
3213                         cpu_relax();
3214                         poll_end = cur = ktime_get();
3215                 } while (kvm_vcpu_can_poll(cur, stop));
3216
3217                 KVM_STATS_LOG_HIST_UPDATE(
3218                                 vcpu->stat.generic.halt_poll_fail_hist,
3219                                 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3220         }
3221
3222
3223         prepare_to_rcuwait(&vcpu->wait);
3224         for (;;) {
3225                 set_current_state(TASK_INTERRUPTIBLE);
3226
3227                 if (kvm_vcpu_check_block(vcpu) < 0)
3228                         break;
3229
3230                 waited = true;
3231                 schedule();
3232         }
3233         finish_rcuwait(&vcpu->wait);
3234         cur = ktime_get();
3235         if (waited) {
3236                 vcpu->stat.generic.halt_wait_ns +=
3237                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3238                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3239                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3240         }
3241 out:
3242         kvm_arch_vcpu_unblocking(vcpu);
3243         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3244
3245         update_halt_poll_stats(
3246                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3247
3248         if (!kvm_arch_no_poll(vcpu)) {
3249                 if (!vcpu_valid_wakeup(vcpu)) {
3250                         shrink_halt_poll_ns(vcpu);
3251                 } else if (vcpu->kvm->max_halt_poll_ns) {
3252                         if (block_ns <= vcpu->halt_poll_ns)
3253                                 ;
3254                         /* we had a long block, shrink polling */
3255                         else if (vcpu->halt_poll_ns &&
3256                                         block_ns > vcpu->kvm->max_halt_poll_ns)
3257                                 shrink_halt_poll_ns(vcpu);
3258                         /* we had a short halt and our poll time is too small */
3259                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3260                                         block_ns < vcpu->kvm->max_halt_poll_ns)
3261                                 grow_halt_poll_ns(vcpu);
3262                 } else {
3263                         vcpu->halt_poll_ns = 0;
3264                 }
3265         }
3266
3267         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3268         kvm_arch_vcpu_block_finish(vcpu);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3271
3272 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3273 {
3274         struct rcuwait *waitp;
3275
3276         waitp = kvm_arch_vcpu_get_wait(vcpu);
3277         if (rcuwait_wake_up(waitp)) {
3278                 WRITE_ONCE(vcpu->ready, true);
3279                 ++vcpu->stat.generic.halt_wakeup;
3280                 return true;
3281         }
3282
3283         return false;
3284 }
3285 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3286
3287 #ifndef CONFIG_S390
3288 /*
3289  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3290  */
3291 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3292 {
3293         int me;
3294         int cpu = vcpu->cpu;
3295
3296         if (kvm_vcpu_wake_up(vcpu))
3297                 return;
3298
3299         me = get_cpu();
3300         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3301                 if (kvm_arch_vcpu_should_kick(vcpu))
3302                         smp_send_reschedule(cpu);
3303         put_cpu();
3304 }
3305 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3306 #endif /* !CONFIG_S390 */
3307
3308 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3309 {
3310         struct pid *pid;
3311         struct task_struct *task = NULL;
3312         int ret = 0;
3313
3314         rcu_read_lock();
3315         pid = rcu_dereference(target->pid);
3316         if (pid)
3317                 task = get_pid_task(pid, PIDTYPE_PID);
3318         rcu_read_unlock();
3319         if (!task)
3320                 return ret;
3321         ret = yield_to(task, 1);
3322         put_task_struct(task);
3323
3324         return ret;
3325 }
3326 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3327
3328 /*
3329  * Helper that checks whether a VCPU is eligible for directed yield.
3330  * Most eligible candidate to yield is decided by following heuristics:
3331  *
3332  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3333  *  (preempted lock holder), indicated by @in_spin_loop.
3334  *  Set at the beginning and cleared at the end of interception/PLE handler.
3335  *
3336  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3337  *  chance last time (mostly it has become eligible now since we have probably
3338  *  yielded to lockholder in last iteration. This is done by toggling
3339  *  @dy_eligible each time a VCPU checked for eligibility.)
3340  *
3341  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3342  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3343  *  burning. Giving priority for a potential lock-holder increases lock
3344  *  progress.
3345  *
3346  *  Since algorithm is based on heuristics, accessing another VCPU data without
3347  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3348  *  and continue with next VCPU and so on.
3349  */
3350 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3351 {
3352 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3353         bool eligible;
3354
3355         eligible = !vcpu->spin_loop.in_spin_loop ||
3356                     vcpu->spin_loop.dy_eligible;
3357
3358         if (vcpu->spin_loop.in_spin_loop)
3359                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3360
3361         return eligible;
3362 #else
3363         return true;
3364 #endif
3365 }
3366
3367 /*
3368  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3369  * a vcpu_load/vcpu_put pair.  However, for most architectures
3370  * kvm_arch_vcpu_runnable does not require vcpu_load.
3371  */
3372 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3373 {
3374         return kvm_arch_vcpu_runnable(vcpu);
3375 }
3376
3377 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3378 {
3379         if (kvm_arch_dy_runnable(vcpu))
3380                 return true;
3381
3382 #ifdef CONFIG_KVM_ASYNC_PF
3383         if (!list_empty_careful(&vcpu->async_pf.done))
3384                 return true;
3385 #endif
3386
3387         return false;
3388 }
3389
3390 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3391 {
3392         return false;
3393 }
3394
3395 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3396 {
3397         struct kvm *kvm = me->kvm;
3398         struct kvm_vcpu *vcpu;
3399         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3400         int yielded = 0;
3401         int try = 3;
3402         int pass;
3403         int i;
3404
3405         kvm_vcpu_set_in_spin_loop(me, true);
3406         /*
3407          * We boost the priority of a VCPU that is runnable but not
3408          * currently running, because it got preempted by something
3409          * else and called schedule in __vcpu_run.  Hopefully that
3410          * VCPU is holding the lock that we need and will release it.
3411          * We approximate round-robin by starting at the last boosted VCPU.
3412          */
3413         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3414                 kvm_for_each_vcpu(i, vcpu, kvm) {
3415                         if (!pass && i <= last_boosted_vcpu) {
3416                                 i = last_boosted_vcpu;
3417                                 continue;
3418                         } else if (pass && i > last_boosted_vcpu)
3419                                 break;
3420                         if (!READ_ONCE(vcpu->ready))
3421                                 continue;
3422                         if (vcpu == me)
3423                                 continue;
3424                         if (rcuwait_active(&vcpu->wait) &&
3425                             !vcpu_dy_runnable(vcpu))
3426                                 continue;
3427                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3428                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3429                             !kvm_arch_vcpu_in_kernel(vcpu))
3430                                 continue;
3431                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3432                                 continue;
3433
3434                         yielded = kvm_vcpu_yield_to(vcpu);
3435                         if (yielded > 0) {
3436                                 kvm->last_boosted_vcpu = i;
3437                                 break;
3438                         } else if (yielded < 0) {
3439                                 try--;
3440                                 if (!try)
3441                                         break;
3442                         }
3443                 }
3444         }
3445         kvm_vcpu_set_in_spin_loop(me, false);
3446
3447         /* Ensure vcpu is not eligible during next spinloop */
3448         kvm_vcpu_set_dy_eligible(me, false);
3449 }
3450 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3451
3452 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3453 {
3454 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3455         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3456             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3457              kvm->dirty_ring_size / PAGE_SIZE);
3458 #else
3459         return false;
3460 #endif
3461 }
3462
3463 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3464 {
3465         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3466         struct page *page;
3467
3468         if (vmf->pgoff == 0)
3469                 page = virt_to_page(vcpu->run);
3470 #ifdef CONFIG_X86
3471         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3472                 page = virt_to_page(vcpu->arch.pio_data);
3473 #endif
3474 #ifdef CONFIG_KVM_MMIO
3475         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3476                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3477 #endif
3478         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3479                 page = kvm_dirty_ring_get_page(
3480                     &vcpu->dirty_ring,
3481                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3482         else
3483                 return kvm_arch_vcpu_fault(vcpu, vmf);
3484         get_page(page);
3485         vmf->page = page;
3486         return 0;
3487 }
3488
3489 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3490         .fault = kvm_vcpu_fault,
3491 };
3492
3493 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3494 {
3495         struct kvm_vcpu *vcpu = file->private_data;
3496         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3497
3498         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3499              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3500             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3501                 return -EINVAL;
3502
3503         vma->vm_ops = &kvm_vcpu_vm_ops;
3504         return 0;
3505 }
3506
3507 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3508 {
3509         struct kvm_vcpu *vcpu = filp->private_data;
3510
3511         kvm_put_kvm(vcpu->kvm);
3512         return 0;
3513 }
3514
3515 static struct file_operations kvm_vcpu_fops = {
3516         .release        = kvm_vcpu_release,
3517         .unlocked_ioctl = kvm_vcpu_ioctl,
3518         .mmap           = kvm_vcpu_mmap,
3519         .llseek         = noop_llseek,
3520         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3521 };
3522
3523 /*
3524  * Allocates an inode for the vcpu.
3525  */
3526 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3527 {
3528         char name[8 + 1 + ITOA_MAX_LEN + 1];
3529
3530         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3531         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3532 }
3533
3534 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3535 {
3536 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3537         struct dentry *debugfs_dentry;
3538         char dir_name[ITOA_MAX_LEN * 2];
3539
3540         if (!debugfs_initialized())
3541                 return;
3542
3543         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3544         debugfs_dentry = debugfs_create_dir(dir_name,
3545                                             vcpu->kvm->debugfs_dentry);
3546
3547         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3548 #endif
3549 }
3550
3551 /*
3552  * Creates some virtual cpus.  Good luck creating more than one.
3553  */
3554 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3555 {
3556         int r;
3557         struct kvm_vcpu *vcpu;
3558         struct page *page;
3559
3560         if (id >= KVM_MAX_VCPU_ID)
3561                 return -EINVAL;
3562
3563         mutex_lock(&kvm->lock);
3564         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3565                 mutex_unlock(&kvm->lock);
3566                 return -EINVAL;
3567         }
3568
3569         kvm->created_vcpus++;
3570         mutex_unlock(&kvm->lock);
3571
3572         r = kvm_arch_vcpu_precreate(kvm, id);
3573         if (r)
3574                 goto vcpu_decrement;
3575
3576         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3577         if (!vcpu) {
3578                 r = -ENOMEM;
3579                 goto vcpu_decrement;
3580         }
3581
3582         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3583         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3584         if (!page) {
3585                 r = -ENOMEM;
3586                 goto vcpu_free;
3587         }
3588         vcpu->run = page_address(page);
3589
3590         kvm_vcpu_init(vcpu, kvm, id);
3591
3592         r = kvm_arch_vcpu_create(vcpu);
3593         if (r)
3594                 goto vcpu_free_run_page;
3595
3596         if (kvm->dirty_ring_size) {
3597                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3598                                          id, kvm->dirty_ring_size);
3599                 if (r)
3600                         goto arch_vcpu_destroy;
3601         }
3602
3603         mutex_lock(&kvm->lock);
3604         if (kvm_get_vcpu_by_id(kvm, id)) {
3605                 r = -EEXIST;
3606                 goto unlock_vcpu_destroy;
3607         }
3608
3609         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3610         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3611
3612         /* Fill the stats id string for the vcpu */
3613         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3614                  task_pid_nr(current), id);
3615
3616         /* Now it's all set up, let userspace reach it */
3617         kvm_get_kvm(kvm);
3618         r = create_vcpu_fd(vcpu);
3619         if (r < 0) {
3620                 kvm_put_kvm_no_destroy(kvm);
3621                 goto unlock_vcpu_destroy;
3622         }
3623
3624         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3625
3626         /*
3627          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3628          * before kvm->online_vcpu's incremented value.
3629          */
3630         smp_wmb();
3631         atomic_inc(&kvm->online_vcpus);
3632
3633         mutex_unlock(&kvm->lock);
3634         kvm_arch_vcpu_postcreate(vcpu);
3635         kvm_create_vcpu_debugfs(vcpu);
3636         return r;
3637
3638 unlock_vcpu_destroy:
3639         mutex_unlock(&kvm->lock);
3640         kvm_dirty_ring_free(&vcpu->dirty_ring);
3641 arch_vcpu_destroy:
3642         kvm_arch_vcpu_destroy(vcpu);
3643 vcpu_free_run_page:
3644         free_page((unsigned long)vcpu->run);
3645 vcpu_free:
3646         kmem_cache_free(kvm_vcpu_cache, vcpu);
3647 vcpu_decrement:
3648         mutex_lock(&kvm->lock);
3649         kvm->created_vcpus--;
3650         mutex_unlock(&kvm->lock);
3651         return r;
3652 }
3653
3654 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3655 {
3656         if (sigset) {
3657                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3658                 vcpu->sigset_active = 1;
3659                 vcpu->sigset = *sigset;
3660         } else
3661                 vcpu->sigset_active = 0;
3662         return 0;
3663 }
3664
3665 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3666                               size_t size, loff_t *offset)
3667 {
3668         struct kvm_vcpu *vcpu = file->private_data;
3669
3670         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3671                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3672                         sizeof(vcpu->stat), user_buffer, size, offset);
3673 }
3674
3675 static const struct file_operations kvm_vcpu_stats_fops = {
3676         .read = kvm_vcpu_stats_read,
3677         .llseek = noop_llseek,
3678 };
3679
3680 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3681 {
3682         int fd;
3683         struct file *file;
3684         char name[15 + ITOA_MAX_LEN + 1];
3685
3686         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3687
3688         fd = get_unused_fd_flags(O_CLOEXEC);
3689         if (fd < 0)
3690                 return fd;
3691
3692         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3693         if (IS_ERR(file)) {
3694                 put_unused_fd(fd);
3695                 return PTR_ERR(file);
3696         }
3697         file->f_mode |= FMODE_PREAD;
3698         fd_install(fd, file);
3699
3700         return fd;
3701 }
3702
3703 static long kvm_vcpu_ioctl(struct file *filp,
3704                            unsigned int ioctl, unsigned long arg)
3705 {
3706         struct kvm_vcpu *vcpu = filp->private_data;
3707         void __user *argp = (void __user *)arg;
3708         int r;
3709         struct kvm_fpu *fpu = NULL;
3710         struct kvm_sregs *kvm_sregs = NULL;
3711
3712         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3713                 return -EIO;
3714
3715         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3716                 return -EINVAL;
3717
3718         /*
3719          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3720          * execution; mutex_lock() would break them.
3721          */
3722         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3723         if (r != -ENOIOCTLCMD)
3724                 return r;
3725
3726         if (mutex_lock_killable(&vcpu->mutex))
3727                 return -EINTR;
3728         switch (ioctl) {
3729         case KVM_RUN: {
3730                 struct pid *oldpid;
3731                 r = -EINVAL;
3732                 if (arg)
3733                         goto out;
3734                 oldpid = rcu_access_pointer(vcpu->pid);
3735                 if (unlikely(oldpid != task_pid(current))) {
3736                         /* The thread running this VCPU changed. */
3737                         struct pid *newpid;
3738
3739                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3740                         if (r)
3741                                 break;
3742
3743                         newpid = get_task_pid(current, PIDTYPE_PID);
3744                         rcu_assign_pointer(vcpu->pid, newpid);
3745                         if (oldpid)
3746                                 synchronize_rcu();
3747                         put_pid(oldpid);
3748                 }
3749                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3750                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3751                 break;
3752         }
3753         case KVM_GET_REGS: {
3754                 struct kvm_regs *kvm_regs;
3755
3756                 r = -ENOMEM;
3757                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3758                 if (!kvm_regs)
3759                         goto out;
3760                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3761                 if (r)
3762                         goto out_free1;
3763                 r = -EFAULT;
3764                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3765                         goto out_free1;
3766                 r = 0;
3767 out_free1:
3768                 kfree(kvm_regs);
3769                 break;
3770         }
3771         case KVM_SET_REGS: {
3772                 struct kvm_regs *kvm_regs;
3773
3774                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3775                 if (IS_ERR(kvm_regs)) {
3776                         r = PTR_ERR(kvm_regs);
3777                         goto out;
3778                 }
3779                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3780                 kfree(kvm_regs);
3781                 break;
3782         }
3783         case KVM_GET_SREGS: {
3784                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3785                                     GFP_KERNEL_ACCOUNT);
3786                 r = -ENOMEM;
3787                 if (!kvm_sregs)
3788                         goto out;
3789                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3790                 if (r)
3791                         goto out;
3792                 r = -EFAULT;
3793                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3794                         goto out;
3795                 r = 0;
3796                 break;
3797         }
3798         case KVM_SET_SREGS: {
3799                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3800                 if (IS_ERR(kvm_sregs)) {
3801                         r = PTR_ERR(kvm_sregs);
3802                         kvm_sregs = NULL;
3803                         goto out;
3804                 }
3805                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3806                 break;
3807         }
3808         case KVM_GET_MP_STATE: {
3809                 struct kvm_mp_state mp_state;
3810
3811                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3812                 if (r)
3813                         goto out;
3814                 r = -EFAULT;
3815                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3816                         goto out;
3817                 r = 0;
3818                 break;
3819         }
3820         case KVM_SET_MP_STATE: {
3821                 struct kvm_mp_state mp_state;
3822
3823                 r = -EFAULT;
3824                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3825                         goto out;
3826                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3827                 break;
3828         }
3829         case KVM_TRANSLATE: {
3830                 struct kvm_translation tr;
3831
3832                 r = -EFAULT;
3833                 if (copy_from_user(&tr, argp, sizeof(tr)))
3834                         goto out;
3835                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3836                 if (r)
3837                         goto out;
3838                 r = -EFAULT;
3839                 if (copy_to_user(argp, &tr, sizeof(tr)))
3840                         goto out;
3841                 r = 0;
3842                 break;
3843         }
3844         case KVM_SET_GUEST_DEBUG: {
3845                 struct kvm_guest_debug dbg;
3846
3847                 r = -EFAULT;
3848                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3849                         goto out;
3850                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3851                 break;
3852         }
3853         case KVM_SET_SIGNAL_MASK: {
3854                 struct kvm_signal_mask __user *sigmask_arg = argp;
3855                 struct kvm_signal_mask kvm_sigmask;
3856                 sigset_t sigset, *p;
3857
3858                 p = NULL;
3859                 if (argp) {
3860                         r = -EFAULT;
3861                         if (copy_from_user(&kvm_sigmask, argp,
3862                                            sizeof(kvm_sigmask)))
3863                                 goto out;
3864                         r = -EINVAL;
3865                         if (kvm_sigmask.len != sizeof(sigset))
3866                                 goto out;
3867                         r = -EFAULT;
3868                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3869                                            sizeof(sigset)))
3870                                 goto out;
3871                         p = &sigset;
3872                 }
3873                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3874                 break;
3875         }
3876         case KVM_GET_FPU: {
3877                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3878                 r = -ENOMEM;
3879                 if (!fpu)
3880                         goto out;
3881                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3882                 if (r)
3883                         goto out;
3884                 r = -EFAULT;
3885                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3886                         goto out;
3887                 r = 0;
3888                 break;
3889         }
3890         case KVM_SET_FPU: {
3891                 fpu = memdup_user(argp, sizeof(*fpu));
3892                 if (IS_ERR(fpu)) {
3893                         r = PTR_ERR(fpu);
3894                         fpu = NULL;
3895                         goto out;
3896                 }
3897                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3898                 break;
3899         }
3900         case KVM_GET_STATS_FD: {
3901                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3902                 break;
3903         }
3904         default:
3905                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3906         }
3907 out:
3908         mutex_unlock(&vcpu->mutex);
3909         kfree(fpu);
3910         kfree(kvm_sregs);
3911         return r;
3912 }
3913
3914 #ifdef CONFIG_KVM_COMPAT
3915 static long kvm_vcpu_compat_ioctl(struct file *filp,
3916                                   unsigned int ioctl, unsigned long arg)
3917 {
3918         struct kvm_vcpu *vcpu = filp->private_data;
3919         void __user *argp = compat_ptr(arg);
3920         int r;
3921
3922         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3923                 return -EIO;
3924
3925         switch (ioctl) {
3926         case KVM_SET_SIGNAL_MASK: {
3927                 struct kvm_signal_mask __user *sigmask_arg = argp;
3928                 struct kvm_signal_mask kvm_sigmask;
3929                 sigset_t sigset;
3930
3931                 if (argp) {
3932                         r = -EFAULT;
3933                         if (copy_from_user(&kvm_sigmask, argp,
3934                                            sizeof(kvm_sigmask)))
3935                                 goto out;
3936                         r = -EINVAL;
3937                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3938                                 goto out;
3939                         r = -EFAULT;
3940                         if (get_compat_sigset(&sigset,
3941                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3942                                 goto out;
3943                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3944                 } else
3945                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3946                 break;
3947         }
3948         default:
3949                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3950         }
3951
3952 out:
3953         return r;
3954 }
3955 #endif
3956
3957 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3958 {
3959         struct kvm_device *dev = filp->private_data;
3960
3961         if (dev->ops->mmap)
3962                 return dev->ops->mmap(dev, vma);
3963
3964         return -ENODEV;
3965 }
3966
3967 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3968                                  int (*accessor)(struct kvm_device *dev,
3969                                                  struct kvm_device_attr *attr),
3970                                  unsigned long arg)
3971 {
3972         struct kvm_device_attr attr;
3973
3974         if (!accessor)
3975                 return -EPERM;
3976
3977         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3978                 return -EFAULT;
3979
3980         return accessor(dev, &attr);
3981 }
3982
3983 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3984                              unsigned long arg)
3985 {
3986         struct kvm_device *dev = filp->private_data;
3987
3988         if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
3989                 return -EIO;
3990
3991         switch (ioctl) {
3992         case KVM_SET_DEVICE_ATTR:
3993                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3994         case KVM_GET_DEVICE_ATTR:
3995                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3996         case KVM_HAS_DEVICE_ATTR:
3997                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3998         default:
3999                 if (dev->ops->ioctl)
4000                         return dev->ops->ioctl(dev, ioctl, arg);
4001
4002                 return -ENOTTY;
4003         }
4004 }
4005
4006 static int kvm_device_release(struct inode *inode, struct file *filp)
4007 {
4008         struct kvm_device *dev = filp->private_data;
4009         struct kvm *kvm = dev->kvm;
4010
4011         if (dev->ops->release) {
4012                 mutex_lock(&kvm->lock);
4013                 list_del(&dev->vm_node);
4014                 dev->ops->release(dev);
4015                 mutex_unlock(&kvm->lock);
4016         }
4017
4018         kvm_put_kvm(kvm);
4019         return 0;
4020 }
4021
4022 static const struct file_operations kvm_device_fops = {
4023         .unlocked_ioctl = kvm_device_ioctl,
4024         .release = kvm_device_release,
4025         KVM_COMPAT(kvm_device_ioctl),
4026         .mmap = kvm_device_mmap,
4027 };
4028
4029 struct kvm_device *kvm_device_from_filp(struct file *filp)
4030 {
4031         if (filp->f_op != &kvm_device_fops)
4032                 return NULL;
4033
4034         return filp->private_data;
4035 }
4036
4037 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4038 #ifdef CONFIG_KVM_MPIC
4039         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4040         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4041 #endif
4042 };
4043
4044 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4045 {
4046         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4047                 return -ENOSPC;
4048
4049         if (kvm_device_ops_table[type] != NULL)
4050                 return -EEXIST;
4051
4052         kvm_device_ops_table[type] = ops;
4053         return 0;
4054 }
4055
4056 void kvm_unregister_device_ops(u32 type)
4057 {
4058         if (kvm_device_ops_table[type] != NULL)
4059                 kvm_device_ops_table[type] = NULL;
4060 }
4061
4062 static int kvm_ioctl_create_device(struct kvm *kvm,
4063                                    struct kvm_create_device *cd)
4064 {
4065         const struct kvm_device_ops *ops = NULL;
4066         struct kvm_device *dev;
4067         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4068         int type;
4069         int ret;
4070
4071         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4072                 return -ENODEV;
4073
4074         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4075         ops = kvm_device_ops_table[type];
4076         if (ops == NULL)
4077                 return -ENODEV;
4078
4079         if (test)
4080                 return 0;
4081
4082         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4083         if (!dev)
4084                 return -ENOMEM;
4085
4086         dev->ops = ops;
4087         dev->kvm = kvm;
4088
4089         mutex_lock(&kvm->lock);
4090         ret = ops->create(dev, type);
4091         if (ret < 0) {
4092                 mutex_unlock(&kvm->lock);
4093                 kfree(dev);
4094                 return ret;
4095         }
4096         list_add(&dev->vm_node, &kvm->devices);
4097         mutex_unlock(&kvm->lock);
4098
4099         if (ops->init)
4100                 ops->init(dev);
4101
4102         kvm_get_kvm(kvm);
4103         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4104         if (ret < 0) {
4105                 kvm_put_kvm_no_destroy(kvm);
4106                 mutex_lock(&kvm->lock);
4107                 list_del(&dev->vm_node);
4108                 mutex_unlock(&kvm->lock);
4109                 ops->destroy(dev);
4110                 return ret;
4111         }
4112
4113         cd->fd = ret;
4114         return 0;
4115 }
4116
4117 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4118 {
4119         switch (arg) {
4120         case KVM_CAP_USER_MEMORY:
4121         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4122         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4123         case KVM_CAP_INTERNAL_ERROR_DATA:
4124 #ifdef CONFIG_HAVE_KVM_MSI
4125         case KVM_CAP_SIGNAL_MSI:
4126 #endif
4127 #ifdef CONFIG_HAVE_KVM_IRQFD
4128         case KVM_CAP_IRQFD:
4129         case KVM_CAP_IRQFD_RESAMPLE:
4130 #endif
4131         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4132         case KVM_CAP_CHECK_EXTENSION_VM:
4133         case KVM_CAP_ENABLE_CAP_VM:
4134         case KVM_CAP_HALT_POLL:
4135                 return 1;
4136 #ifdef CONFIG_KVM_MMIO
4137         case KVM_CAP_COALESCED_MMIO:
4138                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4139         case KVM_CAP_COALESCED_PIO:
4140                 return 1;
4141 #endif
4142 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4143         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4144                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4145 #endif
4146 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4147         case KVM_CAP_IRQ_ROUTING:
4148                 return KVM_MAX_IRQ_ROUTES;
4149 #endif
4150 #if KVM_ADDRESS_SPACE_NUM > 1
4151         case KVM_CAP_MULTI_ADDRESS_SPACE:
4152                 return KVM_ADDRESS_SPACE_NUM;
4153 #endif
4154         case KVM_CAP_NR_MEMSLOTS:
4155                 return KVM_USER_MEM_SLOTS;
4156         case KVM_CAP_DIRTY_LOG_RING:
4157 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4158                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4159 #else
4160                 return 0;
4161 #endif
4162         case KVM_CAP_BINARY_STATS_FD:
4163                 return 1;
4164         default:
4165                 break;
4166         }
4167         return kvm_vm_ioctl_check_extension(kvm, arg);
4168 }
4169
4170 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4171 {
4172         int r;
4173
4174         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4175                 return -EINVAL;
4176
4177         /* the size should be power of 2 */
4178         if (!size || (size & (size - 1)))
4179                 return -EINVAL;
4180
4181         /* Should be bigger to keep the reserved entries, or a page */
4182         if (size < kvm_dirty_ring_get_rsvd_entries() *
4183             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4184                 return -EINVAL;
4185
4186         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4187             sizeof(struct kvm_dirty_gfn))
4188                 return -E2BIG;
4189
4190         /* We only allow it to set once */
4191         if (kvm->dirty_ring_size)
4192                 return -EINVAL;
4193
4194         mutex_lock(&kvm->lock);
4195
4196         if (kvm->created_vcpus) {
4197                 /* We don't allow to change this value after vcpu created */
4198                 r = -EINVAL;
4199         } else {
4200                 kvm->dirty_ring_size = size;
4201                 r = 0;
4202         }
4203
4204         mutex_unlock(&kvm->lock);
4205         return r;
4206 }
4207
4208 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4209 {
4210         int i;
4211         struct kvm_vcpu *vcpu;
4212         int cleared = 0;
4213
4214         if (!kvm->dirty_ring_size)
4215                 return -EINVAL;
4216
4217         mutex_lock(&kvm->slots_lock);
4218
4219         kvm_for_each_vcpu(i, vcpu, kvm)
4220                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4221
4222         mutex_unlock(&kvm->slots_lock);
4223
4224         if (cleared)
4225                 kvm_flush_remote_tlbs(kvm);
4226
4227         return cleared;
4228 }
4229
4230 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4231                                                   struct kvm_enable_cap *cap)
4232 {
4233         return -EINVAL;
4234 }
4235
4236 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4237                                            struct kvm_enable_cap *cap)
4238 {
4239         switch (cap->cap) {
4240 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4241         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4242                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4243
4244                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4245                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4246
4247                 if (cap->flags || (cap->args[0] & ~allowed_options))
4248                         return -EINVAL;
4249                 kvm->manual_dirty_log_protect = cap->args[0];
4250                 return 0;
4251         }
4252 #endif
4253         case KVM_CAP_HALT_POLL: {
4254                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4255                         return -EINVAL;
4256
4257                 kvm->max_halt_poll_ns = cap->args[0];
4258                 return 0;
4259         }
4260         case KVM_CAP_DIRTY_LOG_RING:
4261                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4262         default:
4263                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4264         }
4265 }
4266
4267 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4268                               size_t size, loff_t *offset)
4269 {
4270         struct kvm *kvm = file->private_data;
4271
4272         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4273                                 &kvm_vm_stats_desc[0], &kvm->stat,
4274                                 sizeof(kvm->stat), user_buffer, size, offset);
4275 }
4276
4277 static const struct file_operations kvm_vm_stats_fops = {
4278         .read = kvm_vm_stats_read,
4279         .llseek = noop_llseek,
4280 };
4281
4282 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4283 {
4284         int fd;
4285         struct file *file;
4286
4287         fd = get_unused_fd_flags(O_CLOEXEC);
4288         if (fd < 0)
4289                 return fd;
4290
4291         file = anon_inode_getfile("kvm-vm-stats",
4292                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4293         if (IS_ERR(file)) {
4294                 put_unused_fd(fd);
4295                 return PTR_ERR(file);
4296         }
4297         file->f_mode |= FMODE_PREAD;
4298         fd_install(fd, file);
4299
4300         return fd;
4301 }
4302
4303 static long kvm_vm_ioctl(struct file *filp,
4304                            unsigned int ioctl, unsigned long arg)
4305 {
4306         struct kvm *kvm = filp->private_data;
4307         void __user *argp = (void __user *)arg;
4308         int r;
4309
4310         if (kvm->mm != current->mm || kvm->vm_bugged)
4311                 return -EIO;
4312         switch (ioctl) {
4313         case KVM_CREATE_VCPU:
4314                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4315                 break;
4316         case KVM_ENABLE_CAP: {
4317                 struct kvm_enable_cap cap;
4318
4319                 r = -EFAULT;
4320                 if (copy_from_user(&cap, argp, sizeof(cap)))
4321                         goto out;
4322                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4323                 break;
4324         }
4325         case KVM_SET_USER_MEMORY_REGION: {
4326                 struct kvm_userspace_memory_region kvm_userspace_mem;
4327
4328                 r = -EFAULT;
4329                 if (copy_from_user(&kvm_userspace_mem, argp,
4330                                                 sizeof(kvm_userspace_mem)))
4331                         goto out;
4332
4333                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4334                 break;
4335         }
4336         case KVM_GET_DIRTY_LOG: {
4337                 struct kvm_dirty_log log;
4338
4339                 r = -EFAULT;
4340                 if (copy_from_user(&log, argp, sizeof(log)))
4341                         goto out;
4342                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4343                 break;
4344         }
4345 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4346         case KVM_CLEAR_DIRTY_LOG: {
4347                 struct kvm_clear_dirty_log log;
4348
4349                 r = -EFAULT;
4350                 if (copy_from_user(&log, argp, sizeof(log)))
4351                         goto out;
4352                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4353                 break;
4354         }
4355 #endif
4356 #ifdef CONFIG_KVM_MMIO
4357         case KVM_REGISTER_COALESCED_MMIO: {
4358                 struct kvm_coalesced_mmio_zone zone;
4359
4360                 r = -EFAULT;
4361                 if (copy_from_user(&zone, argp, sizeof(zone)))
4362                         goto out;
4363                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4364                 break;
4365         }
4366         case KVM_UNREGISTER_COALESCED_MMIO: {
4367                 struct kvm_coalesced_mmio_zone zone;
4368
4369                 r = -EFAULT;
4370                 if (copy_from_user(&zone, argp, sizeof(zone)))
4371                         goto out;
4372                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4373                 break;
4374         }
4375 #endif
4376         case KVM_IRQFD: {
4377                 struct kvm_irqfd data;
4378
4379                 r = -EFAULT;
4380                 if (copy_from_user(&data, argp, sizeof(data)))
4381                         goto out;
4382                 r = kvm_irqfd(kvm, &data);
4383                 break;
4384         }
4385         case KVM_IOEVENTFD: {
4386                 struct kvm_ioeventfd data;
4387
4388                 r = -EFAULT;
4389                 if (copy_from_user(&data, argp, sizeof(data)))
4390                         goto out;
4391                 r = kvm_ioeventfd(kvm, &data);
4392                 break;
4393         }
4394 #ifdef CONFIG_HAVE_KVM_MSI
4395         case KVM_SIGNAL_MSI: {
4396                 struct kvm_msi msi;
4397
4398                 r = -EFAULT;
4399                 if (copy_from_user(&msi, argp, sizeof(msi)))
4400                         goto out;
4401                 r = kvm_send_userspace_msi(kvm, &msi);
4402                 break;
4403         }
4404 #endif
4405 #ifdef __KVM_HAVE_IRQ_LINE
4406         case KVM_IRQ_LINE_STATUS:
4407         case KVM_IRQ_LINE: {
4408                 struct kvm_irq_level irq_event;
4409
4410                 r = -EFAULT;
4411                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4412                         goto out;
4413
4414                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4415                                         ioctl == KVM_IRQ_LINE_STATUS);
4416                 if (r)
4417                         goto out;
4418
4419                 r = -EFAULT;
4420                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4421                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4422                                 goto out;
4423                 }
4424
4425                 r = 0;
4426                 break;
4427         }
4428 #endif
4429 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4430         case KVM_SET_GSI_ROUTING: {
4431                 struct kvm_irq_routing routing;
4432                 struct kvm_irq_routing __user *urouting;
4433                 struct kvm_irq_routing_entry *entries = NULL;
4434
4435                 r = -EFAULT;
4436                 if (copy_from_user(&routing, argp, sizeof(routing)))
4437                         goto out;
4438                 r = -EINVAL;
4439                 if (!kvm_arch_can_set_irq_routing(kvm))
4440                         goto out;
4441                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4442                         goto out;
4443                 if (routing.flags)
4444                         goto out;
4445                 if (routing.nr) {
4446                         urouting = argp;
4447                         entries = vmemdup_user(urouting->entries,
4448                                                array_size(sizeof(*entries),
4449                                                           routing.nr));
4450                         if (IS_ERR(entries)) {
4451                                 r = PTR_ERR(entries);
4452                                 goto out;
4453                         }
4454                 }
4455                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4456                                         routing.flags);
4457                 kvfree(entries);
4458                 break;
4459         }
4460 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4461         case KVM_CREATE_DEVICE: {
4462                 struct kvm_create_device cd;
4463
4464                 r = -EFAULT;
4465                 if (copy_from_user(&cd, argp, sizeof(cd)))
4466                         goto out;
4467
4468                 r = kvm_ioctl_create_device(kvm, &cd);
4469                 if (r)
4470                         goto out;
4471
4472                 r = -EFAULT;
4473                 if (copy_to_user(argp, &cd, sizeof(cd)))
4474                         goto out;
4475
4476                 r = 0;
4477                 break;
4478         }
4479         case KVM_CHECK_EXTENSION:
4480                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4481                 break;
4482         case KVM_RESET_DIRTY_RINGS:
4483                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4484                 break;
4485         case KVM_GET_STATS_FD:
4486                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4487                 break;
4488         default:
4489                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4490         }
4491 out:
4492         return r;
4493 }
4494
4495 #ifdef CONFIG_KVM_COMPAT
4496 struct compat_kvm_dirty_log {
4497         __u32 slot;
4498         __u32 padding1;
4499         union {
4500                 compat_uptr_t dirty_bitmap; /* one bit per page */
4501                 __u64 padding2;
4502         };
4503 };
4504
4505 struct compat_kvm_clear_dirty_log {
4506         __u32 slot;
4507         __u32 num_pages;
4508         __u64 first_page;
4509         union {
4510                 compat_uptr_t dirty_bitmap; /* one bit per page */
4511                 __u64 padding2;
4512         };
4513 };
4514
4515 static long kvm_vm_compat_ioctl(struct file *filp,
4516                            unsigned int ioctl, unsigned long arg)
4517 {
4518         struct kvm *kvm = filp->private_data;
4519         int r;
4520
4521         if (kvm->mm != current->mm || kvm->vm_bugged)
4522                 return -EIO;
4523         switch (ioctl) {
4524 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4525         case KVM_CLEAR_DIRTY_LOG: {
4526                 struct compat_kvm_clear_dirty_log compat_log;
4527                 struct kvm_clear_dirty_log log;
4528
4529                 if (copy_from_user(&compat_log, (void __user *)arg,
4530                                    sizeof(compat_log)))
4531                         return -EFAULT;
4532                 log.slot         = compat_log.slot;
4533                 log.num_pages    = compat_log.num_pages;
4534                 log.first_page   = compat_log.first_page;
4535                 log.padding2     = compat_log.padding2;
4536                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4537
4538                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4539                 break;
4540         }
4541 #endif
4542         case KVM_GET_DIRTY_LOG: {
4543                 struct compat_kvm_dirty_log compat_log;
4544                 struct kvm_dirty_log log;
4545
4546                 if (copy_from_user(&compat_log, (void __user *)arg,
4547                                    sizeof(compat_log)))
4548                         return -EFAULT;
4549                 log.slot         = compat_log.slot;
4550                 log.padding1     = compat_log.padding1;
4551                 log.padding2     = compat_log.padding2;
4552                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4553
4554                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4555                 break;
4556         }
4557         default:
4558                 r = kvm_vm_ioctl(filp, ioctl, arg);
4559         }
4560         return r;
4561 }
4562 #endif
4563
4564 static struct file_operations kvm_vm_fops = {
4565         .release        = kvm_vm_release,
4566         .unlocked_ioctl = kvm_vm_ioctl,
4567         .llseek         = noop_llseek,
4568         KVM_COMPAT(kvm_vm_compat_ioctl),
4569 };
4570
4571 bool file_is_kvm(struct file *file)
4572 {
4573         return file && file->f_op == &kvm_vm_fops;
4574 }
4575 EXPORT_SYMBOL_GPL(file_is_kvm);
4576
4577 static int kvm_dev_ioctl_create_vm(unsigned long type)
4578 {
4579         int r;
4580         struct kvm *kvm;
4581         struct file *file;
4582
4583         kvm = kvm_create_vm(type);
4584         if (IS_ERR(kvm))
4585                 return PTR_ERR(kvm);
4586 #ifdef CONFIG_KVM_MMIO
4587         r = kvm_coalesced_mmio_init(kvm);
4588         if (r < 0)
4589                 goto put_kvm;
4590 #endif
4591         r = get_unused_fd_flags(O_CLOEXEC);
4592         if (r < 0)
4593                 goto put_kvm;
4594
4595         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4596                         "kvm-%d", task_pid_nr(current));
4597
4598         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4599         if (IS_ERR(file)) {
4600                 put_unused_fd(r);
4601                 r = PTR_ERR(file);
4602                 goto put_kvm;
4603         }
4604
4605         /*
4606          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4607          * already set, with ->release() being kvm_vm_release().  In error
4608          * cases it will be called by the final fput(file) and will take
4609          * care of doing kvm_put_kvm(kvm).
4610          */
4611         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4612                 put_unused_fd(r);
4613                 fput(file);
4614                 return -ENOMEM;
4615         }
4616         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4617
4618         fd_install(r, file);
4619         return r;
4620
4621 put_kvm:
4622         kvm_put_kvm(kvm);
4623         return r;
4624 }
4625
4626 static long kvm_dev_ioctl(struct file *filp,
4627                           unsigned int ioctl, unsigned long arg)
4628 {
4629         long r = -EINVAL;
4630
4631         switch (ioctl) {
4632         case KVM_GET_API_VERSION:
4633                 if (arg)
4634                         goto out;
4635                 r = KVM_API_VERSION;
4636                 break;
4637         case KVM_CREATE_VM:
4638                 r = kvm_dev_ioctl_create_vm(arg);
4639                 break;
4640         case KVM_CHECK_EXTENSION:
4641                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4642                 break;
4643         case KVM_GET_VCPU_MMAP_SIZE:
4644                 if (arg)
4645                         goto out;
4646                 r = PAGE_SIZE;     /* struct kvm_run */
4647 #ifdef CONFIG_X86
4648                 r += PAGE_SIZE;    /* pio data page */
4649 #endif
4650 #ifdef CONFIG_KVM_MMIO
4651                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4652 #endif
4653                 break;
4654         case KVM_TRACE_ENABLE:
4655         case KVM_TRACE_PAUSE:
4656         case KVM_TRACE_DISABLE:
4657                 r = -EOPNOTSUPP;
4658                 break;
4659         default:
4660                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4661         }
4662 out:
4663         return r;
4664 }
4665
4666 static struct file_operations kvm_chardev_ops = {
4667         .unlocked_ioctl = kvm_dev_ioctl,
4668         .llseek         = noop_llseek,
4669         KVM_COMPAT(kvm_dev_ioctl),
4670 };
4671
4672 static struct miscdevice kvm_dev = {
4673         KVM_MINOR,
4674         "kvm",
4675         &kvm_chardev_ops,
4676 };
4677
4678 static void hardware_enable_nolock(void *junk)
4679 {
4680         int cpu = raw_smp_processor_id();
4681         int r;
4682
4683         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4684                 return;
4685
4686         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4687
4688         r = kvm_arch_hardware_enable();
4689
4690         if (r) {
4691                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4692                 atomic_inc(&hardware_enable_failed);
4693                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4694         }
4695 }
4696
4697 static int kvm_starting_cpu(unsigned int cpu)
4698 {
4699         raw_spin_lock(&kvm_count_lock);
4700         if (kvm_usage_count)
4701                 hardware_enable_nolock(NULL);
4702         raw_spin_unlock(&kvm_count_lock);
4703         return 0;
4704 }
4705
4706 static void hardware_disable_nolock(void *junk)
4707 {
4708         int cpu = raw_smp_processor_id();
4709
4710         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4711                 return;
4712         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4713         kvm_arch_hardware_disable();
4714 }
4715
4716 static int kvm_dying_cpu(unsigned int cpu)
4717 {
4718         raw_spin_lock(&kvm_count_lock);
4719         if (kvm_usage_count)
4720                 hardware_disable_nolock(NULL);
4721         raw_spin_unlock(&kvm_count_lock);
4722         return 0;
4723 }
4724
4725 static void hardware_disable_all_nolock(void)
4726 {
4727         BUG_ON(!kvm_usage_count);
4728
4729         kvm_usage_count--;
4730         if (!kvm_usage_count)
4731                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4732 }
4733
4734 static void hardware_disable_all(void)
4735 {
4736         raw_spin_lock(&kvm_count_lock);
4737         hardware_disable_all_nolock();
4738         raw_spin_unlock(&kvm_count_lock);
4739 }
4740
4741 static int hardware_enable_all(void)
4742 {
4743         int r = 0;
4744
4745         raw_spin_lock(&kvm_count_lock);
4746
4747         kvm_usage_count++;
4748         if (kvm_usage_count == 1) {
4749                 atomic_set(&hardware_enable_failed, 0);
4750                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4751
4752                 if (atomic_read(&hardware_enable_failed)) {
4753                         hardware_disable_all_nolock();
4754                         r = -EBUSY;
4755                 }
4756         }
4757
4758         raw_spin_unlock(&kvm_count_lock);
4759
4760         return r;
4761 }
4762
4763 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4764                       void *v)
4765 {
4766         /*
4767          * Some (well, at least mine) BIOSes hang on reboot if
4768          * in vmx root mode.
4769          *
4770          * And Intel TXT required VMX off for all cpu when system shutdown.
4771          */
4772         pr_info("kvm: exiting hardware virtualization\n");
4773         kvm_rebooting = true;
4774         on_each_cpu(hardware_disable_nolock, NULL, 1);
4775         return NOTIFY_OK;
4776 }
4777
4778 static struct notifier_block kvm_reboot_notifier = {
4779         .notifier_call = kvm_reboot,
4780         .priority = 0,
4781 };
4782
4783 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4784 {
4785         int i;
4786
4787         for (i = 0; i < bus->dev_count; i++) {
4788                 struct kvm_io_device *pos = bus->range[i].dev;
4789
4790                 kvm_iodevice_destructor(pos);
4791         }
4792         kfree(bus);
4793 }
4794
4795 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4796                                  const struct kvm_io_range *r2)
4797 {
4798         gpa_t addr1 = r1->addr;
4799         gpa_t addr2 = r2->addr;
4800
4801         if (addr1 < addr2)
4802                 return -1;
4803
4804         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4805          * accept any overlapping write.  Any order is acceptable for
4806          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4807          * we process all of them.
4808          */
4809         if (r2->len) {
4810                 addr1 += r1->len;
4811                 addr2 += r2->len;
4812         }
4813
4814         if (addr1 > addr2)
4815                 return 1;
4816
4817         return 0;
4818 }
4819
4820 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4821 {
4822         return kvm_io_bus_cmp(p1, p2);
4823 }
4824
4825 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4826                              gpa_t addr, int len)
4827 {
4828         struct kvm_io_range *range, key;
4829         int off;
4830
4831         key = (struct kvm_io_range) {
4832                 .addr = addr,
4833                 .len = len,
4834         };
4835
4836         range = bsearch(&key, bus->range, bus->dev_count,
4837                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4838         if (range == NULL)
4839                 return -ENOENT;
4840
4841         off = range - bus->range;
4842
4843         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4844                 off--;
4845
4846         return off;
4847 }
4848
4849 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4850                               struct kvm_io_range *range, const void *val)
4851 {
4852         int idx;
4853
4854         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4855         if (idx < 0)
4856                 return -EOPNOTSUPP;
4857
4858         while (idx < bus->dev_count &&
4859                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4860                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4861                                         range->len, val))
4862                         return idx;
4863                 idx++;
4864         }
4865
4866         return -EOPNOTSUPP;
4867 }
4868
4869 /* kvm_io_bus_write - called under kvm->slots_lock */
4870 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4871                      int len, const void *val)
4872 {
4873         struct kvm_io_bus *bus;
4874         struct kvm_io_range range;
4875         int r;
4876
4877         range = (struct kvm_io_range) {
4878                 .addr = addr,
4879                 .len = len,
4880         };
4881
4882         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4883         if (!bus)
4884                 return -ENOMEM;
4885         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4886         return r < 0 ? r : 0;
4887 }
4888 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4889
4890 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4891 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4892                             gpa_t addr, int len, const void *val, long cookie)
4893 {
4894         struct kvm_io_bus *bus;
4895         struct kvm_io_range range;
4896
4897         range = (struct kvm_io_range) {
4898                 .addr = addr,
4899                 .len = len,
4900         };
4901
4902         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4903         if (!bus)
4904                 return -ENOMEM;
4905
4906         /* First try the device referenced by cookie. */
4907         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4908             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4909                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4910                                         val))
4911                         return cookie;
4912
4913         /*
4914          * cookie contained garbage; fall back to search and return the
4915          * correct cookie value.
4916          */
4917         return __kvm_io_bus_write(vcpu, bus, &range, val);
4918 }
4919
4920 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4921                              struct kvm_io_range *range, void *val)
4922 {
4923         int idx;
4924
4925         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4926         if (idx < 0)
4927                 return -EOPNOTSUPP;
4928
4929         while (idx < bus->dev_count &&
4930                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4931                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4932                                        range->len, val))
4933                         return idx;
4934                 idx++;
4935         }
4936
4937         return -EOPNOTSUPP;
4938 }
4939
4940 /* kvm_io_bus_read - called under kvm->slots_lock */
4941 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4942                     int len, void *val)
4943 {
4944         struct kvm_io_bus *bus;
4945         struct kvm_io_range range;
4946         int r;
4947
4948         range = (struct kvm_io_range) {
4949                 .addr = addr,
4950                 .len = len,
4951         };
4952
4953         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4954         if (!bus)
4955                 return -ENOMEM;
4956         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4957         return r < 0 ? r : 0;
4958 }
4959
4960 /* Caller must hold slots_lock. */
4961 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4962                             int len, struct kvm_io_device *dev)
4963 {
4964         int i;
4965         struct kvm_io_bus *new_bus, *bus;
4966         struct kvm_io_range range;
4967
4968         bus = kvm_get_bus(kvm, bus_idx);
4969         if (!bus)
4970                 return -ENOMEM;
4971
4972         /* exclude ioeventfd which is limited by maximum fd */
4973         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4974                 return -ENOSPC;
4975
4976         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4977                           GFP_KERNEL_ACCOUNT);
4978         if (!new_bus)
4979                 return -ENOMEM;
4980
4981         range = (struct kvm_io_range) {
4982                 .addr = addr,
4983                 .len = len,
4984                 .dev = dev,
4985         };
4986
4987         for (i = 0; i < bus->dev_count; i++)
4988                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4989                         break;
4990
4991         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4992         new_bus->dev_count++;
4993         new_bus->range[i] = range;
4994         memcpy(new_bus->range + i + 1, bus->range + i,
4995                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4996         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4997         synchronize_srcu_expedited(&kvm->srcu);
4998         kfree(bus);
4999
5000         return 0;
5001 }
5002
5003 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5004                               struct kvm_io_device *dev)
5005 {
5006         int i, j;
5007         struct kvm_io_bus *new_bus, *bus;
5008
5009         lockdep_assert_held(&kvm->slots_lock);
5010
5011         bus = kvm_get_bus(kvm, bus_idx);
5012         if (!bus)
5013                 return 0;
5014
5015         for (i = 0; i < bus->dev_count; i++) {
5016                 if (bus->range[i].dev == dev) {
5017                         break;
5018                 }
5019         }
5020
5021         if (i == bus->dev_count)
5022                 return 0;
5023
5024         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5025                           GFP_KERNEL_ACCOUNT);
5026         if (new_bus) {
5027                 memcpy(new_bus, bus, struct_size(bus, range, i));
5028                 new_bus->dev_count--;
5029                 memcpy(new_bus->range + i, bus->range + i + 1,
5030                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5031         }
5032
5033         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5034         synchronize_srcu_expedited(&kvm->srcu);
5035
5036         /* Destroy the old bus _after_ installing the (null) bus. */
5037         if (!new_bus) {
5038                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5039                 for (j = 0; j < bus->dev_count; j++) {
5040                         if (j == i)
5041                                 continue;
5042                         kvm_iodevice_destructor(bus->range[j].dev);
5043                 }
5044         }
5045
5046         kfree(bus);
5047         return new_bus ? 0 : -ENOMEM;
5048 }
5049
5050 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5051                                          gpa_t addr)
5052 {
5053         struct kvm_io_bus *bus;
5054         int dev_idx, srcu_idx;
5055         struct kvm_io_device *iodev = NULL;
5056
5057         srcu_idx = srcu_read_lock(&kvm->srcu);
5058
5059         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5060         if (!bus)
5061                 goto out_unlock;
5062
5063         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5064         if (dev_idx < 0)
5065                 goto out_unlock;
5066
5067         iodev = bus->range[dev_idx].dev;
5068
5069 out_unlock:
5070         srcu_read_unlock(&kvm->srcu, srcu_idx);
5071
5072         return iodev;
5073 }
5074 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5075
5076 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5077                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5078                            const char *fmt)
5079 {
5080         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5081                                           inode->i_private;
5082
5083         /*
5084          * The debugfs files are a reference to the kvm struct which
5085         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5086         * avoids the race between open and the removal of the debugfs directory.
5087          */
5088         if (!kvm_get_kvm_safe(stat_data->kvm))
5089                 return -ENOENT;
5090
5091         if (simple_attr_open(inode, file, get,
5092                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5093                     ? set : NULL,
5094                     fmt)) {
5095                 kvm_put_kvm(stat_data->kvm);
5096                 return -ENOMEM;
5097         }
5098
5099         return 0;
5100 }
5101
5102 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5103 {
5104         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5105                                           inode->i_private;
5106
5107         simple_attr_release(inode, file);
5108         kvm_put_kvm(stat_data->kvm);
5109
5110         return 0;
5111 }
5112
5113 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5114 {
5115         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5116
5117         return 0;
5118 }
5119
5120 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5121 {
5122         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5123
5124         return 0;
5125 }
5126
5127 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5128 {
5129         int i;
5130         struct kvm_vcpu *vcpu;
5131
5132         *val = 0;
5133
5134         kvm_for_each_vcpu(i, vcpu, kvm)
5135                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5136
5137         return 0;
5138 }
5139
5140 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5141 {
5142         int i;
5143         struct kvm_vcpu *vcpu;
5144
5145         kvm_for_each_vcpu(i, vcpu, kvm)
5146                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5147
5148         return 0;
5149 }
5150
5151 static int kvm_stat_data_get(void *data, u64 *val)
5152 {
5153         int r = -EFAULT;
5154         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5155
5156         switch (stat_data->kind) {
5157         case KVM_STAT_VM:
5158                 r = kvm_get_stat_per_vm(stat_data->kvm,
5159                                         stat_data->desc->desc.offset, val);
5160                 break;
5161         case KVM_STAT_VCPU:
5162                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5163                                           stat_data->desc->desc.offset, val);
5164                 break;
5165         }
5166
5167         return r;
5168 }
5169
5170 static int kvm_stat_data_clear(void *data, u64 val)
5171 {
5172         int r = -EFAULT;
5173         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5174
5175         if (val)
5176                 return -EINVAL;
5177
5178         switch (stat_data->kind) {
5179         case KVM_STAT_VM:
5180                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5181                                           stat_data->desc->desc.offset);
5182                 break;
5183         case KVM_STAT_VCPU:
5184                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5185                                             stat_data->desc->desc.offset);
5186                 break;
5187         }
5188
5189         return r;
5190 }
5191
5192 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5193 {
5194         __simple_attr_check_format("%llu\n", 0ull);
5195         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5196                                 kvm_stat_data_clear, "%llu\n");
5197 }
5198
5199 static const struct file_operations stat_fops_per_vm = {
5200         .owner = THIS_MODULE,
5201         .open = kvm_stat_data_open,
5202         .release = kvm_debugfs_release,
5203         .read = simple_attr_read,
5204         .write = simple_attr_write,
5205         .llseek = no_llseek,
5206 };
5207
5208 static int vm_stat_get(void *_offset, u64 *val)
5209 {
5210         unsigned offset = (long)_offset;
5211         struct kvm *kvm;
5212         u64 tmp_val;
5213
5214         *val = 0;
5215         mutex_lock(&kvm_lock);
5216         list_for_each_entry(kvm, &vm_list, vm_list) {
5217                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5218                 *val += tmp_val;
5219         }
5220         mutex_unlock(&kvm_lock);
5221         return 0;
5222 }
5223
5224 static int vm_stat_clear(void *_offset, u64 val)
5225 {
5226         unsigned offset = (long)_offset;
5227         struct kvm *kvm;
5228
5229         if (val)
5230                 return -EINVAL;
5231
5232         mutex_lock(&kvm_lock);
5233         list_for_each_entry(kvm, &vm_list, vm_list) {
5234                 kvm_clear_stat_per_vm(kvm, offset);
5235         }
5236         mutex_unlock(&kvm_lock);
5237
5238         return 0;
5239 }
5240
5241 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5242 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5243
5244 static int vcpu_stat_get(void *_offset, u64 *val)
5245 {
5246         unsigned offset = (long)_offset;
5247         struct kvm *kvm;
5248         u64 tmp_val;
5249
5250         *val = 0;
5251         mutex_lock(&kvm_lock);
5252         list_for_each_entry(kvm, &vm_list, vm_list) {
5253                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5254                 *val += tmp_val;
5255         }
5256         mutex_unlock(&kvm_lock);
5257         return 0;
5258 }
5259
5260 static int vcpu_stat_clear(void *_offset, u64 val)
5261 {
5262         unsigned offset = (long)_offset;
5263         struct kvm *kvm;
5264
5265         if (val)
5266                 return -EINVAL;
5267
5268         mutex_lock(&kvm_lock);
5269         list_for_each_entry(kvm, &vm_list, vm_list) {
5270                 kvm_clear_stat_per_vcpu(kvm, offset);
5271         }
5272         mutex_unlock(&kvm_lock);
5273
5274         return 0;
5275 }
5276
5277 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5278                         "%llu\n");
5279 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5280
5281 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5282 {
5283         struct kobj_uevent_env *env;
5284         unsigned long long created, active;
5285
5286         if (!kvm_dev.this_device || !kvm)
5287                 return;
5288
5289         mutex_lock(&kvm_lock);
5290         if (type == KVM_EVENT_CREATE_VM) {
5291                 kvm_createvm_count++;
5292                 kvm_active_vms++;
5293         } else if (type == KVM_EVENT_DESTROY_VM) {
5294                 kvm_active_vms--;
5295         }
5296         created = kvm_createvm_count;
5297         active = kvm_active_vms;
5298         mutex_unlock(&kvm_lock);
5299
5300         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5301         if (!env)
5302                 return;
5303
5304         add_uevent_var(env, "CREATED=%llu", created);
5305         add_uevent_var(env, "COUNT=%llu", active);
5306
5307         if (type == KVM_EVENT_CREATE_VM) {
5308                 add_uevent_var(env, "EVENT=create");
5309                 kvm->userspace_pid = task_pid_nr(current);
5310         } else if (type == KVM_EVENT_DESTROY_VM) {
5311                 add_uevent_var(env, "EVENT=destroy");
5312         }
5313         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5314
5315         if (kvm->debugfs_dentry) {
5316                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5317
5318                 if (p) {
5319                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5320                         if (!IS_ERR(tmp))
5321                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5322                         kfree(p);
5323                 }
5324         }
5325         /* no need for checks, since we are adding at most only 5 keys */
5326         env->envp[env->envp_idx++] = NULL;
5327         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5328         kfree(env);
5329 }
5330
5331 static void kvm_init_debug(void)
5332 {
5333         const struct file_operations *fops;
5334         const struct _kvm_stats_desc *pdesc;
5335         int i;
5336
5337         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5338
5339         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5340                 pdesc = &kvm_vm_stats_desc[i];
5341                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5342                         fops = &vm_stat_fops;
5343                 else
5344                         fops = &vm_stat_readonly_fops;
5345                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5346                                 kvm_debugfs_dir,
5347                                 (void *)(long)pdesc->desc.offset, fops);
5348         }
5349
5350         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5351                 pdesc = &kvm_vcpu_stats_desc[i];
5352                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5353                         fops = &vcpu_stat_fops;
5354                 else
5355                         fops = &vcpu_stat_readonly_fops;
5356                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5357                                 kvm_debugfs_dir,
5358                                 (void *)(long)pdesc->desc.offset, fops);
5359         }
5360 }
5361
5362 static int kvm_suspend(void)
5363 {
5364         if (kvm_usage_count)
5365                 hardware_disable_nolock(NULL);
5366         return 0;
5367 }
5368
5369 static void kvm_resume(void)
5370 {
5371         if (kvm_usage_count) {
5372 #ifdef CONFIG_LOCKDEP
5373                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5374 #endif
5375                 hardware_enable_nolock(NULL);
5376         }
5377 }
5378
5379 static struct syscore_ops kvm_syscore_ops = {
5380         .suspend = kvm_suspend,
5381         .resume = kvm_resume,
5382 };
5383
5384 static inline
5385 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5386 {
5387         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5388 }
5389
5390 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5391 {
5392         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5393
5394         WRITE_ONCE(vcpu->preempted, false);
5395         WRITE_ONCE(vcpu->ready, false);
5396
5397         __this_cpu_write(kvm_running_vcpu, vcpu);
5398         kvm_arch_sched_in(vcpu, cpu);
5399         kvm_arch_vcpu_load(vcpu, cpu);
5400 }
5401
5402 static void kvm_sched_out(struct preempt_notifier *pn,
5403                           struct task_struct *next)
5404 {
5405         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5406
5407         if (current->on_rq) {
5408                 WRITE_ONCE(vcpu->preempted, true);
5409                 WRITE_ONCE(vcpu->ready, true);
5410         }
5411         kvm_arch_vcpu_put(vcpu);
5412         __this_cpu_write(kvm_running_vcpu, NULL);
5413 }
5414
5415 /**
5416  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5417  *
5418  * We can disable preemption locally around accessing the per-CPU variable,
5419  * and use the resolved vcpu pointer after enabling preemption again,
5420  * because even if the current thread is migrated to another CPU, reading
5421  * the per-CPU value later will give us the same value as we update the
5422  * per-CPU variable in the preempt notifier handlers.
5423  */
5424 struct kvm_vcpu *kvm_get_running_vcpu(void)
5425 {
5426         struct kvm_vcpu *vcpu;
5427
5428         preempt_disable();
5429         vcpu = __this_cpu_read(kvm_running_vcpu);
5430         preempt_enable();
5431
5432         return vcpu;
5433 }
5434 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5435
5436 /**
5437  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5438  */
5439 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5440 {
5441         return &kvm_running_vcpu;
5442 }
5443
5444 struct kvm_cpu_compat_check {
5445         void *opaque;
5446         int *ret;
5447 };
5448
5449 static void check_processor_compat(void *data)
5450 {
5451         struct kvm_cpu_compat_check *c = data;
5452
5453         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5454 }
5455
5456 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5457                   struct module *module)
5458 {
5459         struct kvm_cpu_compat_check c;
5460         int r;
5461         int cpu;
5462
5463         r = kvm_arch_init(opaque);
5464         if (r)
5465                 goto out_fail;
5466
5467         /*
5468          * kvm_arch_init makes sure there's at most one caller
5469          * for architectures that support multiple implementations,
5470          * like intel and amd on x86.
5471          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5472          * conflicts in case kvm is already setup for another implementation.
5473          */
5474         r = kvm_irqfd_init();
5475         if (r)
5476                 goto out_irqfd;
5477
5478         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5479                 r = -ENOMEM;
5480                 goto out_free_0;
5481         }
5482
5483         r = kvm_arch_hardware_setup(opaque);
5484         if (r < 0)
5485                 goto out_free_1;
5486
5487         c.ret = &r;
5488         c.opaque = opaque;
5489         for_each_online_cpu(cpu) {
5490                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5491                 if (r < 0)
5492                         goto out_free_2;
5493         }
5494
5495         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5496                                       kvm_starting_cpu, kvm_dying_cpu);
5497         if (r)
5498                 goto out_free_2;
5499         register_reboot_notifier(&kvm_reboot_notifier);
5500
5501         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5502         if (!vcpu_align)
5503                 vcpu_align = __alignof__(struct kvm_vcpu);
5504         kvm_vcpu_cache =
5505                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5506                                            SLAB_ACCOUNT,
5507                                            offsetof(struct kvm_vcpu, arch),
5508                                            offsetofend(struct kvm_vcpu, stats_id)
5509                                            - offsetof(struct kvm_vcpu, arch),
5510                                            NULL);
5511         if (!kvm_vcpu_cache) {
5512                 r = -ENOMEM;
5513                 goto out_free_3;
5514         }
5515
5516         r = kvm_async_pf_init();
5517         if (r)
5518                 goto out_free;
5519
5520         kvm_chardev_ops.owner = module;
5521         kvm_vm_fops.owner = module;
5522         kvm_vcpu_fops.owner = module;
5523
5524         r = misc_register(&kvm_dev);
5525         if (r) {
5526                 pr_err("kvm: misc device register failed\n");
5527                 goto out_unreg;
5528         }
5529
5530         register_syscore_ops(&kvm_syscore_ops);
5531
5532         kvm_preempt_ops.sched_in = kvm_sched_in;
5533         kvm_preempt_ops.sched_out = kvm_sched_out;
5534
5535         kvm_init_debug();
5536
5537         r = kvm_vfio_ops_init();
5538         WARN_ON(r);
5539
5540         return 0;
5541
5542 out_unreg:
5543         kvm_async_pf_deinit();
5544 out_free:
5545         kmem_cache_destroy(kvm_vcpu_cache);
5546 out_free_3:
5547         unregister_reboot_notifier(&kvm_reboot_notifier);
5548         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5549 out_free_2:
5550         kvm_arch_hardware_unsetup();
5551 out_free_1:
5552         free_cpumask_var(cpus_hardware_enabled);
5553 out_free_0:
5554         kvm_irqfd_exit();
5555 out_irqfd:
5556         kvm_arch_exit();
5557 out_fail:
5558         return r;
5559 }
5560 EXPORT_SYMBOL_GPL(kvm_init);
5561
5562 void kvm_exit(void)
5563 {
5564         debugfs_remove_recursive(kvm_debugfs_dir);
5565         misc_deregister(&kvm_dev);
5566         kmem_cache_destroy(kvm_vcpu_cache);
5567         kvm_async_pf_deinit();
5568         unregister_syscore_ops(&kvm_syscore_ops);
5569         unregister_reboot_notifier(&kvm_reboot_notifier);
5570         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5571         on_each_cpu(hardware_disable_nolock, NULL, 1);
5572         kvm_arch_hardware_unsetup();
5573         kvm_arch_exit();
5574         kvm_irqfd_exit();
5575         free_cpumask_var(cpus_hardware_enabled);
5576         kvm_vfio_ops_exit();
5577 }
5578 EXPORT_SYMBOL_GPL(kvm_exit);
5579
5580 struct kvm_vm_worker_thread_context {
5581         struct kvm *kvm;
5582         struct task_struct *parent;
5583         struct completion init_done;
5584         kvm_vm_thread_fn_t thread_fn;
5585         uintptr_t data;
5586         int err;
5587 };
5588
5589 static int kvm_vm_worker_thread(void *context)
5590 {
5591         /*
5592          * The init_context is allocated on the stack of the parent thread, so
5593          * we have to locally copy anything that is needed beyond initialization
5594          */
5595         struct kvm_vm_worker_thread_context *init_context = context;
5596         struct kvm *kvm = init_context->kvm;
5597         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5598         uintptr_t data = init_context->data;
5599         int err;
5600
5601         err = kthread_park(current);
5602         /* kthread_park(current) is never supposed to return an error */
5603         WARN_ON(err != 0);
5604         if (err)
5605                 goto init_complete;
5606
5607         err = cgroup_attach_task_all(init_context->parent, current);
5608         if (err) {
5609                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5610                         __func__, err);
5611                 goto init_complete;
5612         }
5613
5614         set_user_nice(current, task_nice(init_context->parent));
5615
5616 init_complete:
5617         init_context->err = err;
5618         complete(&init_context->init_done);
5619         init_context = NULL;
5620
5621         if (err)
5622                 return err;
5623
5624         /* Wait to be woken up by the spawner before proceeding. */
5625         kthread_parkme();
5626
5627         if (!kthread_should_stop())
5628                 err = thread_fn(kvm, data);
5629
5630         return err;
5631 }
5632
5633 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5634                                 uintptr_t data, const char *name,
5635                                 struct task_struct **thread_ptr)
5636 {
5637         struct kvm_vm_worker_thread_context init_context = {};
5638         struct task_struct *thread;
5639
5640         *thread_ptr = NULL;
5641         init_context.kvm = kvm;
5642         init_context.parent = current;
5643         init_context.thread_fn = thread_fn;
5644         init_context.data = data;
5645         init_completion(&init_context.init_done);
5646
5647         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5648                              "%s-%d", name, task_pid_nr(current));
5649         if (IS_ERR(thread))
5650                 return PTR_ERR(thread);
5651
5652         /* kthread_run is never supposed to return NULL */
5653         WARN_ON(thread == NULL);
5654
5655         wait_for_completion(&init_context.init_done);
5656
5657         if (!init_context.err)
5658                 *thread_ptr = thread;
5659
5660         return init_context.err;
5661 }